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Abstract

A learning method is self-certified if it uses all available data to simultaneously
learn a predictor and certify its quality with a statistical certificate that is valid
on unseen data. Recent work has shown that neural network models trained by
optimising PAC-Bayes bounds lead not only to accurate predictors, but also to
tight risk certificates, bearing promise towards achieving self-certified learning.
In this context, learning and certification strategies based on PAC-Bayes bounds
are especially attractive due to their ability to leverage all data to learn a posterior
and simultaneously certify its risk. In this paper, we assess the progress towards
self-certification in probabilistic neural networks learnt by PAC-Bayes inspired
objectives. We empirically compare (on 4 classification datasets) classical test
set bounds for deterministic predictors and a PAC-Bayes bound for randomised
self-certified predictors. We first show that both of these generalisation bounds are
not too far from out-of-sample test set errors. We then show that in data starvation
regimes, holding out data for the test set bounds adversely affects generalisation
performance, while self-certified strategies based on PAC-Bayes bounds do not
suffer from this drawback, proving that they might be a suitable choice for the small
data regime. We also find that probabilistic neural networks learnt by PAC-Bayes
inspired objectives lead to certificates that can be surprisingly competitive with
commonly used test set bounds.

1 Introduction

A crucial question arising in machine learning is how to certify the generalisation ability of a predictor.
In statistical learning theory, this generalisation ability is assessed by its risk, also known as out-
of-sample error, which is a measure of how accurately it performs on random data from the same
distribution that generated the training data. Commonly, the quality of a predictor is certified on a finite
sample, namely a held-out test set, making the estimation sensitive to sampling error. Generalisation
bounds, however, provide a statistically sound certificate of how the model may perform on unseen
data. Intuitively speaking, if the upper bound is small, then this ensures that the quantity being
upper-bounded by it—i.e. the error/loss at population level—must also be small. Among the tightest
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Figure 1: Comparison of data partitions in traditional machine learning vs. self-certified learning
through PAC-Bayes inspired learning and certification strategies [9].

bounds are test set bounds [1] and PAC-Bayes bounds [2–6]. Test set bounds are evaluated on a test
set, while PAC-Bayes bounds may be evaluated on training data exclusively, meaning they could
potentially avoid the need to hold out data and instead use all data for learning. However, PAC-Bayes
bounds were still, until very recently, notoriously loose when compared to test set errors. In the
last few years, strategies that optimise PAC-Bayes bounds to learn a Probabilistic Neural Network
(PNN), which is realised as a probability distribution over the neural network weight space [7–9],
have shown promise by delivering tight risk certificates that are competitive compared to test set
error rates obtained by standard empirical risk minimisation (ERM) [9]. PNNs themselves come
with many advantages, such as a principled approach for uncertainty quantification [7]. However,
most importantly, PNNs coupled with PAC-Bayes bounds could bring us closer to the concept of
self-certified learning [9, 10], where one uses all the available data for (i) learning a predictor and (ii)
certifying the predictor’s performance at population level. The certification strategy would then not
require a held-out test set, which may allow a more efficient use of the available data (in contrast to
test set bounds and most traditional certification strategies used in the machine learning community,
which require held-out data). This could radically change not only how we estimate generalisation
ability but also how we approach model selection in machine learning. Our methods also provide
statistically sound risk certificates that might be useful for machine learning algorithm governance.

To claim self-certified learning has been achieved we first require self-certification strategies that
deliver tight risk certificates [9], so that certificates are informative of the out-of-sample error. The
tightness would mean that the computed certificates closely match these out-of-sample errors, which
are estimated by the error rates evaluated on a test set. In this paper, we evaluate the progress towards
self-certification by comparing PAC-Bayes inspired PNNs to standard neural networks learnt by
ERM and certified with test set bounds and test set errors. Fig. 1 shows the data partitions used at the
different stages of learning and certification for (i) traditional strategies and (ii) our proposed strategy
leading to self-certified predictors.

2 Elements of Statistical Learning

Supervised classification algorithms receive training data S = ((X1, Y1), . . . , (Xn, Yn)) consisting
of pairs that encode inputs Xi ∈ X ⊆ Rd and their labels Yi ∈ Y . Classifiers hw : X → Y are
mappings from input space X to label space Y , and we assume they are parametrised by ‘weight
vectors’ w ∈ W ⊆ Rp. The quality of hw is given by its risk L(w), which by definition is the
expected classification error on a randomly chosen pair (X,Y ). However, L(w) is an inaccessible
measure of quality, since the distribution that generates the data is unknown. An accessible measure of
quality is given by the empirical risk functional L̂S(w) = n−1

∑n
i=1 `(hw(Xi), Yi), defined in terms

of a loss function ` : R× Y → [0,∞) which may be the zero-one loss or a surrogate loss function.
Indeed, the empirical risk minimisation (ERM) paradigm aims to find w ∈ W that minimises this
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empirical functional, typically for some choice of surrogate loss that is amenable to gradient-based
optimisation, such as the squared loss or the cross-entropy loss for classification.

The outcome of training a PNN is a distribution Q over weight space and this distribution depends on
the sample S. Then, given a fresh input X , the randomised classifier predicts its label by drawing a
weight vector W at random from Q and applying the predictor hW to X . For the sake of simplicity,
we identify the randomised predictor with the distribution Q that defines it. The quality of this
randomised predictor is measured by the expected loss notions under the random draws of weights.
Thus, the loss of Q is given by L(Q) =

∫
W L(w)Q(dw); and the empirical loss of Q is given by

L̂S(Q) =
∫
W L̂S(w)Q(dw).

The PAC-Bayes-quadratic bound [9] says that for any δ ∈ (0, 1), with probability of at least 1− δ
over size-n i.i.d. random samples S, simultaneously for all distributions Q overW we have:

L(Q) ≤


√
L̂S(Q) +

KL(Q‖Q0) + log( 2
√
n
δ )

2n
+

√
KL(Q‖Q0) + log( 2

√
n
δ )

2n

2

.

In this case the priorQ0 must be chosen without any dependence on the data S on which the empirical
term L̂S is evaluated. In this work, we use a partitioning scheme for the training data S = Spri∪Scert

such that the prior is trained on Spri, the posterior is trained on the whole set S and the risk certificate
is evaluated on Scert. See Fig. 1. The ‘prior’ and ‘posterior’ distributions that appear in PAC-Bayes
bounds should not be confused with their Bayesian counterparts. In PAC-Bayes bounds, what is
called ‘prior’ is a reference distribution, and what is called ‘posterior’ is an unrestricted distribution,
in the sense that there is no likelihood factor connecting them (we refer the reader to [11, 12]).

3 Learning and Certification Strategy

In a nutshell, the learning and certification strategy used (we refer to [9, 13]) has three components:
(1) choose/learn a prior; (2) learn a posterior; and (3) evaluate the risk certificate for the posterior.

3.1 Data-dependent PAC-Bayes priors

We experiment with Gaussian PAC-Bayes priors Q0 with a diagonal covariance matrix centered
at (i) random weights (uninformed data-free priors) and (ii) learnt weights (data-dependent priors)
based on a subset of the dataset which is does not overlap with the subset used to compute the risk
certificate (see Fig. 1). In all cases, the posterior is initialised to the prior. Similar approaches have
been considered before in the PAC-Bayesian literature (we refer to [14, 9, 15]). To learn the prior
mean we use ERM with dropout. The prior scale is set as a hyperparameter as done in [9].

3.2 Posterior Optimisation & Certification

We now present the essential idea of training PNNs by minimising a PAC-Bayes upper bound on the
risk. We use a recently proposed PAC-Bayes inspired training objective [9], derived from Eq. (1) in
the context of neural network classifiers:

fquad(Q) =


√
L̂x-e
S (Q) +

KL(Q‖Q0) + log( 2
√
n
δ )

2n
+

√
KL(Q‖Q0) + log( 2

√
n
δ )

2n

2

.

This objective is implemented using the cross-entropy loss, which is the standard surrogate loss
commonly used in neural network classification. Since the PAC-Bayes bounds of Eq. (1) require
the loss within [0,1], we construct a ‘bounded cross-entropy’ loss by lower-bounding the network
probabilities by a value pmin > 0 (cf. [16, 9]) and re-scaling the resulting bounded loss to [0,1]. The
empirical risk term L̂x-e

S (w) is then calculated with this bounded version of the cross-entropy loss.

Optimisation of the objective in Eq. (1) entails minimising over Q. By choosing Q in a parametric
family of distributions, we can use the pathwise gradient estimator (see e.g. [17]) as done by [7]. The
details of the reparameterisation strategy are outlined in [9]. Following [7], the reparameterisation we
use is W = µ+ σ � V with Gaussian distributions for each coordinate of V . The optimisation uses
σ = log(1 + exp(ρ)), thus gradient updates are with respect to µ and ρ.
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3.3 Evaluation of the Risk Certificates

After optimising the posterior distribution over network weights through the previously presented
training objective, we compute a risk certificate on the error of the stochastic predictor. To do so, we
follow the procedure outlined in [9], which was used before by [8] and goes back to the work of [18].
This certification procedure uses the PAC-Bayes-kl bound. In particular, the procedure is based on
numerical inversion of the binary KL divergence, as done by [8, 9].

4 Experiments

Our work aims at empirically investigating two questions: (i) Could PAC-Bayes-inspired self-certified
learning algorithms, making use of all available data, provide tighter risk certificates than test set
bounds? (ii) How far are these bounds from out-of-sample test set errors? To answer these questions,
we compare: (a) PNNs learnt by optimising the PAC-Bayes-quadratic bound following [9] (both
in a self-certified and traditional fashion) and (b) standard neural networks learnt by empirical risk
minimisation (traditionally certified, i.e. using a held-out test set). For the former we compute the
PAC-Bayes-kl bound from [18], while the latter is evaluated with a test set bound (we used the
Chernoff and binomial test set bounds, see [1] and the recent [19]).

4.1 Experimental setup

In all experiments the models are compared under the same experimental conditions, i.e. architecture,
weight initialisation and optimiser (SGD with momentum), as well as data partitions and confidence
for the bounds. The mean parameters µ0 of the prior are initialised randomly from a truncated
centered Gaussian distribution with standard deviation set to 1/

√
nin, where nin is the dimension

of the inputs to a particular layer, truncating at ±2 standard deviations. All risk certificates are
computed using the the PAC-Bayes-kl inequality, as explained in Section 6 of [9], with δ = 0.025
and δ′ = 0.01 and m = 150000 Monte Carlo model samples. We also report the average 0-1 error
of the stochastic predictor, where we randomly sample fresh model weights for each test example
100 times and compute the average 01 error. Input data was standardised for all datasets. Test set
bounds are evaluated with δ = 0.035 (to match the total confidence level 0.025 + 0.01 used for the
PAC-Bayes-kl bound).

We experiment with fully connected neural networks (FCN) with 3 layers (excluding the ‘input layer’)
and 100 units per hidden layer. ReLU activations are used in each hidden layer. For learning the prior
we ran the training for 500 epochs. Posterior training was run for 100 epochs. We use a training batch
size of 250. ERM was run for 600 epochs. In all experiments we reserve 1% of the training data (or
prior training data in the case of PAC-Bayes inspired learning) to validate the prior, as done in [13].

For all experiments we use the same hyper-parameters, which were found to work well in previous
work and architectures for these datasets [13]. The prior distribution scale hyper-parameter (i.e.
standard deviation σ0) is set to 0.005. For SGD with momentum the learning rate is set to 1e−3

and momentum to 0.95. The same values are used for learning the prior. The dropout rate used
for learning the prior was 0.01 and applied to all layers. For PAC-Bayes inspired learning, we test
multiple splits of data for learning the prior and certifying the posterior from 0.5 to 0.8 and choose
the one that provides the best risk certificates, as it has been shown that the optimal percentage may
be dataset dependent [13].

Dataset n #f #c
Spambase 4601 58 2

Bioresponse 3751 1777 2
Har 10299 562 6

Mammography 11183 7 2

Table 1: Datasets used: n is the total number of data points, #f the number of features and #c the
number of classes.

We experiment with the four datasets described in Table 1, which are publicly available (OpenML.org)
and were selected so as to represent a wide range of characteristics (dataset size, data dimensionality,
and number of classes). Moreover, we create datasets of different sizes by removing data at random.
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Our experiments span [0.00, 0.25, 0.50, 0.75, 0.90, 0.95, 0.97, 0.98]% of data removed at random for
each dataset. For all datasets we selected 10% of the data as test set (stratified with class label).

Figure 2: Left panel: we compare test set errors for standard neural networks learnt by ERM and
PNNs learnt by PAC-Bayes inspired objectives. Right panel: we compare values of the PAC-Bayes-kl
bound for the self-certified PNN and the traditionally certified PNN. The latter uses a held out test set.

4.2 Results

We experiment with the four mentioned datasets (see Table 1) and study the case of data starvation
(i.e. we remove data at random from each dataset). In all cases, we reserve 10% of the available
data as test (except for self-certified PNNs, which use all the available data for training). Note that
our results and conclusions may be susceptible to the percentage of data that is reserved for testing
purposes, as this will impact the gains achieved by self-certified learning, as well as the predictors in
traditionally certified learning and the test set bounds. In our experience, similar results were obtained
when holding 20% of data as test. Note that when we remove data we do so from the whole dataset,
which effectively impacts the size of the test set. This is to mimic more realistically what would
happen in the small data regime in which both training and test sets are reduced. The comparison
between PAC-Bayes and test set bounds is particularly interesting in this data starvation regime as
one cannot discard data to compute a test set bound without significantly harming performance [19].

The left part of Fig. 2 shows a comparison of test set errors for deterministic neural networks and
PNNs. First, we note that these models have comparable test set performance. Additionally, the
stochastic test set error (when sampling networks from the posterior distribution) does not deviate
significantly from the test set error achieved by the posterior mean. This has been shown in the
literature before [9, 16], with the intuition that these training objectives may promote flatter minima.
The right part of the plot shows a comparison of the PAC-Bayes certificate for self-certified PNNs
and traditionally certified PNNs. As expected, risk certificates seem to be improved by a self-certified
setting, but especially so in the small data regime. Both plots show the average across 4 datasets
(which are subsets of those described in Table 1) and 5 runs per dataset.

Fig. 3 shows a comparison of self-certified learning with PAC-Bayes bounds and traditionally certified
learning with test set bounds for 4 datasets and different amounts of data missing at random. The
results show that the PAC-Bayes bound of the self-certified version is competitive with the test set
bounds for the traditionally certified setting, specially with the commonly used Chernoff bound.
In the small data regime (specifically when removing at least 75% of training data), PAC-Bayes
inspired self-certified learning shows a clear advantage, demonstrating significantly tighter bounds
than both of the test set bounds considered for traditionally certified learning. See for example the
case of Spambase and Bioresponse (the smallest datasets), where test set bounds on the zero-one
error achieve a risk certificate between 0.7 and 0.8, while PAC-Bayes bounds stay below 0.2 and
0.5 respectively. We hypothesize that we can not see such a difference for Har and Mammography
because these datasets are initially larger, so removing 98% of the data at random would still give a
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Figure 3: Comparison of results obtained with (i) self-certified PNNs with PAC-Bayes bounds and
(ii) traditionally certified standard neural networks with test set bounds. Note that in both cases the
compared strategies make use the same amount of data, however the self-certified learner uses all
available data for training, instead of holding out part of the data for testing, as done in the traditional
certification cases. The plot shows mean and confidence intervals computed over 5 runs.

dataset of around 206 and 224 points respectively, whereas for Spambase and Bioresponse we would
have a total dataset size of 92 and 75 data points.

5 Discussion

This work is a preliminary empirical analysis of the progress towards self-certified neural networks,
where we experiment with predictors trained on all the available data and certified with PAC-Bayes
generalisation bounds. Our results show that self-certified PNNs trained optimising PAC-Bayes
inspired objectives reach competitive risk certificates compared to commonly used test set bounds.
At the same time, the bounds are shown to be relatively close to test set errors. These conclusions are
especially true for the small data regime, where PAC-Bayes bounds with self-certified learning are
significantly tighter than Chernoff and binomial tail test set bounds.

We believe that as new generalisation bounds are developed and used to inspire learning algorithms,
we will get closer to the ambitious but promising objective of self-certified learning, where (i)
all data can be used to learn and certify a predictor (without needing to hold-out test set data for
measuring generalisation ability and model selection purposes) and (ii) we have statistically sound
risk certificates of predictors’ performance which do not suffer from sampling bias and hence could
be used for setting performance standards when governing machine learning algorithms.
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