
HAL Id: hal-03442101
https://hal.inria.fr/hal-03442101

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis of CPace
Michel Abdalla, Björn Haase, Julia Hesse

To cite this version:
Michel Abdalla, Björn Haase, Julia Hesse. Security Analysis of CPace. [Research Report] Report
2021/114, IACR Cryptology ePrint Archive. 2021. �hal-03442101�

https://hal.inria.fr/hal-03442101
https://hal.archives-ouvertes.fr

Security Analysis of CPace

Michel Abdalla1,2, Björn Haase3, and Julia Hesse∗4

1CNRS and DI/ENS, PSL University, Paris, France
michel.abdalla@gmail.com

2DFINITY, Zurich, Switzerland
3Endress+Hauser Liquid Analysis

bjoern.haase@endress.com
4IBM Research – Europe, Zurich

jhs@zurich.ibm.com

Abstract

In response to standardization requests regarding password-authenticated key exchange
(PAKE) protocols, the IRTF working group CFRG has setup a PAKE selection process in
2019, which led to the selection of the CPace protocol in the balanced setting, in which parties
share a common password. In subsequent standardization efforts, the CPace protocol further
developed, yielding a protocol family whose actual security guarantees in practical settings are
not well understood. In this paper, we provide a comprehensive security analysis of CPace in
the universal composability framework. Our analysis is realistic in the sense that it captures
adaptive corruptions and refrains from modeling CPace’s Map2Pt function that maps field ele-
ments to curve points as an idealized function. In order to extend our proofs to different CPace
variants optimized for specific elliptic-curve ecosystems, we employ a new approach which repre-
sents the assumptions required by the proof as libraries accessed by a simulator. By allowing for
the modular replacement of assumptions used in the proof, this new approach avoids a repeated
analysis of unchanged protocol parts and lets us efficiently analyze the security guarantees of all
the different CPace variants. As a result of our analysis, all of the investigated practical CPace
variants enjoy adaptive UC security.

1 Introduction

Security analysis and efficient implementation of cryptographic protocols are often split into separate
working groups. As a result, subtle differences between the actually implemented and analyzed
protocols easily emerge, for example when implementors slightly tweak the protocol to improve
efficiency. An example where particularly aggressive optimizations for efficiency are implemented
on the protocol level is CPace as specified in current internet drafts [28, 29]. CPace is a password-
authenticated key exchange protocol (PAKE) [10], which allows two parties to establish a shared
cryptographic key from matching passwords of potentially low entropy. PAKEs are extremely

∗Author supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 786725 OLYMPUS.

1

mailto:michel.abdalla@gmail.com
mailto:bjoern.haase@endress.com
mailto:jhs@zurich.ibm.com

useful for establishing secure and authenticated communication channels between peers sharing
short common knowledge. The common knowledge could be a PIN typed into different wearables
in order to pair them, sensor readings recorded by several cars in order to create an authenticated
platoon or a security code manually entered by an admin to connect her maintenance laptop with
a backbone router.

On a high level, CPace works as follows. Given a cyclic group G, parties first locally and
deterministically compute a generator g ← Gen(pw), g ∈ G from their passwords in a secure way, so
that g reveals as little information about the password as possible. Then, both parties perform a
Diffie-Hellman key exchange by choosing secret exponents x and y, respectively, exchanging gx and
gy and locally computeK = (gx)y = (gy)x. The final key is then computed as the hash ofK together
with session-identifying information such as transcript. The currently most efficient implementations
of the above blueprint protocol use elliptic curve groups of either prime or composite order. To
securely compute the generator, the password is first hashed to the finite field Fq over which the
curve is constructed, and then mapped to the curve by a map called Map2Pt. Depending on the
choice of curve, efficiency tweaks such as simplified point verification on curves with twist security,
or computation with only x-coordinates of points can be applied [27, 28]. Unfortunately, until today,
it is not clear how these modifications impact security of CPace, and whether the protocol can be
proven secure without assuming (Map2Pt ◦ H) to be a truly random function.

A short history of CPace. In 1996, Jablon [36] introduced the SPEKE protocol, which performs
a Diffie-Hellman key exchange with generators computed as g ← HG(pw), i.e. using a function
HG hashing directly to the group. Many variants of SPEKE have emerged in the literature since
then, including ones that fixed initial security issues of SPEKE. Among them, the PACE protocol
[40, 11] aims at circumventing direct hashing onto the group with an interactive Map2Pt protocol
to compute the password-dependent generators. From this, CPace [27] emerged by combining the
best properties of PACE and SPEKE, namely computing the generator without interaction while
avoiding the need to hash directly onto the group. More precisely, password-dependent generators
are computed as g ← Map2Pt(H(pw)). In 2020, the IRTF working group CFRG has chosen CPace
as the recommended protocol for (symmetric) PAKE.

Prior work on the security of CPace. Bender et al. [11] conducted a game-based security
analysis of the explicitly authenticated PACE protocol variants used in travel documents. Their
work focusses on different variants of interactive Map2Pt constructions and hence does not allow
for any conclusions about CPace which uses a (non-interactive) function Map2Pt.

Static security of CPace, including function Map2Pt and some implementation artifacts such as
cofactor clearing, was formally analyzed in [27]. Their work is the first to attempt a formalization
of Map2Pt that allows for a security analysis. However, their proof was found to be insufficient by
reviews done during the CFRG selection process [44, 33], and indeed, the claimed security under
the plain computational Diffie-Hellman assumption seems to be difficult to achieve. Besides these
issues, their work does not consider adaptive corruptions and implementation artifacts such as twist
security or single-coordinate representations.

Abdalla et al. [2] analyzed static security of several EKE [10] and SPEKE variants in the UC
framework, including SPAKE2 [7] and TBPEKE [41]. They indicate that their proof for TBPEKE
could be extended to CPace with generators computed as HG(pw) (i.e., without function Map2Pt)
if the protocol transcript and password-dependent generator is included in the final key derivation
hash. However, in practice it is desirable to avoid unnecessary hash inputs for efficiency reasons

2

and protection against side-channel attacks.
In a concurrent work, Abdalla et al. [3] formalized the algebraic group model within the UC

framework and proved that the SPAKE2 and CPace protocols are universally composable in the new
model with respect to the standard functionality for password-based authenticated key exchange in
[17]. Stebila and Eaton [21] provided a game-based analysis of CPace in the generic group model.
As in [2], these further studies do not deal with adaptive security and only consider a basic version
of CPace without Map2Pt and without considering any implementation artifacts.

The above analyses demonstrate that a basic version of CPace, which essentially is a Diffie-Hellman
key exchange computed on hashed passwords instead of a public generator, is UC-secure if the
attacker is restricted to static corruptions. Unfortunately, this leaves many open questions. Does
this basic protocol remain (UC-)secure if we use generator Map2Pt(H(pw)) instead, as it is done
in practice to avoid direct hashing onto elliptic curves? Can the protocol handle adaptive corrup-
tions? Which impact on security do implementation artifacts have, such as co-factor clearing on a
composite-order curve group, or single-coordinate representation as used in, e.g., TLS1.3? Can we
reduce hash inputs in order to make the protocol less prone to side-channel attacks? Altogether, it
turns out the security of the actually implemented CPace protocol is not well understood.

Our Contributions. In this paper, we provide the first comprehensive security analysis of the
CPace protocol that applies also to variants of CPace optimized for usage with state-of-the-art
elliptic curves. We identify the core properties of the deterministic Map2Pt function that allow
to prove strong security properties of CPace. Crucially, we restrict the use of random oracles to
hash functions only and refrain from modeling Map2Pt as an idealized function, as it would not be
clear how to instantiate it in practice. We show that, using some weak invertibility properties of
Map2Pt that we demonstrate to hold for candidate implementations, CPace can be proven secure
under standard Diffie-Hellman-type assumptions in the random-oracle model and with only minimal
session-identifying information included in the final key derivation hash. Our security proof captures
adaptive corruptions and weak forward secrecy1 and is carried out in the Universal Composability
(UC) framework, which is today’s standard when analyzing security of password-based protocols.
Our work provides the first evidence that SPEKE-type protocols can handle adaptive corruptions.

We then turn our attention to modifications of CPace and, for each modification individually,
state under which assumptions the security properties are preserved. In more detail, our analysis
captures the following modifications.

• Using groups of composite order c ·p, where p is a large prime and c is a small cofactor coprime
to p.

• Realize Gen(pw) generator calculations using Map2Pt with either map-twice-and-add strategy
or as single execution.

• Using single-coordinate-only representations of elliptic-curve points in order to speed up and
facilitate implementation.

• Avoiding computationally costly point verification on curves with secure quadratic twists such
as Curve25519 [12].

To demonstrate the security of these variants, we take a new approach that saves us from a
repeated analysis of unchanged parts of CPace. Namely, we implement the CDH-type cryptographic
assumptions required by CPace as libraries which a simulator can access. This allows for modular

1In the case of PAKE, weak forward secrecy is implied by UC security and hence achieved also by prior work. If
key confirmation is added, then this gives a protocol with perfect forward secrecy as noted in [2].

3

replacement of assumptions required in the security proof, and lets us efficiently analyze all the
different CPace variants’ security guarantees. We believe that this new proof technique might be
of independent interest in particular for machine-assisted proving, since reductions are captured in
code instead of textual descriptions only.

As a side contribution, we identify a common shortcoming in all UC PAKE security definitions
in the literature [17, 37, 34, 2], which impacts the suitability of these definitions as building blocks
in higher-level applications. Namely, all these definitions allow a malicious party to learn the shared
key computed by an honest party without knowing her password. We strengthen the definition to
prevent such attacks, and demonstrate with our analysis of CPace that our fix yields a security
definition that is still met by PAKE protocols.

In conclusion, our results demonstrate that CPace enjoys strong provable security guarantees
in a realistic setting, and this holds for all its variants that have been proposed in the different
elliptic-curve ecosystems.

1.1 Technical overview of our results

Map2Pt’s impact on security. At its core, the CPace protocol is a SPEKE-type protocol,
meaning that it is simply a Diffie-Hellman key exchange (DHKE) computed with a generator that
each party individually computes from her password. Intuitively, the most secure choice is to
compute g ← HG(pw), and indeed this was proven secure [2, 3] conditioned on H being a perfect
hash function (or, put differently, a random oracle (RO)). However, DHKE-type protocols are most
efficient when implemented on elliptic-curve groups, and it is not known how to efficiently hash
directly onto such groups. Recent standardization efforts by the CFRG [23] show that, in practice,
one would always first hash to the finite field Fq over which the curve is constructed, and then map
the field element to the curve G using some curve-specific mapping Map2Pt : Fq → G. Hence, the
generator in CPace can be assumed to be computed as g ← Map2Pt(H(pw)) for a H being a hash
function such as SHA-3.

In order to analyze how the function Map2Pt impacts CPace’s security, it is obviously not helpful
to abstract Map2Pt ◦ H as a truly random function. In a first attempt to analyze under which
properties of Map2Pt CPace remains secure, Haase et al. [27] assumed Map2Pt to be a bijection.
Intuitively, a bijective Map2Pt function does not “disturb” the “nice” distribution of the prepended
hash function, and in particular does not introduce any collisions. Besides the known shortcomings
in their conducted analysis (the claimed security under CDH does not seem to hold, and their
proof lacks an indistinguishability argument [44, 33]), it does not cover non-bijective mappings
on widely used short-weierstrass curves such as NIST P-256. Hence, in our work we refrain from
assuming Map2Pt to be a bijection. Instead, we introduce a property of probabilistic invertibility,
which demands that, given an element g in the group G, we can efficiently compute all preimages
h ∈ Fq such that Map2Pt(h) = g. On a high level, this invertibility property will aid the simulation
of CPace since it allows to “tightly” link a group element g to a previously computed hash h and
thus recognize collisions efficiently. Here, tightly/efficiently means without iterating over all hash
queries in the system. We demonstrate that all mappings used in practice [23] are probabilistically
invertible. As a result, we conclude that CPace implemented with current mappings enjoys strong
security guarantees.

Adaptive security. Just like any other PAKE protocol, CPace comes with a large likelihood
for idling. Indeed, in practice it will most likely be the same person who jumps between the two

4

devices running the PAKE, to manually enter the same password, PIN or code. This gives room for
attackers to corrupt devices during the run of the protocol, and hence calls for analyzing security
of CPace in the presence of adaptive corruptions. To our knowledge, there is no proof of adaptive
security for any SPEKE-type protocol in the literature. In this work, we closely investigate CPace’s
guarantees under adaptive corruptions and come to an indeed surprising conclusion:

CPace enjoys adaptive UC security under the same DH-type assumptions
that seem required for static security.

The challenge of proving adaptive security lies in the need to reveal suitable secret values computed
by a previously honest party during the run of the protocol. For CPace, these are the secret
Diffie-Hellman exponents x, y randomly chosen by parties. A bit simplified, our idea is to start
the simulation of an honest party with gz for a generator g of group G and randomly chosen
exponent z, and hence independent of the actual (unknown) password used by that party. Upon
corruption, the simulator learns pw and looks up the corresponding hash value gr = H(pw) for
which it knows r−1 thanks to H being modeled as a random oracle. This allows the simulator to
compute the “actual” secret exponent y ← zr−1 that the simulated party would have used if started
with actual password pw. Crucially, no additional assumptions or secure erasures are required and,
as we demonstrate in the body of our paper, this simplified strategy still works when generators are
computed using Map2Pt ◦ H. Altogether, our analysis shows that CPace enjoys UC-security under
adaptive corruptions.

Falsifiable assumptions and a new approach to simulation-based proofs. A falsifiable
assumption can be modeled as an interactive game between an efficient challenger and an adversary,
at the conclusion of which the challenger can efficiently decide whether the adversary won the game
[25]. Most standard cryptographic assumptions such as CDH, DDH, RSA, and LWE are falsifiable.
An example of a non-falsifiable assumption is the gap simultaneous Diffie-Hellman assumption,
which was used in prior CPace security analyses [2, 3] and features a full DDH oracle that cannot
be efficiently implemented by the challenger. Intuitively, the DDH oracle seems inherent for proving
UC security of CPace since the attacker (more detailed, the distinguishing environment) determines
passwords pw used by honest parties and also receives their outputs, which is the final key K. More
detailed, the attacker can deterministically compute the generator G used by an honest party from
only pw, and it also receives the honest party’s message gx. The attacker can now enforce the final
key to be a DDH tuple K = gxy by simply sending gy to the honest party (we omit the final key
derivation hash in this explanation for simplicity). Hence, to correctly simulate the final key output
by an honest party under attack, the simulator relies on a DDH oracle. However, we observe that
this oracle can be limited to specific inputs g, gx that the attacker cannot influence. This turns out
to be an important limitation, because the restricted DDH oracle DDH(g, gx, ·, ·) can actually be
implemented efficiently using knowledge of trapdoor exponents r, r−1 of g. Thus, our conclusion is
that CPace’s security holds under falsifiable DH-type assumptions.

As another contribution, we define falsifiable assumptions as efficiently implementable libraries
that a simulator can call. The advantage of this approach is that reductions to the underlying
assumptions are integrated in the simulator’s code, which will hence abort and detect itself whenever
a query to the library solves the underlying hard problem. This makes reduction strategies readable
from simulator codes and hence opens a new path for automatic verification of simulation-based
proofs. While we demonstrate this only to work for proofs conducted in the UC framework and when

5

using variants of strong CDH, we conjecture that our approach can be used for simulation-based
proofs in arbitrary frameworks whenever only falsifiable assumptions are used.

Minimal protocol design. For optimal protection against side-channel attacks, we would like
to have parties touch their passwords as little as possible. Optimally, passwords are only used
to compute the generator of the DHKE. Unfortunately, in simulation-based frameworks a security
proof often crucially relies on hashing of secrets, and indeed previous CPace security analysis has
relied on the password being included in the final key derivation hash [2]. In this work we ask
what the minimal set of protocol-related values is that needs to be included in both hash functions
used in CPace. Perhaps surprisingly, we find that CPace’s security can be proven when (1) the
password hash does not get any additional inputs and (2) the final key derivation hash is over
session-specific values and the Diffie-Hellman key. Regarding (1), we observe that the simulation
strategy (described above for adaptive corruptions) works even if the generator g chosen by the
simulator is used to simulate multiple instances of CPace, and where different parties use the same
password: Choosing fresh secret exponents zA for each such simulated party A ensures that all
the revealed exponents zAr−1 are still uniformly distributed. Regarding (2), our simulation simply
does not need to learn the password from an adversarial key derivation hash query: The simulator
simply reads the simulated parts gz and adversarial part Y of the transcript from the hash query
and checks consistency of the query’s format by checking whether it is a DDH tuple with respect to
each trapdoor generated upon password hashing. Since there can be only a polynomial number of
such queries, this simulation strategy is tight and efficient and saves us from hashing the password
another time.

Implementation artifacts. Depending on the type of curve CPace is deployed in, the implemen-
tation will vary in certain aspects for which it is not clear how they will impact CPace’s security.
By adopting the security analysis to capture actual Map2Pt mappings used in practice we already
demonstrated how to deal with the probably most important such artifact above. Closely related
to this, we also analyze security of CPace when implemented on curves of composite order p · c with
a small co-factor c, which needs to be “cleared” in order to ensure that parties use generators of the
large subgroup. We can integrate this modification by chaining Map2Pt with a co-factor clearing
function and by demonstrating that the resulting mapping is still probabilistically invertible. Tech-
nically, we “lift” our proof of security w.r.t simple Map2Pt described above by letting the simulator
call a co-factor clearing class that ensures that simulated values will remain in the large subgroup.

A typical implementation pitfall is incorrectly implemented group-membership verification. As
such a failure easily remains unnoticed, optimized resilient protocols such as X25519 and X448
[38] have been suggested for the conventional Diffie-Hellman use-case. We believe that we are the
first to formalize the exact hardness assumption, the twist CDH problem sTCDH, under which the
claimed resilience regarding group membership omission is actually justified. We show that under
the sTCDH assumption, resilience with respect to incorrectly implemented point verification can also
be achieved for CPace, when instantiated using single-coordinate Montgomery ladders on so-called
"twist-secure" [14] elliptic curves. For details on how to deal with other implementation artifacts
we refer the reader to Section 6 in the main body of the paper.

Roadmap. We introduce the PAKE security model in Section 2 and hardness assumptions and
requirements for Map2Pt in Section 3. Details of the CPace protocol are in Section 4. Then we

6

analyse CPace, first using a simplified CPace in Section 5 (modeling the map as random-oracle)
and then extending the analysis to real-world instantiations using actually deployed mapping con-
structions, composite-order groups, details on twist security and single-coordinate representations in
Section 6. Full proofs (Appendix A), a description of issues with previous UC PAKE functionalities
(Appendix C) and implementation recommendations (Appendix G) can be found in the appendices.

2 PAKE Security Model

We use the Universal Composability (UC) framework of Canetti [16] to formulate security properties
of CPace. For PAKE, usage of the simulation-based UC framework comes with several advantages
over the game-based model for PAKE introduced by Bellare et al. [9]. Most importantly, UC secure
PAKE protocols preserve their security properties in the presence of adversarially-chosen passwords
and when composed with arbitrary other protocols. Originally introduced by Canetti et al. [17],
the ideal functionality FpwKE for PAKE (depicted in Fig. 1) is accessed by two parties, P and P ′,
who both provide their passwords. FpwKE then provides both parties with a uniformly random
session key if passwords match, and with individual random keys if passwords mismatch. Since an
adversary can always engage in a session and guess the counterpart’s password with non-negligible
probability, FpwKE must include an adversarial interface TestPwd for such guesses. Crucially, only
one guess against every honest party is allowed, modeling the fact that password guessing is an
online attack and cannot be used to brute-force the password from a protocol’s transcript. We refer
the reader to [17] for a more comprehensive introduction to the PAKE functionality.

An ideal functionality for the SPEKE protocol family. Unfortunately, FpwKE is not suit-
able to analyze SPEKE-like PAKE protocols such as CPace, where session keys are computed as
hashes of Diffie-Hellman keys (and possibly parts of the transcript). The reason is that FpwKE’s
TestPwd interface allows password guesses only during a protocol run, which requires a simulator to
extract password guesses from the protocol’s transcript. When the final output is a hash, the adver-
sary might postpone its computation, keeping information from the simulator that is required for
password extraction. To circumvent these issues, recently a “lazy-extraction PAKE” functionality
FlePAKE was proposed and shown useful in the analysis of SPEKE-like protocols by Abdalla et al.
[2]. FlePAKE, which we also depict in Fig. 1, allows either one online or one offline password guess
after the key exchange was finished. One might argue that usage of keys obtained from FlePAKE

is never safe, since the adversary might eventually extract the key from it at any later point in
time. This however can be easily prevented by adding a key confirmation round, which keeps an
adversary from postponing the final hash query and guarantees perfect forward secrecy [2]. We refer
the reader to [2] for a thorough discussion of FlePAKE.

Our adjustments to FlePAKE. The main difference between our FlePAKE and all PAKE func-
tionalities from the literature [17, 37, 34, 2] is that we remove a shortcoming that rendered these
functionalities essentially useless as building blocks for higher-level applications. More detailed, we
remove the ability of the adversary to determine an honest party’s output key in a corrupted session.
The change can be seen in Fig. 1, where the dashed box shows the weakening that we simply omit
in our version of FlePAKE. In reality, nobody would want to use a PAKE where an adversary can
learn (even set) the key of an honest party without knowing the honest party’s password. This is not
what one would expect from an authenticated key exchange protocol. In Appendix C we explain

7

why existing PAKE protocols can still be considered secure, but also provide an illustrating example
how this shortcoming hinders usage of PAKE functionalities in modular protocol analysis. In this
paper, we demonstrate that CPace can be proven to protect against such attacks.

We also make two minor adjustments, which are merely to ease presentation in this paper.
Namely, we omit roles since we analyze a protocol where there is no dedicated initiator, and we add
an explicit interface for adaptive corruptions. The latter interface can only be asked upon getting
instructed to do so by the environment.

How many keys can a PAKE functionality exchange? All PAKE functionalities in Fig. 1
produce only a single key for a single pair of parties P,P ′. This can be seen from the NewSession
interface, which takes action only upon the first such query (from any party P) and the corre-
sponding second query by the indicated counterparty P ′. The motivation behind this design choice
is simplicity in the security analysis: one can prove security of a PAKE protocol for only a single
session, and then run arbitrary many copies of the PAKE functionality to exchange arbitrarily many
keys (between arbitrary parties). Consequently, by the UC composition theorem, replacing all those
copies with the PAKE protocol that provably realizes the single-session FpwKE is at least as secure.

On party authentication. The PAKE functionalities from Fig. 1 require the party identifier of
the counter party as input. In case of a mismatch (e.g., Alice wants to exchange a key with Bob,
but Bob wants to exchange with Charlie), in an unattacked session, the functionalities’ NewKey
interface ensures that both parties obtain random keys. In case of the adversary playing a man in
the middle, if he guesses both passwords correctly, the adversary can make the two parties output
matching keys regardless of the parties’ intentions who they want to exchange a key with.

3 Preliminaries

3.1 Notation

With ←R we denote uniformly random sampling from a set. With oc(X,Y) we denote ordered
concatenation, i.e., oc(X,Y) = X||Y if X ≤ Y and oc(X,Y) = Y ||X otherwise. We use multiplica-
tive notation for the group operation in a group G and hence write, e.g., g · g = g2 for an element
g ∈ G. IG denotes the neutral element in G. To enhance readability, we sometimes break with the
convention of denoting group elements with small letters and write X := gx. We denote by Gm
a subgroup of G of order m, and with Ḡ we denote the quadratic twist of elliptic curve group G.
Throughout the paper, we use λ as security parameter2.

3.2 Cryptographic assumptions

The security of CPace is based on the hardness of a combination of strong and simultaneous Diffie-
Hellman problems. To ease access to the assumptions, we state them with increasing complexity.

Definition 3.1 (Strong CDH problem (sCDH) [4]). Let G be a cyclic group with a generator g and
(X = gx, Y = gy) sampled uniformly from (G \ {IG})2. Given access to oracles DDH (g,X, ·, ·) and
DDH (g, Y, ·, ·), provide K such that K = gxy.

2For the hardness assumptions on elliptic curve groups, e.g. for the sCDH and sSDH problems, where security
depends on the group type and the group order p, the bit size of p implicitly serves also as a further security parameter.

8

Session initiation
On (NewSession, sid ,P,P ′, pw) from P, send (NewSession, sid ,P,P ′) to A. In addition, if this is the first
NewSession query, or if this is the second NewSession query and there is not yet a record (sid ,P, ∗, ∗), then
record (sid ,P,P ′, pw) and mark this record fresh.

Active attack
• On (TestPwd, sid ,P, pw∗) from A, if ∃ a fresh record 〈sid ,P,P ′, pw, ·〉 then:

– If pw∗ = pw then mark it compromised and return “correct guess”;

– If pw∗ 6= pw then mark it interrupted and return “wrong guess”.

• On (RegisterTest, sid ,P) from A, if ∃ a fresh record 〈sid ,P,P ′, ·〉
then mark it interrupted and flag it tested.

• On (LateTestPwd, sid ,P, pw∗) from A, if ∃ a record 〈sid ,P,P ′, pw,K〉
marked completed with flag tested then remove this flag and do:

– If pw∗ = pw then return K to A;

– If pw∗ 6= pw then return K$ ←R {0, 1}λ to A.

Key generation
On (NewKey, sid ,P,K∗) from A, if ∃ a record 〈sid ,P,P ′, pw〉 not marked completed then do:

• If the record is compromised, or either P or P ′ is corrupted, then K := K∗.
• If the record is fresh and ∃ a completed record 〈sid ,P ′,P, pw,K′〉 that was fresh when P ′ output (sid ,K′),

then set K := K′.
• In all other cases pick K ←R {0, 1}λ.

Finally, append K to record 〈sid ,P,P ′, pw〉, mark it completed, and output (sid ,K) to P.

Adaptive corruption
On (AdaptiveCorruption, sid ,P) from A, if ∃ a record 〈sid ,P,P ′, pw〉 then:

• if (sid ,K) was output to P, send (sid ,P ′, pw,K) to A;
• otherwise send (sid ,P ′, pw,⊥) to A.

Figure 1: UC PAKE variants: The original PAKE functionality FpwKE of Canetti et al. [17] is the
version with all gray text omitted. The lazy-extraction PAKE functionality FlePAKE [2] includes
everything, and the variant of FlePAKE used in this work includes everything but the dashed box.

We note that sCDH is a weaker variant of the so-called gap-CDH assumption, where the adversary
has access to “full” DDH oracles with no fixed inputs. Next we provide a stronger variant of sCDH
where two CDH instances need to be solved that involve a common, adversarially chosen element.

Definition 3.2 (Strong simultaneous CDH problem (sSDH)). Let G be a cyclic group and (X, g1, g2)
sampled uniformly from (G \ {IG})3. Given access to oracles DDH (g1, X, ·, ·) and DDH (g2, X, ·, ·),
provide (Y,K1,K2) ∈ (G \ {IG})× G × G s. th. DDH (g1, X, Y,K1) = DDH (g2, X, Y,K2) = 1

As a cryptographic assumption sSDH above is justified since sSDH is implied by the gap simul-
taneous Diffie-Hellman assumption [41, 2], which allows for unlimited (i.e., with no fixed input)
access to a DDH oracle. Lastly, we state a variant of the sSDH assumption where generators are
sampled according to some probability distribution. Looking ahead, we require this variant since
in CPace parties derive generators by applying a map which does not implement uniform sampling
from the group. We state the non-uniform variant of sSDH for arbitrary probability distributions
and investigate its relation to “uniform” sSDH afterwards.

With AdvsCDH
BsCDH

(G) and AdvsSDH
BsSDH

(G), we denote the probabilities that adversarial algorithms

9

BsSDH and BsSDH having access to the restricted DDH oracles provide a solution for the sCDH and
sSDH problems respectively in G when given a single randomly drawn challenge.

Definition 3.3 (Strong simultaneous non-uniform CDH problem (DG-sSDH)). Let G be a group
and DG be a probability distribution on G. The strong simultaneous non-uniform CDH problem
DG-sSDH is defined as the sSDH problem but with (X, g1, g2) sampled using UG ×DG ×DG , where
UG denotes the uniform distribution on G.

Clearly, UG\{IG}-sSDH is equivalent to sSDH. We show that hardness of uniform and non-
uniform sSDH are equivalent given that the distribution allows for probabilistic polynomial time
(PPT) rejection sampling, which we now formalize.

Definition 3.4 (Rejection sampling algorithm for (G,DG)). Let G be a group and DG be a proba-
bility distribution on G. With DG(g) we denote the probability for point g. Let RS be a probabilistic
algorithm taking as input elements g ∈ G and outputting ⊥ or a value 6=⊥. Then RS is called a
rejection sampling algorithm for (G,DG) if there is a scaling factor k such that Pr[RS(g) 6=⊥] =
k · DG(g) for g ∈ G.

Informally RS is a probabilistic algorithm which accepts (output different from ⊥) or rejects
(output ⊥) a candidate point. When queried multiple times on the same input g ∈ G, the probability
that g will be accepted or rejected models a scaled distribution that is proportional to DG . In this
paper, we are interested in rejection samplers with “good” acceptance rate, such that they can be
efficiently used to sample elements from the scaled distribution. We formalize the acceptance rate
as follows.

Definition 3.5 (Acceptance rate of a rejection sampler for (G,DG)). Let G be a group and DG be
a probability distribution on G. Let RS be a rejection sampling algorithm for (G,DG). Let gi ∈ G
be a sequence of m uniformly drawn points and ri = RS(gi). Then RS is said to have an acceptance
rate of (1/n) if the number of accepted points with ri 6=⊥ converges to m/n when m→∞.

Using these definitions, we are able to prove that given some assumptions on the distribution
DG hardness of sSDH and DG-sSDH are equivalent up to the additional PPT computational effort
for the rejection sampling algorithm.

Theorem 3.6 (sSDH ⇐⇒ DG-sSDH). Let G be a cyclic group of order p and DG a probability
distribution on G. If there exists a PPT rejection sampler RS for (G,DG) with acceptance rate (1/n)
then the probability of PPT adversaries against DG-sSDH and sSDH of solving the respectively other
problem differs by at most (2D(IG) + (1/p)) and solving sSDH with the help of a DG-sSDH adversary
requires at most 2n executions of RS on average.

Proof. sSDH hard ⇒ DG − sSDH hard: Given an adversary BDG−sSDH against DG − sSDH with
non-negligible success probability ν, we show how to construct an adversary AsSDH. On receiving an
sSDH-challenge (X, g1, g2), first note that X is uniformly sampled from G \ {IG}. AsSDH uniformly
samples r, s ∈ Zp until RS(gr1) 6=⊥ and RS(gs2) 6=⊥, which requires 2n calls to RS on average. AsSDH
runs BDG−sSDH on input (X, gr1, g

s
2). If B queries DDH(gr1, X, Z, L), A queries his own oracle with

DDH(g1, X, Z, L
1/r) and relays the answer to B (queries gs2 are handled analogously). On receiving

(Y,K1,K2) from BDG−sSDH, AsSDH provides (Y,K
1/r
1 ,K

1/s
2) as solution in his sSDH experiment.

As RS is a rejection sampler for DG , (X, gr1, g
s
2) is a random DG − sSDH challenge, and thus

B solves it with probability ν. If B provides a solution, then AsSDH succeeds in solving his own

10

challenge unless gr1 or gs2 = IG or gr1 = gs2 which occurs at most with probability (2DG(IG)+1/p). As
RS executes in PPT, AsSDH is PPT, uses (2n) calls to RS on average and succeeds with probability
ν(1− 2DG(IG)− 1/p), which is non-negligible since ν is.

sSDH hard ⇒ DG − sSDH hard: Given an adversary AsSDH against sSDH with non-negligible
probability µ we show how to construct a DG − sSDH adversary BDG−sSDH. On receiving a DG −
sSDH challenge (X, g1, g2), B samples r, s ∈ Zp \ 0 and starts AsSDH on input (X, gr1, g

s
2). DDH

oracle queries are handled the same as above. On receiving (Y,K1,K2) from AsSDH, B provides
(Y,K

1/r
1 ,K

1/s
2) as solution to his own challenge.

If A is successful, then B succeeds unless either g1 or g2 = IG or gr1 = gs2 which occurs at most
with probability (2DG(IG) + 1/p). Thus, B is a PPT adversary against DG − sSDH succeeding with
non-negligible probability µ(1− 2DG(IG)− 1/p).

Informally, the assumptions sSDH and DG−sSDH become equivalent if stepping over an element
that gets accepted in the sampling process becomes sufficiently likely for a randomly drawn sequence
of candidates. Secondly, the probability of accidentally drawing the neutral element from DG needs
to be negligible.

3.3 Transforming passwords to points on an elliptic curve

The generators of the Diffie-Hellman exchange in CPace are computed using a deterministic mapping
function Gen(pw). For a given curve group G over a field Fq, Gen(pw) is calculated with the help
of either one (Gen1MAP) or two (Gen2MAP) invocations of a function Map2PtG : Fq → G and a hash
function H1 hashing to Fq. For the sake of shortened notation, we will drop the G subscript where
the group is obvious from the context. In both cases, security of CPace relies on Map2Pt meeting the
requirements from this section. Informally, we first require Map2Pt to be “invertible”. That is, for
any point on the image of the map, there must be an efficient algorithm that outputs all preimages
in Fq of Map2PtG for a given group element g. We use the notation Map2PtG .PreImages(g). Details
on how such an inversion algorithm can be efficiently implemented for various elliptic curve groups
are given in [23, 13, 15, 32] and references therein. Secondly, a bound for the maximum number of
preimages nmax that Map2PtG maps to the same element must be known and this nmax bound needs
to be small (we use the notation Map2PtG .nmax for the bound that applies for a given Map2PtG
function and group G). This is needed in order to construct a rejection sampling algorithm whose
acceptance rate must depend on nmax.

Definition 3.7. Let G be a group of points on an elliptic curve over a field Fq. Let Map2Pt :
Fq → G be a deterministic function. Then Map2Pt(·) is called probabilistically invertible with
at most nmax preimages if there exists a probabilistic polynomial-time algorithm (r1, . . . , rng) ←
Map2Pt.PreImages(g) that outputs all ng values ri ∈ Fq such that g = Map2Pt(ri) for any g ∈ G;
and ∀g ∈ G, nmax ≥ ng ≥ 0.

For a map Map2Pt that fulfills the previous definition with a bound for the numbers of preimages
Map2Pt.nmax, we define an “inversion algorithm” Map2Pt−1 : G → Fq that, on input g ∈ G, returns
one of potentially many preimages of g under Map2Pt if a biased coin comes up heads. If the
coin comes up tails, the algorithm outputs failure. The “inversion algorithm” also serves as rejection
sampling algorithm for the distribution DG that is produced by Map2Pt(r) for uniformly distributed
inputs r ∈ Fq:

11

Algorithm 1 Map2Pt−1 : G −→ Fq ∪ {⊥}
On input g ∈ G: Sample i uniformly from {1, . . . ,Map2Pt.nmax}; Then obtain ng ∈
{0, . . . ,Map2Pt.nmax} pre-images (r1, . . . , rm) ← Map2Pt.PreImages(g); If ng < i return ⊥, else
return ri.

Lemma 3.8. Let Map2Pt : G → Fq be probabilistically invertible with at most Map2Pt.nmax preim-
ages and let DG denote the distribution it induces on G. Then Algorithm 1 is a PPT rejection
sampler for (G,DG) with average acceptance rate (|Fq|/|G|)/Map2Pt.nmax.

Proof. We first define the average number of preimages nmax ≥ n̄ ≥ 1 as the quotient of the order of
the field Fq and the number of points on the image of the map, i.e., n̄ = |Fq|/|support(DG)|. When
drawing an element g uniformly from G, the probability that the number of preimages ng for g is
nonzero is given by the quotient of the order of the support of DG and the order of the group. By
the definition of n̄ above this is |Fq|/(n̄|G|).

For any point on the map with a nonzero number ng of preimages, Algorithm 1 returns a result
6=⊥ with probability ng/nmax. As the average value for the number of preimages for any point on the
image of the map is n̄, the average acceptance rate is (|Fq|/(n̄|G|)) · n̄/nmax = (|Fq|/|G|)/nmax.

Use of Map2Pt−1 for uniformly sampling field elements from Fq. As Map2Pt is deter-
ministic, each point g from G is characterized by the number of preimages ng for Map2Pt in Fq
with nmax ≥ ng ≥ 0. When generating points Map2Pt(s) ∈ G for uniformly sampled field elements
s←R Fq, the probability of obtaining a given point g is (ng/q) and can only take the values of zero
or integer multiples of 1/q up to nmax/q. In order to compensate for this, Map2Pt−1 is constructed
such that the probability of returning r 6=⊥ for a point g increases proportionally with ng making
any actually produced field element r 6=⊥ equally likely in Fq. As a result, we can use Map2Pt−1

for transforming a sequence of uniformly sampled group elements gl ∈ G to a sequence of uniformly
sampled field elements rl ∈ Fq

Corollary 3.9. Let Map2Pt be a probabilistically invertible map with at most Map2Pt.nmax preim-
ages and let gl ←R G. Then rl ← Map2Pt−1(gl) outputs results rl 6=⊥ with probability p ≥
(|Fq|/|G|)/Map2Pt.nmax and the distribution of outputs rl 6=⊥ is uniform in Fq.

Moreover as the collision probability when drawing two elements ra, rb from Fq is 1/q and as
there are at most nmax values sl generating the same group element g = Map2Pt(sl) the collision
probability for ga = Map2Pt(ra) and gb = Map2Pt(rb) is increased at most by n2

max.

Corollary 3.10. When sampling two field elements ra, rb ←R Fq uniformly, we have Map2Pt(ra) =
Map2Pt(rb) with a probability of at most n2

max/q.

4 The CPace protocol

The CPace protocol [27] is a SPEKE-type protocol [36] allowing parties to compute a common
key via a Diffie-Hellman key exchange with password-dependent generators. The blueprint of the
protocol is depicted in Fig. 2. Informally, a party P willing to establish a key with party P ′ first
computes a generator g from a password pw. Next, P generates an element Ya = gya from a secret
value ya sampled at random and sends it to P ′. Upon receiving a value Yb from P ′, P then computes

12

P(pw,P ′) public: G, c · p,H2, Gen, P ′(pw′,P)

ScMul, ScMulVf, ScSam

g ← Gen(pw,P ′,P) g′ ← Gen(pw′,P,P ′)
ya ← ScSam() yb ← ScSam()

Ya ← ScMul(g, ya) Yb ← ScMul(g′, yb)

sid , Yb

sid , Ya

K ← ScMulVf(Yb, ya) K ′ ← ScMulVf(Ya, yb)
Abort if K = IG Abort if K ′ = IG

ISK ← H2(K||oc(Ya, Yb)) ISK ′ ← H2(K ′||oc(Ya, Yb))
Output ISK Output ISK ′

Figure 2: Above: Blueprint protocol CPace[Gen, ScMul, ScMulVf,ScSam] requiring group G of
order c · p with prime p and algorithms for DH generator computation (Gen), exponentiation
(ScMul, ScMulVf) and scalar sampling (ScSam). H2 : {0, 1}∗ → {0, 1}λ denotes a hash function.
This blueprint can capture most artifacts of current CPace implementations.
Below: “Basic” CPace CPacebase with c = 1, generators computed from hash function
HG : {0, 1}∗ → G and canonical exponentation, point verification and sampling.

CPacebase :=CPace[GenRO, ScMulbase, ScMulVfbase, ScSamp]

GenRO(pw,P,P ′) : ScMulbase(g, y) : ScMulVfbase(g, y) : ScSamp() :

return HG(pw||oc(P,P ′)) return gy if g /∈ G: return IG y ←R {1, . . . , p}
else: return gy return y

a Diffie-Hellman key K = (Yb)
ya = gyayb and aborts if K equals the identity element. Finally, it

computes the session key as the hash of K and the exchanged values Ya and Yb.
In order to allow for efficient instantiations over different types of groups, most of which are ellip-

tic curves, we present the CPace protocol in form of a blueprint CPace[Gen, ScMul, ScMulVf, ScSam]
in Fig. 2 that provides the following generalizations: (1) The blueprint uses a generic algorithm
Gen : D×PID×PID → G that turns a password from dictionary D and two party identifiers into
a group element. For correctness we require that the order in which party identifiers are input to
Gen does not influence the output, i.e., Gen(pw,P,P ′) = Gen(pw,P ′,P) for all P,P ′ ∈ PID and
pw ∈ D; (2) The computation of the yi and Yi values is done with generic algorithms for sampling
(SamSc : 0, 1∗ → 0, 1∗) and scalar multiplication (ScMul : G×Z|G| → G); (3) The Diffie-Hellman key
is computed with another generic algorithm ScMulVf : G×Z|G| → G, in order to allow for additional
point verification that is necessary on some curves (but not on all) to protect against trivial attacks;
(4) the blueprint protocol uses an ordered concatenation function oc so that messages can be sent in
any order and parties do not have to play a specific initiator or responder role(see Appendix D). In
the remainder of the paper, we will instantiate the CPace blueprint in various ways, by specifying
a set of concrete algorithms Gen, ScMul, ScMulVf,ScSam.

13

On the necessity of point verification. Many elliptic curve scalar multiplication algorithms
will work correctly independent whether the input operand encodes a point on the correct curve or
not. As a consequence if group membership is not correctly verified by an implementation various
attack scenarios become feasible. An active attacker may for instance provide a point on a curve
of low order on which the discrete-logarithm problem could be solved. The threat for real-world
implementations is that this serious error might remain undetected as the corresponding verification
event is never generated in communications of honest parties. In order to make CPace resilient to
this type of attack and implementation pitfalls, [27] suggested to first restrict invalid curve attacks
to the quadratic twist (by using a single-coordinate Montgomery ladder) and then choose a curve
where also the twist has a large prime-order subgroup and invalid curve attacks become impossible.
The CPace draft [28] highlights this aspect on the protocol specification level by introducing a
ScMulVf function which is specified to include point verification.

5 Security of Simplified CPace

In this Section, as a warm-up, we analyze security of a “basic” variant of CPace, which we call
CPacebase and which is depicted in Fig. 2. We instantiate Gen with a hash function HG that hashes
onto the group G. This way, parties compute generators as g ← HG(pw). Further, we assume G to be
a multiplicatively written group of prime order p where group membership is efficiently decidable.
We instantiate ScMul(g, y) := gy as exponentiation, and ScMulVf(g, y) such that it returns the
neutral element if g is not in the group and gy otherwise, and SamSc with uniform sampling from
{1 . . . p}. A formal description of the protocol is given in Fig. 2, where the blueprint protocol is
instantiated with the algorithms at the bottom of the Figure.

For clarity, we give a UC execution of CPacebase in Fig. 15 and prove its security properties in
the following theorem.

Theorem 5.1 (Security of CPacebase). Let λ, p ∈ N with p prime. Let G be a group of order p, and
let H1 : {0, 1}∗ → G,H2 : {0, 1} → {0, 1}λ be two hash functions. If the sCDH and sSDH problems
are hard in G, then protocol CPacebase depicted in Fig. 2 UC-emulates FlePAKE in the random-oracle
model with respect to adaptive corruptions when both hash functions are modeled as random oracles.
More precisely, for every adversary A, there exist adversaries BsSDH and BsCDH against the strong
CDH (sCDH) and strong simultaneous CDH (sSDH) problems such that

|Pr[RealZ(CPacebase,A)]− Pr[IdealZ(FlePAKE,S)|
≤ l2H1

/p+ 2l2H1
AdvsSDH

BsSDH
(G) + AdvsCDH

BsCDH
(G)

where lH1 denotes the number of H1 queries made by the adversary A and the simulator S is depicted
in Fig. 3.

Sketch. The main idea of the simulation is to fix a secret generator g ∈ G and carry out the
simulation with respect to g. Messages of honest parties are simulated as gz for a fresh exponent
z. Queries H1(pw) are answered with gr for a freshly chosen “trapdoor” r. The simulator might
learn an honest party’s password via adaptive corruption or via an adversarial password guess. The
simulator can now adjust the simulation in retrospective to let the honest party use gr = H1(pw) by
claiming the party’s secret exponent to be zr−1. This already concludes simulation of honest parties
without passwords. Adversarial password guesses can be read from A injecting X (or, similarly, Y)

14

The simulator S (G2)samples and stores a generator g ← G.

On (NewSession, sid , Pi, Pj) from FlePAKE:
(G4)sample zi ←R Zp
(G4)set Yi ← gzi ; store (Pi, Pj , zi, Yi,⊥)
(G4)send Yi to A intended to Pj

On Z∗ from A as msg to (sid , Pi):
(G4)if Z∗ is adversarially generated
(G4)and Z∗ ∈ G \ IG :
send (RegisterTest, sid , Pi) to FlePAKE

Upon Pi receiving (sid, Yj) with Yj ∈ G from Pj :
(G4)retrieve record (Pi, Pj , zi, Yi, ∗)
(G4)if ∃ records (G5)(H1, pw||oc(Pi, Pj), r, r−1, G), (H2,K||oc(Yi, Yj), ISK) s.th. K = Y zir

−1

j :
(G5) store (guess, G, Yj); abort if ∃ record (guess, G′, Yj) with G 6= G′;
(G4) send (TestPwd, sid , Pi, pw) to FlePAKE;
(G4) send (NewKey, sid , Pi, ISK) to FlePAKE and store (Pi, Pj , zi, Yi, ISK)
(G4)else: sample a fresh random ISK ′ and send (NewKey, sid , Pi, ISK

′) to FlePAKE

On H1(pw||P||P ′) from A:
(G2)if this is the first such query:
(G2) sample r ←R Fp \ {0}
(G3) abort if ∃ rec. (H1, ∗, r, ∗, ∗)
(G2) store (H1, pw||P||P ′, r, r−1, gr)
(G2)retrieve rec. (H1, pw||P||P ′, ∗, ∗, h)
(G2)reply with h

On msg (AdaptiveCorruption, sid , Pi) from A (instructed by Z):
send AdaptiveCorruption, sid , Pi) to FlePAKE

Upon receiving (sid , Pj , pw, ISK):
(G4)if a msg Yi := gzi already sent to Pj :
(G4) if ∃ rec. (H1, pw||oc(Pi, Pj), r, r−1, ∗): yi ← zir

−1

(G4) else: r ←R Zp; yi ← zir
−1 and

(G4) store (H1, pw||oc(Pi, Pj), r, r−1, gr)
(G4) if ISK 6= ⊥, let Yj denote the message sent to Pi
(G4) and store (H2, Y

yi
j ||oc(Yi, Yj), ISK)

(G4) send (sid , Pi, Pj , pw, yi, Yi, Y
yi
j , ISK) to A

On H2(K||Yi||Yj) from A:
(G4)if this is the first such query then
(G7) if ∃ rec.(Pi, Pj , zi, Yi, ∗), (Pj , Pi, zj , Yj , ∗), (H1, ∗, r, ∗) such that Kr = gzizj : abort;
(G4) if @ rec.(Pi, Pj , ∗, Yi, ∗) or (Pj , Pi, ∗, Yj , ∗), or if Ya||Yb 6= oc(Ya, Yb): A←R {0, 1}2k;
(G4) if ∃ records (Pi, Pj , zi, Yi, ISK) with ISK 6= ⊥ and (G5)(H1, pw||oc(Pi, Pj), r, r−1, G) s.th. K = Y zir

−1

j :
(G5) Record (guess, G, Yj); abort if ∃ rec. (guess, G′, Yj) with G 6= G′.
(G5) Send (LateTestPwd, sid , Pi, pw) to FlePAKE. Upon answer K̂ set A← K̂;

(G4) if ∃ (Pj , Pi, zj , Yj , ISK) with ISK 6= ⊥ and (G5)(H1, pw||oc(Pj , Pi), r, r−1, G) s.th. K = Y
zjr

−1

i :
(G5) Store (guess, G, Yi); Abort if ∃ record (guess, G′, Yi) with G 6= G′;
(G5) Send (LateTestPwd, sid , Pj , pw) to FlePAKE. Upon answer K̂ set A← K̂
(G4) if no matching H1 records are found set A←R {0, 1}2k
(G4) finally, store (H2,K||Yi||Yj , A) and reply with A
(G4)else retrieve record (H2,K||Yi||Yj , A) and reply with A

Figure 3: Simulator for CPacebase, with game numbers to indicate which game introduces a par-
ticular line of code (cf. full proof of Theorem 5.1 in Appendix A). For brevity we omit the session
identifier sid from all records stored by the simulator.

and then querying H2(K||X||Y) with K being a correctly computed key w.r.t some generator gr

provided by the simulation. S can now read the guessed password from the H1 list, and submit it
as password guess to FlePAKE. In case of success, the simulator sets the key of the honest party to
H2(K||X||Y).

The simulation is complicated by the order of honest parties’ outputs (which are generated upon
receipt of the single message) and the adversary’s computation of final session keys via H2 queries.
If the key is generated by FlePAKE before A computes it via H2 (which constitutes a password guess
as detailed above), then S needs to invoke the LateTestPwd query of FlePAKE instead of TestPwd.
In case of a correct guess, this lets S learn the output key of the honest party, which S can then

15

program into the corresponding H2 query.
Finally, the simulation can fail in some cases. Firstly, S might find more than one password

guess against an honest party with simulated message X. In this case, the simulation cannot
continue since FlePAKE allows for only one password guess per party. In this case, however, A
would provide (gr, X, Y,K),(gr′ , X, Y,K ′) which are two CDH tuples for passwords pw, pw′ with
gr ← H1(pw), gr

′ ← H1(pw′). Provided that the simultaneous strong CDH assumption (sSDH, cf.
Definition 3.2) holds, this cannot happen. Here, the “strong” property, providing a type of DDH
oracle, is required to help S identify CDH tuples among all queries to H2. A second case of simulation
failure occurs when A wants to compute a key of an uncorrupted session via a H2 query. Since S does
not know such keys, it would have to abort. Using a similar strategy as above, pseudorandomness of
keys can be shown to hold under the strong CDH assumption, and thus the probability of A issuing
such a H2 query is negligible. The full proof can be found in Appendix A.

Our Theorem 5.1 demonstrates that adaptive security of CPace can be proven with only minimal
information included in the hashes, i.e., the first hash requires only the password and the final key
derivation hash requires the Diffie-Hellman key and the unique protocol transcript. We detail now
under which circumstances additional data such as session identifiers needs to be included in the
hashes. We further note that adding additional inputs to hashes, such as the name of a ciphersuite
that an application wants parties to agree on, does not harm security.

On multi-session security and hash domain separation Theorem 5.1 demonstrates that
CPacebase allows to securely turn a joint password into one key. In practice, one would of course
want to exchange more than one key, and many parties will end up using the same password.
If session identifiers are globally unique, then the UC composition theorem (more detailed, the
composition theorem of UC with Joint State [18]) allows to turn Theorem 5.1 into a proof of “multi-
session CPace” by simply appending the unique session identifiers to all hash function inputs. This
ensures that hash domains of individual sessions are separated and the programming activities of
the individual simulators do not clash. To summarize, we obtain a secure multi-session version
of CPace by ensuring uniqueness of session identifiers and including them in hashes. In practice,
this can be ensured by, e.g., agreeing on a joint session identifier to which both users contributed
randomness and in which party identifiers are incorporated (see, e.g., [8]). The agreement needs
to happen before starting CPace, but does not require secrecy and can thus potentially be piggy-
backed to messages sent by the application. As a last note, applications might choose to add more
values to hashes, for example to authenticate addresses or to ensure agreement on a ciphersuite.
We stress that such additional values do not void our security analysis, but care still needs to be
taken in order to protect against side-channel attacks.

5.1 Embedding CDH experiment libraries into the simulator

In this section, we discuss an alternative approach to carrying out reductions to cryptographic
assumptions in the case of CPace/CDH. Both assumptions required by CPacebase, sCDH and sSDH,
allow for an efficient implementation of experiments in the following sense: the secret exponents that
are sampled by the experiment code (often also called the challenger) are sufficient for answering
the restricted DDH queries allowed by both assumptions. An example for an assumption that does
not allow for such efficient instantiation is, e.g., gap-CDH. In gap-CDH, the adversary is provided

16

using python-style notation with self pointer s and _init_ constructor
def class sCDH:
def _init_(s, g): s.g ← g; s.i← 0; s.state← fresh;
def sampleY(s):
if s.i < 2: s.i+ = 1; sample s.yi ←R Fp \ 0; return (s.g)s.yi ;

def corrupt(s,X):
for 1 ≤ m ≤ s.i:
if (X = (s.g)s.ym): s.state← corrupt; return s.ym;

def DDH(s, g, Y,X,K):
if (g 6= s.g): return;
if ({Y,X}={s.Y1, s.Y2}) and (s.state= fresh) and (K = (s.g)s.y1·s.y2):
abort("sCDH(g, Y1, Y2) solved")

for 1 ≤ m ≤ s.i:
if (Y = (s.g)s.ym): return (K = Xs.ym);

def isValid(X): return (X ∈ G \ {IG})

def class sSDH: # using python-style notation [] for list containers
def _init_(s,sCdhExp): # Gets sCDH class; samples g; creates a sCDH instance
s.g ←R G; s.scdh = sCdhExp(s.g); s.records =[]; s.guess = "yet no guess";

def sampleY(s): return (s.scdh).sampleY();
def isValid(s,X): return (s.scdh).isValid(X);
def sampleH1(s):
sample r ←R Fp \ {0};
if (r, ∗) in s.records: abort("Hash to group collision");
else: s.records.append((r, (s.g)r)); return (s.g)r;

def corrupt(s,R, Y):
if there is (r,R) in s.records: return (s.scdh).corrupt(Y 1/r);

def DDH(s,R, Y,X,K):
if there is (r,R) in s.records:
match ← (s.scdh).DDH(s.g, Y,X,K1/r);
if match and (s.guess = "yet no guess"): (s.guess.g,s.guess.X)← (R,X);
elif match and (s.guess.X = X) and (s.guess.g 6= R):
abort("sSDH problem (Y,R, s.guess.g) solved");

return match;

Figure 4: Libraries implementing sCDH and sSDH experiments.

with a “full” DDH oracle that he can query on arbitrary elements, of which the experiment might
not know an exponent for.

Due to this property, we can integrate implementations of the sCDH and sSDH experiments
in the simulator’s code. The simulator implements the DDH oracles on its own, and abort if at
any time an oracle query solves the underlying assumption. We chose to integrate experiments as
libraries (written as objects in python-style notation in Fig. 4) into the simulator’s code. This eases
not only presentation but is also useful for analyzing variants of CPace that require slightly different
assumptions.

17

The simulator S(exp) is parametrized by an experiment class exp.

On (NewSession, sid , Pi, Pj) from FlePAKE:
(G4)set Yi ← exp.sampleY();
(G4)store (Pi, Pj , Yi,⊥);
(G4)send Yi to A intended to Pj ;

On Z∗ from A as msg to (sid , Pi):
(G4)if Z∗ is adversarially generated
(G4)and exp.isValid(Z∗):
(G4) send (RegisterTest, sid , Pi) to FlePAKE

Upon Pi receiving (sid, Yj) from Pj : retrieve record (Pi, ∗, zi, Yi, ∗)
(G1)if not exp.isValid(Yj): return;

(G4)if ∃ records (H1, pw, h), (H2,K||(oc(Yi, Yj), ISK)

(G4)such that exp.DDH(h, Yi, Yj ,K) = 1:

(G4) send (TestPwd, sid , Pi, pw) to FlePAKE

(G4) send (NewKey, sid , Pi, ISK) to FlePAKE and store (Pi, Pj , Yi, ISK)

(G4)else sample a fresh random ISK ′ and send (NewKey, sid , Pi, ISK
′) to FlePAKE

(G4) # FlePAKE will discard ISK ′

On H1(pw||Pi||Pj)) from A:
(G2)if not ∃ record
(G2) (H1, pw||Pi||Pj , h):
(G2) h← exp.sampleH1()
(G2) store (H1, pw||Pi||Pj , h)
(G2)lookup(H1, pw||Pi||Pj , h)
(G2)reply with h

On (AdaptiveCorruption, sid) from A as msg to Pi:
Lookup (Pi, Pj , Yi, ∗); send (AdaptiveCorruption, sid , Pi)
to FlePAKE and obtain back (sid , pw,ISK);
(G4)if a message Yi was already sent to Pj , then:
(G4) query H1(pw) and retrieve record (H1, pw, h)
(G4) yi ←exp.corrupt(h, Yi);
(G4) if ISK 6=⊥:
(G4) let Yj denote the message sent to Pi
(G4) store (H2, sid||Y y1j ||oc(Yi, Yj), ISK)

(G4) send (sid, Pi,pw, yi, Yi, Y
yi
j , ISK) to A

On H2(sid ||K||Yi||Yj) from A:

(G4)lookup (H2, sid ||K||Yi||Yj , h) and send h if it exists;

(G4)else if this is the first such query:

(G4) if there are no records (Pi, Pj , Yi, ∗) or (Pj , Pi, Yj , ∗), or if Ya||Yb 6= oc(Ya, Yb):

(G4) sample A← {0, 1}2k;
(G4) if ∃ records (Pi, Pj , Yi, ISK) with ISK 6= ⊥ and (H1, pw, h)

(G4) such that exp.DDH(h, Yi, Yj ,K) = 1:

(G5) send (LateTestPwd, sid , Pi, pw) to FlePAKE. Upon answer K̂ set A← K̂

(G4) if ∃ records (Pj , Pi, Yj , ISK) with ISK 6= ⊥ and (H1, pw, h)

(G4) such that exp.DDH(h, Yj , Yi,K) = 1:

(G5) send (LateTestPwd, sid , Pj , pw) to FlePAKE. Upon answer K̂ set A← K̂

(G4) if no matching H1 records are found set A← {0, 1}2k

(G4) finally, store (H2, sid ||K||Yi||Yj , A) and reply with A

Figure 5: Generic simulator for different CPace variants, embedding challenges generated by the
experiment object exp. The simulator for CPacebase is obtained when using exp ← sSDH(sCDH)
from Fig. 4.

The corresponding result for CPacebase is shown in Fig. 5 when the challenge-generating experi-
ment exp← sSDH(sCDH) is used (Fig. 4). The instance of the sSDH object first samples a random
generator as member s.g and creates a member instance s.scdh ← sCDH(g) of the experiment for
the sCDH problem. The sCDH member object produces a challenge consisting of two uniformly
drawn group elements Y1 ← gy1 , Y2 ← gy2 . The limited DDH oracle provided by the sCDH assump-
tion can only receive inputs w.r.t one of these elements, and thus it can be implemented efficiently

18

using secret exponents y1, y2. If a correct CDH solution g, Y1, Y2, g
y1·y2 is provided, the sCDH ob-

ject aborts. In its implementation for H1, the sSDH object samples random new generators as
R ← (s.g)r which will be used for simulating password-dependent base points and uses the s.scdh
member and the known exponent r for answering DDH queries by use of the s.scdh.DDH function.
The corrupt queries are implemented likewise and forwarded to the s.scdh member object. The
simulator from Fig. 3 is adapted to call the experiment. As an example, honest parties’ messages
are simulated by calling the challenge sampling procedure exp.sampleY() from sSDH which itself
calls the corresponding function from its sCDH member.

Proving indistinguishability. With this simulation approach, a proof consists in demonstrating
that ideal and real world executions are indistinguishable except for events in which the experi-
ment libraries abort because a challenge was correctly answered. Compared to our proof of Theo-
rem 5.1, the indistinguishability argument becomes simpler because the reduction strategies to both
CDH-type assumptions are already embedded in the corresponding assumption experiment libraries.
Losses such as the factor 2l2H1

in the reduction to sSDH in game G5 translate to libraries producing
more than one challenge per simulation run, as is the case for the sSDH experiment from Fig. 5.
Altogether, the simulation with integrated CDH experiment libraries is an alternative approach of
proving Theorem 5.1, as we formalize in the following.

Theorem 5.2 (Alternative simulation for Theorem 5.1). The simulator depicted in Fig. 5 is a
witness for the UC emulation statement in Theorem 5.1

Proof sketch. The output distribution of the simulator S from Fig. 5 is indistinguishable from the
one of the simulator from Fig. 3 as it is obtained from internal restructuring. S aborts if either the
sSDH or the sCDH experiment class aborts, which occurs iff a correct solution has been provided to
the experiment implementation or a H1 collision is observed. These cases coincide with the abort
cases in the proof of Theorem 5.1. As the sSDH object outputs 2l2H1

different challenges and as it is
sufficient for Z to provide a solution to one of these challenges for distinguishing both worlds, the
advantage for solving the sSDH problem needs to be multiplied by this factor, thus reproducing the
bounds from Theorem 5.1.

Advantages of embedding libraries in the simulation. To clarify, the approach presented in
this section does not allow to prove stronger security statements. As demonstrated above, it is
merely an alternative way of presenting security proofs in the UC framework or other simulation-
based frameworks, and it works whenever the underlying cryptographic assumptions are efficiently
implementable. However, we believe that the approach has its merits especially in the following
dimensions.

• Modular security analysis. Slight modifications in the protocol might require to change
the cryptographic assumption. As long as the public interface does not change, our approach
allows to switch between assumptions by simply calling a different library. Cryptographers
then need to only analyze this “local” change in the simulation, which prevents them from
re-doing the whole indistinguishability argument.

• Presentation of reduction strategies. In normal game-based indistinguishability argu-
ments [43], reductions to cryptographic assumptions are hidden within side-long proofs. With
our approach, the reduction strategy is depicted in clear code as part of the simulator’s code.
This makes checking of proofs easier not only for readers but also might make simulation-based
proofs more accessible to automated verification.

19

CPace1MAP := CPace[Gen1MAP, ScMulbase, ScMulVfbase, ScSamp]

Gen1MAP(pw, Pi, Pj) : ScMulbase(g, y) : ScMulVfbase(g, y) : ScSamp() :

return return gy if g /∈ G: return IG y ←R 1 . . . p

Map2Pt(H1(pw||oc(Pi, Pj))) else: return gy return y

Figure 6: Protocol CPace1MAP for an elliptic curve group G of prime order p, over finite field Fq.
Generators are computed as Map2Pt(H1(pw)) with a hash function H1 : {0, 1}∗ → Fq. Differences
to CPacebase are marked gray .

In this paper, our motivation is the first dimension. In the upcoming section, the library-based
approach will turn out to be extremely useful to analyze the various variants of CPace that stem
from (efficiency-wise) optimized implementations on different elliptic curves.

6 Analysis of Real-World CPace

The currently most efficient way to run CPace is over elliptic curves. Therefore, from this point on-
wards, we consider G to be an elliptic curve constructed over field Fq. From a historical perspective,
both CPace research and implementation first focused on prime order curves, such as the NIST-P-
256 curve [20]. Subsequently significantly improved performance was shown on Montgomery- and
(twisted-)Edwards curves, notably Curve25519 and Ed448 curves [12, 31], which both have a small
cofactor c in their group order c ·p. These approaches consider also implementation pitfalls, e.g., by
designing the curve such that there are no incentives for implementers to use insecure speed-ups.
Thirdly, recently ideal group abstractions have been presented in order to avoid the complexity of
small cofactors in the group order [30, 19], while maintaining all advantages of curves with cofactor.

For smooth integration into each of these different curve ecosystems, CPace needs to be instanti-
ated slightly differently regarding, e.g., computation of the DH generator, group size, multiplication
and sampling algorithms. In this section, we analyze how such differences impact security. Using our
modular approach with assumption libraries called by a simulator, we are able to present security
in terms of differences from our basic CPace analysis in Section 5 in a concise way.

6.1 CPace without Hashing to the Group

We now analyze a variant of the CPace protocol case-tailored for elliptic curve groups G over finite
field Fq. The protocol is depicted in Fig. 6. The only difference to CPacebase analyzed in the
previous section is how parties compute the generators: now the function H1 hashes onto the field
Fq, and generators are computed as g ← Map2Pt(H1(pw)) for a function Map2Pt : Fq → G. This
way, the H1 outputs can be considered to form an alternative encoding of group elements, where
Map2Pt decodes to the group. ScMul, ScMulVf and SamSc are as in Section 5.

Security analysis. Compared to the analysis of CPacebase, the security analysis is complicated
by the different computation of the generators in essentially two ways: first, the possibly non-
uniform distribution of Map2Pt induces non-uniformity of DH generators computed by the parties.
Second, embedding of trapdoors no longer works by simply programming elements with known ex-
ponents into H1. Instead, the proof will exploit that Map2Pt is probabilistically invertible, such that

20

def class DG_sSDH:
def _init_(s,Map2Pt, sSDHExp):
s.sSDH = sSDHExp; s.records = [];
s.nmax = nmax; s.preim = Map2Pt.PreImages;

def sampleY(s): return (s.sSDH).sampleY();
def isValid(X): return (s.sSDH).isValid(X);
def sampleH1(s):
g ← (s.sSDH).sampleH1();
while (1):
r ←R Fp; preimageList = (s.preim)(gr); m←R {0 . . . (s.Map2Pt.nmax − 1)};
if len(preimageList) > m:
if r = 0: abort("Sampled neutral element.");
h←preimageList[m];if h in s.records: abort("H1 collision");
s.records.append(r, gr, h); return h;

def corrupt(s, h, Y):
if there is (r, g, h) in s.records: return (s.sSDH).corrupt(g, Y 1/r);

def DDH(s,h, Y,X,K):
if there is (r, g, h) in s.records: return (s.sSDH).DDH(g, Y,X,K1/r);

Chaining the experiments for CPace on prime order curve, full (x,y) coordinates
sSdhExp = sSDH(sCDH);
distExp = DG_sSDH(Map2Pt,sSdhExp);

Figure 7: Experiment class definition DG-sSDH using single executions of Map2Pt, where H1 hashes
to Fq.

preimages of generators with known exponents can be programmed into H1 instead. Consequently,
security of CPace will be based on the DG − sSDH problem Definition 3.3 instead of the sSDH
problem, where the distribution DG corresponds to the distribution of group elements Map2Pt(hi)
obtained for uniformly sampled field elements hi ←R Fq. All these changes can be captured by
replacing library sSDH with a new library for DG − sSDH, as we demonstrate below.

Theorem 6.1 (Security of CPace1MAP). Let λ, p, q ∈ N with p prime. Let G an elliptic curve of
order p over field Fq. Let H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ → {0, 1}λ be two hash functions and
Map2Pt : Fq → G probabilistically invertible with bound Map2Pt.nmax. If the sCDH and sSDH
problems are hard in G, then the CPace protocol depicted in Fig. 2 UC-emulates FlePAKE in the
random-oracle model with respect to adaptive corruptions and both hash functions modeled as random
oracles. More precisely, for every adversary A, there exist adversaries BsSDH and BsCDH against the
sSDH and sCDH problems such that

|Pr[Real(Z,A,CPace1MAP)]− Pr[Ideal(FlePAKE,S)]|
≤ (Map2Pt.nmax)lH1/q + (lH1)2/p+ (Map2Pt.nmax · lH1)2/q

+2l2H1
AdvsSDH

BsSDH
(G) + AdvsCDH

BsCDH
(G)

where lH1 denotes the number of H1 queries made by the adversary A and the simulator S is as in
Fig. 5 but using the object distExp (cf. Fig. 7) instead of the object sSdhExp.

21

Proof Sketch. Let DG denote the distribution on G induced by Map2Pt. First note, that if the
sSDH is hard in G then the corresponding DG-sSDH problem is hard by Theorem 3.6 as Map2Pt−1

(implemented in the body of the sampleH1 method by the distExp object) is a rejection sampler for
DG .

We adjust the simulator for “basic” CPace from Fig. 5 as follows. First, we embed the reduction
strategy from Theorem 3.6 into an experiment library that converts sSDH challenges into DG −
sSDH challenges and obtain the class DG_sSDH depicted in Fig. 7. The class DG_sSDH uses the
Map2Pt.PreImages function (passed as a constructor parameter) for implementing the Map2Pt−1 as
defined in Algorithm 1 and an instance of the sSDH class implementing a sSDH experiment that is
assigned to a member variable.

Each time the main body of the simulator from Fig. 5 makes calls to its exp object, the corre-
sponding method of the new DG_sSDH object will be executed, which itself translates the queries
into calls to the sSDH object that was passed as constructor parameter.

Importantly, DG_sSDH provides the same public API as the sSDH class with the distinction
that sampling for H1 returns results from Fq instead of G. Moreover DG_sSDH aborts if the code
of its sSDH object aborts and, now additionally, also upon H1 collisions.

We explain now how the indistinguishability argument of Theorem 5.1 needs to be adjusted in
order to work for Theorem 6.1 and this new simulator. The first difference applies in game G2,
where we must make sure that the distribution of points provided by the DG_sSDH object is uniform
in Fq as was in the previous game. This is the case due to Corollary 3.9. In game G3 no change
is needed except for adjusting the collision probability following the derivation from Corollary 3.10
which is now bound by (nmax · lH1)2/q in addition to the previous l2H1

/p probability. The probability
that sampleH1 aborts because it samples the identity element from the distribution is bounded by
(Map2Pt.nmax)lH1/q. Apart of these modification the proof applies without further changes.

Instantiating Map2Pt. Various constructions have been presented for mapping field elements to
elliptic curve points such as Elligator2 [13], simplified SWU [23] and the Shallue-van de Woestijne
method (SvdW) [42] (see also [23] and references therein). When considering short-Weierstrass
representations of a curve, the general approach is to first derive a set of candidate values xl for
the x coordinate of a point such that for at least one of these candidates xl there is a coordinate
yl such that (xl, yl) is a point on the curve. Subsequently one point (xl, yl) is chosen among the
candidates. The property of probabilistic invertibility is fulfilled for all of the algorithms mentioned
above and those currently suggested in [23]. The most generic of these algorithm, SvdW, works
for all elliptic curves, while the simplified SWU and Elligator2 algorithms allow for more efficient
implementations given that the curve fulfills some constraints.

All these mappings have a fixed and small bound nmax regarding the number of pre-images
and come with a PPT algorithm for calculating all preimages. For instance, Elligator2 [13] comes
with a maximum nmax = 2 of two pre-images per point and nmax ≤ 4 for the simplified SWU
and SvdW algorithms [23]. For all these algorithms, the most complex substep for determining all
preimages is the calculation of a small pre-determined number of square roots and inversions in Fq
which can easily be implemented in polynomial time with less computational complexity than one
exponentiation operation.

22

CPace2MAP :=CPace[Gen2MAP, ScMulbase, ScMulVfbase,ScSamp]

Gen2MAP(pw, Pi, Pj) : ScMulbase(g, y) : ScMulVfbase(g, y) : ScSamp() :

(h, h′)← H1(pw||oc(Pi, Pj)) return gy if g /∈ G: return IG y ←R 1 . . . p

return Map2Pt(h) else: return gy return y
· Map2Pt(h′)

Figure 8: Protocol CPace2MAP, with generators computed by two executions of Map2Pt, using hash
function H1 : {0, 1}∗ → (Fq)2. Other algorithms remain unchanged.

6.2 Map-twice-and-add constructions.

Some mapping constructions aim at producing more uniform distributions using a map-twice-and-
add approach, such as presented in [23] and also adopted by the ristretto25519 and decaf ecosystems
[19, 30]. We capture this with protocol CPace2MAP depicted in Fig. 8. The protocol computes gen-
erators by adding two points generated by Map2Pt. H1 and the library simulating H1 produce
two elements from Fq instead of a single one. Again we make use of the property of probabilis-
tic invertibility which guarantees (Corollary 3.9) that algorithm two field elements output by the
sampleH1() function implementing the Map2Pt−1 algorithm are uniformly distributed in Fq.

As shown in [32, 15, 23, 24], for many maps the map-twice-and-add approach of Gen2MAP(pw)
can be shown to produce a distribution that is indistinguishable from a uniform distribution in
G. Under this additional assumption the collision bound ≤ l2H1

/p is maintained at the expense of
doubling the computational complexity for calculating generators.

Apart from the uniformity requirement, security holds under the same assumption set as for
CPace1MAP. Specifically Map2Pt needs to be probabilistically invertible such that the rejection
samplers in Fig. 9 can be implemented and such that the simulated H1 outputs become uniform in
Fq × Fq.

Theorem 6.2 (Security of CPace2MAP). Let λ, p, q ∈ N with p prime. Let G an elliptic curve of order
p over field Fq. Let H1 : {0, 1}∗ → Fq×Fq,H2 : {0, 1}∗ → {0, 1}λ be two hash functions and Map2Pt :
Fq → G probabilistically invertible with bound Map2Pt.nmax. If the sCDH and sSDH problems are
hard in G and if the output of Gen2MAP(.) is indistinguishable from a uniform distribution in G, then
the CPace2MAP protocol depicted in Fig. 8 UC-emulates FlePAKE in the random-oracle model with
respect to adaptive corruptions and both hash functions modeled as random oracles. More precisely,
for every adversary A, there exist adversaries BsSDH and BsCDH against the sSDH and sCDH problems
such that

|Pr[Real(Z,A,CPace2MAP)]− Pr[Ideal(FlePAKE,S)]|
≤ lH1/p+ 2l2H1

/p+ 2l2H1
AdvsSDH

BsSDH
(G) + AdvsCDH

BsCDH
(G)

where lH1 denotes the number of H1 queries made by the adversary A and the simulator S is as in
Fig. 5 using the object coffeeExp (cf. Fig. 9).

Proof Sketch. The same approach as for Theorem 6.1 applies. The difference consists in the fact
that now the simulator’s experiment library additionally aborts if collisions in the final outputs of
the sampleH1 method are detected. In order to show that this collision probability is actually only
l2H1
/p we employ that the map-twice-and-add strategy was required to produce a distribution that

23

using python-style notation with self pointer s
def class mapTwice_sSDH:
def _init_(s,Map2Pt, sSDHExp):
s.sSDH = sSDHExp; s.records = [];
s.preim = Map2Pt.PreImages; s.nmax = Map2Pt.nmax

def sampleY(s): return (s.sSDH).sampleY();
def isValid(X): return (s.sSDH).isValid(X);
def sampleH1(s):
i← 0;
g ← (s.sSDH).sampleH1();
do while (i < 2):
sample ri ←R Fp;
preimageList = (s.preim)(gri);
sample m←R {0 . . . (s.nmax − 1)};
if len(preimageList) > m:
hi ←preimageList[m]; i+ = 1;

h← (h0, h1); r ← (r0 + r1);
if (·, gr, ·) in s.records abort("Generator collision");
if r = 0: abort("Neutral element returned");
s.records.append(r, gr, h); return h;

def corrupt(s, h, Y):
if there is (r, g, h) in s.records:
return (s.sSDH).corrupt(g, Y 1/r);

def DDH(s,h, Y,X,K):
if there is (r, g, h) in s.records:
return (s.sSDH).DDH(g, Y,X,K1/r);

Chaining the experiment objects for ristretto and decaf
sSdh = sSDH(sCDH);
coffeeExp = mapTwice_sSDH(Map2Pt,sSdh);

Figure 9: Experiment class definition mapTwice_sSDH where H1 hashes to Fq × Fq.

CPaceco :=CPace[Gen1MAP, ScMulco, ScMulVfco, ScSamp]

Gen1MAP(pw, Pi, Pj) : ScMulco(g, y) : ScMulVfco(g, y) : ScSamp() :

return return gc·y if g /∈ G: return IG y ←R 1 . . . p

Map2Pt(H1(pw||oc(Pi, Pj))) else: return gc·y return y

Figure 10: Definition of CPaceco for curves of order p · c. The only difference (marked gray) to
CPace1MAP is that exponents are always multiplied by the cofactor c.

is indistinguishable from the uniform distribution in G. The probability that sampleH1 calculates a
r = 0 (r1 accidentally sampled such that r0 = −r1) is bounded by lH1/p.

6.3 Considering curves with small co-factor

In this subsection, we now additionally consider that the elliptic curve group G can be of order c · p
with c 6= 1, but where Diffie-Hellman-type assumptions can only assumed to be computationally
infeasible in the subgroup of order p, denoted Gp. Consequently, CPaceco on curves with co-factor
c 6= 1 requires all secret exponents to be multiples of c. Hence, CPaceco depicted in Fig. 10 deploys

24

using python-style notation with self pointer s
def class cofactorClearer:
"interfaces S to a prime-order experiment class"
def _init_(s, c, p, primeOrderExpInstance ,p̄):
s.c=c; s.i= s.c · integer(1/(s.c2) mod p);s.it= s.c · integer(1/(s.c2) mod p̄);
s.exp = primeOrderExpInstance;

def sampleY(s): return ((s.exp).sampleY())s.c;
def isValid(X): return (s.exp).isValid(Xs.i)
def sampleH1(s): return (s.exp).sampleH1();
def corrupt(s, h, Y): { return (s.exp).corrupt(h, Y s.i); }
def DDH(s,g, Y,X,K):
if X ∈ G: return (s.exp).DDH(g, Y s.i, Xs.i,Ks.i·s.i)
if X on twist: return (s.exp).DDH(g, Y s.i, Xs.it,Ks.it·s.it)

sSdhExp = sSDH(sCDH); ccExp = cofactorClearer(sSdhExp);
ccDistExp = DG_sSDH(Map2Pt,ccExp);

Figure 11: Cofactor-clearer class definition use for elliptic curves of order p ·c with a quadratic twist
having a subgroup of order p̄. Note that the inverses s.i and s.it are constructed such that they are
multiples of c.

modified algorithms ScMul, ScMulVf.

Theorem 6.3 (Security of CPaceco). Let λ, p, q, c ∈ N, p, c coprime with p prime. Let G be an elliptic
curve of order p·c over field Fq and Gp ⊂ G a subgroup of order p. Let CCc : (g) 7→ ((gc)1/c mod p) be
a cofactor clearing function for c, H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ → {0, 1}λ be two hash functions and
Map2Pt : Fq → G probabilistically invertible with bound Map2Pt.nmax. Let be the chained function
Map2PtGp := (CCc ◦Map2Pt). Let DGp denote the distribution on Gp induced by Map2PtGp. If the
sCDH and sSDH problems are hard in Gp, then the DGp-sSDH problem is hard in Gp and CPaceco
UC-emulates FlePAKE in the random-oracle model with respect to adaptive corruptions when both
hash functions are modeled as random oracles. More precisely, for every adversary A, there exist
adversaries BsCDH and BsSDH against the sCDH and sSDH problems such that

|Pr[Real(Z,A,CPaceco)]− Pr[Ideal(FlePAKE,S)]|
≤ (Map2Pt.nmax · c)lH1/q + 2l2H1

/p+ (Map2Pt.nmax · c · lH1)2/q

+2l2H1
AdvsSDH

BsSDH
(Gp) + AdvsCDH

BsCDH
(Gp)

where lH1 denotes the number of H1 queries made by the adversary A and the simulator S is as in
Fig. 5 but using class ccDistExp (cf. Fig. 11) instead of object sSdhExp.

Proof Sketch. The full group G has a point g1 of order c with gc1 = IG where IG denotes the identity
element in G, i.e., there are c low-order points gi1, i ∈ {1 . . . c}. For any point Y ∈ G we can
consider the points Yi = Y · gi as alternative ambiguous representations of the point CCc(Y) ∈ Gp.
For any input point Y ∈ Gp, all these c alternative representations can be easily calculated using
group operations and gi. For any of these c alternative representations of Y at most Map2Pt.nmax
preimages will be returned by Map2Pt.PreImages since Map2Pt is probabilistically invertible on G.
Correspondingly, the probability of accidently drawing a representation of the identity element needs
to be multiplied by c and is now bounded by (Map2Pt.nmax ·c)lH1/q. If up to Map2Pt.nmax preimages
exist per point on the full curve, the chained function Map2PtGp is probabilistically invertible also
on Gp. Its preimage function Map2PtGp .PreImages for Gp can be defined such that it returns all

25

of the preimages of the c ambiguous representations of an input and the maximum number of
preimages Map2PtGp .nmax is, thus, bounded by Map2PtGp .nmax = c · Map2Pt.nmax. Since we are
able to provide all preimages for Map2PtGp and a bound for their number is known Map2PtGp is
probabistically invertible. We thus can employ Theorem 3.6 and show that if the sSDH is hard in
Gp then the corresponding DGp-sSDH problem is also hard.

As ScMulVfco and ScMulco use exponents that are a multiples of c they are guaranteed to produce
a unique result on Gp for all of the c ambiguous representations of an input point. The additional
factor of c in the exponents is compensated by the simulation by calling an experiment library using
the ccExp class from Fig. 11. 3 The ccExp object forwards queries to a DGp_sSDH object such that
all inputs to the DDH oracle will be in Gp.

Note that without exponents being a multiple of c, we would have had game G3 and G4 distin-
guishable because without the factor c in the secret scalars of honest parties, Ya and Yb could have
nontrivial low-order components, which is noticeable and does occur in game G4.

6.4 CPace using twist secure curves

For a curve in Weierstrass form constructed over a field Fq, a coordinate x ∈ Fq represents either the
x coordinate of a point on the curve itself or of a point on a second curve, its so-called quadratic twist
Ḡ. On elliptic curves groups G that provide a property coined twist security in [14], CPace allows
for implementations with reduced computational complexity and code size under an additional
assumption including the group Ḡ on the curve’s quadratic twist.

Twist secure curve groups G are characterized by the fact that both the curve and the twist have
small co-factors c, c̄ and large prime-order subgroups Gp and Ḡp̄ of orders p and p̄. Some curves such
as Curve25519 [12], Curve19119 [26] and Ed448-Goldilocks [31] have been specifically tailored for
this property.

For Diffie-Hellmann protocols where active adversaries are relevant invalid curve attacks need to
be considered. As a result, point verification is a crucial substep in most protocols based on Diffie-
Hellman style key agreement. Unfortunately incorrectly implemented point verification might easily
remain undetected as interacting honest parties are not affected at all.

In order to make implementations resilient against this common pitfall, the popular X448 and
X25519 Diffie-Hellman protocols from RFC7748 and [12] employ a specific property of twist-secure
curves for offering security without any point verification. To our best knowledge the assumption
has not been formally defined previously. For the sake of security analysis of the corresponding
CPace construction we formally define the "twist CDH problem" sTCDH on the two prime-order
subgroups on the curve and the twist as follows. (Its defined in its strong variant allowing for
restricted DDH oracle access).

Definition 6.4 (Strong twist CDH problem (sTCDH)). Let Gp be a first cyclic group of prime order
p with a generator g and (Y = gy) sampled uniformly from (Gp \ IGp). Let Ḡp̄ be a second cyclic
group of prime order p̄ with p̄ 6= p. Given g, Y and access to DDH oracle DDH(g, Y, ·, ·) in Gp,
provide X,Z ∈ Ḡp̄ \ IḠp̄ with Z = Xy.

Correspondingly, with AdvsTCDH
BsTCDH

(Gp, Ḡp̄) we denote the probability that an adversarial algo-
rithm BsTCDH calculates a solution for the sTCDH problem for a single randomly sampled challenge
for the groups Gp, Ḡp̄ when given access to the restricted DDH oracle in Gp.

3Note that this class also accepts points on the quadratic twist, a feature that will become relevant only when
considering simplified point verification on twist-secure curves as discussed in the upcoming sections.

26

Why hardness of this problem allows for the strategy from [12] regarding omitting point ver-
ification in protocols such as X448 and X25519 becomes transparent when considering single-
coordinate scalar multiplication algorithms. Single-coordinate scalar multiplication algorithms Z ←
ScMul(X, y) commonly accept inputs X from both, the curve and its twist and return the result
Z = Xy on the same curve as the input X.

Using single-coordinate Diffie-Hellman provides the advantage that the adversary may only
insert inputs X taken from either the curve or the twist. I.e. if a honest party publishes a public
key Y = gy an active adversary can provide a point X either on G or Ḡ and make the honest party
calculate a Diffie-Hellman result Z = ScMul(X, y) = Xy where Z comes from the same group as X.

The conventional strong Diffie-Hellman assumption states that the adversary cannot calculate
the honest party result point Z for any given random challenge X from Gp. Hardness of the twist
problem sTCDH above implies that the adversary also cannot predict the honest party’s result point
Z for any chosen adversial point X from the twist Ḡp̄ group. Note that it is easy for the adversary
to predict Z = Y x for an adversially chosen point X = gx from the original curve group Gp by
following the protocol for a honest participant. Obviously, in comparison, the task of calculating
Z = Xy is harder if X needs to be on the twist.

Obviously the sTCDH problem is easy if the order of the points Y or Z is small. For making sure
that Y and Z come from the prime-order subgroups, X448 and X25519 employ a co-factor clearing
procedure where secret exponents are chosen to be multiples of the co-factor c.

Corollary 6.5. Let G be an elliptic curve of order c · p where c, p coprime with a subgroup Gp of
prime order p over base field Fq. Let Ḡ be the quadratic twist of G of order p̄ · c̄ with a subgroup Ḡp̄
of prime order p̄. Let c be equal to c̄ or an integer multiple of c̄. Then for any integer y and point
X ∈ (G ∪ Ḡ) it holds that Xy·c ∈ (Gp ∪ Ḡp̄).

If the cofactor c is equal or a multiple of the cofactor c̄ of the twist, multiplicative co-factor
clearing with c is functional for both, the curve and its twist. I.e. for any exponent being a multiple
of c and X ∈ (G ∪ Ḡ) then Z = Xc·y is guaranteed to be either of large prime order or the neutral
element of the curve or the twist. Note that the neutral elements on G and Ḡ in X448 and X25519
share the same binary representations (all bits zero). Here checks for a low-order Z corresponds to
just verifying that Z = Xc·y differs from the representation of the neutral elements.

It is easy to see, as the orders of the groups differ [12], that there is no homomorphic mapping
between the curve and its twist. Finally, hardness of sTCDH relates to the hardness of the DLP.
sTCDH is easy if the DLP can be solved for (g, Y).

The twist security property can be employed also in the context of CPace for making imple-
mentations faster and more resilient against implementation errors regarding the point verification,
specifically if CPace is implemented using scalar multiplication based on single-coordinate Mont-
gomery ladders.

Theorem 6.6 (Security of CPacetwist on twist-secure curves with co-factor.). Let λ, c, p, c̄, p̄, q ∈ N
with p, p̄ prime. Let G be the group of points on an elliptic curve over field Fq and Ḡ its quadratic
twist. Let p · c be the order of G. Let p̄ · c̄ be the order of Ḡ. Let Gp be a subgroup of G of
order p. Let group Ḡp̄ be a subgroup of order p̄ of Ḡ. Let c be equal or an integer multiple of
c̄. Let H1 : {0, 1}∗ → Fq,H2 : {0, 1}∗ → {0, 1}λ be two hash functions and Map2Pt : Fq → G
probabilistically invertible with bound Map2Pt.nmax.

Then the protocol CPacetwist from Fig. 13 UC-emulates FlePAKE in the random oracle model with
respect to adaptive corruptions and both hash functions modeled as random oracles. More precisely,

27

def class sCDH_sTCDH ():
"Accepts X,K inputs from G and the twist Ḡ"
def _init_(s, g): s.g ← g; s.i← 0; s.s1, s.s2 ← fresh;
def sampleY(s): if s.i ≤ 2: s.i+ = 1; s.yi ←R Fp \ 0; s.Yi ← (s.g)yi ; return s.Yi;
def corrupt(s,Y):
for 1 ≤ m ≤ s.i):
if (Y = (s.g)s.ym):
x← s.ym; s.si ← corrupt; return x;

def DDH(s,B, Y,X,K):
if (B = s.g) and ({Y,X}={s.Y1, s.Y2}) and (s.s1 = fresh) and (s.s2 = fresh)

. . . and (K = (s.g)s.y1·s.y2):
abort("K solves sCDH(B, Y1, Y2)");

if (B = s.g) and (Y = s.Y1):
if(s.s1 = fresh) and (X ∈ Ḡ \ IḠ) and (Xs.y1 = K):
abort("X,K solve sTCDH(B, Y1)");

return (Xs.y1 = K);
if (B = s.g) and (Y = s.Y2):
if(s.s2 = fresh) and (X ∈ Ḡ \ IḠ) and (Xs.y2 = K):
abort("X,K solve sTCDH(B, Y2)");

return (Xs.y2 = K);
def isValid(X): return (X ∈ (G \ IG)) or (X ∈ (Ḡ \ IḠ);

Chaining the experiment objects for the case of X25519 and X448
twistSdhExp = sSDH(sCDH_sTCDH);
twistCcExp = cofactorClearer(twistSdhExp,c, p, p̄);
twistDistExp = DG_sSDH(Map2Pt,twistCcExp);
twistXonlyExp =moduloNegationAdapter(twistDistExp);

Figure 12: Class combining sCDH and sTCDH experiments. In addition to the previous challenge
generator class for sCDH, point verification now also accepts points from the twist except for the
twist’s neutral element. Moreover the code for the DDH oracle now also accepts its third and fourth
inputs X,K from the twist and aborts in case that (X,K) forms a solution of the sTCDH problem
for (g, Y).

CPacetwist :=CPace[Gen1MAP, ScMulco, ScMulVftw,ScSamp]

Gen1MAP(pw, Pi, Pj) : ScMulco(g, y) : ScMulVftw(g, y) : ScSamp() :

return Map2Pt(return gc·y if g /∈ G ∪ Ḡ : return IG y ←R 1 . . . p

H1(pw||oc(Pi, Pj))) K ← gc·y return y
if K = IḠ : K ← IG

return K

Figure 13: Definition of CPacetwist for curves G of order p · c with a quadratic twist Ḡ. The only
difference to CPaceco is that the scalar multiplication functions accept inputs also from the twist.

28

for every adversary A, there exist adversaries BsTCDH, BsSDH and BsCDH against the sTCDH, sSDH
and sCDH problems such that

|Pr[Real(Z,A,CPacetwist)]− Pr[Ideal(FlePAKE,S)]| ≤
(Map2Pt.nmax · c)lH1/q + (lH1)2/p+ (c ·Map2Pt.nmax · lH1)2/q

+2l2H1
AdvsSDH

BsSDH
(Gp) + AdvsCDH

BsCDH
(Gp) + 2 ·AdvsTCDH

BsTCDH
(Gp, Ḡp̄)

where lH1 denotes the number of H1 queries made by the adversary A and simulator S is as in Fig. 5
but using the object twistDistExp (cf. Fig. 12) instead of the object sSdhExp.

Proof. The only difference in the real-world protocol between CPacetwist and CPaceco consists in
the fact that the latter variant’s scalar multiplication and verify function now also accepts inputs
from the twist. I.e. differing from CPaceco, CPacetwist issues a session key without aborting if the
output of the ScMulVftw function is not the identity element IG .

The difference for the proof strategy for Theorem 5.1 consists in the fact that we now need to
handle events where the adversarial strategy is based on injecting points from the twist.

First note that the twist has cofactor c̄ and thus c̄ low-order points. As c is an integer multiple
of c̄ the exponentiation by multiples of c maps all inputs from the full twist curve to the twist’s
prime-order subgroup by Corollary 6.5.

In the simulation we additionally need to handle the case that the adversary provides an input
from the twist. We add an additional game after G0, where we abort if the adversary queries H2

for Y,X,K for a honest Y = gc·y calculated from a generator g, an adversarial input X from the
twist Ḡp̄ such that K = Xc·y ∈ Ḡp̄ \ IḠ , where y is the private scalar of one of the honest parties.

This change is distinguishable only if A provided a solution to the sTCDH problem from Defini-
tion 6.4 and the advantage of a distinguisher in this additional game is bounded byAdvsTCDH

BsTCDH
(Gp, Ḡp̄)

for the groups Gp and Ḡp̄. In any other case the honest party will return ISK values indistinguishable
from random values in both, the real world and the ideal world. As the adversary may choose to
attack both honest parties, the advantage has to be multiplied by two. We incorporate this change
in the simulator by replacing the sCDH object instance that is embedded by the sSDH experiment
class by an instance of the sCDH_sTCDH class from Fig. 12.

6.5 CPace using single-coordinate Diffie-Hellman

Some Diffie-Hellman-based protocols, including CPace, can be implemented also on a group modulo
negation, i.a. a group where a group element Y and its inverse Y −1 (i.e. the point with I = Y ·Y −1)
are not distinguished and share the same binary representation 4.

An elliptic curve in Weierstrass representation becomes a group modulo negation when only
using x-coordinates as representation. We use the notation Ŷ for such ambiguous encodings and
use Ŷ ← SC(Y) for a function returning the x-coordinate for a point Y and (Y −1, Y)← RC(Ŷ) for
the inverse operation reconstructing Y and Y −1 in an undefined order.

The major advantage of using this type of ambiguous encoding is that it can be helpful in practice
for all of the following: reducing code size, reducing public key sizes and network bandwidth, avoid-
ing implementation pitfalls [12] and restricting invalid curve attacks to the curve’s quadratic twist.

4Counter-examples for protocols that cannot be instantiated on a group modulo negation and require full group
structure are, e.g., TBPEKE [41] and SPAKE2 [7]. The reason is that these protocols require addition of arbitrary
points on the group.

29

def class moduloNegationAdapter:
"uses the strip- and reconstruct functions SC and RC."
def _init_(s,, baseExperiment):
s.exp←baseExperiment;s.records← [];

def sampleY(s): Y ← ((s.exp).sampleY())s.c; s.records.append(Y); return SC(Y);
def isValid(X̂):(X0, X1)←RC(X̂); return (s.exp).isValid(X0);
def sampleH1(s): return (s.exp).sampleH1();
def corrupt(s, h, Ŷ):
(Y, Y ∗)← RC(Ŷ); if Y ∗ in s.records: Y ← Y ∗; return (s.exp).corrupt(h, Y);

def DDH(s,g, Ŷ , X̂, K̂):
(Y, Y ∗)← RC(Ŷ); if Y ∗ in s.records: Y ← Y ∗;
(X,X∗)← RC(X̂); (K,K∗)← RC(K̂);
return (s.exp.DDH(g, Y,X,K)) or (s.exp.DDH(g, Y,X,K∗))

Chaining the experiments for prime order curve, single coordinate, single map
sSdhExp = sSDH(sCDH); distExp = DG_sSDH(Map2Pt,sSdhExp);
singleCoorExp = moduloNegationAdapter(distExp)

Figure 14: Single-coordinate experiment class definition for CPace instantiations on groups modulo
negation.

Consequently, many real-world protocols such as TLS only use this single coordinate for deriving
their session key, as to give implementers the flexibility to take benefit of the above advantages.

For the purpose of function definitions by chaining, we introduce a function RSC(Ŷ , x) that
takes one ambigously encoded group element Ŷ in addition to one scalar x, i.e. takes the same
operands as ScMul. We define RSC(Ŷ , x) such that it returns a tuple (Y, x) such that SC(Y) = Ŷ .
With this definition, we can formalize CPace using single-coordinate scalar multiplications with the
chained functions ScMulx−only := (SC ◦ ScMul ◦ RSC), ScMulVfx−only := (SC ◦ ScMulVf ◦ RSC) and
Genx−only := SC ◦ Gen, such that the ambiguous encodings are used.5

Theorem 6.7 (Security of CPacex−only). Given a group G, assume CPace[Gen, ScMul, ScMulVf, SamSc]
on G can be distinguished from an ideal-world run of FlePAKE and S from Fig. 5 with negligible ad-
vantage, where S embeds an experiment object exp. Then CPace[SC ◦ Gen, SC ◦ ScMul ◦ RSC, SC ◦
ScMulVf ◦ RSC, SamSc] on the corresponding group modulo negation Ĝ cannot be distinguished from
FlePAKE running with a simulator Ŝ that is obtained by chaining exp with moduloNegationAdapter,
the adapter class from Fig. 14, and the difference in the distinguishing advantage is bounded by a
factor of 2.

Proof Sketch. First note that the functions SC,RC and RSC that implement conversion between
group and group modulo negations are all efficient, as in practice the most complex substep is a
square root in Fq. Secondly, CPace does not need a full group structure at any point. Instead, only
chained exponentiations are used (K = Y yb

a = Y ya
b = gya·yb), which can likewise be implemented on

a group modulo negation. The protocol’s correctness is not affected.
When starting with single-coordinate CPace in the real world, the same proof strategy ap-

plies, however the collision probability in game G3 is increased by a factor of 2. In game G4

no change is required. Also in games G5 and G6 the only difficulty shows up when splitting off
the code for the full-group versions of the sSDH and sCDH experiments exp from the simulator

5Note that this definition obtained from chaining with SC and RSC for the scalar multiplications corresponds
exactly to the conventional so-called single-coordinate ladder algorithms.

30

code. We cannot embed the experiment object exp as-is but need to reconstruct the sign infor-
mation in order to serve the API of the full-group experiments. The corresponding strategy is
implemented in the moduloNegationAdapter adapter class from Fig. 14. Note that this strategy
never aborts itself but its incorporated sSDH or sCDH experiments abort upon DDH queries. As
the moduloNegationAdapter adapter queries the DDH at most two times, the loss of CPacex−only in
comparison to CPace is at most a factor of two.

6.6 Chaining the experiment classes

In Appendix G, we describe 3 CPace implementations which combine the single aspects discussed
in the previous sections in various combinations. The experiment that encodes the assumptions
that apply for the construction that we recommend for use on twist secure Montgomery curves is
specified by the "twistXonlyExp" object from Fig. 12. Correspondingly the assumption set that is
necessary for proving the security of CPace on the group abstraction construction from Appendix G
for ristretto25519 and decaf448 [30, 19] is defined by the "coffeeExp" object from Fig. 9. The
assumption set needed for proofs for our recommended construction with short-Weierstrass curves
is specified by the "singleCoorExp" object in figure Fig. 14. A concrete example how this process
is carried out is given in Appendix F.

References

[1] Michel Abdalla and Manuel Barbosa. Perfect forward security of SPAKE2. Cryptology ePrint
Archive, Report 2019/1194, 2019. https://eprint.iacr.org/2019/1194. (Cited on Pages 41,
42, 44, and 50.)

[2] Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki, Jonathan Katz, and
Jiayu Xu. Universally composable relaxed password authenticated key exchange. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 278–307. Springer, Heidelberg, August 2020. (Cited on Pages 2, 3, 4, 5, 6, 7, 9, 41, 44,
and 50.)

[3] Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu Xu. Algebraic ad-
versaries in the universal composability framework. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, LNCS. Springer, Heidelberg, December 2021. (Cited on Pages 3,
4, and 5.)

[4] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001, volume 2020 of LNCS,
pages 143–158. Springer, Heidelberg, April 2001. (Cited on Page 8.)

[5] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. In Serge Vaudenay, editor, PKC 2005, volume 3386 of
LNCS, pages 65–84. Springer, Heidelberg, January 2005. (Cited on Page 41.)

[6] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-based authenticated
key exchange in the three-party setting. IEE Proceedings — Information Security, 153(1):27–39,
March 2006. (Cited on Page 41.)

31

https://eprint.iacr.org/2019/1194

[7] Michel Abdalla and David Pointcheval. Simple password-based encrypted key exchange proto-
cols. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 191–208. Springer,
Heidelberg, February 2005. (Cited on Pages 2 and 29.)

[8] Boaz Barak, Yehuda Lindell, and Tal Rabin. Protocol initialization for the framework of
universal composability. Cryptology ePrint Archive, Report 2004/006, 2004. https://eprint.
iacr.org/2004/006. (Cited on Page 16.)

[9] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 139–155. Springer, Heidelberg, May 2000. (Cited on Pages 7, 41, and 42.)

[10] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy, pages
72–84. IEEE Computer Society Press, May 1992. (Cited on Pages 1 and 2.)

[11] Jens Bender, Marc Fischlin, and Dennis Kügler. Security analysis of the PACE key-agreement
protocol. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and Claudio Agostino Ardagna,
editors, ISC 2009, volume 5735 of LNCS, pages 33–48. Springer, Heidelberg, September 2009.
(Cited on Page 2.)

[12] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages
207–228. Springer, Heidelberg, April 2006. (Cited on Pages 3, 20, 26, 27, 29, and 52.)

[13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-
curve points indistinguishable from uniform random strings. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 967–980. ACM Press, November 2013.
(Cited on Pages 11 and 22.)

[14] Daniel J. Bernstein and Tanja Lange. SafeCurves: Choosing safe curves for elliptic-curve
cryptography. Definition of Twist security. (accessed on 15 January 2019), 2019. https://
safecurves.cr.yp.to/twist.html. (Cited on Pages 6 and 26.)

[15] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi. Efficient indifferentiable hashing into ordinary elliptic curves. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 237–254. Springer, Heidelberg, August 2010.
(Cited on Pages 11 and 23.)

[16] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001. (Cited on Page 7.)

[17] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Univer-
sally composable password-based key exchange. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 404–421. Springer, Heidelberg, May 2005. (Cited on Pages 3, 4,
7, 9, 50, and 51.)

[18] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg, August 2003.
(Cited on Page 16.)

32

https://eprint.iacr.org/2004/006
https://eprint.iacr.org/2004/006
https://safecurves.cr.yp.to/twist.html
https://safecurves.cr.yp.to/twist.html

[19] H. de Valence, J. Grigg, G. Tankersley, F. Valsorda, I. Lovecruft, and M. Hamburg. The
ristretto255 and decaf448 groups. Rfc, IRTF, 10 2020. (Cited on Pages 20, 23, 31, and 55.)

[20] Digital Signature Standard (DSS). National Institute of Standards and Technology (NIST),
FIPS PUB 186-4, U.S. Department of Commerce, July 2013. https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf. (Cited on Pages 20 and 54.)

[21] Edward Eaton and Douglas Stebila. The “quantum annoying” property of password-
authenticated key exchange protocols. In Jung Hee Cheon and Jean-Pierre Tillich, editors,
Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021, volume 12841 of
LNCS, pages 154–173. Springer, Heidelberg, July 2021. (Cited on Pages 3 and 49.)

[22] Elliptic Curve Cryptography. Federal Office for Information Security (BSI), Technical Guideline
BSI TR-03111, Version 2.10, June 2018. (Cited on Page 54.)

[23] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood. Hashing to elliptic curves,
2019. https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/. (Cited on
Pages 4, 11, 22, 23, and 54.)

[24] Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to Barreto-Naehrig curves.
In Alejandro Hevia and Gregory Neven, editors, LATINCRYPT 2012, volume 7533 of LNCS,
pages 1–17. Springer, Heidelberg, October 2012. (Cited on Page 23.)

[25] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011. (Cited on Page 5.)

[26] Björn Haase and Benoît Labrique. Making password authenticated key exchange suitable
for resource-constrained industrial control devices. In Wieland Fischer and Naofumi Homma,
editors, CHES 2017, volume 10529 of LNCS, pages 346–364. Springer, Heidelberg, September
2017. (Cited on Page 26.)

[27] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE protocol tailored for
the IIoT. IACR TCHES, 2019(2):1–48, 2019. https://tches.iacr.org/index.php/TCHES/
article/view/7384. (Cited on Pages 2, 4, 12, and 14.)

[28] Björn Haase. CPace, a balanced composable PAKE, 2020. https://datatracker.ietf.org/
doc/draft-haase-cpace/. (Cited on Pages 1, 2, 14, and 51.)

[29] Björn Haase and Benoît Labrique. AuCPace: Efficient verifier-based PAKE protocol tailored
for the IIoT. Cryptology ePrint Archive, Report 2018/286, 2018. https://eprint.iacr.org/
2018/286. (Cited on Page 1.)

[30] Mike Hamburg. Decaf: Eliminating cofactors through point compression. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
705–723. Springer, Heidelberg, August 2015. (Cited on Pages 20, 23, 31, and 55.)

[31] Mike Hamburg. Ed448-goldilocks, a new elliptic curve. Cryptology ePrint Archive, Report
2015/625, 2015. https://eprint.iacr.org/2015/625. (Cited on Pages 20 and 26.)

33

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://datatracker.ietf.org/doc/draft-haase-cpace/
https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2018/286
https://eprint.iacr.org/2015/625

[32] Mike Hamburg. Indifferentiable hashing from elligator 2. Cryptology ePrint Archive, Report
2020/1513, 2020. https://eprint.iacr.org/2020/1513. (Cited on Pages 11 and 23.)

[33] Julia Hesse. Review of (security of) remaining candidates. Posting to the CFRG mailing list,
2020. https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s/.
(Cited on Pages 2 and 4.)

[34] Julia Hesse. Separating symmetric and asymmetric password-authenticated key exchange. In
Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages
579–599. Springer, Heidelberg, September 2020. (Cited on Pages 4, 7, and 50.)

[35] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards curves
revisited. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 326–343.
Springer, Heidelberg, December 2008. (Cited on Page 55.)

[36] David P. Jablon. Strong password-only authenticated key exchange. Computer Communication
Review, 26(5):5–26, 1996. (Cited on Pages 2 and 12.)

[37] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE protocol
secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486. Springer, Heidelberg,
April / May 2018. (Cited on Pages 4, 7, and 50.)

[38] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security. RFC 7748, IETF,
January 2016. (Cited on Pages 6, 54, and 55.)

[39] Manfred Lochter and Johannes Merkle. Elliptic Curve Cryptography (ECC) Brainpool Stan-
dard Curves and Curve Generation. RFC 5639, IETF, March 2010. (Cited on Page 54.)

[40] Advanced security mechanism for machine readable travel documents (extended access control
(EAC), password authenticated connection establishment (PACE), and restricted identification
(RI)). Federal Office for Information Security (BSI), BSI-TR-03110, Version 2.0, 2008. (Cited
on Page 2.)

[41] David Pointcheval and Guilin Wang. VTBPEKE: Verifier-based two-basis password exponential
key exchange. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors,
ASIACCS 17, pages 301–312. ACM Press, April 2017. (Cited on Pages 2, 9, and 29.)

[42] Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational points on elliptic
curves over finite fields. In ANTS, volume 4076 of Lecture Notes in Computer Science, pages
510–524. Springer, 2006. (Cited on Page 22.)

[43] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Report 2004/332, 2004. https://eprint.iacr.org/2004/332. (Cited on
Page 19.)

[44] Björn Tackmann. Updated review of PAKEs. Posting to the CFRG mailing list, 2020. https://
mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/. (Cited on Pages 2
and 4.)

34

https://eprint.iacr.org/2020/1513
https://mailarchive.ietf.org/arch/msg/cfrg/47pnOSsrVS8uozXbAuM-alEk0-s/
https://eprint.iacr.org/2004/332
https://mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/
https://mailarchive.ietf.org/arch/msg/cfrg/eo8O6JYPmWY6L9TlcIXStFy5gNQ/

The protocol is parametrized by a security parameter λ and operates on a group G of prime order p, of which
membership is efficiently decidable. Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → {0, 1}λ be two hash functions.
Protocol:

1. When P receives input (NewSession, sid,P,P ′, pw), it sets g ← H1(pw). P then samples y ←R Z∗p and sets
Y ← gy. P stores a session record (sid,P ′, y, Y, fresh) and sends (sid, Y) to P ′.

2. When P receives message (sid,X) from P ′ with X ∈ G, and P finds a session record (sid,P ′, y, Y, fresh), it
sets K ← Xy. If K = IG , then P aborts. If K 6= IG , P calculates ISK ← H2(K||oc(X,Y)) and outputs
(sid, ISK). In either case P rewrites the session record from fresh to completed .

Figure 15: UC execution of CPacebase from Fig. 2 (bottom), proven secure in Theorem 5.1.

A Proof of Theorem 5.1

We start with the real execution of the CPace protocol with an adversary A, and gradually modify
it, ending up with the ideal execution FlePAKE with a simulator S. The changes will go unnoticed by
an (adaptively corrupting) environment Z interacting with parties and the adversary. For clarity,
we formalize the UC execution of CPacebase in Fig. 15.

Let RealZ(CPace,A) be the event that environment Z with adversary A and an execution of
CPace outputs 1 and IdealZ(FlePAKE,S) be the corresponding event in the ideal execution with
functionality FlePAKE depicted in Fig. 1.

Game G0: The real protocol execution. This is the real world in which the adversary interacts
with real players and may view, modify and/or drop network messages and adaptively corrupt
parties.

Pr[RealZ(CPace,A)] = Pr[G0]

Game G1: Introducing the simulator. In this game we move the whole execution into one
machine and call in the simulator S. Note that this implies that S implements the random
oracles H1,H2 and runs the execution with actual passwords as input. We will change the
simulation to work without passwords in the upcoming games. In this game for any new
input query s for H1 (H2) samples a point on the curve (a random string) respectively. No
re-programming operation is yet needed. The changes are only syntactical and thus

Pr [G0] = Pr [G1]

Game G2: Embedding trapdoors. In this game we start keeping track of secret exponents for
generators created from passwords. S samples a fixed generator g ← G. For every hash query
H1(pw), S samples r ← Fp, stores (H1, pw, r, r

−1, gr) and replies to the query with gr. The
only difference is that the simulator now keeps track of the secret exponents for H1 queries
and the distributions of this and the previous game are perfectly indistinguishable

Pr [G1] = Pr [G2]

Game G3: Abort on collisions of the random oracle H1. The simulator aborts if a collision
occurs in H1, i.e., if S samples an answer for a fresh H1 query that he already gave before. Note

35

that without collisions two honest parties will always output matching (respectively differing)
session keys if both, passwords and party identifiers, match (respectively differ). Note that
authenticating party identifiers in addition to the password is important for fending off relay
attacks. As the order of the group is p ≈ 2λ and Z can only make a polynomially bounded
number lH1) of H1 queries, the probability of aborts is negligible in λ by the birthday bound.
Thus this and the previous game are indistinguishable.

| Pr [G2] - Pr [G3] | ≤ l2H1
/p

Game G4: Introduce F and simulate the protocol messages. In the real world all session
keys will be calculated by using H2 queries. In the ideal world session keys of honest parties
will not be generated by H2 queries but will be provided separately by the ideal functionality
(with mechanisms in F for synchronizing H2 outputs and session keys in case of successful
password guesses). Here we prepare this separation and use programming operations for the
H2 RO for keeping session key outputs consistent with H2.

Changes to the functionality. In this game we add an ITI F external to the simulator. F has all
interfaces of FlePAKE except that we don’t yet limit the number of calls to the LateTestPwd and
TestPwd queries and make the NewKey interface always relay keys coming from the simulator
via NewKey queries. Also in this game we let F inform the simulator about the clear-text
passwords upon NewSession events.

Changes to the simulation. Upon receiving an adversarially generated Ya ∈ G\IG or Yb ∈ G\IG
aimed at a party P, S sends (RegisterTest,P) to F . S simulates protocol messages Ya = gza

and Yb = gzb on behalf of honest parties by sampling exponents za, zb uniformly from Z∗q−1.
Upon an adaptive corruption query of Z for a party P sending Ya (respectively Yb), S obtains
P ′, pw, ISK from the ideal functionality, computes secret scalars ya (respectively yb) used by
the real-world protocol as ya = za · r−1 (respectively yb = zb · r−1), where r−1 has been looked
up in the record (H1, pw||oc(P,P ′), ∗, r, r−1, g). (S creates a new such record for pw||oc(P,P ′)
if none yet exists.) Sim then uses ya to compute K, program H2(K||oc(Ya, Yb)) = ISK and
reveal (P ′, pw, ya, Ya,K, ISK) to A as the internal state of the corrupted P. As r 6= 0 uni-
formly sampling ya (yb) or za (zby) is equivalent. In the following we detail how the simulator
produces consistent outputs and answers to H2 queries. While being straightforward, the pre-
sentation is slightly involved since the order of queries and messages impacts the simulation.

When S needs to issue a key to a party P using password pw for points Ya and Yb, then either Ya
or Yb will have been generated on behalf of P. S looks for a record (H1, pw||oc(P,P ′), ∗, r, r−1, g)
(and creates a H1 entry for pw||oc(P,P ′) if no such record exists). If Ya was generated for P,
then set K ′ = Y zar−1

b , otherwise set K ′ = Y zbr
−1

a .

• Adjust output of P to earlier H2 query: S then checks whether there is any record
(H2,K||oc(Ya, Yb), ISK) such that K = K ′. Note that in this case it holds that both,
DDH(gr, Ya, Yb,K) = DDH(g, Ya, Yb,K

r−1
) = 1. In this case S executes the TestPwd

query of F for pw and subsequently passes ISK to the NewKey query of F . We note that
our simulator does not make use of the reply “correct/wrong guess” (since there are no
more values of the honest party to simulate after the guess happens), but still needs to
issue TestPwd in order to be able to determine the attacked party’s output via NewKey
in case of a successful guess.

36

• Align keys in case of matching passwords: If no corresponding H2 record is found and
both points Ya, Yb were generated by honest parties and the passwords of both parties
match and a NewKey query has already been issued to the other party, then S calls
NewKey for P using the key already passed to P ′.

• In any other case there is no output yet to keep consistent with. S samples a new random
key just as for new H2 queries and passes this key to the NewKey query of F .

Upon Z querying H2(K||Ya||Yb) for a yet unqueried input,

• Query not related to any honest output: If neither Ya nor Yb were generated by an honest
party or Ya||Yb 6= (Ya|| < ||Yb) then sample a new random value and output it as result
for H2.

• Adjust H2 query to key of P: Else if all of (1) Ya = gza was simulated for honest
party P and (2) NewKey was already delivered to F for P and (3) there is a record
(H1, pw||oc(P,P ′), r, r−1, g) such thatK = Y zar−1

b (which occurs ifDDH(gr, Ya, Yb,K) =

DDH(g, Ya, Yb,K
r−1

) = 1) then: S sends (LateTestPwd,P, pw) to F . S programs F ’s
answer to this query as reply to the H2 query.

• Adjust H2 query to key of P ′: Else if Yb = gzb was simulated for honest party P ′. S
proceeds as for honest P but checks for K = Y zbr

−1

a .

• Else we conclude that there is no need for adjustment and the H2 query is answered as
in the previous game.

Note that with these changes, S never needs to actually calculate itself a Diffie-Hellman result
point K, instead it only makes sure that H2 queries for parties that adhere to the protocol
and keys output to honest parties match. Instead from this point on, the simulators will only
need access to DDH(g, Y, ·, ·) or DDH(gr, Y, ·, ·) oracles for a fixed generator g and a honestly
generated point Y as second parameter which we could implement easily in this game as we
have access to the secret exponents.

Indistinguishability argument. There is no change from the viewpoint of Z between this and
the previous game. The game only differs in the way how session keys and H2 queries are
output. In both games, both, the output of H2 queries and session keys, are uniformly sampled.
Just as in the previous game, session keys output to two honest parties match if P and P ′
have used same password and differ otherwise.

Finally the session keys output to honest parties with password pw match H2 queries taken
for queries using a Diffie-Hellman point K that would be calculated by parties that follow the
protocol. It follows that

Pr [G3] = Pr [G4]

Game G5: Limit number of password guesses

Changes to the functionality. The number of password guesses is now limited to one guess per
party. I.e. there is one guess per record (sid ,P,P ′, pw).

Changes to the simulation. S looks for CDH tuples in H2 queries w.r.t all recorded exponents
r in its H1 list. If S finds a CDH tuple (G,X, Y,K) that meets the conditions of G4 (where

37

Y denotes the adversarially-generated message), S creates a record (guess, G, Y). If at this
point there is already a record (guess, G′, Y) with G 6= G′, we say that event multguess
happens and let S abort.

Indistinguishability argument. The change is only recognizable if S has to abort. We show
that this happens only with negligible probability if the sSDH assumption holds in G.
We construct an efficient sSDH adversary BsSDH interacting with Z. Let (Y,G1, G2) denote a
sSDH challenge. BsSDH embeds the challenge in this game as follows: first, BsSDH flips a coin
and sets Y to be either the message of P or P ′. BsSDH aborts if the chosen party is corrupted
or gets corrupted at a later stage. Then, BsSDH randomly chooses two out of all H1 queries
made by Z and answer them with G1 ← H1(pw||oc(P,P ′)) and G2 ← H1(pw′||oc(P,P ′)) (pw
and pw′ are going to be Z’s two password guesses). BsSDH replaces the check performed by the
simulator with oracle queries DDH(Gi, Y, Y

′,K), i = 1, 2, where Y ′ denotes the (simulated
or adversarial) other message. If multguess occurs, then two CDH solutions were found,
namely one for each Gi. BsSDH outputs these two solutions. Since w.l.o.g Z corrupts at most
one party and has a view independent of the coin flipped by BsSDH, BsSDH has to abort only
with probability 1/2. Overall, it follows that Pr[multguess] ≤ 2l2H1

AdvsSDH
BsSDH

(G), where lH1

denotes the number of H1 queries made by Z. We thus have

| Pr [G4] - Pr [G5] |≤ 2l2H1
AdvsSDH

BsSDH
(G).

Remark. We note that any reduction could make use of the true password of P ′, since a
reduction interfaces with Z and thus also receives protocol inputs. However, it is unclear how
to leverage this, since multguess implies that Z makes at least one incorrect guess. Thus, S
needs to turn password guesses into CDH solutions regardless of whether a guess is correct
or not. Further, we note that a reduction to the strong CDH assumption seems infeasible
here. The reason is that S needs to detect password guesses in H2 queries, which requires
knowledge of the exponent of the simulated message Yb. The reduction however does not have
this knowledge due to Yb being set to the CDH challenge, and thus needs to leverage DDH
oracles w.r.t different generators for detecting both guesses.

Game G6: Random key if passwords mismatch

Changes to the functionality. In case a record is interrupted, F now outputs a random key
(instead of the one given by the simulator via NewKey).

Changes to the simulation. -

Indistinguishability argument. Assume the output was generated for an honest P (the other
case works analogously). The output towards Z differs only in case TestPwd returns “wrong
guess” or LateTestPwd returns a random key. S only issues these queries if he finds a CDH tuple
in H2. In case of TestPwd (Yb was sent after H2 query), let Ya, Yb denote the transcript and
K the Diffie-Hellman value computed by P. The environment never submits (K||oc(Ya, Yb))
to H2, as otherwise the previous game would abort due to multguess happening. Thus,
the output H2(K||oc(Ya, Yb)) of P in G5 is uniformly random from the viewpoint of Z, and
replacing it with a fresh random output chosen by F due to the interrupted record is perfectly
indistinguishable.

In case of LateTestPwd (H2 was queried after P generated output), the key output to P was
the randomly chosen K generated by the LateTestPwd interface of FlePAKE in the previous

38

game, which is perfectly indistinguishable from the randomly chosen one that the NewKey
interface of FlePAKE outputs directly to P in this game due to the record being interrupted.

Game G7: Output random keys for honest sessions

In this game, we let the functionality generate parties’ outputs in honest sessions. We change
the simulation to work without passwords and without knowledge of the honest parties out-
puts.

Changes to the ideal functionality. We now add the full NewKey interface to F .
Changes to the simulation. Letm denote the number of H1 queries issued by Z and r1, . . . rn ←
Fq the trapdoors embedded in these queries (see G2). Let za, zb denote the exponents of
simulated messages as of G4. In case Z queries H2(K||oc(Ya, Yb)), where for some i ∈ [m]
(g, Ya, Yb,K

ri) is a CDH tuple (which can be checked by S via gzazb = Kri), S aborts.

Indistinguishability argument. First note that Z can only note a difference between this and
the previous game if it reproduces any value K or K ′ computed by some (honest) party in
a “fresh” and honest session. In particular, this means that Z cannot corrupt a party nor
inject messages (as in this case S issues TestPwd or LateTestPwd and records get interrupted
or compromised). Let us detail what party P computes (argument for P ′ is analogously).
W.l.o.g we assume that Z queried H1(pw||oc(P,P ′)), where pw is the password of P, and
obtained ga as answer. P was simulated with values g, ya, and we now implicitly adjust this
to ga, ya · 1/a. This lets P compute K ← Y

ya1/a
b = gybya1/a, where (g, Ya, Yb,K

a) is a CDH
tuple. We stress that P computes the same value K regardless of whether both parties use
matching or mismatching passwords, since P’s output only depends on the simulated Yb and
is independent of the generator used by P ′.
We show that if sCDH holds in G then S never aborts. Consider the following efficient
adversary BsCDH. BsCDH obtains an sCDH challenge (g, Ya, Yb) and executes the simulation of
game G7 with it. Upon Z querying H2(K||oc(Ya, Yb)), BsCDH needs to detect CDH solutions
using his own oracle instead of knowledge of exponents of Ya, Yb. For this, BsCDH calls b ←
DDH(g, Ya, Yb,K

ai) and outputs Kai as sCDH solution if b = 1 happens. It follows that

| Pr [G6] - Pr [G7] |≤ AdvsCDH
BsCDH

(G).

Game G8: Remove passwords from simulation.

Changes to the ideal functionality. We remove passwords from NewSession queries sent from
F to S.
Changes to the simulation. As the simulation already is independent of the password, there
are no further changes required.

Since we are just removing unused values from the output of F towards S, the output distri-
butions towards Z of this and the previous game are indistinguishable. Hence,

Pr[G7] = Pr[G8] = Pr[IdealZ(FlePAKE,S)]

This game is identical to the ideal execution since F = FlePAKE, which concludes the proof.
The simulator of this final game is depicted in Fig. 3

39

Pa : public: G, p, Pb :

Pb, pwa ScMulbase, ScSamp, Pa, pwb

ScMulVfbase,
H1, H2, Map2Pt

ga ← Map2Pt(H1(pwa)) gi ← Map2Pt(H1(pwb))

ya ← ScSamp() yb ← ScSamp()

Ya ← ScMulbase(ga, ya) Yb ← ScMulbase(gb, yb)

Pb, Yb

Pa, Ya

Ka ← ScMulVfbase(Yb, ya) Kb ← ScMulVfbase(Ya, yb)
Abort if Ka = IG Abort if Kb = IG

ISK a ← H2(Ka||oc(Ya, Yb))||oc(Pa, Pb)) ISK b ← H2(Kb||oc(Ya, Yb))||oc(Pa, Pb))
Output ISK a Output ISK b

Figure 16: Protocols CPace1MAP_NoSID and CPace1MAP_NoSID_ID (with initiator Pb and responder
Pa), where dashed inputs are only available in CPace1MAP_NoSID, and gray message parts only appear
in CPace1MAP_NoSID_ID. ScMulbase, ScMulVfbase, ScSamp are detailed in Fig. 2, and Map2Pt : Fq → G
is probabilistically invertible. With H1 : {0, 1}∗ → Fq and H2 : {0, 1}∗ → {0, 1}λ we denote hash
functions.

B Game-based security analysis

In the main body of this paper we demonstrated strong composability guarantees for several CPace
variants. These strong guarantees come at the cost of requiring pre-established unique session
identifiers sid , for each exchanged key. This might require an additional round of messages in
practice, and it is thus a reasonable question to ask which security guarantees CPace features if
such overhead is unacceptable for the application. In this section we therefore complement the
conducted analysis in the UC framework with a corresponding game-based analysis, exemplarily
considering the case of CPace1MAP. In Fig. 16 we show “sid-free” protocols CPace1MAP_NoSID and
CPace1MAP_NoSID_ID.

• CPace1MAP_NoSID is a symmetric protocol where both parties initially send their messages,
and compute their outputs after receiving the message from the peer. Both parties know the
identities (Pa, Pb) involved in the exchange, and hence there is no need to inform the other
peer about the own identity.

• CPace1MAP_NoSID_ID is an asymmetric protocol where one party, say, Pb initializes the key
exchange with peer Pa by sending the first message. This message contains identity Pb. Pa
only acts upon receipt of such message, informing Pb about its own identity by appending it to
the message. Such a protocol layout is useful in cases where Pa might not know under which
name (e.g., IP address and port) it got contacted by Pb - might it be because of proxying,
NATing, or simply because the API running the PAKE protocol does not have access to the
routing information.

40

B.1 Security Model

We base our analysis on the PAKE security model of Bellare, Pointcheval and Rogaway [9], re-
fined for analyzing the PAKE protocol SPAKE2 by Abdalla et al. [1, 2]. The definition comprises
specifications of procedures to respond to various queries issued by an adversarial algorithm A. A
“real-or-random” game is run with an adversary A as follows. First INITIALIZE runs and its out-
puts, except for secrets such as the challenge bit, are passed to A. Subsequently A is executed and
its oracle queries are answered by the procedures of the game. When A terminates, its output is
passed to FINALIZE, which returns true if the adversary manages to guess the challenge bit cor-
rectly. During the game, A has access to test queries (we allow multiple such queries, as suggested
by Abdalla, Fouque, and Pointcheval [5, 6]), which reveal real or random keys according to the
challenge bit. A REVEAL query models leakage of session keys, where the adversary obtains the
session key computed by an honest party. We assign honest parties a number i, a distinct party
identifier bit string Pi and consider that party Pi may be interacting in multiple protocol instances
li. We use the notation (Pi, li) for referring to the protocol instance li of party Pi. Initially, at the
INITIALIZE operation for each pair of parties a password is drawn uniformly from a dictionary Dpw.
We call two instances partnered if they share a common communication transcript. Each instance
(Pi, li) may be in state waiting, accepted or aborted. State waiting corresponds to an instance which
has produced its own CPace message but not yet received the remote side’s message. State ac-
cepted models an instance which has received and processed the remote side’s protocol message and
calculated its session key ISK . State aborted models an instance of a party which has aborted due
to invalid inputs. TEST queries are only allowed if no REVEAL query has been asked for the party
itself or a partnered party. The adversary has the option of either querying REVEAL or TEST, but
not both.

Adaptions to the security model of Abdalla et al. [1, 2]. Previous game-based security
analysis of PAKE protocols did assume protocols which clearly assign initiator and responder roles.
Instead, here we also consider the option of a symmetric CPace1MAP_NoSID construction where any
honest party first outputs its own message before processing the remote party’s message.

For this, we strengthen the adversary model by allowing A to adaptively react to the messages
sent by honest parties. As a result of this adaptions, we do not have an additional SENDRESP query
[1, 2]. The parts in the security games for the initiator-responder instantiation that are not present
in the symmetric variant are highlighted by using gray-shaded boxes. In both variants we use the
ordered concatenation operation oc as in the symmetric setting there is no natural ordering enforced
by the message sequence (see also the corresponding discussion in Appendix D).

Altogether, we give A access to the following queries:

• H1(pw), a hash function taking a bit string and returning an element in Fq. This models that
A has access to the same random oracle as the honest parties and is able to calculate CPace’s
password-dependent generators as gpw ← Map2Pt(H1(pw)).

• H2(·), the hash function used for generating CPace’s session key ISK , is a function that takes
a bit string of arbitrary length and returning a bit string of size λ.

• SENDINIT(Pi, li, Pj) a query returning the message produced by instance li of a honest party
Pi that was generated for initiating a communication with a remote party Pj . This query
leaves (Pi, li) in state waiting.

41

• SENDFINALIZE(Pj , lj , (Pi, Y)), makes a waiting instance (Pj , lj) transition to state accepted.
It models the action the protocol party takes upon reception of the remote side’s message.
SENDFINALIZE in conjunction with SENDINIT can be used for modeling both, active and
passive adversaries.

• REVEAL(Pj , lj), this query returns ⊥ if the instance was not accepted or TEST was previously
called. Otherwise it marks the transcript of the instance as revealed and reveals the session
key.

• TEST(Pi, li), if instance li of party Pi is not in accepted state or a REVEAL or TEST query
has been run previously on an instance with the same transcript it returns ⊥. Otherwise this
query reveals either the session key of Pi, li (case b = 0) or a freshly sampled random key (case
b = 1).

Note that we do not have the EXEC(Pi, li, Pj , lj) query from [1]. The reason is that it can
be implemented by first calling SENDINIT(Pi, li) and SENDINIT(Pj , lj) and passing the respective
results without any modification to two SENDFINALIZE queries to (Pi, li) and (Pj , lj). I.e., there
is no need for a dedicated separate EXEC query returning the transcript that a passive adversary
records when eavesdropping the communication between two honest parties as also observed in [9].
We call a query SENDFINALIZE(Pj , lj , (Pi, Y)) to be a passive attack query if Y was returned as
the result of a previous SENDINIT(Pi, li, Pj) query. Otherwise we define a SENDFINALIZE query to
be an active attack query.

In Fig. 17 we depict how the game is played for CPace1MAP_NoSID and CPace1MAP_NoSID_ID,
where all adversarial queries are implemented by an object of class GameA. (Note that we follow the
convention of the Python programming language and use a prepended underscore for distinguishing
private functions accessed only from within the class from the public API that is available for the
adversary.)

B.2 Game-based security of CPace

Theorem B.1 (Security of CPace1MAP_NoSID and CPace1MAP_NoSID_ID). Let λ, p, q ∈ N with
p prime. Let G be an elliptic curve group of order p over field Fq. Let H1 : {0, 1}∗ → Fq,H2 :
{0, 1}∗ → {0, 1}λ be two hash functions and Map2Pt : Fq → G probabilistically invertible with bound
Map2Pt.nmax. Let Dpw denote a uniformly distributed dictionary of passwords of size |Dpw|. If the
sCDH and sSDH problems are hard in G, then CPace1MAP_NoSID (CPace1MAP_NoSID_ID) is secure
in the model of Fig. 17, when both hash functions are modeled as random oracles.

More precisely, for any adversary A against CPace1MAP_NoSID (CPace1MAP_NoSID_ID) there
exist adversaries BsCDH and BsSDH against the sCDH and sSDH problems such that the advantage of
A of producing the correct test bit in the FINALIZE query of the security game is bound by

Adv(A) ≤ naa/|Dpw|+ (Map2Pt.nmax)nH1/q + (Map2Pt.nmax · nH1)2/q + n2
H2
/2λ

+2n2
H1
AdvsSDH

BsSDH
(G) + 2AdvsCDH

BsCDH
(G) + (ns + nH2)2/p

where naa denotes the number of SENDFINALIZE queries for an active attack, ns denotes the number
of SENDINIT queries and nH1 and nH2 denote the number of H1 and H2 queries made by A.

42

using python-style notation with self pointer s
def class GameA: # Security Game for CPace1MAP_NoSID (CPace1MAP_NoSID_ID)
def INITIALIZE(s, partyList): # Setup security Game for the set of parties PartyList.
s.b = SampleFrom({0, 1}); s.P = []; # sample the global Real-Or-Random bit b.
for Pi in partyList:
s.P.append(Pi);
for Pj in partyList and not yet in s.P :
s.pw[Pi, Pj] ←R Dpw # sample password from dictionary that Pi will use with Pj

s.records = { }; s.tableH1 = { }; s.tableH2 = { }; s.testedTranscripts = []; s.revealedTranscripts = [];
def FINALIZE(s, b′): return b′ == s.b

def H1(s, str):
if not str in s.tableH1: s.tableH1[str] = SampleFrom(Fq);
return s.tableH1[str];

def _H2(s, str): # "private" method only for calls from within the class itself
if not str in s.tableH2: s.tableH2[str] = SampleFrom({0, 1}λ);
return s.tableH2[str];

def H2(s, str): # API used by the adversary
return s._H2(str); # give the adversary the same result as for internal hash queries.

def SENDINIT(s, Pi, li, Pj):
if exists instance (Pi, li) in s.records: return ⊥
inst = { } # setup python dictionary for record entry for new instance
pw = s.pw[Pi, Pj]; inst["pw"] = pw; inst["Remote"] = Pj ; inst["State"] = waiting;
g = Map2Pt(s.H1(inst["pw"])); inst["g"] = g;
y = SampleFrom(Fp); inst["y"] = y; Y =gy; inst["Y"] = Y ; s.records [Pi, li] = inst;
return (Pi, Y); # return first protocol message generated for (Pj , li)

def SENDFINALIZE(s, Pi, li, P̂j , X): # Handle received remote message X from Pj

if not exists instance (Pi, li) in s.records: return ⊥
inst = s.records [Pi, li]; y = inst["y"]; Pj = inst["Remote"]; if(Pj 6= P̂j) : inst["State"]=aborted; return;
inst["K"] = Xy; inst["RemoteY"] = X; inst["Transcr"] = oc(inst["Y"], X) ||oc(Pi, Pj);
inst["ISK"] = s._H2(inst["K"] || inst["Transcr"]);
if IsInvalid(Xy): inst["State"] = aborted; else: inst["State"] = accepted
s.records [Pi, li] = inst; # update record.

def REVEAL(s, Pi, li):
if not exists instance (Pi, li) in s.records: return ⊥
inst = s.records [Pi, li];
if (not inst["State"] == accepted) or (inst["Transcr"] in s.testedTranscripts): return ⊥
s.revealedTranscripts.append(inst["Transcr"]); return inst["ISK"];

def TEST(s, Pi, li): # Real-or-Random test query
if not exists instance (Pi, li) in s.records: return ⊥
inst = s.records [Pi, li]; transcr = inst["Transcr"];
if (not inst["State"] == accepted) or (transcr in s.revealedTranscripts ∪ s.testedTranscripts): return ⊥
s.testedTranscripts.append(transcr);
if s.b : return SampleRandomKey()
else: return inst["ISK"];

Figure 17: Security game for CPace1MAP_NoSID and (CPace1MAP_NoSID_ID) .

43

For the proof we follow the proof of SPAKE2 [1, 2], using a sequence of game hops. We
start with GameA which represents the security Game for CPace1MAP_NoSID(CPace1MAP_NoSID_ID).
Throughout the proof we will modify the security games such that they are indistinguishable from
the viewpoint of the adversary except for some bad events, for which the games abort and where
we declare the adversary to win.

GameB: Unique transcripts.

In this game we consider collisions in the transcripts and abort if we observe a collision, declaring
the adversary to win. We also abort if we observe an accidental collision between a public key Y
generated by a SENDINIT query and a preceding H2 query which includes the same value Y .6

As each session transcript with one honest party involved includes an ephemeral public key Y
which is uniformly distributed in G, this can be bounded by a statistical analysis to ((ns +nH2)2/p)
where n is the number of SENDINIT queries and p the order of G.

def class GameB(GameA): # Inherit all code from GameA except for overridden methods
def SENDINIT(s, Pi, li, Pj):
(Pj , Y)= GameA.SENDINIT(Pi, li, Pj)
if Y as substring in s.tableH2: abort()
return (Pi, Y);

def SENDFINALIZE(s, Pi, li, (Pj , X)):
GameA.SENDFINALIZE(s, Pi, li, (Pj , X)) # First call implementation from the superclass
if MoreThanTwoSessionInstanceRecordsWithIdenticalTranscripts(s.records): abort()

Figure 18: Guarantee unique transcripts.

GameC : Embed H1 trapdoor.

In this game we replace the implementation of H1 by an implementation based on Algorithm 1
for Map2Pt−1. As by Corollary 3.9 the modified sampling strategy using Map2Pt−1 still results in
uniformly distributed outputs in Fq. This makes the two games indistinguishable. Moreover the
adversarial advantage does not differ in comparison to the previous game.

6We included this additional abort case in order to be able to disregard a corner case in the upcoming games. With
this abort we will be able to disregard the case that such an collision in a H2 query preceeding the SENDINIT query
actually corresponds to some password guess for an instance which point Y that was not yet existing at the time of
the H2 query.

44

def class GameC(GameB): # Inherit all code from GameB except for overridden or extended methods
def INITIALIZE(s, P):
GameB.INITIALIZE(P) # First call implementation from the superclass
s.g = SampleFrom(G \ IG) # Additionally sample a generator from G

def H1(s, str):
if not str in s.tableH1:
while True:
r = SampleFrom(Fp); R = s.gr

inverse = Map2Pt−1(R);
if inverse 6=⊥:
s.tableH1[str] = (r,R,inverse); break;

(r,R, inverse) = s.tableH1[str]
return inverse;

def _getGeneratorExponentForH1(s, str):
s.H1(str) # make sure that a table entry for str exists.
(r,R, inverse) = s.tableH1[str]
return r;

Figure 19: Embed secret exponent trapdoor.

GameD: Abort on hash collisions.

In this game we firstly abort on hash collisions for H1 and H2. Regarding H1 we consider a query
H1(str) to be colliding if Map2Pt(H1(str)) = Map2Pt(H1(str′)) for a previously queried value str′.
The advantage difference for the adversary to the previous game can be bound by statistical analysis
to (nH1 ·Map2Pt.nmax)2/p+ n2

H2
/2λ where nH1 is the number of H1 queries and nH2 is the number

of H2 queries.
We also abort if for a query str Map2Pt(H1(str)) is the neutral element. The probability for

accidentally drawing the neutral element through H1 is bound by (nH1 ·Map2Pt.nmax)/p.

def class GameD(GameC): # Inherit all code from GameC except for overridden or extended methods
def H1(s, str):
hashResult = GameC.H1(str)
if CollisionOfSecretExponentsForDistinctInputs(s.tableH1): abort();
if SecretExponentZeroForSomeInput(s.tableH1): abort();
return hashResult;

def _H2(s, str):
hashResult = GameC._H2(str)
if CollisionOfResultsForDistinctInputs(s.tableH2): abort();
return hashResult;

Figure 20: Abort on hash collisions.

45

GameE: Do not use the password for calculating the SENDINIT result.

In this game we restructure the code such that we do not use the password in SENDINIT queries for
calculating the public result message. This game is obviously indistinguishable from the previous
one as the obtained distribution for the private exponents y is not modified.

In this game we also defined a private method _DDH that implements a restricted decisional
Diffie-Hellman oracle that works for base points derived by the H1 function and points Y produced
by SENDINIT queries. As such the code of the SENDINIT and H1 queries in conjunction with the
_DDH function can be considered to produce challenges for the sCDH and sSDH problems.

def class GameE(GameD): # Inherit all code from GameD except for overridden or extended methods
def SENDINIT(s, Pi, li, Pj):
if exists instance (Pi, li) in s.records: return ⊥
inst = { } # setup python dictionary for record entry for new instance
pw = s.pw[Pi, Pj]; inst["pw"] = pw; inst["Remote"] = Pj ; inst["State"] = waiting;
z = SampleFrom(Fp); inst["z"] = z;
Y =s.gz; inst["Y"] = Y ; # calculate Y independently from the password from the global generator s.g .
result = (Pi, Y);

Calculate y for upcoming SENDFINALIZE calls. Note that inst["y"] will not be used by H2 code.
inst["y"] = z / s._getGeneratorExponentForH1(inst["pw"]);
s.records [Pi, li] = inst;
return (result); # return first protocol message generated for (Pj , li)

def _DDH(s, g,X, Y,K): # prepare a restricted DDH function using the trapdoor for use in later games.
Lookup (r,R, inverse) in s.tableH1 such that g == R. If no such record found return ⊥;
inst = LookupInstanceRecordForPartyWithPublicPoint Y
if inst 6=⊥:
z = inst["z"]; return Kinverse2 == X(inverse·z);

inst = LookupInstanceRecordForPartyWithPublicPoint X
if inst 6=⊥:
z = inst["z"]; return Kinverse2 == Y (inverse·z);

return ⊥ # not a restricted DDH query with valid inputs.

Figure 21: Calculate the point Y independently from the passwords in SENDINIT.

GameF : Limit adversaries to one password guess.

We now start giving the adversary and the game-class code different implementations of the H2

queries.
Firstly note that we previously have ruled out that the adversary has queried H2 for a string

that contains a public key Y that is later returned as the result of a SENDINIT call.
For H2 queries after a SENDINIT call, we can easily parse the adversary’s H2 hash queries for

the transcripts containing public points Ya and Yb and the adversarial group element guesses K.
If there is any protocol instance (Pi, li) which shares it’s generated public key with the adversarial
query, we can check whether the query for K corresponds to a password-derived generator for some
previously queried password pw: For this, we iterate through the H1 table and use the trapdoor

46

access to the secret exponents r. Also we have access to the secret exponent y used for generating
the point Y produced for instance (Pi, li). I.e. just as in the case of the UC proof, we can use the
secret exponents for implementing a restricted sSDH DDH oracle. This allows us to detect specific
values K in the hash query that correspond to password guesses. This way, we are able to count
the number of successful adversarial guesses for K for different passwords. If we observe more than
a single successful guess, then we let the code abort. If we observe a first password guess by the
adversary, we return the adversary the same result as produced by the private _H2 query, as in the
previous game. However, if we do not detect any password guess, we give the adversary a result
from a private random oracle.

In both, the previous game and this game any session key calculated by a protocol instance
will necessarily correspond to some password. A hash query on the _H2 as used by the simulated
instances is, thus always unrelated to a H2 query that corresponds to no password guess. As a
result the change in this game can only be distinguished if the adversary’s query corresponds to a
password guess. Indeed for the first observed password guess the public H2 is returning the same
result as the private oracle _H2. We identify this condition by using the _DDH function prepared
in the previous game.

On the other hand, the bad event of more than a single password guess can be reduced to
the sSDH problem with a loss proportional to the square of the number of H1 queries (See the
corresponding game 5 in the UC proof.) As a result, this and the previous game are indistinguishable
except for the bad event that a solution to the sSDH challenge that is provided by the code of the
H1 and SENDINIT queries.

47

def class GameF(GameE): # Inherit all code from GameE except for overridden or extended methods
def INITIALIZE(s, P):
GameD.INITIALIZE(P) # First call implementation from the superclass
s.separateH2Table = { }

def H2(s, str):
passwordGuessDetected = False;
(Ya,Yb, adversarialK) = ParseAdversarialQuery (str)
for all instances (Pi, li) with public key inst["Y"] matching one public key Ya or Yb in transcript:
inst = s.records [(Pi, li)];
Y = inst["Y"]; z = inst["z"]; # observe that none of these values relate to the instance’s password!
Pj = inst["Remote"]; X = parseTranscriptForPublicKeyDifferentFromY (transcript,Y);
for (r,R, inverse) in s.tableH1:
if s._DDH(R,X, Y, adversarialK):
passwordGuessDetected = True;
if exists entry inst["FirstPasswordGuess"] and inst["FirstPasswordGuess"] 6= R: abort();
inst["FirstPasswordGuess"] = R

s.records[Pi, li] = inst; # store password guess.
if passwordGuessDetected:
return s._H2(str); # use the internal oracle

else: # use a separate private random oracle implementation
if not str in s.separateH2Table: s.separateH2Table [str] = SampleFrom({0, 1}λ);
return s.separateH2Table[str]; # use separate RO if not related to a password guess.

Figure 22: Limit password guesses to one single guess per instance.

GameG: Abort on successful attacks of passive adversaries.

Again we can easily parse the adversary’s H2 hash queries for the transcripts and group elements
K. If two identical transcripts exist in session records for (Pi, li) and (Pj , lj) and as transcripts are
unique as a result of the previous games, we easily identify the case of a passive attack. In this
case that the adversarial query contains the same value K as calculated by a honest party, we abort
and declare the adversary to win. In any other case we respond to the adversary with the results
of a private random oracle. Just as in the corresponding case (Game 7 in the sequence used for
the UC security analysis), this bad event can be bound to the adversarial advantage of solving the
sCDH problem. We can carry out the reduction by using the self-reducibility of the sCDH problem.
I.e. we embed a sCDH challenge (g,X, Y) in the form Xξ and Y η for some known random values
ξ, η into the executions of the parties Pi and Pj and use the constrained DDH oracle for identifying
the correct solution K. In fact we have a loss of a factor of two as we need to flip coins which of the
challenge points X or Y to embed in the output of a party Pi as we do not assume clearly assigned
user and server roles here.7

As a result this game change is only distinguishable in case of the bad event that a solution to
the sCDH problem is provided.

7In fact if the same point X will be embedded into both attacked parties Pi and Pj the abort case corresponds
to the event of a solution of the Square-Diffie-Hellman problem. For simplification in this already lengthy paper we
decided to not introduce and define this additional problem in this paper and included a loss factor of two for the
sCDH problem in the theorem statement instead.

48

def class GameG(GameF): # Inherit all code from GameF except for overridden or extended methods
def H2(s, str):
(transcript, adversarialK) = ParseAdversarialQueryForTranscriptAndK (str)
if isTranscriptOfPassiveAttack(transcript):
(X,Y) = extractPublicInstanceKeysFromTranscript(transcript)
R = getGeneratorUsedForInstances(transcript)
if s._DDH(R,X, Y,adversarialK): abort();
if not str in s.separateH2Table: s.separateH2Table [str] = SampleFrom({0, 1}λ);
return s.separateH2Table[str]; # use separate RO for passive attack queries.

else: return GameF.H2(str);

Figure 23: Abort on successful attacks by passive adversaries.

Final bound for the adversary advantage. Throughout the game sequence the outputs of the
REVEAL and TEST queries have not been modified. However the implementation of the H2 query
was modified such that A obtains independent values from a private random oracle except for the
case of a single password guess iff the tested party instance was actively attacked. Note also that the
H2 query that was made accessible to the adversary never accesses the instance passwords and only
accesses the secret exponents through the restricted internal _DDH function that was introduced
in game E.

When executing a TEST query in Game G considering passive protocol executions, the outputs
given to the A are always independent fresh random values taken from the private H2 oracle except
for bad events that can be reduced to the sCDH or sSDH problems.

In the case of actively attacked instances, the only situation where the H2 oracle that A accesses
and the private _H2 oracle produce the same result is if a password guess was detected in Game F.
Moreover in Game F this event is limited to one single guess only.

As a result the best available adversarial strategy available in Game G is a random single pass-
word guess from the dictionary Dpw for any of the naa active attacks which occurs with probability
naa/|Dpw|. Summarizing the distinguisher advantages, we obtain the bounds from Theorem B.1.

Other variants of CPace. This concludes our game-based security analysis of CPace1MAP_NoSID

using a hash-then-map-once approach for calculating the generators. We do not identify any obstacle
for carrying out a corresponding analysis also for the other variants discussed in the simulation-
based security analysis within this paper. For instance when considering CPace2MAP, only the way
the trapdoor for H1 is implemented in game C needs to be adapted and otherwise the proof can be
carried out without any further change.

Quantum Annoyance. A protocol features quantum annoyance if an adversary with access to a
quantum computer still needs to solve at least one instances of a computational problem per attack
[21]. CPace is prone to offline dictionary attacks when facing such an adversary. To see this, consider
an attacker A sending a point Y = gypw to an honest party, with gpw ← Gen(pw). A computes
Kpw ← ScMulVfbase(Y ′, y) for Y ′ received from the honest party and derives key ISK pw from it.
Without engaging in further communication with the honest party, A can now compute the final
key with respect to another password pw′ by computing gpw′ ← Gen(pw′), solving a DLP to obtain r
such that grpw′ = gpw, and compute Kpw′ ← Kr

pw and derive ISK pw′ from it as usual. The adversary

49

could keep going on like this, having to solve one instance of a DLP per password guess. Moreover,
if generators depend only on passwords, as is the case in Fig. 16, then solving a single DLP with
respect to gpw allows A to efficiently compute the key corresponding to pw in all actively attacked
sessions. For a more quantum annoying CPace, Gen must contain session-specific information.
Computing gpw ← Map2Pt(H1(P ||P ′||pw)) forces A to solve one DLP instance per password per
pair of parties, and computing gpw ← Map2Pt(H1(sid ||P ||P ′||pw)) with session-specific information
sid finally forces A to solve one DLP per password guess.

Conclusion. Our security analysis of CPace in the UC framework in Section 5 requires that, prior
to entering the protocol, a pre-established unique session identifier sid is available to both parties.
As the above game-based security analysis highlights, CPace features also strong albeit different8

security guarantees if there is no such pre-established sid .

C On shortcomings of UC PAKE functionalities

We provide an illustrating example on how a shortcoming in existing PAKE functionalities from the
literature [17, 37, 34, 2] impacts their suitability for building higher-level applications from PAKE.
Let us first detail what shortcoming we are talking about. In PAKE functionalities, the adversary
A gets to determine the session key of honest users in some cases. This makes sense if A manages
to guess an honest party’s password during an interaction with said party, in which case A can
compute the very same session key and thus the party’s output is no longer uniformly random
(from the viewpoint of the adversary). But strangely, all existing PAKE functionalities also allow
the adversary to determine the honest party’s key K∗ via NewKey queries if (cf. Fig. 1)

either P or P ′ is corrupted.

This contradicts the principle of authenticated key exchange, where unauthenticated entities (i.e.,
honest or malicious parties not knowing the password) should not be allowed to learn the key
computed by an honest party.

Does this mean all known PAKE protocols are insecure? Most importantly, all PAKE protocols
proven w.r.t any of the existing PAKE functionalities can still be considered secure. On a technical
level, the reason is that these functionalities still provide all guarantees one would expect from a
PAKE against network attackers, as long as no corruptions occur. Besides that, we are not aware
of any actual UC PAKE security analysis that exploits the above shortcoming in their simulation,
and conjecture that they can be proven secure without this shortcoming.

Why bother then to fix this? The shortcoming’s effect shows when a PAKE functionality is
used to modularly build other protocols. Modular protocol analysis requires strong composability
guarantees of security proofs and is one of the main features of the UC framework. As an example,
assume we want to build password-authenticated secure channels from FpwKE depicted in Fig. 1.
Intuitively, a password-authenticated secure channel allows two parties to securely communicate
if and only if they hold the same password. Consider the following password-based channel toy

8While Theorem B.1 does not imply composability and holds only for randomly chosen passwords, it implies
weak forward secrecy. Hence, both CPace1MAP_NoSID and CPace1MAP_NoSID_ID can be turned into PAKEs with perfect
forward secrecy by adding key confirmation [1, 2]. We note that, without key confirmation, perfect forward secrecy of
CPace1MAP_NoSID and CPace1MAP_NoSID_ID seems only provable by relying on the algebraic adversary model, a strategy
that has been demonstrated to work for SPAKE2 [1, 2].

50

P P ′

On input (Init, pw) On input (Init, pw′)

pw pw′

FpwKE

K K ′

On input (Send,m)

c← AES.EncK(m) c m′ ← AES.DecK′(c)

Output m′

Figure 24: Toy example of a modular password-authenticated secure channel protocol with FpwKE

as building block, exposing the shortcoming of FpwKE.

protocol9 Πsc depicted in Fig. 24: users call FpwKE to turn their passwords into a cryptographic key
and subsequently encrypt a message m under this key using a symmetric cipher.

Intuitively, we would expect protocol Πsc to implement a secure password-authenticated channel.
Unfortunately, with the shortcoming in existing PAKE functionalities, there is no way to prove this
protocol secure: upon corrupting P ′, the adversary gets to determine the value K sent to an honest
P. A simulator would now have to produce a ciphertext c that, for any K chosen by the adversary,
decrypts to m – but without knowing m. Clearly, this traps the simulator.

Lastly, we note that our argument above is backed up by Canetti et al. [17], who could only
circumvent the above simulation trap by integrating the shortcoming also into their password-based
channel functionality.

To summarize, it seems necessary to strengthen UC PAKE functionalities in the way we propose
in this paper, in order to make them useful as building blocks for higher level applications.

D Initiator-responder and parallel CPace protocol variants

The current CPace specification in [28] describes a protocol with clear initiator and responder roles,
where the responder sends his reply only upon reception of the initiator message. Astonishingly, we
observed that for an analysis of such a protocol in the UC framework, an ideal PAKE functionality
technically needs a richer structure than the one for a corresponding parallel protocol that does
not enforce ordering. The reason is that the responder party needs to be activated twice, once for
sending the network message and once for issuing the session key.

In order to avoid this purely technical complexity in our presentation we decided to analyze
security of CPace here in the more complex setting where no ordering is enforced. For the purpose
of the analysis, we thus had to modify the protocol from [28] such that ordered concatenation

9This is just a demonstrating example and not a suggestion for a practical protocol, which would require authen-
ticated encryption [17].

51

(written oc(A,B)) is used for generating hash function inputs instead of just putting the initiator’s
message first.

We would like to stress that in case that the protocol control flow guarantees a defined sequence,
as is e.g. the case for protocols such as TLS, there is no need security-wise to enforce use of ordered
concatenation.

E Note on sampling of scalars

The CPace protocol needs an algorithm for sampling scalars y for use as private Diffie-Hellman
exponents. Ideally for a (sub-)group of order p, these should be sampled from a uniform distribution
from Fp \ 0. Sometimes, in particular if p is very close to a power of two p = 2l + p0 with |p0| � p,
existing Diffie-Hellman libraries draw scalars from the set {1, . . . , (2l − 1)} instead or include other
structure in the scalars. Examples include the X25519 Diffie-Hellman protocol [12] on Curve25519
with it’s so-called scalar-clamping procedure which has been re-used for the X448 protocol on
Curve448. For the analysis of CPace this change can be considered by a specific scalar sampling
function ScSam.

We also observed libraries (for X25519 and X448, but also libraries targeting short-Weierstrass
curves) to fix some scalar bits to a defined 1 value in order to guarantee for a constant execution
time in window-based scalar multiplication strategy. There are also good reasons for avoiding any
additional calculation involving secret scalars y, such as might be required during rejection sampling,
since any operation on y might put the secret at risk, e.g. due to side-channels. As CPace aims
at being suitable for re-using existing well-tested libraries as-is, the implications for the protocol
security due to non-uniform sampling of scalars needs to be analyzed. Unlike for conventional
Diffie-Hellman protocols, for CPace not only the confidentiality of ephemeral session keys might be
affected but also information on the passwords could be leaked.

In order to consider the case of p = 2l + p0, we will introduce an additional game G0
′ after

the real-world setting and only change the scalar-sampling algorithm. In this game, we replace the
possibly slightly non-uniform distribution of secret scalars ya from honest parties in the real world
with a fully uniform distribution. For a group order c · (2l + p0) implementations in the real world
honest parties might draw the scalars ya and yb from {1, . . . , (2l − 1)} instead of {1, . . . , (p− 1)}.

Let AdvDUN
BDUN

(G,ScSam) be the probability of an adversarial algorithm BDUN of distinguishing a
group element Y ∈ G, where y ← ScSam(), Y = gy was calculated by use of a function ScSam, from
a uniformly drawn element X ←R G \ IG . Let l1 denote the number of generated public keys Ya, Yb
from honest parties and let l2 the number of adaptive corruptions that reveal the secret exponents.
Then the following bound for the possible distinguisher advantage applies:

| Pr [G0] - Pr [G0
′] | ≤ |p0/p| · (l1 ·AdvDUN

BDUN
(G, ScSam) + l2)

As a result of our assessment the structure introduced by the "scalar clamping" defined for
X25519 and X448 does not introduce a critical non-uniformity for CPace.

F Details on chaining challenge generator classes

Two different types of experiments can be distinguished. Firstly, the sCDH and the sCDH_sTCDH
classes (Fig. 5 and Fig. 12) share the same API and specify two variants of the conventional CDH

52

problem. Instances will be assigned a base point g in their constructor call, produce two elements
from a prime-order group and answer DDH queries. Secret exponents will be revealed in case
of corruption events. Also the objects inform the caller on which objects are accepted by their
DDH oracle.

This API is used by the objects representing variants of the simultaneous Diffie-Hellman as-
sumption. As security of all variants is ultimately based on the prime-order version of the sSDH
problem all calls from S will ultimately be converted into a call to an instance of the sSDH class
from Fig. 4. This is implemented by chaining the different classes.

As root of the chain first an instance of the prime-order sSDH class is generated which is
parametrized by one of the two conventional CDH classes (sCDH or sCDH_sTCDH) by a con-
structor parameter. In its constructor the sSDH object will sample a generator g and create an
instance of the sCDH or sCDH_sTCDH class, which will become a member of the sSDH root class.
The base point is passed to this member object in its constructor call.

The challenge generator classes for the simultaneous problem variants will all produce base points
for the simultaneous Diffie-Hellman problem through their API for producing H1 samples. However
the encoding of the base point varies. In the root class sSDH a uniformly sampled group element
is returned directly. The derived classes could return the base point also in form of an encoding h
that needs to be passed to the mapping construction for decoding.

We describe the chaining approach by using the example of single-coordinate protocol variants
on curves with cofactor and twist security using a "map-once" primitive (our recommendation for
twist secure Montgomery curves from Appendix G). The corresponding code is found in Fig. 12
below the class definition.

As all Montgomery curves having real-world relevance today come with twist security, the sSDH
root object is instantiated with an sCDH_sTCDH object and we obtain an "twistSdhExp" instance
of the sSDH class. As the curve has a cofactor, "twistSdhExp" will be passed to an instance
"twistCcExp" of the class cofactorClearer and stored there as a member. "twistCcExp" makes
sure that inputs for all queries, notably parameters 2,3,4 of the DDH function, will be mapped to
the prime-order subgroup and transformed into calls to "twistSdhExp". The "twistCcExp" object
itself is then passed to the constructor of the distribution class DG_sSDH which will be given a
function reference to the implementation of the preimage calculator function for the map. This
"twistDistExp" object will return H1 samples that need to be decoded using the Map2Pt function
in order to obtain group elements and require this encoding in its first operand in its DDH function.
Finally an instance "twistXonlyExp" of the moduloNegationAdapter adapter class is created, having
the "twistDistExp" object as a member in its body.

Calls to the DDH method of the "twistXonlyExp" object will receive the base point h in a form
that needs to be passed to Map2Pt for decoding to a group element. The missing coordinate is
reconstructed for the second, third and fourth operand of the DDH function and for both candidate
points calls to the DDH method of the "twistDistExp" instance will be issued. The latter will
convert the base point query h to a group element and forward the query to the cofactor clearer.
The latter will make sure that queries for points will have their low-order component cleared and
issue a call to the sSDH root object which itself will forward the query to the sCDH_sTCDH instance
in its body which uses its secret exponents for giving the response.

53

G Recommendations: How to instantiate CPace

CPace was designed for suitability with different styles of Diffie-Hellman protocols on elliptic curves.
Our perception is that it is possible to distinguish three main application scenarios with real-world
relevance.

G.1 Short-Weierstrass

The first elliptic curves being standardized used a short-Weierstrass form. In practice only prime-
order curves became of more widespread relevance. While some applications use point-compression,
historically mostly a full coordinate representation is used for the network communication, (possibly
for patent circumvention reasons that applied at the time). A typical example would be ECC on
NIST-P256 and Brainpool curves [20, 22, 39].

In this ecosystem, we recommend to instantiate CPace using the following features

• Encode points Ya and Yb using full coordinates and use conventional point verification.

• Still, we recommend to actually only use the x-coordinate of the Diffie-Hellman result K for
the session key, as TLS does so and some libraries use an x-coordinate-only ladder internally.

• We recommend to use the nonuniform Encode2Curve algorithms from the Hash2Curve draft,
i.e. the "map-once" primitive, specifically because otherwise single-coordinate scalar multi-
plication strategies would not be practical for CPace. The point addition required by the
"map-twice-and-add" approach would require full group operations. As mapping algorithm
we recommend simplified SWU [23] because according to our analysis this is the least complex
and most efficient variant working for the established curve set, notably NIST-P256.

• In this ecosystems, implementers should carefully evaluate the process of scalar sampling cho-
sen in their library, in particular for the NIST-P256 and Brainpool curves. We observed that
some libraries might not sample scalars sufficiently uniformly. Here we recommend rejection
sampling.

For this instantiation the assumption set is modeled by the challenge-generator class "single-
CoorExp" in Fig. 14.

G.2 Montgomery curve ladders

In addition to the established Weierstrass ecosystem, recently constructions based on Montgomery
and (twisted) Edwards curves emerged. We believe that these designs became especially attractive
as their design already considered typical implementation pitfalls from the very beginning. The
wide-spread use of the prominent representatives X25519 and X448 [38] resulted in standardization
for internet protocols and by standardization bodies such as NIST.

The first implementations for CPace did focus on this type of Diffie-Hellman primitives. For the
twist-secure Curve25519 and Ed449 we recommend the following configuration.

• Only use the u-coordinate on the Montgomery curve.

• Do not verify the curve equation explicitly, but check the neutral elements (all elements
encoded with zeros), i.e. use the twist security. This way ScMulVf and ScMul become the

54

same function and X25519(X,y) and X448(X, y) can directly be used for this purpose. Note
that checking for the neutral elements (all zero encoding for X448 and X25519) is absolutely
mandatory for CPace. Here the discussion from [38] which describes this check as optional
does not (!) apply.

• For the map, we recommend to use non-uniform Elligator2 without co-factor clearing as this
spares a field inversion (or alternatively spares a montgomery ladder implementation working
on projective-coordinate inputs instead of an affine input.).

As the group orders are very close to a power of two, the clamped scalar method can be considered
suitable also for CPace instantiations10 For the construction described in the this paragraph the
assumption set is modeled by the challenge-generator class "twistXonlyExp" from Fig. 12.

G.3 Group abstraction

The speed advantage and the simplicity provided by the efficient and complete addition formulas
available for Montgomery and (twisted) Edwards curves can only be obtained at the cost that
protocols then need to deal with the co-factors. Not all protocols are, such as CPace, analyzed
regarding this aspect. In order to allow for “the best of both worlds” projects are emerging which
provide prime-order group abstractions on these curves, such as ristretto25519 and decaf448 [30, 19].
As these abstractions work with the most efficient addition formulas currently known for elliptic
curves, we do not see any incentive or advantage for single-coordinate instantiations for CPace.
(In our opinion tightly constrained applications might rather opt for the Montgomery curve ladders
anyway.) The designers of these abstraction frameworks also include mapping algorithms (“batteries
included”) and enforce invalid-curve checks by their API design. Here we recommend the following
parameters for CPace:

• Use the compressed point encoding from the abstraction.

• Use the built-in map-twice-and-add construction that comes “batteries included” with the
abstraction.

• In our opinion, the verification check for the identity element should receive some atten-
tion. Comparisons should be carried out using the unambiguous encoding provided by the
abstraction and not using the intermediate representation format employed internally for the
Hisil-Wong-Carter-Dawson addition formulas [35].

As the group orders for ristretto25519 and decaf448 are very close to a power of two, using
random-number generator outputs without rejection sampling can be considered suitable for deriving
secret exponents for CPace.

For this instantiation the assumption set is modeled by the challenge-generator class "coffeeExp"
in Fig. 9.

10As the u-coordinate-only approach does not distinguish the curve points gy and g−y = gp−y, also fixing the most
significant scalar bit to one is not critical here.

55

	Introduction
	Technical overview of our results

	PAKE Security Model
	Preliminaries
	Notation
	Cryptographic assumptions
	Transforming passwords to points on an elliptic curve

	The CPace protocol
	Security of Simplified CPace
	Embedding CDH experiment libraries into the simulator

	Analysis of Real-World CPace
	CPace without Hashing to the Group
	Map-twice-and-add constructions.
	Considering curves with small co-factor
	CPace using twist secure curves
	CPace using single-coordinate Diffie-Hellman
	Chaining the experiment classes

	Proof of thm:basic
	Game-based security analysis
	Security Model
	Game-based security of CPace

	On shortcomings of UC PAKE functionalities
	Initiator-responder and parallel CPace protocol variants
	Note on sampling of scalars
	Details on chaining challenge generator classes
	Recommendations: How to instantiate CPace
	Short-Weierstrass
	Montgomery curve ladders
	Group abstraction

