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Identifiability in Two-Layer Sparse Matrix Factorization∗

Léon Zheng‡ † , Elisa Riccietti† , and Rémi Gribonval†

Abstract. Sparse matrix factorization is the problem of approximating a matrix Z by a product of J sparse
factors X(J)X(J−1) . . .X(1). This paper focuses on identifiability issues that appear in this problem,
in view of better understanding under which sparsity constraints the problem is well-posed. We give
conditions under which the problem of factorizing a matrix into two sparse factors admits a unique
solution, up to unavoidable permutation and scaling equivalences. Our general framework considers
an arbitrary family of prescribed sparsity patterns, allowing us to capture more structured notions
of sparsity than simply the count of nonzero entries. These conditions are shown to be related to
essential uniqueness of exact matrix decomposition into a sum of rank-one matrices, with structured
sparsity constraints. In particular, in the case of fixed-support sparse matrix factorization, we give
a general sufficient condition for identifiability based on rank-one matrix completability, and we
derive from it a completion algorithm that can verify if this sufficient condition is satisfied, and
recover the entries in the two sparse factors if this is the case. A companion paper further exploits
these conditions to derive identifiability properties and theoretically sound factorization methods for
multi-layer sparse matrix factorization with support constraints associated to some well-known fast
transforms such as the Hadamard or the Discrete Fourier Transforms.
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1. Introduction. The problem of sparse matrix factorization is, given J ≥ 2 and a matrix
Z, to find factors X(1), . . . ,X(J) such that

(1.1) Z ≈ X(J)X(J−1) . . .X(1),

and such that the factors X(`) (1 ≤ ` ≤ J) are sparse, in the sense that they have few nonzero
entries. Such a factorization would allow to use the product of sparse factors as a surrogate of
the linear operator associated to Z for speeding up numerical methods and reducing memory
complexity [20, 19, 28, 29].

One approach to approximate a matrix by a product of sparse factors is to consider spe-
cific hand-designed sparsity patterns for the factors, for example the butterfly factorization
model [9]. Although common matrices such as the Discrete Fourier Transform (DFT), the
Discrete Cosine Transform (DCT), the Discrete Sine Transform (DST), convolution or Ha-
damard matrices can be exactly decomposed into factors using this butterfly factorization
model, the same doesn’t hold for general matrices. An alternative approach is to consider a
more general family of sparsity patterns, and try to find a sparsity structure which gives the
smallest approximation error by efficiently exploring this family. Classical families of sparse
matrix supports are for instance those which are globally s-sparse (at most s nonzero entries),
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k-sparse by column and/or l-sparse by row, etc. This approach has been considered for in-
stance in [20], where the authors formulated (1.1) as an optimization problem constrained
to a general family of sparsity patterns, and proposed to explore it with a proximal gradient
algorithm.

Yet, it is still not clear why or when these heuristic algorithms succeed or fail in finding
a good sparse approximation. Little is known about conditions for which we can hopefully
find a good approximation of Z by a product of sparse factors with tractable algorithms. In
particular, adopting a multilinear inverse problem point of view, i.e., an inverse problem where
the measurements are a multilinear function of the unknowns, it is not even known when
the exact sparse matrix factorization problem (the case in which a matrix can be exactly
decomposed as a product of sparse factors) is well-posed, in the sense that the solution of
the inverse problem is identifiable, i.e., unique, up to natural and unavoidable scaling and
permutation ambiguities. This paper studies such identifiability issues in exact sparse matrix
factorization, for general families of sparsity patterns. Following the hierarchical approach
proposed by [20], we focus on the case with J = 2 factors, and illustrate in the companion
paper [32] that our analysis can provide tools for the investigation of the problem extended
to J > 2 factors.

1.1. Related work. Although identifiability in sparse linear inverse problems is now well
understood [10, 11], identifiability in multilinear inverse problems regularized by sparsity is
still very much an open question.

Lifting in blind deconvolution. One main framework for studying identifiability in bilinear
inverse problems is the lifting procedure [6]. This framework takes into account scaling ambi-
guities inherent to bilinear inverse problems, and transforms a bilinear inverse problem into a
low-rank matrix recovery problem. Identifiability is then related to geometric properties of the
corresponding lifting operator, and more precisely, to the rank-two null space of the operator.
By giving a simple parametrization of this rank-two null space specific to the case of blind
deconvolution [6], it is possible for instance to show a negative result about identifiability of
the solution to blind deconvolution regularized by sparsity in the canonical basis [7]. How-
ever, such a parametrization is specific to the convolution, and does not generalize to the more
general problem of sparse matrix factorization. In fact, the analysis of identifiability in blind
deconvolution with sparsity or subspace constraints typically relies on an application of the
lifting procedure in the frequency domain [22], which is specific to the convolution operation.
Still, blind deconvolution can be seen as a particular instance of sparse matrix factorization
into two factors, with a specific structure enforced on the two factors. One should expect
some similarities in the analysis of identifiability in these two problems. In fact, this paper
will reuse the lifting procedure to analyze identifiability in sparse matrix factorization.

Deep linear neural networks. The lifting procedure has also been generalized to the mul-
tilinear case. In deep linear neural networks with structured layers [25], identifiability up to
certain global layerwise scaling equivalences can be characterized with a tensorial lifting proce-
dure [26]. However, this analysis is limited to the specific case where each layer is constrained
to a fixed support. In general, sparsity constraints are described by a family of sparsity pat-
terns, and not reduced to specific supports. Considering a family of possible supports for
the structured layers, some stability properties of deep structured linear networks can be also
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derived from the tensorial lifting procedure [24]. However, when the family of possible sup-
ports presents some invariance property by permutation of their columns (as it is the case
for the above mentioned classical families), permutation ambiguities should be considered in
the analysis, in the spirit of [30, Chapter 3]. Our work takes into account such permutation
ambiguities.

Interpretability. Sparsity in learned models is desirable for reducing their complexity and
to improve interpretability. In particular, such an interpretability would require some kind of
stability or identifiability of the parameters. Identifiability in nonnegative matrix factorization
(NMF) [12] (or in simplex-structured matrix factorization, a generalization of the NMF prob-
lem [1]) has been studied for guaranteeing interpretability of the factors, when there exists
a physical model explaining the data, like in blind hyperspectral unmixing or audio source
separation. For that purpose, a sufficient condition for identifiability of the factors when the
right factor is k-sparse by column has been established [12, Chapter 4], but the result is only
limited to this kind of sparsity structure. Instead, similarly to [24], our work considers, for
more generality, a general family of sparsity patterns, or sparsity structures, in the spirit of
model-based compressive sensing [3]. This general framework is exploitable to provide ground
to guide further development toward the choice of a good family of sparsity patterns to obtain
well-posed sparse matrix factorization problems, as it is shown in the companion paper [32].

Compressive sensing and sampling complexity. From an information-theoretic point of view,
identifiability in inverse problems is studied to derive optimal sampling complexity bounds
to ensure non-ambiguous reconstruction of a signal from its dimension-reduced linear mea-
surement. Typically, in sparsity-regularized linear inverse problems, it is known from the
compressive sensing literature [11] that at least m ≥ 2s measurements are needed in order to
reconstruct an s-sparse vector from its linear measurement. In bilinear inverse problems it is
possible, based on results on information-theoretic limits of unique low-rank matrix recovery
[27], to give near-optimal sampling complexity results for blind deconvolution [22], which can
be further improved using algebraic geometry [14]. Yet, optimal sampling complexity bounds
in sparse matrix factorization are still an open question. As every instance of a sparse linear
inverse problem can be seen as an instance of a sparse matrix factorization problem with two
factors, where the left one is fixed, we will show in this paper that our framework allows to
generalize a classical result in compressive sensing [11, Theorem 2.13] stating the link between
the identifiability of s-sparse vectors and the Kruskal-rank [16] of the measurement matrix,
i.e., the largest integer j such that every set of j columns in this matrix is linearly indepen-
dent. Typically, when the left factor is fixed, instead of considering s-sparsity by column
on the right factor, which would then decouple the problem into independent linear inverse
problems under an s-sparsity constraint, we show new identifiability results for other sparsity
constraints on the right factor, such as sparsity by row or global sparsity (see Corollary 5.8).

1.2. Contributions. Our paper studies identifiability in exact sparse matrix factorization
with two factors (X,Y). Specifically, we formulate in section 2 the problem of exact sparse
matrix factorization of Z := XYᵀ as a constrained bilinear inverse problem. This framework
allows to consider general families of sparsity patterns: the constraint set of the inverse prob-
lem is a union of subspaces corresponding to prescribed sparsity patterns, i.e., given supports.
As the sparsity pattern of a matrix is invariant to scaling of its columns, scaling ambiguities
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are inherent in the sparse matrix factorization problem. Permutation ambiguities can also ap-
pear for certain families of sparsity patterns. Hence, identifiability of the sparse factorization
is then defined as the uniqueness of the solution to the inverse problem, up to scaling and
permutation equivalences (Definition 2.5).

Our analysis of this uniqueness property starts by pinpointing some non-degeneration
properties, which are necessary for a pair of factors to be identifiable in the sparse matrix
factorization problem (Proposition 2.13). Then, inspired by the lifting procedure [6], we show
that, up to these non-degeneration properties, identifiability in exact sparse matrix factoriza-
tion is equivalent to uniqueness of exact matrix decomposition into rank-one matrices (Defini-
tion 4.5), with corresponding sparsity patterns (Theorem 4.8). By analogy with sparse linear
inverse problem, we propose to characterize such uniqueness in two steps: (i) characterization
of identifiability of the constraint supports for the rank-one matrices among a family of spar-
sity patterns; (ii) characterization of identifiability of the rank-one matrices after fixing these
constraint supports. In particular, based on rank-one matrix completability conditions [15],
we give a condition for identifiability in fixed-support matrix factorization, which is shown to
be naturally associated to connectivity in certain bipartite graphs (see Theorem 4.25). We de-
rive a completion algorithm that can verify if this sufficient condition is satisfied, and recover
the entries in the two sparse factors if this is the case (see Algorithm 4.1).

When fixing the left factor, the bilinear inverse problem becomes a linear one, so conditions
for identifiability of the right factor are naturally related to linear independence of specific
subsets of columns in the fixed left factor (Theorem 3.11 and Proposition 3.13). Based on
this characterization, we can show some simple characterization of uniform right identifiability
with fixed left factor X, i.e., the identifiability of every sparse right factor Y from the observed
matrix Z := XYᵀ. For instance, when enforcing at most s nonzero entries on the right factor,
we show that uniform right identifiability with fixed left factor X holds if, and only if, every
subset of 2s columns in X is linearly independent (Corollary 5.8).

In complement to this paper, the companion paper [32] presents an application of our
framework to show some identifiability results in the multi-layer sparse matrix factorization
of some well-known matrices, like the Hadamard or DFT matrices.

Summary. The main contributions of this paper are the following.
1. We show equivalence between uniqueness of exact sparse matrix factorization and

uniqueness of exact sparse matrix decomposition into rank-one matrices up to natural
ambiguities, except in trivial degenerate cases (Theorem 4.8).

2. We express some sufficient conditions for identifying the constraint support among the
family of sparsity patterns (Proposition 4.11), which are verified in practice in the case
of the sparse factorization of the DFT, DCT-II or DST-II matrices.

3. We characterize right identifiability (Theorem 3.11, Propositions 3.7 and 3.13), using
linear independence of specific sets of columns in the fixed left factor, and derive as a
by-product a characterization of uniform right identifiability (Corollaries 5.5 and 5.8).

4. We give a general sufficient condition for identifiability in fixed-support sparse matrix
factorization based on rank-one matrix completability (Theorem 4.25), and we derive
from it a natural factorization procedure described by Algorithm 4.1.

The paper is organized as follows: section 2 is dedicated to the formulation of the ex-
act sparse matrix factorization problem with two factors, and defines the uniqueness property
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that we want to characterize throughout the paper; section 3 characterizes right identifiability,
which is identifiability of the right factor when the left one is fixed; section 4 studies identifi-
ability in exact sparse matrix factorization via the uniqueness of exact matrix decomposition
into rank-one matrices, up to permutation equivalence; section 5 regroups some results on
uniform identifiability in the case with two factors; section 6 discusses perspectives of this
work for stability issues. Technical proofs are deferred to the appendices.

2. Problem formulation. We introduce our framework to analyze identifiability in exact
sparse matrix factorization.

2.1. Notations. The set of integers {1, . . . , n} is denoted JnK. The cardinality of any finite
set F is denoted card(F ). The complement of a set I is denoted Ic. The support of a matrix
M ∈ Cm×n of size m × n is the set of indices supp(M) ⊆ JmK × JnK of nonzero entries. It is
identified by abuse of notation to the set of binary matrices Bm×n := {0, 1}m×n. Depending
on the context, a matrix support can be seen as a set of indices, or a binary matrix with only
nonzero entries for indices in this set. The cardinality of the matrix support supp(M) is also
known as the `0-norm of M, denoted ‖ · ‖0. The column support, denoted colsupp(M), is the
subset of indices i ∈ JrK such that the i-th column of M, denoted Mi, is nonzero. The entry
of M indexed by (k, l) is Mk,l. The j-th column of M restricted only to row indices i ∈ I
is denoted MI,j . For any subset of column indices I, the notation MI indicates the column
submatrix (Mi)i∈I . The notation M(i) denotes the i-th matrix in a collection. For any subset
of row and column indices I and J , the set of submatrices defined on the set I × J is denoted
CI×J . The vector full of ones indexed by a subset of indices I is denoted 1I , and for any
integer n, we write 1n = 1JnK. Subscript is omitted when there is no ambiguity. Vectors or
matrices full of zeros are denoted 0 with bold case, without specifying the dimension. The
canonical basis in Cn is denoted {ei}ni=1. The identity matrix of size n is denoted In. The
kernel and range of a matrix M are denoted Ker(M) and Im(M). The Kronecker product
[31] between two matrices A and B is written A ⊗ B. The set of permutations on a set of
indices I is written S(I). The function f iterated n times is denoted fn.

2.2. Exact matrix factorization. Given an observed matrix Z ∈ Cm×n, and a subset of
feasible pairs of factors Σ ⊆ Cm×r × Cn×r, the so-called exact matrix factorization (EMF)
problem with two factors of Z in Σ is the following bilinear inverse problem:

(2.1) find if possible1(X,Y) ∈ Σ such that Z = XYᵀ.

We are interested in the particular problem variation where the constraint set Σ encodes some
chosen sparsity pattern for the factorization. For a given binary matrix S ∈ Bm×r associated
to a sparisty pattern, denote

ΣS := {M ∈ Cm×r | supp(M) ⊆ supp(S)}

the so-called model-set defined by S, which is the set of matrices with a sparsity pattern
included in S. A pair of sparsity patterns is written S := (SL,SR), where SL and SR are the
left and right sparsity patterns respectively. By abuse, we will refer to SL and SR as left and

1For arbitrary Z there does not necessarily exist a pair (X,Y) ∈ Σ such that Z = XYᵀ.
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right (allowed) supports. Given any pair of allowed supports represented by binary matrices
(SL,SR) ∈ Bm×r × Bn×r, the set ΣSL × ΣSR ⊆ Cm×r × Cn×r is a linear subspace. Given any
family Ω ⊂ Bm×r × Bn×r of such pairs of allowed supports, denote

(2.2) ΣΩ :=
⋃
S∈Ω

ΣS, with S := (SL,SR), and ΣS := ΣSL × ΣSR .

Such a set is a union of subspaces. Moreover, since the support of a matrix is unchanged
under arbitrary rescaling of its columns, ΣΩ is invariant by column scaling for any family Ω.
This framework covers some classical families Ω of structured sparse supports.

Example 2.1. Globally s-sparse matrices: matrices with at most s nonzero entries. This is
the most general sparsity pattern, since it does not specify any kind of sparsity structure.

Example 2.2. Matrices that are k-sparse by column and/or l-sparse by row: each column has
at most k nonzero entries, and/or each row has at most l nonzero entries. For instance, in
sparse coding, the dataset represented by a matrix X is decomposed over an overcomplete
dictionary D, in such a way that each column of X can be expressed as a linear combination
of few atoms, i.e., columns of D. In terms of matrices, this is written as X = DW, where W
is sparse by column.

In the following, the set of supports (of a given size) which are globally s-sparse, k-sparse
by column and l-sparse by row are respectively denoted Λsglob, Λkcol, and Λlrow:

Λsglob := {S | ‖S‖0 ≤ s},(2.3)

Λkcol := {S | ∀j, ‖Sj‖0 ≤ k},(2.4)

Λlrow := {S | ∀i, ‖(Sᵀ)i‖0 ≤ l}.(2.5)

Example 2.3. k-regular matrices: square matrices that are both k-sparse by column and
by row [17]. In the butterfly factorization of the DFT matrix [9], each butterfly factor is
2-regular.

In addition to the generic invariance to column scaling of ΣΩ, the above classical families
are also invariant to column permutation, which leads to the following definition.

Definition 2.4 (Stability by permutation). We say that a family of pairs of supports Ω is
stable by permutation if for any pair S ∈ Ω, we have (SLP,SRP) ∈ Ω for all P ∈ Pr, where
Pr is the group of permutation matrices of size r × r.

Considering ΛL (resp. ΛR) a classical family of sparse left (resp. right) supports, in the
sense that they are one of the families presented in the previous examples, the family of pairs of
supports Ω := ΛL×ΛR is stable by permutation2. Hence, uniqueness of a solution to (2.1) with
such sparsity constraints will always be considered up to scaling and permutation equivalences.
The following definition is a generalization of the one of [12, Chapter 4] to study identifiability
in nonnegative matrix factorization (NMF). Hereafter, the group of diagonal matrices of size

2Most families of pairs of supports are not stable by permutation: consider for example any family Ω
reduced to a single fixed pair of supports, or a few supports. A concrete example can be built using supports
of the butterfly factors of the DFT matrix [9].
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r× r with nonzero diagonal entries is denoted Dr, while the group of generalized permutation
matrices of size r × r is denoted Gr := {DP | D ∈ Dr, P ∈ Pr}.

Definition 2.5 (PS-uniqueness of an EMF in Σ). For any set Σ of pairs of factors, the pair
(X,Y) ∈ Σ is the PS-unique EMF of Z := XYᵀ in Σ, if any solution (X′,Y′) to (2.1) with
Z and Σ is equivalent to (X,Y), written (X′,Y′) ∼ (X,Y), in the sense that there exists
a permutation matrix P ∈ Pr and a diagonal matrix D ∈ Dr with nonzero diagonal entries
such that (X′,Y′) = (XDP,YD−1P); or, alternatively, there exists a generalized permutation
matrix G ∈ Gr such that (X′,Y′) =

(
XG,Y(G−1)

ᵀ)
.

For any set Σ of pairs of factors, the set of all pairs (X,Y) ∈ Σ such that (X,Y) is the
PS-unique EMF of Z := XYᵀ in Σ is denoted U(Σ). In other words, we define:

(2.6) U(Σ) :=
{

(X,Y) ∈ Σ | ∀(X′,Y′) ∈ Σ, X′Y′
ᵀ

= XYᵀ =⇒ (X′,Y′) ∼ (X,Y)
}
.

Remark 2.6. The property (X,Y) ∈ U(Σ), referred to as instance PS-uniqueness of an
EMF in Σ, corresponds to the notion of weak identifiability in [22], while the property
U(Σ) = Σ, referred to as uniform PS-uniqueness of EMF in Σ (or uniform identifiability),
corresponds to the notion of strong identifiability in [22]. In this paper, we prefer the termi-
nology “instance” and “uniform”, for they are more explicit about whether the uniqueness is
specific to a particular instance of pair of factors.

Remark 2.7. When considering the set Σ of pairs of nonnegative factors, U(Σ) has been
characterized with necessary conditions and sufficient conditions in [12, Chapter 4], in the
sense that we can rewrite identifiability conditions in NMF as inclusions of the set U(Σ) with
respect to other sets.

This paper aims to characterize U(ΣΩ) for ΣΩ defined as in (2.2) with Ω any family of
pairs of supports that is stable by permutation. Our analysis of such uniqueness property
relies on the following abstract but simple lemma.

Lemma 2.8. Let Σ be any set of pairs of factors, and (X,Y) ∈ Σ be a pair of factors.
Then:

(X,Y) ∈ U(Σ) ⇐⇒ (X,Y) ∈
⋂

Σ′⊆Σ
(X,Y)∈Σ′

U(Σ′).

Remark 2.9. The spirit of this result is reminiscent of [12, Chapter 3] where restricted
exact nonnegative matrix factorization can be seen as a subset of exact nonnegative matrix
factorization.

Proof. Let (X,Y) ∈ U(Σ), and consider Σ′ ⊆ Σ such that (X,Y) ∈ Σ′, as well as
(X′,Y′) ∈ Σ′ such that X′Y′ᵀ = XYᵀ. Since Σ′ ⊆ Σ, we have (X′,Y′) ∈ Σ, and because
(X,Y) ∈ U(Σ), (X′,Y′) ∼ (X,Y). Moreover, (X,Y) ∈ Σ′. In conclusion, (X,Y) ∈ U(Σ′).
This is true for every Σ′ ⊆ Σ, so it proves one implication. The converse is true by considering
the particular case Σ′ := Σ.

2.3. Non-degeneration properties for a pair of factors. A first analysis of PS-uniqueness
of an EMF in ΣΩ leads to the formulation of two non-degeneration properties for a pair
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of factors, i.e., two necessary conditions for identifiability, involving their so-called column
support. They can be derived from the following trivial but crucial observation.

Lemma 2.10. Let Σ be any set of pairs of factors, X be a left factor, and Y,Y′ be two
right factors such that (X,Y), (X,Y′) ∈ Σ. If XYᵀ = XY′ᵀ and card(colsupp(Y′)) 6=
card(colsupp(Y)), then (X,Y) 6∼ (X,Y′) and hence (X,Y) /∈ U(Σ) and (X,Y′) /∈ U(Σ).
This is true in particular if there exists an index i ∈ JrK for which Xi = 0, Yi = 0, Y′i 6= 0,
and Yj = Y′j for all j 6= i.

The first non-degeneration property for identifiability of an EMF in ΣΩ thus requires the
left and right factors to have the same column supports. Define the set of pairs of factors with
identical column supports in ΣΩ as

(2.7) ICΩ := {(X,Y) ∈ ΣΩ | colsupp(X) = colsupp(Y)} .

Lemma 2.11. For any family of pairs of supports Ω, we have: U(ΣΩ) ⊆ ICΩ.

Proof. We prove the contraposition. Let (X,Y) ∈ ΣΩ, and suppose that colsupp(X) 6=
colsupp(Y). Up to matrix transposition, we can suppose without loss of generality that
colsupp(Y) is not a subset of colsupp(X), so there is i ∈ JrK such that Xi = 0 and Yi 6=
0. Define Y′ a right factor such that Y′i = 0 and Y′JrK\{i} = YJrK\{i}. By construction,
supp(Y′) ⊆ supp(Y), so (X,Y′) ∈ ΣΩ. Applying Lemma 2.10 to Σ = ΣΩ, we obtain (X,Y) /∈
U(ΣΩ).

The second non-degeneration property for a pair of factors requires the column supports
of the left and right factors to be “maximal”. Define the set of pairs of factors with maximal
column supports in ΣΩ as

MCΩ := {(X,Y) ∈ ΣΩ | ∀S ∈ Ω such that (X,Y) ∈ ΣS, colsupp(X) = colsupp(SL)(2.8)

and colsupp(Y) = colsupp(SR)}.

Lemma 2.12. For any family of pairs of supports Ω, we have: U(ΣΩ) ⊆ MCΩ.

The proof is deferred to Appendix A.
Therefore, without loss of generality, we only need to characterize the pairs (X,Y) ∈

ICΩ ∩ MCΩ such that (X,Y) is the PS-unique EMF of Z := XYᵀ in ΣΩ. Considering these
two non-degeneration properties, we conclude this section by a key result which will be useful
in section 4. The proof is deferred to Appendix B.

Proposition 2.13. For any family of pairs of supports Ω that is stable by permutation, we
have:

U(ΣΩ) = U(ICΩ) ∩ MCΩ.

3. Identifiability when fixing one factor. A natural analysis of PS-uniqueness in EMF
with sparsity constraints is to consider the case where one of the factors is fixed. As one can
always consider matrix transposition, the fixed factor will be the left one. For a family of
right supports Θ ⊆ Bn×r, denote:

(3.1) ΣΘ :=
⋃
S∈Θ

ΣS, where we recall that ΣS := {Y ∈ Cn×r | supp(Y) ⊆ S}.
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Studying identifiability when fixing one factor is interesting because it allows one to charac-
terize identifiability of an EMF. Indeed, applying the general framework for studying identi-
fiability up to a transformation group proposed by [21] to exact sparse matrix factorization,
we obtain the following proposition. The specific transformation group considered here is the
group of permutations.

Proposition 3.1 (Application of [21, Theorem 2.8]). Suppose that Ω = Λ × Θ where Λ ⊆
Bm×r and Θ ⊆ Bn×r are respectively families of left and right supports, and that Ω is stable
by permutation. Then, (X,Y) ∈ U(ΣΩ) if, and only if, both of the following conditions are
verified:

(i) For all (X′,Y′) ∈ ΣΩ such that X′Y′ᵀ = XYᵀ, there exists a generalized permutation
matrix G ∈ Gr such that X′ = XG.

(ii) The pair (X,Y) is the unique EMF of Z := XYᵀ in {X} × ΣΘ.

Remark 3.2. In general, even without assuming that Ω is stable by permutation, (X,Y) ∈
U({X}×ΣΘ) is a necessary condition for (X,Y) ∈ U(ΣΩ), by Lemma 2.8 with Σ′ := {X}×ΣΘ.

This section will show that condition (ii), referred to as right identifiability, can be entirely
characterized using linear independence of specific subsets of columns in the fixed left factor X.
Characterization of condition (i) will be discussed in section 6 as a future work. Throughout
this section, we thus consider a fixed left factor X and a family of right supports Θ, and we
characterize the set U({X} × ΣΘ). Since the left factor is fixed, we will use an equivalent
representation for the equivalences between two pairs of factors (X,Y) and (X,Y′). Denote:

G(X) := {G ∈ Gr | XG = X},
P(X) := {P ∈ Pr | XP = X},
D(X) := {D ∈ Dr | XD = X},

respectively the subgroups of generalized permutation matrices, permutation matrices, and
diagonal matrices with nonzero diagonal entries, that leave matrix X unchanged after right
multiplication.

3.1. Eliminating scaling ambiguities. The characterization of right identifiability, i.e.,
(X,Y) ∈ U({X} ×ΣΘ) with fixed left factor X in the family of right supports Θ, starts with
the following necessary condition, which can also be seen as a non-degeneration property in
the spirit of subsection 2.3.

Lemma 3.3. Suppose that (X,Y) ∈ U({X} × ΣΘ). Then, colsupp(Y) ⊆ colsupp(X).

Proof. Suppose that there exists i ∈ JrK such that Yi 6= 0 but Xi = 0. Then, defining
Y′ ∈ ΣΘ such that Y′i = 0 and Y′j = Yj for j 6= i, we apply Lemma 2.10 to show that
(X,Y) /∈ U({X} × ΣΘ).

Hence, we can assume without loss of generality that colsupp(Y) ⊆ colsupp(X). We now
show that we can restrict our analysis only to column indices in colsupp(X). Let us introduce
the notion of signature for a family of supports. For any subset of column indices J ⊆ JrK,
define the signature on J of the family Θ ⊆ Bn×r of right supports as the family:

(3.2) ΘJ := {SJ | S ∈ Θ} ⊆ BJnK×J ,
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where we recall that SJ is the submatrix of S in BJnK×J with only columns indexed by J .

Example 3.4 (Signature in a classical family of supports). Consider Θ the family of sparse
supports which have r columns, and are s-sparse by column. Then, for any subset J ⊆ JrK,
the signature of Θ on J is the family of subsupports s-sparse by column, where the column
indices of the subsupports are indexed by J .

Lemma 3.5. Given a left factor X and a right factor Y ∈ ΣΘ, suppose that colsupp(Y) ⊆
colsupp(X), and denote J := colsupp(X). Then:

(X,Y) ∈ U({X} × ΣΘ) ⇐⇒ (XJ ,YJ) ∈ U({XJ} × ΣΘJ ).

The proof is deferred to Appendix C.
As the submatrix XJ does not have any zero column, we can assume from now on that,

without loss of generality, the fixed left factor does not have any zero column. As we now
show, this allows one to get rid of scaling ambiguities using column normalization: when
all columns of the fixed left factor are normalized, PS-uniqueness in EMF is equivalent to
uniqueness up to permutation only.

Definition 3.6 (P-uniqueness of an EMF in Σ). For any set Σ of pairs of factors, the pair
(X,Y) ∈ Σ is the P-unique EMF of Z := XYᵀ in Σ, if any solution (X′,Y′) to (2.1) with
Z and Σ is equivalent to (X,Y) up to permutation, written (X′,Y′) ∼p (X,Y), in the sense
that there exists a permutation matrix P ∈ Pr such that (X′,Y′) = (XP,YP).

The set of all pairs (X,Y) ∈ Σ such that (X,Y) is the P-unique EMF of Z := XYᵀ in Σ
is denoted Up(Σ). We now claim the main result of this subsection.

Proposition 3.7. Consider X with no zero column and N ∈ Dr the (unique) diagonal matrix
that normalizes its columns, in such a way that for each column of XN, the nonzero entry
with the smallest row index is 1. We have:

(X,Y) ∈ U({X} × ΣΘ) ⇐⇒ (XN,YN−1) ∈ U({XN} × ΣΘ)

⇐⇒ (XN,YN−1) ∈ Up({XN} × ΣΘ).

Proof. For the first equivalence, suppose that (X,Y) ∈ U({X} × ΣΘ). Let Y ∈ ΣΘ such
that (XN)Yᵀ = (XN)(YN−1)

ᵀ
. Then, X(YN)ᵀ = XYᵀ, so by assumption, (X,YN) ∼

(X,Y). But (X,YN) ∼ (XN,Y). And (X,Y) ∼ (XN,YN−1). So we conclude that
(XN,Y) ∼ (XN,YN−1), which shows (XN,YN−1) ∈ U({XN}×ΣΘ). The converse is true
by applying the previous implication where X and D are respectively replaced by XN and
N−1. The second equivalence comes from the fact that G(X) = P(X), assuming that X has
no zero column, and that the first nonzero entry of each column in X is 1.

The rest of the section characterizes Up({X} × ΣΘ) when X has no zero column.

3.2. Identifiability up to permutation when fixing the left factor. When fixing a factor,
the bilinear inverse problem under sparsity constraints becomes a linear one, so conditions of
right identifiability are naturally related to linear independence of specific subsets of columns
in the fixed left factor X.

To see that, we define an equivalence relation between the columns of X defined by
collinearity: we say that two columns in X are equivalent if they are collinear. When the



IDENTIFIABILITY IN TWO-LAYER SPARSE MATRIX FACTORIZATION 11

columns of X are normalized as in Proposition 3.7, equivalent columns are simply identical
columns. We denote K the total number of equivalent classes of columns (with 1 ≤ K ≤ r),
and [k] the subset of column indices in the k-th equivalent class3 (k ∈ JKK). In this way, the
sets [1], . . . , [K] form a partition of JrK.

As shown in the previous subsection, we can suppose without loss of generality that the
fixed left factor has nonzero columns, and that the first nonzero entry of each column in X
is normalized to 1. As a consequence, denoting x(k) an arbitrary representative of the k-th
equivalent class of collinear columns, the matrix X can be expressed as

X =
(
x(1)1

ᵀ
card([1]) . . . x(K)1

ᵀ
card([K])

)
P,

where P is a permutation matrix. Thanks to the following lemma, we can suppose that P is
the identity matrix without loss of generality.

Lemma 3.8. Let X be a left factor, P be a permutation matrix, and Θ be a family of right
supports. Denote ΘP−1 := {SP−1 | S ∈ Θ}. Then, for any Y ∈ ΣΘ:

(XP,Y) ∈ Up({XP} × ΣΘ) ⇐⇒ (X,YP−1) ∈ Up({X} × ΣΘP−1).

Remark 3.9. When Θ is invariant by permutation of columns, we simply have ΘP−1 = Θ.

Proof. The proof is similar to the one of the first equivalence in Proposition 3.7.

Before giving our characterization of identifiability up to permutation when fixing the left
factor, let us introduce the following notation. For any family of right supports Θ ⊆ Bn×r and
any partition {[k]}Kk=1 of JrK, we introduce the fingerprint of Θ on the partition {[k]}Kk=1 as:

(3.3) fingerprint
(
Θ, {[k]}Kk=1

)
:=
{

supp
(
S[1]1[1] . . . S[K]1[K]

)
| S ∈ Θ

}
⊆ Bn×K .

Example 3.10 (Fingerprint of a classical family of supports). Consider Θ a family of supports
with r = 2K columns, which are s-sparse by column. Consider the partition JrK =

⋃K
k=1 Ik

where Ik = {2k − 1; 2k}. Then, the fingerprint of Θ on the partition {Ik}Kk=1 is the family of
supports with K columns, which are 2s-sparse by column.

We are now able to characterize right identifiability in the following theorem, whose proof
is deferred to Appendix D.

Theorem 3.11. Consider [1], . . . , [K] a partition of JrK, and a fixed left factor of the form

X =
(
x(1)1

ᵀ
card([1]) . . . x(K)1

ᵀ
card([K])

)
, with x(k) 6= 0 for every k. Consider also a family

of right supports Θ, and a right factor Y ∈ ΣΘ. Denote X := (x(k))k∈JKK ∈ Cm×K and

Y :=
(
Y[1]1[1] . . . Y[K]1[K]

)
∈ Cn×K . Let Θ̃ be the fingerprint of Θ on the partition

{[k]}Kk=1, and Θ[k] be the signature of Θ on [k] defined by (3.2).
Then, (X,Y) is the P-unique EMF (or equivalently the PS-unique EMF) of Z := XYᵀ in

{X} × ΣΘ if, and only if, the following conditions are verified:
(i) For all Y′ ∈ ΣΘ̃ such that XY′

ᵀ
= XYᵀ, we have Y = Y′.

(ii) For each k ∈ JKK, we have (1[k]
ᵀ,Y[k]) ∈ Up({1[k]

ᵀ} × ΣΘ[k]
).

3The order of these equivalent classes does not matter.
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Remark 3.12. An equivalent manner to express condition (ii) is to write (Y[k],1
ᵀ
[k]) ∈

Up(ΣΘ[k]
× {1ᵀ

[k]}) instead of (1[k]
ᵀ,Y[k]) ∈ Up({1[k]

ᵀ} × ΣΘ[k]
).

Let us now characterize more precisely condition (i) and (ii) of the theorem. The following
proposition is analogue to [23, Proposition 1], but instead of considering uniform uniqueness,
i.e., uniqueness of the reconstruction of each signal from its observation, we consider instance
uniqueness.

Proposition 3.13. Let Θ ⊆ Bn×r be a family of right supports and (X,Y) ∈ Cm×r ×ΣΘ be
a pair of factors. Then, the property of uniqueness

∀Y′ ∈ ΣΘ, XYᵀ = XY′
ᵀ

=⇒ Y = Y′

holds if, and only if, both of the following conditions hold:
(i) For each S ∈ Θ such that Y ∈ ΣS, for each j ∈ JnK, the columns {Xl | l ∈ (Sᵀ)j} are

linearly independent.
(ii) For each S ∈ Θ such that the j-th column of XYᵀ (for all j ∈ JnK) is a linear

combination of columns {Xl | l ∈ (Sᵀ)j}, we have Y ∈ ΣS.

The proof is deferred to Appendix E.

Proposition 3.14. Let Θ ⊆ Bn×r be a family of supports, and Y ∈ Cn×r be a matrix. Then,
(1ᵀ,Y) ∈ U({1ᵀ} × ΣΘ) if, and only if, the following conditions hold:

(i) The column supports {supp(Y)j}rj=1 are pairwise disjoint.
(ii) For any S ∈ Θ such that I := supp(Y1) ⊆

⋃r
i=1 Si, the columns (SIc,j)

r
j=1 are pairwise

disjoint, and the columns (SI,j)
r
j=1 and (supp(Y)I,j)

r
j=1 are equal, up to a permutation

of column indices j.

The proof is deferred to Appendix F.
In section 4, this characterization of right identifiability will be used to derive necessary

conditions in fixed-support identifiability. It will be also used to derive a characterization of
uniform right identifiability in section 5.

4. Identifiability in exact matrix decomposition. In this section we go back to the general
characterization of U(ΣΩ) without fixing a particular factor. We present our analysis of
identifiability in exact matrix sparse factorization with the lifting approach [6], based on
exact matrix decomposition into rank-one matrices with sparsity constraints.

4.1. Principle of the lifting approach. As the matrix product XYᵀ can be decomposed
into the sum of rank-one matrices

∑r
i=1 XiYi

ᵀ, the lifting procedure [6, 25] suggests to rep-
resent a pair (X,Y) by its r-tuple of so-called rank-one contributions

(4.1) ϕ(X,Y) := (XiYi
ᵀ)ri=1.

Indeed, one can always identify, up to scaling ambiguities, the columns Xi, Yi from their
outer product Ci = XiYi

ᵀ (1 ≤ i ≤ r), as long as the rank-one contribution Ci is not the zero
matrix.

Lemma 4.1 (Reformulation of [18, Chapter 7, Lemma 1]). Consider C the outer product of
two vectors a, b. If C = 0, then a = 0 or b = 0. If C 6= 0, then a, b are nonzero, and for
any (a′,b′) such that a′b′ᵀ = C , there exists a scalar λ 6= 0 such that a′ = λa and b′ = 1

λb.
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Remark 4.2. In the case where C = 0 with a = 0, then ab′ᵀ = 0 = C for any b′. In other
words, it is not possible to identify the factors (a,b) from the outer product C = abᵀ when
C = 0.

With this lifting approach, each support constraint S = (SL,SR) is represented by the
r-tuple of rank-one support constraints S = ϕ(SL,SR). Thus, when (X,Y) follows a sparsity
structure given by Ω, i.e., belongs to ΣΩ ⊆ Cm×r × Cn×r, the r-tuple of rank-one matrices
ϕ(X,Y) ∈ (Cm×n)r belongs to the set:

ΓΩ :=
⋃

S∈ϕ(Ω)

ΓS , with S := (S1, . . . ,Sr), and(4.2)

ΓS :=
{

(Ci)ri=1 | ∀i ∈ JrK, rank(Ci) ≤ 1, supp(Ci) ⊆ Si
}
⊆ (Cm×n)r.(4.3)

As we considered permutation and scaling equivalences between pairs of factors, it is
natural to consider similar equivalences between tuples of rank-one matrices. However, as we
will see in Lemma 4.4 below, the application ϕ removes scaling ambiguities, so we only have
to introduce permutation equivalence between r-tuple of rank-one matrices.

Definition 4.3 (Permutation equivalence between r-tuples of rank-one matrices). For two r-
tuples of rank-one matrices C = (Ci)ri=1 and C′ = (C′i)ri=1, we write C ∼ C′ if the tuples are
equal up to a permutation of the index i.

The following lemma states that there is a one-on-one correspondence between a pair of
sparse factors (X,Y) and its rank-one contributions representation ϕ(X,Y), up to equiva-
lences, which justifies the lifting procedure to analyze identifiability in sparse matrix factor-
ization. The proof is deferred to Appendix G.

Lemma 4.4. The application ϕ preserves equivalences, in the sense that for any equivalent
pair of factors (X,Y) ∼ (X′,Y′), we have ϕ(X,Y) ∼ ϕ(X′,Y′). For any family of pairs
of supports Ω, the application ϕ restricted to ICΩ, denoted ϕΩ : ICΩ → ΓΩ, is surjective,
and injective up to equivalences, in the sense that for all (X,Y), (X′,Y′) ∈ ICΩ such that
ϕΩ(X,Y) ∼ ϕΩ(X′,Y′), we have (X,Y) ∼ (X′,Y′).

As we show next, the most important property of the lifting approach with respect to
identifiability is that PS-uniqueness of an EMF in Σ = ICΩ is equivalent to identifiability of
the rank-one contributions in ΓΩ. Denote

(4.4) A : C = (Ci)ri=1 7→
r∑
i=1

Ci

the linear operator which sums the r matrices of a tuple C.
Definition 4.5 (P-uniqueness of an EMD in Γ). For any set Γ ⊆ (Cm×n)r of r-tuples of

rank-one matrices, the r-tuple C ∈ Γ is the P-unique exact matrix decomposition (EMD) of
Z := A(C) in Γ if, for any C′ ∈ Γ such that A(C′) = Z, we have C′ ∼ C.

The set of all r-tuples C ∈ Γ such that C is the P-unique EMD of Z := A(C) in Γ is
denoted U(Γ), where the notation U(·) has been slightly abused, as Γ and Σ are subsets of
different nature. The following key result, which is reminiscent of [6, Theorem 1], makes the
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connection between PS-uniqueness of an EMF in Σ = ICΩ and P-uniqueness of an EMD in
Γ = ΓΩ. The proof is a direct consequence of Lemma 4.4.

Lemma 4.6. For any family of pairs of supports Ω and any pair of factors (X,Y):

(X,Y) ∈ U(ICΩ) ⇐⇒ ϕ(X,Y) ∈ U(ΓΩ) and (X,Y) ∈ ICΩ.

Remark 4.7. In Lemma 4.1, we saw that there exist ambiguities in the identification of
the vectors a, b from their outer product C = abᵀ when C = 0. To remove this ambiguity,
we can enforce a constraint “abᵀ = 0 ⇐⇒ a = 0 and b = 0”. This is precisely the role of
ICΩ in the lemma.

Combining this lemma with Proposition 2.13, we obtain the following main theorem which
summarizes the application of the lifting procedure to the analysis of identifiability in sparse
matrix factorization.

Theorem 4.8. For any family of pairs of supports Ω stable by permutation, and any pair
of factors (X,Y):

(X,Y) ∈ U(ΣΩ) ⇐⇒ ϕ(X,Y) ∈ U(ΓΩ) and (X,Y) ∈ ICΩ ∩ MCΩ.

Hence, it is sufficient to characterize (X,Y) ∈ ICΩ∩MCΩ such that the r-tuple of rank-one
contributions ϕ(X,Y) is the P-unique EMD of Z := XYᵀ in ΓΩ. The characterization of
U(ΓΩ) relies on an analogy with sparse linear inverse problem [10], in the spirit of Proposi-
tion 3.13: P-uniqueness of C in the EMD of Z := A(C) in ΓΩ is equivalent to the ability to
successively identify the constraint supports {Si}ri=1 on C among the family ϕ(Ω), and then
to identify C after fixing these supports.

Proposition 4.9. For any family of pairs of supports Ω stable by permutation, we have
C ∈ U(ΓΩ) if, and only if, both of the following conditions are verified:

(i) For all S ∈ ϕ(Ω) such that A(C) ∈ A(ΓS), there exists a permutation σ ∈ S(JrK) such
that: supp(Ci) ⊆ Sσ(i) for each 1 ≤ i ≤ r.

(ii) For all S ∈ ϕ(Ω) such that C ∈ ΓS , we have C ∈ U(ΓS).

The proof is deferred to the Appendix H.
The two following subsections deal respectively with some characterizations for identifi-

ability of the constraint supports, in the sense of condition (i) in Proposition 4.9, and for
identifiability of an r-tuple of rank-one matrices with fixed rank-one constraint supports as in
condition (ii).

We end this subsection by deriving the following corollary of Theorem 4.8 with fixed-
support (whose proof is deferred to Appendix I), which will soon turn out to be useful for the
next steps. Specializing the definitions of ICΩ and MCΩ from (2.7) and (2.8) to the case where
Ω is reduced to a single pair of supports S, we denote

ICS := {(X,Y) ∈ ΣS | colsupp(X) = colsupp(Y)},(4.5)

MCS := {(X,Y) ∈ ΣS | colsupp(X) = colsupp(SL), colsupp(Y) = colsupp(SR)}.(4.6)

Corollary 4.10 (Application of Theorem 4.8). For any pair of supports S, and any pair of
factors (X,Y), denoting S := ϕ(S):

(X,Y) ∈ U(ΣS) ⇐⇒ ϕ(X,Y) ∈ U(ΓS) and (X,Y) ∈ ICS ∩ MCS.
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4.2. Identifying the rank-one constraint supports among a family. Inspired by [18,
Chapter 7], we derive simple conditions implying condition (i) of Proposition 4.9. Let us
introduce the completion of ϕ(Ω), i.e., the family ϕ(Ω) completed by all the r-tuples of rank-
one supports that are included in an r-tuple of rank-one matrices in ϕ(Ω), or more formally

ϕcp(Ω) :=
⋃

S∈ϕ(Ω)

{
S ′ ∈ (Bm×n)r | ∀i = 1, . . . , r, rank(S′i) ≤ 1, S′i ⊆ Si

}
,

where S′i ⊆ Si means the inclusion of the supports viewed as subsets of indices.

Proposition 4.11. Consider C ∈ ΓΩ and Z := A(C), and assume that:
(i) for each C′ ∈ ΓΩ such that A(C′) = Z, the supports {supp(C′i)}ri=1 are pairwise dis-

joint;
(ii) all S ∈ ϕcp(Ω) such that

{
Si
}r
i=1

is a partition of supp(Z), and such that the rank of
(Zk,l)(k,l)∈Si (1 ≤ i ≤ r) is at most one, are equivalent up to a permutation.

Then, the supports
{

supp(Ci)
}r
i=1

are identifiable in the sense of condition (i) in Proposi-
tion 4.9.

The proof is deferred to Appendix J.

Remark 4.12. The assumption (i) of the proposition can be verified for some examples of
Z and Ω, using a simple counting argument of the cardinality of the rank-one supports, see
for instance [18, Chapter 7, Lemma 4].

Proposition 4.11 can be used to show identifiability of the supports of sparse factors of
well-known matrices. For instance, [18, Chapter 7, Section 7.4] implicitly uses such conditions
for the DFT matrix. In the companion paper [32], we show that standard sparse factorizations
of the DCT and DST matrices of type II also verify these sufficient conditions.

4.3. Necessary conditions for fixed-support identifiability. Condition (ii) of Proposi-
tion 4.9 involves identifiability given a fixed support. To characterize it, we analyze next
the set U(ΓS) for a given fixed r-tuple of rank-one supports S, and provide necessary condi-
tions for fixed-support identifiability. By Theorem 4.8, fixed-support identifiability in EMD
is equivalent to fixed-support identifiability in EMF, up to non-degeneration properties. We
can thus exploit the analysis of section 3 for EMF when fixing one factor to derive necessary
conditions of fixed-support identifiability in EMD. In the following theorem, the conditions
are derived by successively fixing the left factor and the right factor.

Theorem 4.13. Consider S an r-tuple of rank-one supports, C ∈ U(ΓS). Then, the follow-
ing conditions hold:

(i) For all i, i′ ∈ JrK, i 6= i′, if the rank-one contributions Ci and Ci′ are nonzero with the
same row span and/or the same column span, then the rank-one supports Si and Si′

are disjoint.
(ii) Consider S = (SL,SR) a pair of supports such that S = ϕ(S), and (X,Y) ∈ ΣS

such that C = ϕ(X,Y). Denote {[1], . . . , [K]} (resp. {[1], . . . , [U ]} 4) a partition

4The use of the same notation [·] for both partitions is an abuse of notation, but it should be clear from
the context that [k] (for k ∈ JKK) is an element of the partition {[1], . . . , [K]}, while [u] (for u ∈ JUK) is an
element of the partition {[1], . . . , [U ]}.
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of colsupp(X) (resp. colsupp(Y)) into equivalence classes defined by collinearity of
nonzero columns in X (resp. Y). For each k ∈ JKK (resp. each u ∈ JUK), denote x(k)

(resp. y(u)) a representative of the nonzero collinear columns indexed by [k] (resp. by
[u]). For each i ∈ JmK, j ∈ JnK:

• the columns {x(k) : k ∈ JKK, supp(SR[k]1[k]) 3 j} are linearly independent;
and
• the columns {y(u) : u ∈ JUK, supp(SL[u]1[u]) 3 i} are linearly independent.

The proof is deferred to Appendix K.

Remark 4.14. As shown in Appendix K, when C ∈ U(ΓS), for any (X,Y) ∈ ΣS such
that C = ϕ(X,Y), we have colsupp(X) = colsupp(Y) = colsupp(SL) = colsupp(SR), so in
condition (ii), the partitions {[1], . . . , [K]} and {[1], . . . , [U ]} are independent of the choice of
such a pair (X,Y).

Remark 4.15. It is possible to design an algorithm to check if these necessary conditions
are violated for a given C ∈ ΓS . Such an algorithm needs to check linear independence
between vectors, so its numerical implementation has to take into account conditioning issues.
In practice, to check whether a set of vectors is linearly independent, one can for instance
compute the LU decomposition (when it exists) of the matrix whose columns are defined by
the considered vectors. Such a decomposition requires pq2 − q3/3 flops for a matrix of size
p × q with p ≥ q [13]. In total, for (X,Y) of size m × r and n × r with r ≤ min(n,m), the
algorithm would typically require r(r − 1)/2(n + m) + m(nr2 − r3/3) + n(mr2 − r3/3) flops
in the worst case scenario.

As illustrated on the following example, the necessary conditions for fixed-support identi-
fiability in Theorem 4.13 are also sufficient in some cases.

Example 4.16. Consider a, b, c, d, x, y ∈ C, such that (a, b) 6= (0, 0) and (c, d) 6= (0, 0).
Define:

S1 :=

(
1 1 0
1 1 0

)
, C1 :=

(
a ax 0
b by 0

)
, S2 :=

(
0 1 1
0 1 1

)
, C2 :=

(
0 cy c
0 dy d

)
.

As detailed in Appendix L, (C1,C2) is the PS-unique EMF of Z := C1 + C2 in ΓS with
S := (S1,S2) if, and only if, conditions (i) and (ii) of Theorem 4.13 are verified, or equivalently,
if the columns

(
a b

)ᵀ
and

(
c d

)ᵀ
are linearly independent.

For future work, one might take into account this kind of example in order to establish
tighter conditions for fixed-support identifiability.

4.4. Sufficient conditions for fixed-support identifiability. In complement to the previous
necessary conditions, we now show some sufficient conditions for fixed-support identifiability.
This condition will be based on a notion of closability in some bipartite graphs associated to
“observable entries” in rank-one supports.

4.4.1. Observable vs missing entries, bipartite graphs, and matrix completion. Given
an r-tuple S of rank-one supports and C ∈ ΓS , for any i ∈ JrK, an entry is said to be missing
in Ci if its index (k, l) belongs to the intersection Si ∩ Sj for another j 6= i; otherwise, it
is said to be observable. The intuition behind these notions is that each observable entry is
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equal to the corresponding entry of the factorized matrix
∑r

i=1 C
i, while missing entries need

to be deduced, if possible, from observable ones using the low-rank constraints.
Low-rank matrix completion problems without sparsity constraints are naturally associ-

ated to properties of certain bipartite graphs [15, Proposition 2.15]. This fact was exploited
to prove fixed-support identifiability of certain factorizations of the DFT [18, Chapter 7] us-
ing completion operations inside each of the rank-one contributions. More precisely, it was
established that when all the missing values inside each contribution can be completed with-
out ambiguity from the observable ones using the rank-one constraint, the considered tuple of
rank-one contributions is identifiable for the EMD with fixed support. We extend these results
by showing a more refined sufficient condition for C ∈ U(ΓS), which is basically: all the missing
entries in the contributions {Ci}ri=1 can be recovered through iterative and partial completion
operations based on the rank-one constraint, starting only from the knowledge of the observ-
able entries. These completion operations include completion inside each contribution, as well
completion across the contributions.

Notations for graphs. A graph G is defined by a set of vertices V and a set of edges
E ⊆ V 2, and is denoted G(V,E). The set of vertices and the set of edges in a given graph G
are denoted respectively V (G) and E(G). The complement of a graph G(V,E) is the graph
G = G(V, V 2\E). In a bipartite graph G, the set of vertices is partitioned into two sets of
vertices V1 and V2, and its set of edges satisfies E ⊆ V1×V2. This will be denoted G(V1, V2, E).
By convention, the elements in the first (resp. second) group of vertices V1 (resp. V2) will be
called red (resp. blue) vertices. Then, the set of red (resp. blue) vertices for a given bipartite
graph G is denoted by V1(G) (resp. V2(G)). A bipartite graph G(V1, V2, E) with V1 ⊆ JmK,
V2 ⊆ JnK is a representation of a matrix support S of size n ×m, where the nonzero entries
corresponds to the set E. In other words, S is the adjacency matrix of G. The complete
bipartite graph G(V1, V2, V1 × V2) is denoted KV1,V2 . Given a bipartite graph G, we denote
KG the corresponding completed bipartite graph defined as KG := KV1(G),V2(G). An r-tuple of

graphs is denoted G := (G1, . . . ,Gr). In the following, we consider only undirected graphs.
We define bipartite graphs whose adjacency matrices correspond to observable entries.

Definition 4.17 (Observable supports, observable bipartite graphs). Consider an r-tuple of
rank-one supports S = (S1, . . . ,Sr). Viewing each Si as an index set, the observable supports
are the subsets:

(4.7) obsi(S) := Si\
(⋃
j 6=i

Sj
)
, 1 ≤ i ≤ r.

Viewing each Si as a binary matrix of rank one, the i-th observable bipartite graph of S
(1 ≤ i ≤ r) is the bipartite graph Gi(S) := (rowsupp(Si), colsupp(Si), obsi(S)). The r-tuple
of observable bipartite graphs Gi(S), 1 ≤ i ≤ r, associated to S is denoted G(S).

This is illustrated on an example in Figure 1. The role of bipartite graphs in characterizing
fixed-support identifiability in EMD will become apparent once we recall an existing result in
low-rank matrix completion. For any matrix support S ∈ Bm×n interpreted as a binary mask,
and any observed submatrix (Zk,l)(k,l)∈S, define the rank-one matrix completion problem as:

(4.8) find, if possible, M of rank at most one such that (Mij)(i,j)∈S = (Zk,l)(k,l)∈S.
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Figure 1: Illustration of the observable bipartite graphs of S := (S1,S2,S3) where S1 =
{2, 3, 4} × {1, 2} (orange), S2 = {1, 2, 3} × {2, 3} (blue) and S3 = {3, 4} × {2, 3, 4} (green).
The indices marked with “∗” are those which belong to only one rank-one support (observable
supports). The indices marked with “?” are those which belong to at least two different rank-
one supports.

The next proposition from [15], illustrated by Figure 2, characterizes uniqueness in rank-one
matrix completion.
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(a) Connected bipartite graph.
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(b) Not connected bipartite graph.

Figure 2: Illustration of Proposition 4.18: on the left, it is possible to complete the missing
values denoted by “?” from the nonzero observed values “∗” in the mask, because the bipartite
graph associated to this mask is connected. On the right, this condition is not verified.

Proposition 4.18 (Adapted from [15, Proposition 2.15]). A rank-one matrix A of size m×n
which has no zero entry is the unique solution of the completion problem (4.8) for the observed
submatrix (Ak,l)(k,l)∈S on the mask S if, and only if, the bipartite graph G(JmK, JnK,S) is
connected.

4.4.2. Completion operations for tuples of bipartite graphs. The sufficient conditions
for fixed-support identifiability that we will express rely on two completion operations in the
observable bipartite graphs G(S) that we now define. These operations are illustrated in
Figure 3 for the tuple of graphs introduced in Figure 1.

The first completion operation is directly inspired from Proposition 4.18 and [18, Chapter
7]. It corresponds to the completion of all missing edges in all connected subgraphs in each
bipartite graph. In terms of completion of missing values in rank-one matrices, it corresponds
to solving successively trivial linear systems with one variable. For instance, knowing that(
a x

)ᵀ
and

(
b c

)ᵀ
are collinear, x can be deduced from the values of a, b, and c, as long as

b is nonzero.
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The second completion operation involves all the bipartite graphs in the tuple. In terms
of completion of missing values in rank-one contributions, it corresponds to the fact that, for
a given index pair (k, l), when all the entries Cjk,l (j ∈ JrK) are known except for j = i, the
entry Cik,l is easily deduced from the knowledge of Zk,l :=

∑r
j=1 C

j
k,l.
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(a) Completion inside each graph. We look for all the subgraphs isomorphic to K−
2,2 (circled by dashed

lines), and we complete the edge that is missing in each of these subgraphs.
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(b) Completion across graphs. The edge (2, 2) belongs to the complete bipartite graphs KG1 and KG2 ,
and it is missing in G1 but not in G2, so this edge is added to G1 by the completion operation across
graphs. Similarly, the edge (3, 3) is added to G2.

Figure 3: Illustration of completion operations defined by Definition 4.19. The tuple of
bipartite graphs before completion (G1,G2,G3), already introduced in Figure 1, is represented
by full lines. Dashed lines represent edges that are added after the completion operation.

Definition 4.19 (Completion operations). Let G := (Gi)ri=1 be an r-tuple of bipartite graphs.
Denote K−2,2 the complete bipartite graph KJ2K,J2K minus one edge.

• Completion inside each graph: For each i ∈ JrK, define G′i as the bipartite graph
which is obtained from Gi by completing all the missing edges in each subgraph of Gi
that is isomorphic to K−2,2, and denote a(G) := (G′i)ri=1.

• Completion across graphs: If a given edge e is missing only in the graph Gi but
not in the other graphs Gj for j 6= i, we complete this missing edge in Gi. Formally,
for each i ∈ JrK, define G′′i as the bipartite graph which is obtained from Gi by adding

all the edges in the set

{
e ∈ E(KGi) | e /∈ E(Gi) and e ∈

⋂
j 6=i

e∈E(KGj )

E(Gj)
}
.
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Remark 4.20. In the spirit of Proposition 4.18, the completion operation inside each graph
can be defined equivalently in the following way: “For each i ∈ JrK, define G′i as the bipar-
tite graph which is obtained from Gi by completing all the missing edges in each connected
subgraph of Gi.”

The so-called closure cl (G) is then obtained by completing iteratively the missing edges
in G through the completion operations a and b of Definition 4.19, until no more edges can
be added. This process indeed reaches a fixed point after a finite number of steps.

Lemma 4.21. Let G be an r-tuple of bipartite graphs. There is a positive integer N such
that (b ◦ a)N+1(G) = (b ◦ a)N (G), where a and b are the completion operations introduced in
Definition 4.19.

The proof exploits a partial order between bipartite graphs sharing the same red and blue
vertices, that will also be used in the proof of Theorem 4.25 below.

Definition 4.22. For any bipartite graphs G,H for which V1(G) = V1(H), V2(G) = V2(H),
we write G �H if E(G) ⊆ E(H). For any r-tuples of bipartite graphs G, H, we write:

(4.9) G � H ⇐⇒ ∀i ∈ JrK, Gi �Hi.

One verifies that this partial order is indeed reflexive, anti-symmetric and transitive.

Proof of Lemma 4.21. First, we remark that G � a(G) � (b ◦ a)(G). Secondly, for any
bipartite graph H with red vertices V1 and blue vertices V2, H � KV1,V2 . But the number of
edges in the complete bipartite graph KV1,V2 is finite. In conclusion, we obtain the claimed
result by applying the monotone convergence theorem.

Definition 4.23 (Closure of a tuple of bipartite graphs). The closure of an r-tuple of bipartite
graphs G is the r-tuple of bipartite graphs cl (G) := (b ◦ a)N(G)(G) where

(4.10) N(G) := min {N ∈ N | (b ◦ a)N+1(G) = (b ◦ a)N (G)}.

4.4.3. Sufficient condition for identifiability with fixed support. We can now formulate
our sufficient condition for identifiability with fixed support of C ∈ U(ΓS).

Definition 4.24 (Closable tuple of rank-one supports). We say that the r-tuple of rank-one
supports S is closable if the closure of its observable bipartite graphs, cl (G(S)), is the r-tuple
of complete bipartite graphs (KGi(S))

r
i=1.

Theorem 4.25. Suppose that S is a closable r-tuple of rank-one supports. Denote the set
of r-tuples of rank-one matrices with a support exactly equal to S as:

(4.11) Γ
(=)
S :=

{
C ∈ ΓS | ∀i ∈ JrK, supp(Ci) = Si

}
.

Any C ∈ Γ
(=)
S is the P-unique EMD of Z := A(C) in Γ

(=)
S . In other words, Γ

(=)
S ⊆ U(ΓS).

The proof is deferred to Appendix M.
It can be shown [18, Chapter 7, Corollary 1] that any r-tuple of rank-one supports S such

that Si ∩ Si′ = ∅ for all i 6= i′ is closable. As an immediate corollary we obtain P-uniqueness
of the corresponding rank-one factors.



IDENTIFIABILITY IN TWO-LAYER SPARSE MATRIX FACTORIZATION 21

Corollary 4.26. Suppose that S is such that Si∩Si′ = ∅ for all i 6= i′. Then Γ
(=)
S ⊆ U(ΓS).

However, a closable r-tuple of rank-one supports S does not have necessarily pairwise
disjoint rank-one supports. Consider for instance the tuple S of Figure 1. Even though its
rank-one supports are not pairwise disjoint, S will also be shown to be closable (see discussion
around Figure 4). The following example illustrates an application of Theorem 4.25 for a
given C ∈ ΓS .

Example 4.27. Denote S := (S1,S2,S3) as the tuple of supports of size 4 × 4 defined in
Figure 1, where S1 = {2, 3, 4} × {1, 2}, S2 = {1, 2, 3} × {2, 3}, and S3 = {3, 4} × {2, 3, 4}.
Define also:

Z =


0 1 2 0
1 2 2 0
2 6 5 6
3 5 2 4

 .

Then, by Theorem 4.25, the matrix Z admits a P-unique EMD in ΓS , because any C ∈ ΓS
such that A(C) = Z belongs to Γ

(=)
S , and S is closable.

4.4.4. Algorithm based on rank-one matrix completion. The closability condition of the
previous section suggests an algorithm based on rank-one matrix completion to decompose, if
possible, an observed matrix Z into a sum of rank-one matrices Ci (1 ≤ i ≤ r) satisfying the
rank-one sparsity constraints associated to S. By design, Algorithm 4.1 greedily completes
missing values only if the completion is non ambiguous. One the one hand, in the case when
there exist some ambiguities during the completion, the algorithm returns a tuple of rank-one
contributions with remaining missing values, and nothing can be said about the uniqueness
of the exact matrix decomposition. On the other hand, the absence of missing values of the
output indicates that the input Z admits a P-unique EMD with fixed supports constraint S.

Proposition 4.28. Let us run Algorithm 4.1 with a given r-tuple of rank-one supports S
and a given observed matrix Z as inputs. The following assertions hold:

(i) If the algorithm breaks the loop because of incompatibility at Line 15, then Z /∈ A(ΓS).
(ii) If the algorithm does not break the loop because of incompatibility, and outputs C

without missing values “?”, then Z = A(C). Moreover, C is the unique solution to
A(C′) = Z such that C′ ∈ ΓS . A fortiori, C ∈ U(ΓS).

The proof is deferred to Appendix N. In other words, when Algorithm 4.1, run with Z
and S as inputs, returns an output C without remaining missing values, C is guaranteed to
be the P-unique EMD of Z in ΓS . Moreover in this case the PS-unique EMF of Z in S can
be constructed from C, where S is the unique pair of supports such that ϕ(S) = S. Indeed,
one easily constructs (X,Y) ∈ ICS such that XiYi

ᵀ = Ci. We illustrate an application of this
algorithm to the supports of Figure 1 / Example 4.27 in Figure 4.

From Theorem 4.25, we can deduce that one way to guarantee that Algorithm 4.1 returns
an output without remaining missing values is to enforce closability on the input tuple of
rank-one supports S. The proof is in essence a corollary of Theorem 4.25.
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(a) Initialization.

(b) Filling values in observable supports.

(c) Completion operation inside each bipartite graph.

(d) Completion operation across bipartite graphs.

(e) Completion operation inside each bipartite graph.

(f) Completion operation across bipartite graphs and output.

Figure 4: Application of Algorithm 4.1 on the supports of Figure 1 / Example 4.27. We
represent each contribution Ci at several steps of the completion algorithm. The output does
not have remaining values, so by Proposition 4.28, the obtained tuple of rank-one contributions
is identifiable in the EMD with fixed support.
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Algorithm 4.1 Fixed-support exact matrix decomposition algorithm

Require: Observed matrix Z ∈ Cm×n, r-tuple of rank-one matrices S = (Si)ri=1

Ensure: Rank-one contributions C, with possible missing values “?”

1: For 1 ≤ i ≤ r, set Cik,l =


Zk,l if (k, l) ∈ obsi(S)

0 if (k, l) /∈ Si

“?” otherwise
2: while completion of “?” in C is still possible do
3: for i = 1 to r do /∗ Completion inside each bipartite graph ∗/
4: for each submatrix

[
a1 a2
a4 a3

]
in Ci do

5: if there exist three non missing entries and one missing entry ai = “?” then
6: i′ ← (i+ 2) mod 4
7: if ai′ 6= 0 then
8: ai ← ak×aj

ai′
with {k, j} the remaining indices in J4K\{i, i′}

9: end if
10: end if
11: end for
12: end for
13: for (k, l) ∈ JmK× JnK do /∗ Checking compatibility of the completion ∗/
14: if Cik,l 6= “?” for each i ∈ JrK and Zk,l 6=

∑
i C

i
k,l then

15: return break the “while” loop because of incompatibility
16: end if
17: end for
18: for (k, l) ∈ JmK× JnK do /∗ Completion accross bipartite graphs ∗/
19: if there exists i such that Cik,l = “?” and Cjk,l 6= “?” for all j 6= i then
20: Cik,l ← Zk,l −

∑
j 6=i C

j
k,l

21: end if
22: end for
23: end while
24: return Rank-one contributions C

Lemma 4.29. Suppose that S is closable. Then, for any Z ∈ A(Γ
(=)
S ), the output of Al-

gorithm 4.1 with inputs S and Z is an r-tuple of rank-one contributions without remaining
missing values.

5. Uniform identifiability results. Uniform identifiability is a stronger property that re-
quires identifiability of all instances (X,Y) that satisfy the sparsity constraints, from the
observation Z := XYᵀ. They can be characterized by simple conditions, based on our previ-
ous analysis on instance identifiability in sections 3 and 4.

5.1. Uniform P-uniqueness in EMD. We start by stating a uniform identifiability result
for fixed-support exact matrix decomposition. The proof is deferred to Appendix O.

Lemma 5.1. Let S be an r-tuple of rank-one supports. Then, the following assertions are
equivalent:
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(i) Uniform P-uniqueness of EMD in ΓS holds, i.e., U(ΓS) = ΓS .
(ii) The linear application A : C 7→

∑r
i=1 C

i restriced to ΓS is injective.
(iii) The rank-one supports {Si}ri=1 are pairwise disjoint.

Consequently, when a pair of supports S := (SL,SR) is such that ϕ(S) has disjoint rank-
one supports, almost every pair of factors (X,Y) is identifiable for the EMF of Z = XYᵀ

in ΣS. In fact, a stronger identifiability property than PS-uniqueness is verified in this case,
which is identifiability up to scaling ambiguities only.

Definition 5.2 (S-uniqueness of an EMF in Σ). For any set Σ of pairs of factors, the pair
(X,Y) ∈ Σ is the S-unique EMF of Z := XYᵀ in Σ, if any solution (X′,Y′) to (2.1) with Z
and Σ is equivalent to (X,Y) up to scaling ambiguities only, written (X′,Y′) ∼s (X,Y).

The set of all pairs (X,Y) ∈ Σ such that (X,Y) is the S-unique EMF of Z := XYᵀ in Σ
is denoted Us(Σ).

Proposition 5.3. Suppose that S := (SL,SR) is such that ϕ(S) has disjoint rank-one sup-
ports. Then:

Us(ΣS) = ICS ∩ MCS,

where we recall that ICS and MCS has been defined by (4.5) and (4.6).

Proof. Since Us(ΣS) ⊆ U(ΣS), by Corollary 4.10, Us(ΣS) ⊆ ICS∩MCS. Conversely, consider
(X,Y) ∈ ICS ∩ MCS, and let us show that (X,Y) ∈ U(ΣS). Let (X′,Y′) ∈ ΣS such that
XYᵀ = X′Y′ᵀ. Then, A(ϕ(X,Y)) = A(ϕ(X′,Y′)). But ϕ(X,Y), ϕ(X′,Y′) ∈ Γϕ(S). This
means, by Lemma 5.1, that ϕ(X,Y) = ϕ(X′,Y′). As colsupp(X) = colsupp(Y), we conclude
(X,Y) ∼s (X′,Y′) by Lemma 4.4.

In the companion paper [32], such a condition of disjoint rank-one supports will be met
in the analysis of identifiability in sparse matrix factorization with multiple factors, when
constraining the factors to some well-chosen sparsity structure, like the so-called butterfly
structure appearing in some sparse factorization of the DFT or the Hadamard matrices [9].
We now generalize Lemma 5.1 to the case where Ω is a general family of pairs of supports and
not reduced to a singleton.

Proposition 5.4. Uniform P-uniqueness of EMD in ΓΩ holds, i.e., U(ΓΩ) = ΓΩ, if, and
only if, the two following conditions are verified:

(i) For all S ∈ ϕ(Ω), the rank-one supports {Si}ri=1 are pairwise disjoint.

(ii) For all S,S ′ ∈ ϕcp(Ω) such that
⋃r
i=1 S

i =
⋃r
i=1 S′i, we have S ∼ S ′.

The proof is deferred to Appendix P.
Conditions for uniform P-uniqueness in EMD with sparsity constraints are too restrictive

to be met in practice for classical choices of sparsity patterns mentionned in the examples of
section 2. Nevertheless, we will see that Proposition 5.4 will be useful for the characterization
of uniform right identifiability in the next paragraph.

5.2. Uniform right identifiability. Uniform right identifiability for a given fixed left factor
X and a given family of sparsity patterns for the right factors Θ is the equality U({X}×ΣΘ) =
{X} × ΣΘ. We extend the analysis of section 3 to the uniform paradigm, and show at the
end of the section that uniform right identifiability of classical family of sparsity patterns
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introduced in section 2 is simply characterized by the Kruskal-rank of the fixed left factor.
We recall that the Kruskal-rank [16] of a matrix X, denoted k-rank(X), is the largest number
j such that every set of j columns in X is independent.

Corollary 5.5 (Application of Theorem 3.11). Consider a fixed left factor of the form X =(
x(1)1

ᵀ
[1] . . . x(K)1

ᵀ
[k]

)
(1 ≤ K ≤ r), where x(k) 6= 0 for every k. Consider also a family of

right supports Θ. Denote X := (x(k))k∈JKK ∈ Cm×K , with [k] the set of indices of the columns

of block x(K)1ᵀ (1 ≤ k ≤ K). Let Θ̃ be the fingerprint of Θ on the partition {[k]}Kk=1 defined
by (3.3), and Θ[k] be the signature of Θ on [k] defined by (3.2).

Then, uniform P-uniqueness of EMF in {X}×ΣΘ, i.e., Up({X}×ΣΘ) = {X}×ΣΘ, holds
if, and only if, the following conditions are verified:

(i) The linear application µX : ΣΘ̃ → Cm×n, Y 7→ XYᵀ is injective.
(ii) For each k ∈ JKK, uniform P-uniqueness of EMF in {1ᵀ}×ΣΘ[k]

holds, i.e., Up({1ᵀ}×
ΣΘ[k]

) = {1ᵀ} × ΣΘ[k]
.

Proof. The two conditions are obtained by considering the two conditions of Theorem 3.11
for all Y ∈ ΣΘ.

Condition (i) in Corollary 5.5 can be easily characterized by applying [23, Proposition 1]
to the linear application µX and the union of subspaces ΣΘ̃ =

⋃
S∈Θ̃ ΣS.

Proposition 5.6 (Application of [23, Proposition 1]). For any family of right supports Θ ⊆
Bn×r viewed as subsets of indices, denote the set I := {(Sᵀ)k ∪ (S′ᵀ)k | S,S′ ∈ Θ, k ∈ JnK}.
For any left factor X ∈ Cm×r, the linear application ϕX : ΣΘ → Cm×n, Y 7→ XYᵀ is injective
if, and only if, the columns {Xl | l ∈ I} are linearly independent for each collection I ∈ I.

Proof. By [23, Proposition 1], the linear operator ϕX is invertible if, and only if, for every
S,S′ ∈ Θ, the restriction of ϕX to the space ΣS + ΣS′ := {Y + Y′ | Y ∈ ΣS,Y

′ ∈ ΣS}
is injective. But one easily remarks that ΣS + ΣS′ = ΣS∪S′ , where S ∪ S′ is an abuse of
notation for supp(S + S′) if S and S′ are viewed as binary matrices. Then, injectivity of ϕX

on ΣS∪S′ is verified if, and only if, for each row index k ∈ JnK, the columns Xl indexed by
l ∈ (Sᵀ ∪ S′ᵀ)k = (Sᵀ)k ∪ (S′ᵀ)k are linearly independent.

Condition (ii) can be characterized by applying Proposition 5.4 to the case where we
consider a family of r-tuples of rank-one supports of size n × 1. Viewing the supports as
subset of indices, denote the completion of Θ as:

Θcp :=
⋃
S∈Θ

{S′ ∈ Bn×r | S′ ⊆ S}.

Proposition 5.7. Uniform P-uniqueness of EMF in {1ᵀ}×ΣΘ holds if, and only if, the two
following conditions are verified:

(i) For each S ∈ Θ, the columns of S are pairwise disjoint.
(ii) For all supports S,S′ ∈ Θcp such that

⋃r
i=1 Si =

⋃r
i=1 S

′
i, we have S ∼p S′.

Proof. We apply Proposition 5.4 to the family Ω := {1ᵀ} ×Θ ⊆ B1×r × Bn×r.
Let us apply these results to obtain a simple characterization of uniform right identifiability

of classical families of sparsity patterns of section 2. Recall the notations (2.3), (2.4), (2.5).
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Corollary 5.8. Let X be a left factor of size m × r, and consider that right factors are of
size m× r. Let α ∈ JrK, β ∈ JnK, and s ∈ JnrK be some sparsity parameters.

(i) Suppose that n ≥ 2 or α ≥ 2. Then, uniform PS-uniqueness of EMF in {X} × ΣΛαrow
holds if, and only if, k-rank(X) ≥ min(r, 2α).

(ii) Uniform PS-uniqueness in {X} × Σ
Λβcol

holds if, and only if, k-rank(X) = r.

(iii) Suppose that α ≥ 2, or suppose that n ≥ 2 and β ≥ 2. Then, uniform PS-uniqueness
of EMF in {X} × Σ

Λαrow∩Λβcol
holds if, and only if, k-rank(X) ≥ min(r, 2α).

(iv) Suppose that n ≥ 2 or s ≥ 2. Then, uniform PS-uniqueness of EMF in {X} × ΣΛsglob
holds if, and only if, k-rank(X) ≥ min(r, 2s).

The proof is deferred to Appendix Q.
These results generalize well-known results in the compressive sensing literature [11, The-

orem 2.13], in the case where permutation ambiguities are taken into account for uniqueness.

6. Conclusion. In this work, we presented a general framework to study identifiability in
exact matrix factorization into two factors, when considering arbitrary sparsity constraints.
When sparsity constraints are encoded by a family of pairs of supports stable by permutation
of columns, our framework takes into account these permutation ambiguities (in addition
to the inherent scaling ambiguities) to study uniqueness of exact sparse factorization. Our
analysis of identifiability relies on the lifting procedure via the matrix decomposition approach
into rank-one matrices. We now discuss some important perspectives of this work.

Identifiability of the left factor without fixing the right one. The characterization of condition
(i) in Proposition 3.1 can be explored as a complementary approach to the lifting approach
proposed in this work, in continuation of the work proposed in [21]. They originally introduced
this approach to characterize identifiabiliy in the blind gain and phase calibration problem with
sparsity and subspace constraints, which can be seen as an instance of the matrix factorization
problem into two structured factors.

Fixed-support identifiability. A first possible improvement of this work is to better under-
stand fixed-support identifiability, as the necessary condition (Theorem 4.13) and sufficient
condition (Theorem 4.25) given in this paper are not tight. Having a better understanding
of fixed-support identifiability would then allow to establish tighter sufficient conditions for
identifiability of the supports than Proposition 4.11, which was specific to the case where any
sparse EMD of the matrix to factorize has disjoint rank-one contributions.

Extension to the multi-layer case. The companion paper [32] provides an application of
the presented general framework presented in this section to show some identifiability re-
sults for the multi-layer sparse matrix factorization of the Hadamard or DFT matrices, based
on a hierarchical factorization method [20, 18]. For instance, in the case J = 3, when en-
forcing a sparsity constraint Λi on the i-th factor (1 ≤ i ≤ 3), we can consider, by the
hierarchical factorization method [18], the family of pairs of supports Ω = Λ3 × Θ2 where
Θ2 := {supp(X(2)X(1))

ᵀ | supp(X(i)) ∈ Λi, i = 1, 2}, so that the analysis of identifiability in
the factorization Z = X(3)Yᵀ with two factors (X(3),Y) ∈ ΣΩ proposed by our framework
can provide insights about the one with three factors Z = X(3)X(2)X(1), or more.

Algorithm. Our analysis suggests other approaches for sparse matrix factorization than
iterative first-order optimization methods [20, 9]. One can rely on low-rank matrix completion
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operations with sparsity constraints, in the spirit of Algorithm 4.1. This kind of approach
based on the lifting procedure has been considered in algorithms for blind deconvolution [2]
or signal recovery from magnitude measurements [5]. However, it still remains to explore such
an approach when considering sparsity constraints.

Stability. This work focused on identifiability aspects in exact sparse matrix factorization,
which are necessary to study in order to understand well-posedness of the sparse matrix fac-
torization problem. The other important condition for well-posedness is stability, which is the
ability to recover the solution to the sparse factorization problem under noisy measurements
of the observed matrix. To study these aspects, one can rely on stability results in blind
deconvolution with sparsity constraints [22], which are also derived from the lifting proce-
dure. More related to the sparse matrix factorization problem, stability in deep structured
linear networks under sparsity constraints has been studied with the tensorial lifting approach
[24], but in contrary to our framework, permutation ambiguities were not taken into account
in that work. As our approach relies on matrix decomposition into rank-one matrices, one
perspective in continuation to our work is to exploit existing stability results on rank-one
matrix completability [4, 8] to study stability in sparse matrix factorization. Typically, the
application of Algorithm 4.1 under the noisy case might suffer from instability issues, as the
propagation scheme to complete missing entries with the rank-one constraint is unstable [8],
so it is necessary to adapt Algorithm 4.1 in order to allow for stable recovery of exact matrix
decomposition with fixed-support.

Acknowledgments. The authors are grateful to Valentin Emiya, Jovial Cheukam, Luc
Giffon and Quoc-Tung Le for several important discussions which were helpful for this work.
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Appendix A. Proof of Lemma 2.12.

Proof. We prove the contraposition. Let (X,Y) ∈ ΣΩ such that there exists S ∈ Ω
verifying (X,Y) ∈ ΣS, with colsupp(X) 6= colsupp(SL) or colsupp(Y) 6= colsupp(SR). Up
to matrix transposition, we can suppose colsupp(X) 6= colsupp(SL). By Lemma 2.11, we
can also assume without loss of generality that colsupp(X) = colsupp(Y). Suppose that
colsupp(SR) 6⊆ colsupp(SL). Then, we can fix i ∈ JrK such that SLi = 0 and SRi 6= 0. This
means that Xi = Yi = 0. Setting Y′ ∈ ΣSR such that Y′i = SRi and Y′j = Yj for all
j 6= i, we build an instance as in Lemma 2.10 with Σ = ΣS, to show that (X,Y) /∈ U(ΣS).
The reasoning is symmetric for the case where colsupp(SL) 6⊆ colsupp(SR). It remains the
case where colsupp(SL) = colsupp(SR). Let us now fix i ∈ colsupp(SL)\ colsupp(X). Then,
SLi 6= 0, SRi 6= 0, and Xi = Yi = 0. Again, construct Y′ ∈ ΣSR with Y′i = SRi and
Y′j = Yj for all j 6= i, and we obtain an instance as in Lemma 2.10 with Σ = ΣS, showing
that (X,Y) /∈ U(ΣS).

Appendix B. Proof of Proposition 2.13.

Proof. The direct inclusion is immediate by applying Lemmas 2.8, 2.11, and 2.12. For
the inverse inclusion, let (X∗,Y∗) ∈ U(ICΩ) ∩ MCΩ, and (X,Y) ∈ ΣΩ such that XYᵀ =
X∗Y∗ᵀ. The goal is to show (X,Y) ∼ (X∗,Y∗). Fix S ∈ Ω such that (X,Y) ∈ ΣS. Denote
J = colsupp(X) ∩ colsupp(Y). Define (X′,Y′) ∈ ICΩ such that (X′J ,Y

′
J) = (XJ ,YJ) and

(X′i,Y
′
i) = (0,0) for i /∈ J . Since X′Y′ᵀ = XYᵀ = X∗Y∗ᵀ, and (X∗,Y∗) ∈ U(ICΩ), we have

(X′,Y′) ∼ (X∗,Y∗). Fix G ∈ Gr such that X∗ = X′G and Y∗ᵀ = G−1Y′ᵀ, and denote P :=
supp(G). Then, supp(X∗) = supp(X′G) = supp(X′)P ⊆ SLP, and similarly, supp(Y∗) ⊆
SRP. By stability of Ω, (SLP,SRP) ∈ Ω. Therefore, since (X∗,Y∗) ∈ ICΩ ∩ MCΩ, we have
colsupp(SLP) = colsupp(X∗) = colsupp(Y∗) = colsupp(SRP). But card(colsupp(X′)) =
card(colsupp(X∗)), because (X′,Y′) ∼ (X∗,Y∗). As J = colsupp(X′), we obtain

card(J) = card(colsupp(X′)) = card(colsupp(X∗))

= card(colsupp(SLP)) = card(colsupp(SL)).

Therefore, J = colsupp(SL), as J ⊆ colsupp(SL). This means X′ = X. Similarly, we show
that Y′ = Y. In conclusion, (X,Y) = (X′,Y′) ∼ (X∗,Y∗).

Appendix C. Proof of Lemma 3.5.

Proof. Suppose (XJ ,YJ) ∈ U({XJ} × ΣΘJ ). Let B ∈ ΣΘ such that XYᵀ = XBᵀ.
This means XJYJ

ᵀ = XJBJ
ᵀ. By definition of the signature, BJ ∈ ΣΘJ . Therefore, by

assumption, (XJ ,BJ) ∼ (XJ ,YJ). As the columns of X, Y and B indexed by JrK\J are all
zero columns, we obtain (X,Y) ∼ (X,B). This shows (X,Y) ∈ U({X} × ΣΘ).

Conversely, suppose (X,Y) ∈ U({X} × ΣΘ). Let B′ ∈ ΣΘJ such that XJYJ
ᵀ = XJB

′ᵀ.
Define B such that BJ = B′ and BJrK\J = 0. By definition of the signature, B ∈ ΣΘ. Since
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colsupp(Y) ⊆ J , XJYJ
ᵀ = XYᵀ. Similarly, since colsupp(B) ⊆ J , XJB

′ᵀ = XBᵀ. Hence,
XYᵀ = XBᵀ, and by assumption, (X,B) ∼ (X,Y). Fix G ∈ G(X) such that Bᵀ = G−1Yᵀ.
The permutation matrix supp(G) only permutes nonzero columns of X with nonzero columns
of X. In other words, J is stable by the permutation induced by supp(G). This means that
the submatrix G′ := (Gk,l)(k,l)∈J2 verifies G′ ∈ G(XJ), and B′ᵀ = G′−1YJ

ᵀ, which shows
(XJ ,B

′) ∼ (XJ ,YJ).

Appendix D. Proof of Theorem 3.11.
We rely on the following lemma.

Lemma D.1. Consider X =
(
x(1)1

ᵀ
card([1]) . . . x(K)1

ᵀ
card([K])

)
, where the sets of indices

[1], . . . , [K] form a partition of JrK. Then, a permutation matrix P leaves X invariant, in
the sense that P ∈ P(X), if, and only if, it is a product of K permutation matrices P(k)

(1 ≤ k ≤ K) which leave respectively the block X[k] invariant, in the sense that P(k) ∈ P(X[k]).

Proof. If P ∈ P(X), then P cannot permute a column indexed by i ∈ [k] to a column
indexed by i′ ∈ [k′] with k′ 6= k, as the columns {x(K)}Kk=1 are all different.

Remark D.2. Denoting Y′ :=
(
Y′[1]1[1] . . . Y′[K]1[K]

)
for any right factor Y′ with r

columns, we have: XYᵀ = XY′ᵀ ⇐⇒ XYᵀ = XY′
ᵀ
.

Proof of Theorem 3.11. For sufficiency, suppose that conditions (i) and (ii) are verified,
and let Y′ ∈ ΣΘ such that XY′ᵀ = XYᵀ. The goal is to show (X,Y′) ∼ (X,Y). Denote
Y′ :=

(
Y′[1]1[1] . . . Y′[K]1[K]

)
∈ ΣΘ̃, where Θ̃ is the fingerprint of Θ on {[k]}Kk=1. Then, by

(D.2), XY′
ᵀ

= XYᵀ. By condition (i), Y′ = Y. By fixing k ∈ JKK, this implies Y′[k]1[k] =

Y[k]1[k]. By condition (ii), there exists a permutation matrix P(k) such that Y′[k] = Y[k]P
(k).

This is true for each k, so by Lemma D.1, there exists P ∈ P(X) such that Y′ = YP, hence
we conclude that (X,Y′) ∼ (X,Y).

Suppose that condition (ii) is not verified. Fix k ∈ JKK, and Y(k) ∈ ΣΘ[k]
such that

Y[k]1[k] = Y(k)1[k], but Y(k) 6= Y[k]P
(k) for each permutation matrix P(k) ∈ P(X[k]). Define

Y′ ∈ ΣΘ such that Y′[k] = Y(k) and Y′[k′] = Y[k′] for k′ 6= k. Then, by (D.2), we obtain

XYᵀ = XY′ᵀ. Since Y(k) 6= Y[k]P
(k) for each permutation matrix P(k) ∈ P(X[k]), applying

Lemma D.1 yields Y′ 6= YP for each P ∈ P(X). In conclusion, (X,Y′) 6∼p (X,Y), and
(X,Y) /∈ Up({X} × ΣΘ).

For necessity of condition (i), suppose that (X,Y) ∈ Up({X} × ΣΘ), and let Y′ ∈ ΣΘ̃

such that XY′
ᵀ

= XYᵀ. We want to show Y′ = Y. Fix S ∈ Θ̃ such that Y′ ∈ ΣS.
By definition of the fingerprint, there exists S ∈ Θ such that

⋃
i∈[k] Si = Sk (1 ≤ k ≤

K). Fix k ∈ JKK. Since supp(Y′k) ⊆ Sk =
⋃
i∈[k] Si, there exists Y(k) ∈ ΣS[k]

such that

Y′k = Y(k)1[k]. Construct then Y′ ∈ ΣS such that Y′[k] = Y(k) for each k ∈ JKK. Hence,

Y′ =
(
Y′1 . . . Y′K

)
=
(
Y′[1]1[1] . . . Y′[K]1[K]

)
. By (D.2), we obtain XYᵀ = XY′ᵀ.

By assumption, (X,Y) ∼p (X,Y′). By Lemma D.1, there exists a permutation matrix P(k)

such that Y′[k] = Y[k]P
(k) (1 ≤ k ≤ K). In conclusion, for each k ∈ JKK, Y′k = Y′[k]1[k] =

(Y[k]P
(k))1[k] = Y[k]1[k] = Yk, because the result of a sum does not depend on the summation

order. This yields Y′ = Y, which shows condition (i).

Appendix E. Proof of Proposition 3.13.
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The proof of this proposition relies on the simpler case where the right factor is reduced
to a vector.

Lemma E.1. Let A ∈ Cm×N , and θ ⊆ BN be a family of allowed vector supports. Let
x∗ ∈ Σθ be an allowed vector. Then, uniqueness in the linear inverse problem Ax = Ax∗ for
x ∈ Σθ, namely

∀x ∈ Σθ, Ax = Ax∗ =⇒ x = x∗,

holds if, and only if, both of the following conditions hold:
(i) For all s ∈ θ such that supp(x∗) ⊆ s, the columns of As are linearly independent.

(ii) For all s ∈ θ such that Ax∗ ∈ Im(As), the support of x∗ is included in s.

Proof. For sufficiency, let x ∈ Σθ such that Ax = Ax∗. Fix s ∈ θ such that x ∈ Σs.
Then, Ax∗ ∈ Im(As), so by condition (ii), the support of x∗ is included in s. By condition (i),
we obtain x∗ = x. For necessity, suppose that x∗ is the unique solution to the linear inverse
problem Ax = Ax∗ for x ∈ Σθ. Let s ∈ θ such that supp(x∗) ⊆ s. Then, by assumption, the
application x 7→ Ax defined on Σs is injective, so Ker(As) = {0}. Now, let s ∈ θ such that
Ax∗ ∈ Im(As). Fix x ∈ Σs such that Ax∗ = Ax. Then, by assumption, x = x∗, which yields
supp(x∗) ⊆ s.

Proof of Proposition 3.13. We simply apply Lemma E.1 for the choices A = In ⊗ X ∈
Cnm×nr, x∗ = vec(Yᵀ) ∈ Cnr and θ = {vec(Sᵀ) | S ∈ Θ} ⊆ Bnr, where vec(·) is the
vectorization operator, namely:

∀Y′ ∈ Cr×n, vec(Y′) =

Y′1
...

Y′n

 ∈ Cnr.

Appendix F. Proof of Proposition 3.14.
The following proof shows that the two conditions of the proposition are equivalent to

(Y,1ᵀ) ∈ U(ΣΘ × {1ᵀ}), which, as mentioned in the remark of Theorem 3.11, is equivalent
to (1ᵀ,Y) ∈ U({1ᵀ} × ΣΘ).

Proof. Suppose that condition (i) and (ii) are verified. Let Y′ ∈ ΣΘ such that Y′1 = Y1.
We want to show (Y,1ᵀ) ∼p (Y′,1ᵀ). Fix S ∈ Θ such that supp(Y′) ⊆ S. Then, I =
supp(Y1) = supp(Y′1) ⊆

⋃r
i=1 supp(Y′)i ⊆

⋃r
i=1 Si, so by the first part of condition (ii), the

columns (SIc,j)
r
j=1 are pairwise disjoint. Consequently, since

∑r
j=1 Y

′
k,j = 0 for each k ∈ Ic,

the rows of Y′ indexed by k ∈ Ic are zero rows. In addition, by the second part of condition
(ii), the columns (SI,j)

r
j=1 and (supp(Y)I,j)

r
j=1 are equal, up to a permutation of indices j. By

condition (i), this means that the columns {SI,j}rj=1 are pairwise disjoint. Thus, the entries
of Y′ are directly identified from its sum of columns Y′1 = Y1, hence, (Y,1ᵀ) ∼p (Y′,1ᵀ).

Conversely, suppose that condition (i) is not verified. Fix two different indices i, j such
that supp(Y)i∩ supp(Y)j 6= ∅. Fix k an index in this intersection. Define Y′ ∈ ΣΘ such that:

∀l ∈ JrK, Y′l =


Yi + λek if l = i

Yj − λek if l = j

Yl otherwise

,
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where λ is a scalar different from Yk,l −Yk,i for each l ∈ JrK. Then, one easily verifies that
Y1 = Y′1. However, Y′i 6= Yl for each l ∈ JrK by construction, thus, Y′i 6= (YP)i for each
P ∈ Pr, and necessarily, (Y,1ᵀ) 6∼p (Y′,1ᵀ). Suppose now that the first part of condition
(ii) is not verified. Fix S ∈ Θ such that I := supp(Y1) ⊆

⋃r
i=1 Si, and two different indices

i 6= j such that SIc,i ∩ SIc,j 6= ∅. Fix k in this intersection. Then, we can construct similarly
Y′ ∈ ΣS such that Y′1 = Y1, but (Y,1ᵀ) 6∼p (Y′,1ᵀ).

Finally, suppose that the second part of condition (iii) is not verified. Fix S ∈ Θ such
that I := supp(Y1) ⊆

⋃r
i=1 Si, and (SI,j)

r
j=1 6= (supp(Y)I,σ(j))

r
j=1 for any permutation

σ ∈ S(JrK). Construct Y′ ∈ ΣS in the following way:

∀(k, l) ∈ JnK× JrK, Y′k,l =

{
(Y1)k
‖(Sᵀ)k‖0 if k ∈ I and l ∈ (Sᵀ)k

0 otherwise
,

which is well defined because since I ⊆
⋃r
i=1 Si, we have ‖(Sᵀ)k‖0 > 0 for k ∈ I. Then,

one verifies that Y′1 = Y1. However, by construction, (supp(Y′)I,j)
r
j=1 = (SI,j)

r
j=1 6=

(supp(Y)I,σ(j))
r
j=1 for any permutation σ ∈ S(JrK). This means that (Y,1ᵀ) 6∼p (Y′,1ᵀ).

Appendix G. Proof of Lemma 4.4.

Proof. Consider (X,Y) ∼ (X′,Y′). By definition, there exists D ∈ Dr and P ∈ Pr such
that X′ = XDP and Y′ = YD−1P. Since ϕ(XD,D−1Y) = ϕ(X,Y), we immediately
obtain ϕ(X,Y) ∼ ϕ(X′,Y′). For surjectivity, let C ∈ ΓΩ. By definition, there exists S ∈ Ω
such that C ∈ ΓS , where S = ϕ(S). Fix i ∈ JrK. If Ci = 0, define x(i) = 0 and y(i) = 0.
Otherwise, Ci is a rank-one matrix, and since supp(Ci) ⊆ SLi × SRi (viewing the columns SLi
and SRi as subset of indices), we can find (x(i),y(i)) ∈ ΣSLi

× ΣSRi
such that Ci = x(i)y(i)ᵀ,

with x(i) 6= 0, y(i) 6= 0, by Lemma 4.1. Then, the matrices X := (x(i))i∈JrK, Y := (y(i))i∈JrK
verifies (X,Y) ∈ ICΩ, and ϕΩ(X,Y) = C by construction. For injectivity up to equivalences,
let (X,Y), (X′,Y′) ∈ ICΩ such that ϕΩ(X,Y) ∼ ϕΩ(X′,Y′). Fix σ ∈ S(JrK) such that
Xσ(i)Yσ(i)

ᵀ = X′iY
′
i
ᵀ (1 ≤ i ≤ r). If X′iY

′
i
ᵀ = 0, then since (X,Y), (X′,Y′) ∈ ICΩ, we

have Xσ(i) = X′i = 0 and Yσ(i)
ᵀ = Y′i

ᵀ = 0 by Lemma 4.1. Otherwise, X′iY
′
i
ᵀ 6= 0,

and, by Lemma 4.1, there exists λi 6= 0 such that X′i = λiXσ(i) and Y′i = 1
λi
Yσ(i). Thus,

(X,Y) ∼ (X′,Y′).

Appendix H. Proof of Proposition 4.9.

Proof. For necessity, suppose C ∈ U(ΓΩ). By analogy with Lemma 2.8, condition (ii) is
verified. Now, let S ∈ ϕ(Ω) such that A(C) ∈ A(ΓS). Fix C′ ∈ ΓS such that A(C′) = A(C). By

assumption, C ∼ C′. Fix σ ∈ S(JrK) such that Ci = C′σ(i) ∈ ΣSσ(i) for all i ∈ JrK. This yields
condition (i). For sufficiency, suppose that condition (i) and (ii) are verified, and let C′ ∈ ΓΩ

such that A(C) = A(C′). We want to show C′ ∼ C. Fix S ′ ∈ ϕ(Ω) such that C′ ∈ ΓS′ . Then by

construction, A(C) ∈ A(ΓS′), so by condition (i), fix σ ∈ S(JrK) such that supp(Ci) ⊆ S′σ(i)

(1 ≤ i ≤ r). In other words, defining S := (S′σ(i))ri=1, we have C ∈ ΓS . But Ω is stable by

permutation, so S ∈ ϕ(Ω). By definition, C′′ := (C′σ(i)) belongs to ΓS . As A is invariant to
permutation, A(C′′) = A(C′) = A(C). By condition (ii), C ∈ U(ΓS), so C′′ ∼ C. As C′′ ∼ C′,
we obtain C′ ∼ C.
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Appendix I. Proof of Corollary 4.10.
In order to prove this corollary, we have to establish the following result. Denote the equiv-

alence class of S ∈ Bm×r × Bn×r with respect to permutation equivalence (see Definition 3.6)
as:

[S] := {S′ ∈ Bm×r × Bn×r | S′ ∼p S}.

Lemma I.1. For any fixed pair of supports S, U(Σ[S]) ∩ ΣS = U(ΣS). Similarly, denoting
S := ϕ(S), U(Γ[S]) ∩ ΓS = U(ΓS).

Proof. The inclusion U(Σ[S])∩ΣS ⊆ U(ΣS) is an application of Lemma 2.8. For the inverse
inclusion, let (X,Y) ∈ U(ΣS), and (X′,Y′) ∈ Σ[S] such that X′Y′ᵀ = XYᵀ. Fix P ∈ Pr such
that (X′,Y′) ∈ Σ(SLP,SRP). This means that (X′P−1,Y′P−1) ∈ ΣS. Since (X,Y) ∈ U(ΣS),

we have (X′P−1,Y′P−1) ∼ (X,Y), hence, (X′,Y′) ∼ (X,Y). The proof is similar for the
equality U(Γ[S]) ∩ ΓS = U(ΓS).

Proof of Corollary 4.10. Suppose (X,Y) ∈ U(ΣS). By Lemma I.1, (X,Y) ∈ U(Σ[S]),
so by applying Theorem 4.8 to the family [S] which is stable by permutation, we obtain
ϕ(X,Y) ∈ U(Γ[S]) and (X,Y) ∈ IC[S] ∩ MC[S]. One the one hand, by Lemma I.1, ϕ(X,Y) ∈
U(ΓS). On the other hand, since IC[S] ∩ MC[S] ∩ ΣS = ICS ∩ MCS, and (X,Y) ∈ ΣS, we obtain
(X,Y) ∈ ICS ∩ MCS.

Conversely, suppose ϕ(X,Y) ∈ U(ΓS) and (X,Y) ∈ ICS∩MCS. By Lemma I.1, ϕ(X,Y) ∈
U(Γ[S]). Moreover, ICS ⊆ IC[S], so (X,Y) ∈ IC[S]. We now show that (X,Y) ∈ MC[S].

Let S′ ∼p S such that (X,Y) ∈ ΣS′ . Fix P ∈ Pr such that S′ = (SLP,SRP). We have

supp(X) ⊆ S′L. Since (X,Y) ∈ MCS, colsupp(X) = colsupp(SL). Hence, colsupp(SL) ⊆
colsupp(S′L). But S′ ∼p S, so colsupp(SL) and colsupp(S′L) have the same cardinality. There-

fore, colsupp(S′L) = colsupp(SL) = colsupp(X). Similarly, colsupp(S′R) = colsupp(SR) =
colsupp(Y). This shows (X,Y) ∈ MC[S]. By Theorem 4.8, we conclude that (X,Y) ∈ U(Σ[S]),
which means (X,Y) ∈ U(ΣS) by Lemma I.1.

Appendix J. Proof of Proposition 4.11.

Proof. Consider S ∈ ϕ(Ω) a tuple of rank-one supports such that Z ∈ A(ΓS), and
C′ ∈ ΓS a tuple of rank-one matrices with these supports such that A(C′) = Z. By con-
dition (i), the supports in the tuple S ′ := (supp(C′i))ri=1 are pairwise disjoint. Therefore,

supp(Z) = supp(
∑r

i=1 C′i) =
⋃r
i=1 supp(C′i) =

⋃r
i=1 S′i. In other words, {S′i}ri=1 is a par-

tition of supp(Z). As a consequence, (Zk,l)(k,l)∈S′i = (C′i
k,l)(k,l)∈S′i (1 ≤ i ≤ r), which by

definition is of rank at most one. Similarly, (supp(Ci))ri=1 is also a partition of supp(Z), and
the submatrices (Zk,l)(k,l)∈supp(Ci) = (Cik,l)(k,l)∈supp(Ci) are also of rank at most one. But

S ′ ∈ ϕcp(Ω) because S′i = supp(C′i) ⊆ Si (1 ≤ i ≤ r), and (supp(Ci))ri=1 ∈ ϕcp(Ω) because
C ∈ ΓΩ. Hence, by condition (ii), S ′ ∼ (supp(Ci))ri=1, which shows the existence of σ ∈ S(JrK)
such that supp(Ci) = S′σ(i) = supp(C′σ(i)) ⊆ Sσ(i). This precisely yields condition (i) of
Proposition 4.9.

Appendix K. Proof of Theorem 4.13.
The proof of the theorem is composed of the four following steps.
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K.1. Equivalence with fixed-support identifiability in EMF. Given an r-tuple of rank-
one supports S, a preliminary necessary condition of C ∈ U(ΓS) for a given C ∈ ΓS is based
on the non-degeneration properties of subsection 2.3.

Lemma K.1. Consider S a pair of supports, S = ϕ(S), and C ∈ ΓS . Suppose C ∈ U(ΓS).
Then, for any (X,Y) ∈ ΣS such that ϕ(X,Y) = C, (X,Y) ∈ ICS ∩ MCS, or in other words,
colsupp(SL) = colsupp(X) = colsupp(Y) = colsupp(SR).

Proof. Suppose there exists (X,Y) ∈ ΣS such that C = ϕ(X,Y) but (X,Y) /∈ ICS ∩ MCS.
As IC[S] ∩ MC[S] ∩ ΣS = ICS ∩ MCS, this means that (X,Y) /∈ IC[S] ∩ MC[S]. By Lemmas 2.11
and 2.12, (X,Y) /∈ U(Σ[S]). Then, by Lemma I.1, (X,Y) /∈ U(ΣS), which means, by Corol-
lary 4.10, that C = ϕ(X,Y) /∈ U(ΓS).

Consequently, thanks to Corollary 4.10, the necessary condition of Lemma K.1 is equiva-
lent to the one in the following lemma.

Lemma K.2. Suppose C ∈ U(ΓS). Then, for any (X,Y) ∈ ΣS such that ϕ(X,Y) = C,
(X,Y) ∈ U(ΣS). The converse is also true.

Proof. Let (X,Y) ∈ ΣS such that C = ϕ(X,Y). By Lemma K.1, this means that (X,Y) ∈
ICS ∩ MCS. But by assumption, ϕ(X,Y) = C ∈ U(ΓS). By Corollary 4.10, (X,Y) ∈ U(ΣS).
The converse is true by Corollary 4.10.

K.2. Fixing the left factor. As a consequence, we obtain the following necessary condition
for C ∈ U(ΓS) by fixing the left factor.

Lemma K.3. Suppose C ∈ U(ΓS). Then, for any (X,Y) ∈ ΣS such that ϕ(X,Y) = C,
(X,Y) ∈ U({X} × ΣSR).

Proof. We apply Lemma 2.8 with Σ′ := {X} × ΣSR ⊆ ΣS =: Σ,

We leverage the analysis of section 3 to provide the following necessary conditions for
C ∈ U(ΓS).

Lemma K.4. Suppose C ∈ U(ΓS). Then, using the same notations introduced in Theo-
rem 4.13 for any (X,Y) ∈ ΣS such that ϕ(X,Y) = C, we have:

(i) for each k ∈ JKK, the columns of the submatrix SR[k] are pairwise disjoint;

(ii) for each j ∈ JnK, the subset of columns {x(k) : k ∈ JKK, supp(SR[k]1[k]) 3 j} is linearly
independent.

Proof. Let (X,Y) ∈ ΣS such that ϕ(X,Y) = C. By Lemma K.3, (X,Y) ∈ U({X}×ΣSR).
By Lemma 3.3, we get colsupp(Y) ⊆ colsupp(X) := J . By Lemma 3.5, this yields (XJ ,YJ) ∈
U({XJ}×ΣSR). From Proposition 3.7, we obtain (XJN,YJN

−1) ∈ Up({XJN}×ΣSR), where
N is the diagonal matrix which normalizes the columns of XJ , in a such way that the first
nonzero entry of each normalized nonzero column is 1. Hence, by applying Theorem 3.11
and Propositions 3.13 and 3.14 to the fixed left factor XJN which has no zero column, and to
the family of right supports reduced to the singleton {SRJ }, we obtain the claimed necessary
conditions of the proposition.

K.3. Fixing the right factor. Because of the following result, the analysis when fixing the
right factor is the same as the one when fixing the left factor.
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Lemma K.5. For any pair of supports (SL,SR), we have:

(X,Y) ∈ U(Σ(SL,SR)) ⇐⇒ (Y,X) ∈ U(Σ(SR,SL)).

Proof. Because of the symmetry, we only prove the direct sense. Suppose (X,Y) ∈
U(Σ(SL,SR)). Let (B,A) ∈ Σ(SR,SL) such that BAᵀ = YXᵀ, and let us show that (B,A) ∼
(Y,X). The previous equality is equivalent to ABᵀ = XYᵀ. Then, by assumption, (A,B) ∼
(X,Y). Hence, there exists G ∈ Gr such that X = AG and Yᵀ = G−1Bᵀ. Thus, Y =
B(Gᵀ)−1, and Xᵀ = GᵀBᵀ. Since (Gᵀ)−1 ∈ Gr, we obtain (B,A) ∼ (Y,X), which ends the
proof.

Consequently, we can express similar necessary conditions as the ones of Lemma K.4 for
the case where we fix the right factor.

Lemma K.6. Suppose C ∈ U(ΓS). Then, using the same notations introduced in Theo-
rem 4.13 for any (X,Y) ∈ ΣS such that ϕ(X,Y) = C, we have:

(i) for each u ∈ JUK, the columns of the submatrix SL[u] are pairwise disjoint;

(ii) for each i ∈ JmK, the subset of columns {y(u) : u ∈ JUK, supp(SL[u]1[u]) 3 i} is linearly
independent.

Proof. We use Lemma K.5 and repeat the reasoning of Appendix K.2.

K.4. Combine the obtained necessary conditions. It is now possible to formulate the
obtained necessary conditions in the following equivalent manner.

Lemma K.7. Let C ∈ U(ΓS). The two following conditions are equivalent:
(i) for any (X,Y) ∈ ΣS such that ϕ(X,Y) = C, for each k ∈ JKK, the columns of the

submatrix SR[k] are pairwise disjoint;

(ii) whenever two nonzero rank-one contributions Ct and Ci′ have nonzero collinear col-
umns (i, i′ ∈ JrK, i 6= i′), the column support SRi , SRi′ are disjoint;

(iii) for all i, i′ ∈ JrK, i 6= i′, if the rank-one contributions Ci and Ci′ are nonzero with the
same column span, then the rank-one supports Si and Si′ are disjoint.

Proof. The condition (iii) is simply a reformulation of condition (ii).
Suppose (i). Consider i, i′ ∈ JrK, i 6= i′ such that Ci and Ci′ have nonzero collinear columns.

By Lemma 4.4, there exists (X,Y) ∈ ΣS such that ϕ(X,Y) = C. In particular, Ci = XiYi
ᵀ

and Ci′ = Xi′Yi′
ᵀ. By assumption, Ci and Ci′ have nonzero collinear columns. This means

that Xi 6= 0 and Xi′ 6= 0 are collinear. By assumption (i), the columns support SRi , SRi′ are
disjoint.

Conversely, suppose (ii). Let (X,Y) ∈ ΣS such that ϕ(X,Y) = C. Let k ∈ JKK, and
consider any i, i′ ∈ [k], with i 6= i′. By definition, the nonzero columns Xi and Xi′ are
collinear. Fix λ 6= 0 such that Xi = λXi′ . Then, Ci = XiYi

ᵀ = λXi′Yi
ᵀ. But λXi′Yi

ᵀ and
Xi′Yi′

ᵀ = Ci′ have nonzero collinear columns. By assumption (ii), the columns support SRi ,
SRi′ are disjoint.

We express a similar lemma for the case where the right factor has been fixed. We conclude
by expressing jointly condition (iii) in these two lemmas to obtain the necessary condition
(i) in Theorem 4.13. We then combine conditions (ii) of Lemmas K.4 and K.6 to obtain the
necessary condition (ii) of Theorem 4.13.
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Appendix L. Proof of Example 4.16.

Proof. First, we verify that conditions (i) and (ii) of Theorem 4.13 are equivalent to linear

independence of columns
(
a b

)T
and

(
c d

)T
. Indeed, if these two columns are collinear,

then condition (i) cannot be verified, as S1 and S2 are not disjoint. Conversely, if these two
columns are linearly independent, then condition (ii) is verified. Indeed, for any (X,Y) ∈ ΣS

(where S is the unique pair of supports such that ϕ(S) = S) such that C = ϕ(X,Y), X

is equal to

(
a b
c d

)
up to rescaling of columns, and Y is equal to

1 0
x y
0 1

 up to rescaling

of columns. Therefore, the columns of X are linearly independent, and the columns of Y
are linearly independent. Moreover, since C1 and C2 have no nonzero collinear columns nor
nonzero collinear rows, condition (i) is also verified.

Therefore, by Theorem 4.13 and the previously shown equivalence, linear independence of

columns
(
a b

)T
and

(
c d

)T
is necessary for C ∈ U(ΓS). We now show that it is sufficient.

Suppose that
(
a b

)ᵀ
and

(
c d

)ᵀ
are linearly independent. Let C′ ∈ ΓS such that C′1 +C′2 =

Z. As C′1 and C′2 are rank-one matrices, denote x′, y′ ∈ C such that C′1
2 = x′C′1

1 and
C′2

2 = y′C′2
3. Rewriting the equality Z2 = (C′1 + C′2)2, we have:{

ax′ + cy′ = Z1,2 = ax+ cy

bx′ + dy′ = Z2,2 = bx+ dy

Then, by assumption, x′ = x and y = y′, so C′ = C, which shows C ∈ U(ΓS).

Appendix M. Proof of Theorem 4.25.

Proof. Suppose that S is closable. Let C ∈ Γ
(=)
S , and let us show that C ∈ U(ΓS). Let

C′ ∈ ΓS such that A(C) = A(C′). The goal of the proof is to show that C ∼ C′. Denote
Z := A(C), G := G(S) the observable bipartite graphs associated to S, and N := N(G). As
S is closable, all the rank-one supports Si (1 ≤ i ≤ r) are different, so Gi is not the empty
graph for any i ∈ JrK. The complete graph KGi is denoted Ki for simplicity (1 ≤ i ≤ r). For
any integer n, denote Gn := (b ◦ a)n(G), where a and b are the completion operations defined
in Definition 4.19, and Hn = a(Gn).

For n ∈ JNK, denote Pn the assertion: “for all i ∈ JrK, for all (k, l) ∈ E
(
Gin
)
, (Ci)k,l =

(C′i)k,l”. Let us prove by induction that Pn is true for all n ∈ JNK. Since N = N(G),
GN = cl (G), and by assumption, cl (G) = (Ki)

r
i=1. Therefore, proving PN would yield C = C′

and end the proof.
Initialization. Fix i ∈ JrK, and (k, l) ∈ E(Gi0). By definition, E(Gi0) = obsi(S) =

Si\
(⋃

j 6=i S
j
)

, so for j 6= i, (Cj)k,l = 0 = (C′j)k,l. Therefore, (Ci)k,l = Zk,l = (C′i)k,l,

which shows P0.
Inductive step. Let n ∈ JN−1K, and suppose that Pn is verified. Denote H := a(G). Recall

that Gn � Hn � Gn+1.
• For any i, for any (k, l) ∈ E(Gin), (Ci)k,l = (C′i)k,l by assumption Hn.

• Let i ∈ JrK and (k, l) ∈ E(Hi
n)\E(Gin). Then, (k, l) corresponds to a missing edge
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in a subgraph of Gin isomorph to K−2,2. For any (k′, l′) of this subgraph, (k′, l′) ∈
E(Gin) by definition of the completion operation a, so (Ci)k′,l′ = (C′i)k′,l′ . Then,

by Proposition 4.18, we obtain (Ci)k,l = (C′i)k,l. This is true for any i ∈ JrK and

(k, l) ∈ E(Hi
n).

• Finally, let (k, l) ∈ E(Hi
n+1)\E(Hi

n). Then, by definition of the completion operation

b, (k, l) ∈ E(Hj
n) for all j 6= i such that (k, l) ∈ Kj . This means that (Cj)k,l = (C′j)k,l

for such j. For j 6= i such that (k, l) /∈ Kj , we simply have (Cj)k,l = 0 = (C′j)k,l.

Therefore, we obtain (Ci)k,l = Zk,l −
∑

j 6=i (Cj)k,l = Zk,l −
∑

j 6=i (C′j)k,l = (C′i)k,l,
which shows Pn+1 and ends the inductive step.

Appendix N. Proof of Proposition 4.28.

Proof. To prove the first assertion, one can assume by contradiction that the algorithm
breaks the loop because of incompatibility, with Z ∈ A(ΓS). Fix C ∈ ΓS such that A(C) = Z.
Then, we would have Cik,l = Zk,l for all i ∈ JrK, (k, l) ∈ obsi(S). Following the completion
algorithm, since the algorithm breaks the loop because of incompatibility, there exists an index
(k, l) such that

∑
i C

i
k,l 6= Zk,l. This is a contradiction.

For the second assertion, one verifies that, at initialization, for each index (k, l), whenever
all entries Cik,l (1 ≤ i ≤ r) are not missing, the sum

∑
i C

i
k,l is equal to Zk,l. This property is

preserved at the end of each loop of the algorithm, as by assumption, the algorithm did not
break the loop because of incompatibility. Since there is no missing values in the output of the
algorithm, we obtain A(C) = Z. Uniqueness comes simply from the fact that each completed
value in the algorithm is unique.

Appendix O. Proof of Lemma 5.1.

Proof. Suppose (iii). Let C ∈ ΓS . Then, the entries of Ci (1 ≤ i ≤ r) can be directly
identified from the submatrix (Zk,l)(k,l)∈Si , because the rank-one supports in the tuple S
are pairwise disjoint. This shows condition (ii). Suppose now (ii). A fortiori, uniform P-
uniqueness of EMD in ΓS holds, because the equality C = C′ implies C ∼ C′, which shows (i).
Let us now show the implication (i) =⇒ (iii) by contraposition. Suppose there exists i, j ∈ JrK
such that Si ∩ Sj 6= ∅. Let (k, l) be an index in this intersection. Denote E(k,l) ∈ Bn×m the
binary matrix full of zero, except for the index (k, l) for which the entry is one. Define
C, C′ ∈ ΓS as follow:

∀t ∈ JrK, Ct =


E(k,l) if t = i

−E(k,l) if t = j

0 otherwise

, C′t =


2E(k,l) if t = i

−2E(k,l) if t = j

0 otherwise

Then, A(C) = 0 = A(C′), but for any permutation σ ∈ S(JrK), C′i 6= Cσ(i), which means
that C 6∼ C′.

Appendix P. Proof of Proposition 5.4.

Proof. Suppose ΓΩ = U(ΓΩ). By analogy with Lemma 2.8, we show that uniform P-
uniqueness of EMD in ΓS holds for any S ∈ ϕ(Ω). This yields condition (i) by apply-
ing Lemma 5.1. Suppose by contradiction that condition (ii) is not verified. Without loss
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of generality, we can suppose that condition (i) is verified. Fix S,S ′ ∈ ϕcp(Ω) such that⋃r
i=1 S

i =
⋃r
i=1 S′i, but S 6∼ S ′. By condition (i), {Si}ri=1 and {S′i}ri=1 are respectively pair-

wise disjoint. Defining C := S and C′ := S ′, one verifies that C, C′ ∈ ΓΩ, and A(C) = A(C′).
But by construction, C 6∼ C′, so we conclude that C, C′ /∈ U(ΓΩ).

Suppose that condition (i) and condition (ii) are verified. Let C, C′ ∈ ΓΩ such that∑r
i=1 C

i =
∑r

i=1 C
′i. This sum is denoted Z. Denote S := (supp(Ci))ri=1 and S ′ :=

(supp(C′i))ri=1. By construction, S,S ′ ∈ ϕcp(Ω). By condition (i), the supports {Si}ri=1

and {S′i}ri=1 are respectively pairwise disjoint. Therefore,
⋃r
i=1 S

i = supp(Z) =
⋃r
i=1 S′i.

By condition (ii), we obtain S ∼ S ′. Fix σ ∈ S(JrK) such that S′i = Sσ(i) for all i ∈ JrK.
Since the supports {supp(C′t)}rt=1 are pairwise disjoint, we have C′i =

∑
(k,l)∈S′i Zk,lE

(k,l),

and Cσ(i) =
∑

(k,l)∈Sσ(i) Zk,lE
(k,l) (1 ≤ i ≤ r). We conclude that C′i = Cσ(i) for all i ∈ JrK.

Appendix Q. Proof of Corollary 5.8.
Before proving the corollary, let us start with some technical lemmas.

Lemma Q.1. For X 6= 0, denote J := colsupp(X). Then, for any family of right supports
Θ:

{X} × ΣΘ = U({X} × ΣΘ) ⇐⇒

{
ΘJc ⊆ {0}, and

{XJ} × ΣΘJ = U({XJ} × ΣΘJ )
,

with the convention ΘJc = ∅ when Jc = ∅.
Proof. Suppose {X} × ΣΘ = U({X} × ΣΘ). Let S ∈ Θ. Viewing S as a binary matrix,

we have S ∈ ΣΘ, so (X,S) ∈ {X} × ΣΘ. By assumption, (X,S) ∈ U({X} × ΣΘ). Hence, by
Lemma 3.3, we obtain colsupp(S) ⊆ colsupp(X) = J . This is true for all S ∈ Θ, so ΘJc ⊆ {0}.
Let us now show that uniform PS-uniqueness of EMF in {XJ} × ΣΘJ holds. Let Y′ ∈ ΣΘJ .
Define Y ∈ ΣΘ such that YJ = Y′ and YJc = 0. Then, (X,Y) ∈ {X}×ΣΘ, so by assumption,
(X,Y) ∈ U({X} ×ΣΘ). Since colsupp(Y) ⊆ J = colsupp(X), (XJ ,Y

′) ∈ U({XJ} ×ΣΘJ ) by
Lemma 3.5, which ends the proof of necessity.

Conversely, suppose that ΘJc ⊆ {0}, and {XJ} × ΣΘJ = U({XJ} × ΣΘJ ). Let Y ∈ ΣΘ.
Since ΘJc ⊆ {0}, we necessarily have colsupp(Y) ⊆ J = colsupp(X). But (XJ ,YJ) ∈
U({XJ} × ΣΘJ ) by assumption. Hence, by Lemma 3.5, (X,Y) ∈ U({X} × ΣΘ), which ends
the proof.

Corollary Q.2. Consider X with no zero column and N ∈ Dr the (unique) diagonal matrix
that normalizes its columns, setting the first nonzero entry of each column of XN to 1. We
have:

{X} × ΣΘ = U({X} × ΣΘ) ⇐⇒ {XN} × ΣΘ = U({XN} × ΣΘ)

⇐⇒ {XN} × ΣΘ = Up({XN} × ΣΘ)

Proof. This is a direct consequence of Proposition 3.7.

Proof of Corollary 5.8, (i). Remark that Iαrow := {(Sᵀ)k ∪ (S′ᵀ)k | S,S′ ∈ Λαrow, k ∈ JnK}
is equal to the set {I ⊆ JrK | card(I) ≤ 2α}. Suppose k-rank(X) ≥ min(r, 2α). In particular,
X has no zero column, and there is no pair of collinear columns in X. By assumption, the
subset of columns {XI | l ∈ I} for any I ∈ Iαrow is linearly independent. By Corollary 5.5
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and Propositions 5.6 and 5.7, we conclude that uniform PS-uniqueness of EMF in {X}×ΣΛαrow
holds.

Conversely, suppose that uniform PS-uniqueness of EMF in {X}×ΣΛαrow holds, and assume
in addition that n ≥ 2 or α ≥ 2. By Lemma Q.1, (Λαrow)Jc ⊆ {0} where J := colsupp(X). But
this cannot be verified when J 6= JrK. So necessarily, X does not have zero column. Denote
{[k]}Kk=1 a partition of JrK defined by collinearity of columns in X. Let us show that there is
no pair of collinear columns in X. Suppose there exists k ∈ JKK such that card([k]) ≥ 2, and
fix i, j ∈ [k] such that i 6= j. By Corollaries 5.5 and Q.2, the two conditions of Proposition 5.7
are verified for (Λαrow)[k]. In the case where α ≥ 2, we can find S ∈ Λαrow such that the two
columns Si and Sj has a nonzero entry at the first row, which contradicts the first condition
of Proposition 5.7 applied to (Λαrow)[k]. Otherwise, in the case where n ≥ 2, we can find

S,S′ ∈ Λαrow such that:

Si =
(
1 0 0 . . . 0

)ᵀ
, S′i =

(
1 1 0 . . . 0

)ᵀ
,

Sj =
(
0 1 0 . . . 0

)ᵀ
, S′j =

(
0 0 0 . . . 0

)ᵀ
,

with zero columns elsewhere. This is in contradiction with the second condition of Proposi-
tion 5.7 applied to (Λαrow)[k]. Consequently, {[k]}Kk=1 is a partition of JrK where each equivalence

class is a singleton, so the fingerprint of Λαrow on {[k]}Kk=1 is simply Λαrow. By Corollary 5.5
and Proposition 3.13, each subset of columns {Xl | l ∈ I} for I ∈ Iαrow is linearly independent,
meaning that k-rank(X) ≥ min(r, 2α).

Proof of (ii). Suppose k-rank(X) = r. In particular, X has no zero column, and there is
no pair of collinear columns in X. By assumption, the subset of columns {XI | l ∈ I} for any

I ∈ Iβcol is linearly independent, where Iβcol := {(Sᵀ)k ∪ (S′ᵀ)k | S,S′ ∈ Λβcol, k ∈ JnK}. By
Corollary 5.5 and Propositions 5.6 and 5.7, we conclude that uniform PS-uniqueness of EMF
in {X} ×Σ

Λβcol
holds. Conversely, suppose that PS-uniqueness of EMF in {X} ×Σ

Λβcol
holds.

Using some similar arguments as the previous proof, we can show that necessarily, X has no
zero column, and no pair of collinear columns. Consequently, {[k]}Kk=1 is a partition of JrK
where each equivalence class is a singleton, so the fingerprint of Λβcol on {[k]}Kk=1 is simply

Λβcol. By Corollary 5.5 and Proposition 3.13, each subset of columns {Xl | l ∈ I} for I ∈ Iβcol
is linearly independent, meaning that k-rank(X) = r, because JrK = (Sᵀ)k ∪ (Sᵀ)k ∈ Iβcol,
where S is the support full of ones in the first column, and filled with zero elsewhere.

Proof of (iii). Suppose k-rank(X) ≥ min(r, 2α). Then, by assertion (i) of Corollary 5.8,
uniform PS-uniqueness of EMF in {X} × ΣΛαrow holds. But since Σ

Λαrow∩Λβcol
⊆ ΣΛαrow , applying

Lemma 2.8 yields uniform PS-uniqueness of EMF in {X} × Σ
Λαrow∩Λβcol

. The proof of the

converse is essentially the same as the one of assertion (i) in Corollary 5.8.

Proof of (iv). Remark that Isglob := {(Sᵀ)k ∪ (S′ᵀ)k | S,S′ ∈ Λsglob, k ∈ JnK} is equal to
the set {I ⊆ JrK | card(I) ≤ 2s}. Hence, the proof is essentially the same as the one for
assertion (i) of Corollary 5.8.
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