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1. INTRODUCTION

Backstepping is probably the most popular technique of
construction of stabilizing control laws for nonlinear sys-
tems with a triangular structure. For thirty years, it has
been developed in plethora of works in many research
areas e.g. adaptive control, output feedback stabilization,
stabilization of time-varying systems with delay, incre-
mental stabilization, Coron and Praly (1991), Freeman
and Kokotovic (1996), Khalil (2002), Zhou et al. (2009),
Zhang et al. (2003), Postoyan et al. (2009), (Karafyllis
and Jiang, 2011, Chapt. 6), Bekiaris and Krstic (2010). It
is worth mentioning that some contributions are devoted
to the problem of designing bounded feedbacks via the
backstepping technique e.g. Freeman and Praly (1998),
which is motivated by size constraints of the control which
are inherent to many models arising from applications.

Since the pioneering recent work Mazenc and Malisoff
(2016), new advances of the backstepping approach have
been obtained via a fundamentally new variant of back-
stepping Mazenc et al. (2018c), Mazenc et al. (2016),
Mazenc et al. (2019b). A crucial aspect of it is that it relies
on the introduction of either ’artificial’ delays in the con-
trol or dynamic extensions. The new control laws designed
by this approach offer, in many circumstances, decisive
advantages. In particular, the bounded feedbacks with
artificial delays are given by formulas much simpler than
those provided by the classical backstepping approach, at
each step of the backstepping, fictitious feedbacks that are
not of class C1 can be used and output feedback problems
can be solved in cases where no accurate measurement of
some state variables is available Mazenc et al. (2018b),
Mazenc et al. (2018a), Mazenc et al. (2017a).

In the present work, we solve stabilizing problems for a
broad family of non-linear time-varying systems with a
pointwise constant delay in the input. Our control design
uses operators which are reminiscent of those introduced

in Mazenc et al. (2019a). A strong motivation of our
work arises from the fact that we propose control laws for
systems with uncertain terms so that we cover cases which
cannot be handled using the main results of Mazenc et al.
(2004). It is worth mentioning that the result we propose
applies when a delay in the input is present, but is also of
interest for systems without delay.

Finally, we point out that the expressions of the feedbacks
we build are very different from those of papers as Mazenc
et al. (2011), where the classical backstepping approach
is adapted to the case of time-invariant systems with one
integrator and a delay in the input under a condition on
the size of the delay.

1.1 Notation and classical definitions

We omit arguments of functions when they are clear. Given
any constant T > 0, we let Cin denote the set of all
continuous functions φ : [−T, 0] → Ra, which we call
the set of all initial functions. We define Ξt ∈ Cin by
Ξt(s) = Ξ(t + s) for all choices of Ξ, s ≤ 0, and t ≥ 0
for which the equality is defined. Given L > 0, σL denotes
the classical symmetric saturation function i.e.

σL(s) = max{−L,min{L, s}} (1)

for all s ∈ R. For a function ϕ : R → R differentiable
p times, we denote by ϕ(j) it’s j’s derivative for all j ∈
{0, ..., p}. We adopt the convention ϕ(0) = ϕ.
Let us consider a system

ẋ(t) = A(t, xt, w1(t), ..., wm(t)) (2)

with a finite delay τ ≥ 0, x ∈ Rn and w = (w1, ..., wm) ∈
Rm.
Definition 1. We say that the system (2) is bounded-
input bounded-state (BIBS) with input w if there exist α,
γ of class K such that a solution x of (2) with φx0

∈ Cin as
initial condition at the instant t0 ≥ 0 and w ∈ L∞ satisfies



|x(t)| ≤ α(|φx0
|) + γ

(
sup

m∈[t0,t]
|w(m)|

)
(3)

for all t ≥ t0 ≥ 0.
Definition 2. We say that the system (2) is converging-
input converging-state (CICS) with input w if it is forward
complete and when

lim
t→+∞

|w(t)| = 0 then lim
t→+∞

|x(t)| = 0. (4)

Definition 3. The system (2) is Input-to-State-Stable
(ISS) if there exist a function β of class KL and a function
γ of class K such that any solution x of it satisfies:

|x(t)| ≤ β

(
sup

r∈[s−τ,s]
|x(r)|, t− s

)
+ γ

(
sup
r∈[s,t]

|w(r)|

)
(5)

for all t ≥ s ≥ 0.

2. OPERATORS: DEFINITIONS AND LEMMAS

In this section, we introduce operators and establish re-
sults that will be instrumental when we establish the main
result of our contribution.

Let k > 0, h > 0 and τ > 0 be real numbers. Throughout
the work, we can let k be equal to 1, or any other positive
constant. However, we keep k as a tuning parameter
helping to improve the performances of the control laws
we will propose. Let us introduce the constant

j =
kekh

ekh − 1
(6)

and consider a system

ẋ(t) = R(t, xt), (7)

with x(t) ∈ Rq that is forward complete and has a finite
delay τ ≥ 0.

2.1 Definitions

Let U : R × Rq → R be a function such that there are a
constant LU ≥ 0 and a function B of class K such that

|U(a, b1)− U(a, b2)| ≤ LU |b1 − b2| (8)

for all (a, b1, b2) ∈ R1+2q and

|U(a1, b)− U(a2, b)| ≤ |a1 − a2|B(|b|) (9)

for all (a1, a2, b) ∈ R2+q.

i) Let ΓU,i : Cin → R with i ∈ N denote the operators
such that along the trajectories of (7),

ΓU,0(t, xt) = U(t− τ, x(t− τ)) (10)

and, for i ≥ 1,

ΓU,i(t, xt) = j

∫ t

t−h
ek(s−t)ΓU,i−1(s, xs)ds, (11)

where j is the constant defined in (6).

ii) For all j ∈ N, j > 0, i ∈ {0, ..., j}, we let ΩU,j,i : Cin →
R denote the operators such that along the trajectories of
(7),

ΩU,j,i(t, xt) = Γ
(i)
U,j(t, xt). (12)

iii) Let ζ : Cin → Rq be the operator defined by:

ζ(φ) =
k

ekh − 1

[
ekhφ(0)− φ(−h)

]
(13)

for all φ ∈ Cin.

2.2 Estimate and upper bounds for the operators

In this section, we give technical results whose proofs are
omitted. Lemmas 1 and 2 are direct consequences of the
definitions of the operators ΓU,j and Lemmas 3 and 4 can
be established by induction.

Basically, the following lemma shows that the smaller the
constant h is selected, the closer ΓU,j(t, xt) is to U(t −
τ, x(t− τ)).

Lemma 1 Along the trajectories of the system (7), for all
j ∈ N, the inequalities

|ΓU,j(t, xt)− U(t− τ, x(t− τ))| ≤

LU

∫ t−τ

t−τ−jh
|ẋ(s)|ds+ jhB(|x(t− τ)|) (14)

hold for all t ≥ τ + jh.

Now, we determine upper bounds for the operators ΓU,j
and ΩU,j,i.

Lemma 2 Let us consider the system (7). For all j ∈ N,
j > 0,

|ΓU,j(t, xt)| ≤ j

∫ t−τ

t−τ−jh
|U(s, x(s))|ds (15)

for all t ≥ τ + jh.

Lemma 3 For all j ∈ N, j ≥ 1, i ∈ {0, ..., j − 1}, the
inequalities

|ΩU,j,i(t, xt)| ≤ 2iji+1

∫ t−τ

t−τ−jh
|U(s, x(s))|ds (16)

are satisfied for all t ≥ τ + jh.

Lemma 4 Let the function U by bounded by a constant
U ≥ 0. Then for all j ∈ N,

|ΓU,j |∞ ≤ U (17)

and for all j ∈ N, j > 0, and m ∈ {1, ..., j},
|ΩU,j,m|∞ ≤ 2mjmU . (18)

3. STABILIZATION OF NONLINEAR TIME-VARING
SYSTEMS WITH DELAY

This section is devoted to the main result of the paper,
which is the design of a globally asymptotically stabilizing
control law for time-varying nonlinear systems with delay
in the input.

3.1 Studied system

We consider the system:{
Ẋ(t) = F (t,Xt, y1(t) + r1(t))

Ẏ (t) = A(t)Y (t) +Bu(t− τ) + r2(t),
(19)

with X = (x1, ...., xq) ∈ Rq, Y = (y1, ...., yn) ∈ Rn,
B = (0 .... 0 1)> ∈ Rn, u ∈ R, τ ≥ 0, where F is a
nonlinear functional, locally Lipschitz with respect to its
two last arguments and piecewise-continuous with respect
to the first, r1 : [0,+∞) → R and r2 : [0,+∞) → Rn are
disturbances, and where A : [0,+∞) → Rn×n is of the
form:

A(t) =





a1,1(t) a1,2(t) 0 ... 0
a2,1(t) a2,2(t) a2,3(t) ... 0

...
. . .

. . .
...

...
...

an−1,1(t) an−1,2(t) . . .
. . . an−1,n(t)

an,1(t) an,2(t) . . . . . . an,n(t)


. (20)

The structure of A ensures that the classical backstepping
approach can be applied to the system (19) under some
smoothness and stabilizability conditions for the X and Y
subsystems. Our objective is to design control laws under
less restrictive conditions.

Let us introduce 3 assumptions.

Assumption A1. There are a functional V, a functional
ϕ and a constant d ≥ 0 such that the origin of the system{

ζ̇(t) = A(t)ζ(t) +BV(t− τ, χt−τ , ζt−τ ) + d(t)
χ̇(t) = ϕ(t, χt, ζt),

(21)

with ζ ∈ Rn, χ ∈ Rr, is BIBS and CICS with input d when

|d|∞ ≤ d. (22)

The functional V is locally Lipschitz and there is a Lips-
chitz continuous function V such that

|V(t, φ1, φ2)| ≤ V(φ1, φ2) (23)

for all t ∈ [0,+∞) and φ1 ∈ Cin and φ2 ∈ R.
Assumption A2. There are a functionW, a functional $
and constants k > 0 and h? > 0 such that when h ∈ (0, h?],
then the system{

ξ̇(t) = F (t, ξt,ΓW,n(t, ξt,ℵt) + s(t))

ℵ̇(t) = $(t, ξt,ℵt),
(24)

with ξ ∈ Rq, ℵ ∈ Ru and ΓW,n defined in (10)-(11) is
BIBS and CICS with input s. The function W is locally
Lipschitz and there is a Lipschitz continuous function W
such that

|W(t, ξ,ℵ)| ≤ W(ξ,ℵ) (25)

for all t ∈ [0,+∞) and ξ ∈ Rq, ℵ ∈ Ru.
Remark. In the systems (21) and (24), there are dynamic
extensions. We introduce them for the sake of generality.
Evidently, Assumptions A1 and A2 can be satisfied in cases
where there is no dynamic extension.
Assumption A3. The functions ai,j, i ∈ {1, ..., n},
j ∈ {1, ...,min{i + 1, n}} are of class Cn−i and there are
constants a > 0 and a > 0 such that

|A(t)| ≤ a , ∀t ≥ 0 (26)

and
|a(p)i,j (t)| ≤ a , ∀t ≥ 0 (27)

for all i ∈ {1, ..., n}, j ∈ {1, ...,min{i+1, n}}, p ∈ {1, ...n−
i} and for all i ∈ {1, ..., n− 1}

a ≤ ai,i+1(t) , ∀t ≥ 0. (28)

There is a Lipschitz continuous function F such that

|F (t, φ1, φ2)| ≤ F (φ1, φ2) (29)

for all t ∈ [0,+∞) and (φ1, φ2) ∈ Cin × R and

F (0, 0) = 0. (30)

Remark. The assumptions above do not imply that F

and W are of class C1. Thus, under our assumptions,
the classical backstepping approach does not apply to the
system (19).

3.2 Feedback stabilization

Associating the dynamic extension in (24) to the system
(19), we obtain: Ẋ(t) = F (t,Xt, y1(t) + r1(t))

Ẏ (t) = A(t)Y (t) +Bu(t− τ) + r2(t)

£̇(t) = $(t,Xt,£t).

(31)

We define now some functionals. First we let

y†,1(t,Xt,£t) = ΓW,n(t,Xt,£t) (32)

and by induction, we define the functionals y†,i as the
functionals such that for i ∈ {1, ..., n − 1}, along the
trajectories of the system (31),

y†,i+1(t,Xt,£t) =

1

ai,i+1(t)

[
ẏ†,i(t,Xt,£t)−

i∑
l=1

ai,l(t)y†,l(t,Xt,£t)

]
.

(33)
Assumption A3 ensures that they are well-defined. Now,
one can prove by induction that there are continuous and
bounded functions bi,s(t) such that, for i ∈ {1, ..., n},

y†,i(t,Xt,£t) =

n∑
s=n−i+1

bi,s(t)ΓW,s(t,Xt,£t). (34)

We deduce that there are continuous and bounded func-
tions cs(t) such that

n∑
l=1

an,l(t)y†,l(t,Xt,£t)− ẏ†,n(t,Xt,£t)

=

n∑
s=0

cs(t)ΓW,s(t,Xt,£t).

(35)

Now, let us introduce:

ỹi(t) = yi(t)− y†,i(t,Xt,£t) , i = 1, ..., n (36)

and
Ỹ (t) = (ỹ1(t), .... , ỹn(t)). (37)

We are ready to state and prove the following result:

Theorem 5 Let the system (19) satisfy Assumptions A1 to
A3. Then the system (19) in closed-loop with the dynamic
feedback:

u(t− τ) = −
n∑
s=0

cs(t)ΓW,s(t,Xt,£t)

+V
(
t− τ, χt−τ , Ỹt−τ

)
£̇(t) = $(t,Xt,£t)

χ̇(t) = ϕ
(
t, χt, Ỹt

)
,

(38)

with Ỹ defined in (37) is BIBS and CICS with input
(r1(t), r2(t)) when

|r2|∞ ≤ d, (39)

where d is the constant in (22).

Discussion of Theorem 5.



1) Since ΓW,s(t,Xt,£t) and V
(
t− τ, χt−τ , Ỹt−τ

)
depend

on values of the various variables involved at instants
smaller than t−τ , the feedback in (38) is well-defined. For
any system (19), an explicit expression for the functions
cs in (35) can be determined. Thus the control in (38) can
be used in practice.

2) Assumptions A1 to A3 can be checked even when F is
not accurately known and the control law (38) does not
incorporate F in its expression. It follows that one of the
advantages of Theorem 5 is that it can be applied in cases
where there are uncertainties in F .

3) When the functions V and W are bounded, then
the feedback u defined in (38) is bounded because the
functions cs and ΓW,s are bounded.

4) The main differences between the system (19) and the
one studied in Mazenc et al. (2019b) are the following:
(i) A depends on t, (ii) the delay τ is present in u, (iii)
delays can be present in the X-subsystem. The approach
in Mazenc et al. (2019b) uses dynamic extensions with
high gains and no artificial delay. It is worth mentioning
that we conjecture that the approach of Mazenc et al.
(2019b) can be adapted to the system (19). Doing this
would lead to a variant of Theorem 5 which would be
by no means direct and we conjecture it would involve
complicated mathematical developments. Notice also that
the operators we use are simpler than those introduced in
Mazenc et al. (2018c) and we consider a family of systems
different from the one studied in Mazenc et al. (2018c).

5) Under the additional mild condition that the system
(19) is forward complete, one can deduce from Theorem
5 the expression of a globally asymptotically stabilizing
control law with pointwise delays instead of distributed
delays. Indeed, let us introduce the dynamic extension:

ẇ1(t) = −kw1(t) +W(t− τ,X(t− τ)) (40)

and, for all j ∈ N, j ≥ 2

ẇj(t) = −kwj(t) + ζ(wj−1,t) (41)

with ζ defined in (13). Then one can prove that for all
positive integer m, for all t ≥ mh, the equality

ζ(wm,t) = ΓW,m(t,Xt,£t) (42)

is satisfied. Thus

v(t− τ) = −
n∑
s=0

cs(t)ζ(ws,t) + V
(
t− τ,£t−τ , Ỹt−τ

)
£̇(t) = $(t,Xt,£t)

χ̇(t) = ϕ
(
t, χt, Ỹt

)
(43)

is such that
v(t− τ) = u(t− τ) (44)

for all t ≥ nh where u is the feedback defined in (38).
From a practical point of view, implementing v may be
easier than implementing u.

Proof. Let us consider the system (19) and Ỹ defined in
(37). Since, according to (33),

ẏ†,i(t,Xt,£t) =

i+1∑
l=1

ai,l(t)y†,l(t,Xt,£t) (45)

for all i = 1 to n− 1, we have

˙̃yi(t) =

i+1∑
l=1

ai,l(t)ỹl(t) (46)

and

˙̃yn(t) =

n∑
l=1

an,l(t)yl(t) + u(t− τ)− ẏ†,n(t,Xt,£t)

=

n∑
l=1

an,l(t)ỹl(t) + u(t− τ)

+

n∑
l=1

an,l(t)y†,l(t,Xt,£t)− ẏ†,n(t,Xt,£t).

(47)
It follows from (46) and (35) that

˙̃Y (t) = A(t)Ỹ (t)+B

[
u(t− τ) +

n∑
s=0

cs(t)ΓW,s(t,Xt,£t)

]
.

(48)
From (36), it follows that y1(t) = ΓW,n(t,Xt,£t) + ỹ1(t).
Thus we have:

Ẋ(t) = F (t,Xt,ΓW,n(t,Xt,£t) + ỹ1(t) + r1(t))
˙̃Y (t) = A(t)Ỹ (t)

+B

[
u(t− τ) +

n∑
s=0

cs(t)ΓW,s(t,Xt,£t)

]
+r2(t).

(49)
Applying the feedback u(t− τ) defined in (38), we obtain

Ẋ(t) = F (t,Xt,ΓW,n(t,Xt,£t) + ỹ1(t) + r1(t))

£̇(t) = $(t,Xt,£t)
˙̃Y (t) = A(t)Ỹ (t) +BV

(
t− τ, χt−τ , Ỹt−τ

)
+ r2(t)

χ̇(t) = ϕ(t, χt, Ỹt).
(50)

Assumption A1 and (39) ensure that the (Ỹ , χ)-subsystem
of (50) is BIBS and CICS with input r2(t). Next, Assump-
tion A2 allows us to conclude.

3.3 Checking the assumptions

In general, checking that Assumption A1 is satisfied is
a standard problem. Indeed, this assumption basically
means that a linear time-varying system with a delay in
the input is stabilizable by a dynamic feedback. Assump-
tion A3 is a boundedness condition on the functions of
the system with respect to t. It can be easily checked.
Assumption A2 is more problematic because it consists in
a stabilizability condition in which the unusual operator
ΓW,n is involved. However, one can check that it is satisfied
using a strategy in 2 steps:

(i) First, one determines functions W and $ such that ξ̇(t) = F (t, ξt,W(t− τ, ξ(t− τ),ℵ(t− τ))
+s(t))

ℵ̇(t) = $(t, ξt,ℵt)
(51)

is BIBS and CICS with input s.

(ii) Next, one establishes that the system (24) is BIBS and
CICS when the tuning parameter h is sufficiently small.



To prove this, various approaches can be tried, according
to the type of systems that are studied. In particular, one
can adopt a Lyapunov Krasovskii functional technique, as
done for instance in Mazenc et al. (2018c) or the trajectory
based approach presented for instance in Mazenc et al.
(2017b). This technique can be applied in the particular
case where the following assumption is satisfied:
Assumption A4. There are constants f i ≥ 0, i = 1, 2
such that

|F (t, φ, z) | ≤ f1 sup
s∈[−τ,0]

|φ(s)|+ f2|z| (52)

for all t ≥ 0, φ ∈ Cin and z ∈ R. There are a function
W : R × Rq → R, two constants KW ≥ 0 and BW ≥ 0
such that

|W(a, b1)−W(a, b2)| ≤ KW |b1 − b2| (53)

for all a ∈ R, b1 ∈ Rq, b2 ∈ Rq and

|W(a1, b)−W(a2, b)| ≤ BW |a1 − a2||b| (54)

for all a1 ∈ R, a2 ∈ R, b ∈ Rq and constants T > 0 and
t] ≥ T + τ such that the solutions of the system:

Ẏ(t) = F (t,Yt,W(t− τ,Y(t− τ)) + s(t)) (55)

satisfy

|Y(t)| ≤ ι1 sup
s∈[t−T,t]

|Y(s)|+ ι2 sup
s∈[t−T,t]

|s(s)| (56)

with
0 ≤ ι1 < 1 (57)

and ι2 > 0 for all t ≥ t].
We have the following result, whose proof is omitted:
Proposition 1 Let the system (19) satisfy Assumption
A3. Let F be a functional and W be a function such
that Assumption A4 is satisfied. Then Assumption A2 is
satisfied.

4. ILLUSTRATIONS OF THEOREM 5

4.1 TORA system

We illustrate our theory using the system
ż1(t) = z2(t)
ż2(t) = −z1(t) + ε sin(ς1(t))
ς̇1(t) = ς2(t)
ς̇2(t) = u(t),

(58)

with (z1, z2, ς1, ς2) ∈ R4, u ∈ R and ε > 0. This is the
TORA model (whose stabilization is studied for instance
in Escobar et al. (1999)) after a preliminary change of
feedback. This change of feedback contains an unbounded
term. Thus we do not claim that the control law we
propose in this section stabilizes a trajectory of the TORA
model by bounded feedback. Our objective is merely to
illustrate how our technique applies and can produce
bounded feedbacks. In (Malisoff and Mazenc, 2002, p.
90), it is explained that, when ε = 3

4 , then tracking the
trajectory:

(z1,r(t), z2,r(t), ς1,r(t), ς2,r(t))

=

(
sin

(
t

2

)
,

1

2
cos

(
t

2

)
,
t

2
,

1

2

)
(59)

results in the problem of globally asymptotically stabiliz-
ing the origin of the system:



ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) +
3

4
cos

(
t

2

)
sin (y1(t))

+
3

4

(
sin

(
t

2

)
(cos (y1(t))− 1)

)
ẏ1(t) = y2(t)
ẏ2(t) = u(t).

(60)

The triangular structure of this system ensures that the
bounded backstepping results developed in Freeman and
Praly (1998) and Mazenc et al. (2011) apply. But this
strategy leads to rather complicated feedback laws. Let
us observe that the forwarding approach Mazenc and
Praly (2000) applies too and leads to rather complicated
feedbacks laws too.

4.2 Control design

Let us check that Theorem 5 applies to the system (60).

Through a simple proof using the Lyapunov function

f(ζ) =
∫ ζ1+ζ2
0

σ1(`)d`+ 1
2ζ

2
2 , one can prove that Assump-

tion A1 is satisfied with

V(ζ) = −σ1(ζ1 + ζ2)− σ1(ζ2). (61)

One can check easily that Assumption A3 is satisfied. Now,
let us check that Assumption A2 is satisfied with

W(t,X) = −ε cos

(
t

2

)
σ1(x2), (62)

with ε ∈
(
0, 12
)
. The equation which corresponds to the

system (24) is
ξ̇1(t) = ξ2(t)

ξ̇2(t) = −ξ1(t) +
3

4

[
cos

(
t

2

)
sin (ΓW,2(t, ξt) + s(t))

]
3

4

[
+ sin

(
t

2

)
(cos (ΓW,2(t, ξt) + s(t))− 1)

]
.

(63)
It can be rewritten as:

ξ̇1(t) = ξ2(t)

ξ̇2(t) = −ξ1(t) + C1(t, ξt) + C2(t, s(t), ξ(t))

+
3

4

[
cos

(
t

2

)
sin

(
−ε cos

(
t

2

)
σ1(ξ2(t))

)]
+

3

4

[
sin

(
t

2

)(
cos

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
− 1

)]
(64)

with
C1(t, ξt) =
3

4

[
sin (ΓW,2(t, ξt)) cos

(
t

2

)
− sin

(
−ε cos

(
t

2

)
σ1(ξ2(t))

)
cos

(
t

2

)]
−3

4

[
(cos (ΓW,2(t, ξt))− 1) sin

(
t

2

)
−
(

cos

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
− 1

)
sin

(
t

2

)]
(65)

and



C2(t, s(t), ξt) =
3

4
[(sin (ΓW,2(t, ξt) + s(t))− sin (ΓW,2(t, ξt)))] cos

(
t

2

)
+

3

4
[cos (ΓW,2(t, ξt) + s(t))− cos (ΓW,2(t, ξt))] sin

(
t

2

)
(66)

Let us consider the positive definite quadratic function:

Q(ξ1, ξ2) =
2

3
(ξ21 + ξ22). (67)

Its derivative along the trajectories of the system (64)
satisfies

Q̇(t) ≤ − cos

(
t

2

)
ξ2(t) sin

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
+|x2(t)|ε cos

(
t

2

)
σ1(ξ2(t))

× sin

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
+ξ2(t) [C1(t, ξt) + C2(t, s(t), ξ(t))] ,

(68)

where the last inequality is a consequence of the fact that
1− cos(a) ≤ a sin(a) for all a ∈

[
0, π2

]
. Since ε ∈

(
0, 12
)
, we

have:

Q̇(t) ≤ − cos

(
t

2

)
ξ2(t) sin

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
+

1

2
|ξ2(t)| cos

(
t

2

)
σ1(ξ2(t))

× sin

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
+ξ2(t) [C1(t, ξt) + C2(t, s(t), ξ(t))]

≤ −1

2
cos

(
t

2

)
ξ2(t) sin

(
ε cos

(
t

2

)
σ1(ξ2(t))

)
+ξ2(t) [C1(t, ξt) + C2(t, s(t), ξ(t))] .

(69)
Since the system (64) is periodic, we deduce from the
LaSalle Invariance Principle that this system would be
globally uniformly asymptotically stable if C1 and C2 were
not present. Now, let us investigate what is the impact of
these functions. The inequalities

|C1(t, ξt)| ≤
3

4

∣∣∣∣sin (ΓW,2(t, ξt))− sin

(
−ε cos

(
t

2

)
σ1(ξ2(t))

)∣∣∣∣
+

3

4

∣∣∣∣cos (ΓW,2(t, ξt))− cos

(
−ε cos

(
t

2

)
σ1(ξ2(t))

)∣∣∣∣
≤ 3

2

∣∣∣∣ΓW,2(t, ξt) + ε cos

(
t

2

)
σ1(ξ2(t))

∣∣∣∣
(70)

and

|C2(t, s(t), ξt)| ≤
3

2
|s(t)| (71)

are satisfied. Then one can prove that there is a constant
h? > 0 such that when h ∈ (0, h?] this system is ISS
with restriction with input s(t). Thus Assumption A2 is
satisfied. Then

y†,1(t,Xt) = ΓW,2(t,Xt) (72)

y†,2(t,Xt) = ẏ†,1(t,Xt)

= −kΓW,2(t,Xt) +
kekh

ekh − 1
ΓW,1(t,Xt)

− k

ekh − 1
ΓW,1(t− h,Xt−h)

(73)

and

ẏ†,2(t,Xt) = k2ΓW,2(t,Xt)− k
kekh

ekh − 1
ΓW,1(t,Xt)

+k
k

ekh − 1
ΓW,1(t− h,Xt−h)

+
kekh

ekh − 1
Γ̇W,1(t,Xt)

− k

ekh − 1
Γ̇W,1(t− h,Xt−h)

= k2ΓW,2(t,Xt)− k
kekh

ekh − 1
ΓW,1(t,Xt)

+k
k

ekh − 1
ΓW,1(t− h,Xt−h)

+
kekh

ekh − 1
[−kΓW,1(t,Xt)

+
kekh

ekh − 1
W(t, x2(t))

− k

ekh − 1
W(t− h, x2(t− h))

]
− k

ekh − 1
[−kΓW,1(t− h,Xt−h)

+
kekh

ekh − 1
W(t− h, x2(t− h))

− k

ekh − 1
W(t− 2h, x2(t− 2h))

]
.

(74)

By grouping the terms,

ẏ†,2(t,Xt) = k2ΓW,2(t,Xt)−
2k2ekh

ekh − 1
ΓW,1(t,Xt)

+
2k2

ekh − 1
ΓW,1(t− h,Xt−h)

+

(
kekh

ekh − 1

)2

W(t, x2(t))

−2ekh
(

k

ekh − 1

)2

W(t− h, x2(t− h))

+

(
k

ekh − 1

)2

W(t− 2h, x2(t− 2h)).

(75)
This leads us to the bounded control law:

u(t) = −σ1(ỹ1(t) + ỹ2(t))− σ1(ỹ2(t))

+k2ΓW,2(t,Xt)−
2k2ekh

ekh − 1
ΓW,1(t,Xt)

+
2k2

ekh − 1
ΓW,1(t− h,Xt−h)

+

(
kekh

ekh − 1

)2

W(t, x2(t))

−2ekh
(

k

ekh − 1

)2

W(t− h, x2(t− h))

+

(
k

ekh − 1

)2

W(t− 2h, x2(t− 2h))

(76)

with
ỹ1(t) = y1(t)− ΓW,2(t,Xt)

ỹ2(t) = y2(t) + kΓW,2(t,Xt)−
kekh

ekh − 1
ΓW,1(t,Xt)

+
k

ekh − 1
ΓW,1(t− h,Xt−h).

(77)



4.3 Simulations

The stabilizing control law (76) with h = 1, ε = 0.49 and
k = 0.1 gives the following behaviors to the control law
and states X, Y .

Fig. 1. x1(t)

Fig. 2. x2(t)

Fig. 3. y1(t)

5. CONCLUSIONS

We proposed a new backstepping design of control laws
for a family of nonlinear continuous time-varying systems
with delay. This design relies on a family of operators
which can be replaced by terms generated by dynamic
extensions, with only pointwise delays. The main result we
have proposed can be extended in many directions, which

Fig. 4. y2(t)

Fig. 5. u(t)

include in particular designs for systems with time-varying
delays, systems with distributed delays and systems with
a nonlinear Y -subsystem. The case where there are delays
in the measurements can be considered too.
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