
HAL Id: hal-03435233
https://hal.inria.fr/hal-03435233

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reflectivipy: building python debuggers with
sub-method, partial behavioral reflection

Steven Costiou, Vincent Aranega, Marcus Denker

To cite this version:
Steven Costiou, Vincent Aranega, Marcus Denker. Reflectivipy: building python debuggers with sub-
method, partial behavioral reflection. GPL 2021 - Génie de la Programmation et du Logiciel : Journée
du Groupement de Recherche, Jun 2021, Online, France. . �hal-03435233�

https://hal.inria.fr/hal-03435233
https://hal.archives-ouvertes.fr

Reflectivipy: building python debuggers with sub-method,
partial behavioral reflection

Steven Costiou1, Vincent Aranega2, and Marcus Denker1

1 Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
2 Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

{steven.costiou,vincent.aranega, marcus.denker}@inria.fr

Abstract. Building debugging tools is hard and requires powerful tools and libraries. In
object-oriented technologies, it is common to use fine-grained reflection to implement de-
buggers. In this tool presentation, we describe how partial behavioral reflection applied to
sub-elements of a method helps in the implementation of advanced debugger features. As
an example, we present an implementation of object-centric breakpoints in python.

Keywords: Debugging · Object-centric · Python · Reflection

1 Introduction
Debugging is a general concern in software engineering. Therefore we need to build debuggers, and
for that we require support from languages and their infrastructure. Sub-method, partial behavioral
reflection [1] is a reflection technique for fine-grained instrumentation of object-oriented programs.

The technique consists in annotating AST nodes at run time with metalinks. Metalinks describe
calls to a meta-object to be executed for the operation defined by the AST node. They define when
to call (before, after, instead) and which information to reify and pass to the meta-object. That
meta-object implements and executes instrumentation behavior, such as debugging operation.

Installing metalinks leads to the code being dynamically transformed, recompiled, and installed.
This allows the system to be annotated at run time (Figure 1).

0x326A
0x1752

0x76A9

...

...

0x60B8

0x326A
0x1752

0x76A9

...

...

originalMethod

original AST modified AST

original

method
reflective

method

meta-object

rewrite

compile
ast

link

Fig. 1: Run-time method instrumentation with sub-method, partial behavioral reflection

The technique has successfully been implemented and integrated with Pharo as Reflectivity [1].
It has been used in more than 20 research projects to implement fine-grained and customized
program instrumentation. Many of these projects are about designing and implementing new de-
bugging tools. In all these projects, sub-method, partial behavioral reflection is the fundamental
support for implementing debuggers. In this paper, we present Reflectivipy, our python implemen-
tation of the technique. We briefly describe its API, and how it is used to implement an advanced
debugger able to target one specific object in a running program. The debugger provides break-
points scoped to a specific object, with two granularities: on a method or on any sub-expression
of a method. The debugger relies on Reflectivipy and IPDB3.

2 Reflectivipy in a Nutshell
Reflectivipy is our python implementation of sub-method, partial behavioral reflection [1]4. The
flow for the creation and installation of a metalink using reflectivipy is the following:

3 https://ipython.readthedocs.io/en/stable/api/generated/IPython.core.debugger.html
4 https://github.com/StevenCostiou/reflectivipy

(1) Select an AST node of a method using: reflective ast for method(classOrObject, methodName).
(2) Create a metalink and configure it using:

MetaLink(meta-object, meta-objectMethodName, ”before”|”instead”|”after”).
(3) Install the metalink on the selected AST node using: link(configuredLink, aSelectedNode).

3 Object-centric Debugging for Python
Object-centric debugging [2] scopes breakpoints to specific objects and their interactions instead
of breaking the execution for all objects of the same kind. This helps developers to focus their
debugging investigations to precise parts of their program. In this demonstration, we illustrate how
we use Reflectivipy to implement a breakpoint that interrupts an execution when a precise object
receives a message. This breakpoint builds a meta-object that breaks the execution, configures a
metalink to call that meta-object, and installs this metalink on an AST of an object’s method.

Implementing an object-centric breakpoint with Reflectivipy. To build our object-centric
breakpoint, we attach a metalink to the object we want to debug. We install the metalink on a
(sub)expression (i.e., an AST node) of a method bound to the object to debug. When the metalink
is activated, e.g., when the execution reaches the aforementioned expression, it automatically calls
the Python special method set trace() that interrupts the execution.

Installing an object-centric breakpoint. We first have to set a first breakpoint to interrupt
the execution and activate the object-centric debug mode. To do that, we insert the breakpoint
instruction ocpdb.set trace() in the code we want to debug.

Fig. 2: Labelling the AST for an existing upper method.
The command display ast

command (Figure 2) labels all
nodes of a method with a num-
ber. Each number correspond to
a given AST node. We can install
breakpoints on a statement (e.g,
AST node 6) or on an expression
(e.g, AST node 7).

With the halt command, we
install an object-centric break-
point. It takes two arguments: (1) the method of a specific object and (2) the number of the
node where installing the breakpoint in that method. Let us use it to debug a program that trans-
forms a list of names from lowercase to uppercase. The program output produces ALBERT JODIE
MIKE JOHN CARMEN NaLLELY GINA. One of the name is not transformed correctly. To debug
it, we install an object-centric breakpoint on the nallely string object to interrupt the execution
when upper is called on that object: halt tab[5].upper, 6

We resume the execution which stops exactly on the sixth element of the list (the nallely string
object). A program state inspection reveals that the second lowercase letter is not a latin letter,
but an UTF-8 letter looking like a latin letter. On a large collection and in a complex program,
stopping on the right object is tedious without object-centric breakpoints. In that case, we have
to express breakpoint conditions to find the object, which is difficult.

4 Conclusion
We presented Reflectivipy, our Python implementation of sub-method partial behavioral reflection.
We used it to implement a breakpoint that scopes to specific objects with a sub-expression gran-
ularity. The technique offers strong support for build debugging tools. However, exposing ASTs
is tedious and we do it by labeling nodes which is impractical. We need more tools dedicated to
ASTs to support the building debuggers based of sub-method, partial behavioral reflection.

References

1. S. Costiou, V. Aranega, and M. Denker. Sub-method, partial behavioral reflection with reflectivity:
Looking back on 10 years of use. The Art, Science, and Engineering of Programming, 4(3), Feb. 2020.

2. J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric debugging. In Proceeding of the 34rd interna-
tional conference on Software engineering, ICSE ’12, 2012.

	Reflectivipy: building python debuggers with sub-method, partial behavioral reflection

