
HAL Id: hal-02965322
https://hal.inria.fr/hal-02965322v2

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

So near and yet so far - Symbolic verification of
distance-bounding protocols

Alexandre Debant, Stéphanie Delaune, Cyrille Wiedling

To cite this version:
Alexandre Debant, Stéphanie Delaune, Cyrille Wiedling. So near and yet so far - Symbolic verification
of distance-bounding protocols. ACM Transactions on Privacy and Security, 2022, 25 (2), pp.39. �hal-
02965322v2�

https://hal.inria.fr/hal-02965322v2
https://hal.archives-ouvertes.fr

So near and yet so far –

Symbolic verification of distance-bounding protocols

ALEXANDRE DEBANT, Univ Rennes, CNRS, IRISA, Rennes, France

STÉPHANIE DELAUNE, Univ Rennes, CNRS, IRISA, Rennes, France

CYRILLE WIEDLING, DGA MI, Bruz, France

The continuous adoption of Near Field Communication (NFC) tags offers many new applications whose se-
curity is essential (e.g. contactless payments). In order to prevent flaws and attacks, we develop in this paper
a framework allowing us to analyse the underlying security protocols, taking into account the location of the
agents and the transmission delay when exchanging messages. We propose two reduction results to render
automatic verification possible relying on the existing verification tool ProVerif. Our first result allows one
to consider a unique topology to catch all the possible attacks, and the second one simplifies the security
analysis when considering Terrorist fraud. Then, based on these results, we perform a comprehensive case
studies analysis (27 protocols), where we obtain new proofs of security for some protocols and detect attacks
on some others (cf. Table 1).

1 INTRODUCTION

Companies continuously look for new features that may improve the user experience for their cus-
tomers. The development of contactless technologies like Wi-Fi, Radio Frequency IDentification
(RFID) or Near Field Communication (NFC) has led to the birth of many innovations, e.g. keyless
entry systems, in-store self-checkout, transport-ticketing, tap-to-pay transactions, etc. The quick
adoption of these technologies by sellers and customers is explained by the convenience and ef-
ficiency they bring. For instance, regarding the tap-to-pay feature, transactions become quicker
and, this allows one to replace the use of credit/debit cards and wallets by smart watches or smart-
phones (which include an NFC interface today) for everyday purchases.
However, all these advantages for contactless technologies should not conceal new threats that

are coming up. An important security concern behind all these applications is to ensure the phys-
ical proximity of the two devices that are involved. Indeed, a malicious person should not be able
to impersonate a remote and honest person to pay a bill on his behalf. While contact-based de-
vices prevent such a scenario "by design", this scenario becomes possible with contactless devices.
For instance, in [32, 36], relay attacks have been shown practical even considering the short com-
munication range of the underlying technologies: the attacker uses a much faster communication
channel, like WiFi, to relay messages between distant devices. All of these attacks are man-in-the-
middle scenarios where the attacker may simply relay messages, or be more active, e.g. making
some computations to forge new messages. Ideally, contactless applications should resist to these
attacks.
In order to mitigate such attacks (and others), some security protocols, called distance-bounding

protocols, have been designed. As usual, they rely on cryptographic primitives (e.g. encryption, sig-
nature, hash function) to ensure various security properties. For instance, they aim at enforcing
physical proximity between two participants called respectively the prover and the verifier. Due to
their critical applications, e.g. payment protocols, proving the security of distance-bounding pro-
tocols is of paramount importance. For a long time, these security analyses consisted in analysing
the protocols against well-known attacks only, and prove their inapplicability. However, all these
analyses provide a limited confidence since they focus on rather specific attacks only [3].

Authors’ addresses: Alexandre Debant, Alexandre.Debant@irisa.fr, Univ Rennes, CNRS, IRISA, Rennes, France; Stéphanie
Delaune, Stephanie.Delaune@irisa.fr, Univ Rennes, CNRS, IRISA, Rennes, France; Cyrille Wiedling, cyrille.wiedling@irisa.
fr, DGA MI, Bruz, France.

2 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

In the early 2010s, computational models have been designed to formally verify the security
of distance-bounding protocols in a more general setting [3, 33]. In these models, messages are
represented by bitstrings, an attacker is any probabilistic polynomial time algorithm, and an at-
tack applies if there exists an attacker with a non-negligible probability of success. These features
are accurate enough to precisely analyse distance-bounding protocols and obtain strong security
guarantees. Different frameworks have been proposed, and many protocols have been analysed
within these frameworks [5]. Unfortunately, this required tedious hand-written proofs for each
protocol. Automation appears to be a very difficult task in such a framework.
Symbolic verification of cryptographic protocols is a well-known approach suitable for automa-

tion. A common abstraction of such models is to abstract cryptographic primitives using function
symbols, and to assume that these primitives work perfectlywell. For instance, an encryption prim-
itive will not leak any information regarding the plaintext to anyone who knows the ciphertext as
soon as the decryption key remains unknown. Messages exchanged during a protocol are then rep-
resented by first-order terms built using these function symbols, as well as atomic data modelling
nonces, keys, etc. Another common abstraction applies on the attacker model: symbolic models
usually assume an omniscient and omnipresent attacker, the so-called Dolev-Yao attacker [30],
which is able to intercept, forge and send messages at any time. Even considering these two ab-
stractions, the automatic verification of cryptographic protocols remains a difficult problem. In
most cases, proving security properties for an expressive enough class of protocols appears as an
undecidable problem [49]. Nevertheless, procedures and tools, e.g.ProVerif [10, 11] or Tamarin [48],
have been designed to tackle this problem, and have already proved their efficiency and usefulness
to analyse real-world protocols. For instance, ProVerif has been used to analyse TLS 1.3 [9], the
ARINC823 avionic protocol [12], as well as the Neuchâtel voting protocol [22]. Tamarin has been
used to conduct a security analysis of complex protocols, e.g. 5G AKAwith exclusive-or [8], group
key agreement protocols [54], or the Noise framework [38] with Diffie-Hellman keys, to cite only
a few. Unfortunately, these tools must be adapted in order to analyse protocols whose security
relies on physical constraints. Indeed, by default, they model an omniscient attacker who controls
the entire communication network and can therefore relay messages without introducing any
delay. Applying these tools naïvely to analyse distance-bounding protocols will necessarily lead
to false attacks. To overcome this limitation, some novel symbolic models have been proposed,
e.g. [7, 44, 47]. This paper is part of this line of work and aims at allowing the formal symbolic
verification of distance-bounding protocols leveraging some existing automatic verification tools.

Our Contributions

As already explained, we aim at proposing techniques and tools to allow formal symbolic verifica-
tion of distance-bounding protocols. Based on a symbolic model we develop for that purpose, we
propose some reduction results to allow automatic verification of these protocols in the existing
tool ProVerif, and we conduct the security analysis of 27 protocols. Our main contributions are as
follows:

(1) First, we establish that, for each class of attacks, considering a rather simple topology with
at most four agents is enough to catch all the possible attacks (see Section 5). This reduces
the number of topologies that need to be considered from infinitely many to only one (per
class of attacks).

(2) Then, considering Terrorist fraud, a well-known type of attacks in the context of distance-
bounding protocol, we prove that the dishonest prover has a best strategy for collusion on
which the security analysis can focus on (see Section 6).

So near and yet so far –
Symbolic verification of distance-bounding protocols 3

(3) Lastly, getting some inspiration from [20], we show how to encode the reduced topologies in
the existing verification tool ProVerif, and we establish the correctness of this encoding (see
Section 7). This allows us to propose a comprehensive case studies analysis (27 protocols)
relying on our new framework. As detailed in Table 1, we obtain new proofs of security
for some protocols and detect attacks on some others. The results on the case studies are
presented in Section 8 .

These results have been obtained within a symbolic model that we developed to fit our specific
needs. Based on the applied pi-calculus [2], this models allows to faithfully take into account the
physical constraints by modelling agents’ locations and time. About the physical constraints, we
model that a message takes time to travel from one location to another. We also propose formal
definitions for each class of attacks (Distance fraud, Mafia fraud, Distance Hijacking attack, and
Terrorist fraud) considering an arbitrary number of agents, each located at arbitrary locations.
The model is detailed in Section 3 regarding the protocols, and in Section 4 regarding the security
properties.

We extend here results that have been published at FSTTCS’18 [26] and ESORICS’19 [27] by pro-
viding detailed proofs of our reduction results, more examples to illustrate the different concepts, a
detailed comparison with existing works, and some additional case studies. The detailed proofs as
well as the full material used to conduct the case studies are available in the supplementarymaterial
provided with this document and in our GitLab repository: https://gitlab.inria.fr/adebant/db-verif .

2 BACKGROUND

In this section, we recall relevant background related to distance-bounding protocols, and their
formal verification in the symbolic setting. The SPADE protocol described in Figure 1 will be used
as a running example throughout this paper.

2.1 Distance bounding protocols

In 1993, Brands and Chaum proposed the first distance-bounding protocol [15]. Since then, more
than 40 distance-bounding protocols have been designed (see e.g. [5]), and they all mostly follow
the same structure. Typically, a distance-bounding protocol starts by an initialisation phase in
which the prover and the verifier exchange data to prepare the fast phase that follows. This fast
phase allows the verifier to estimate his distance with the prover. For this, the verifier measures
the time that elapses during multiple challenge/response exchanges. Finally, distance-bounding
protocols may require a final phase during which the two parties exchange some extra information.
An example of such a protocol is the SPADE protocol introduced in [16], and presented in Fig-

ure 1. It relies on the use of public-key encryption, signature, pseudo-random functions, and the
exclusive-or operator. The protocol starts with the prover sending his nonce =% and a signature f
of this nonce using his signing secret key ssk(%). This pair of information is encrypted using the
public-key of the verifier. Once, the verifier has decrypted and verified the signature, he sends
back two nonces, <+ and =+ , which will be used by the prover during the fast phase. To make
this phase as fast as possible, the prover pre-computes two session values � 0 and � 1. After a mo-
ment, the verifier initiates the fast phase during which the time measurement is performed. The
verifier generates and sends a random bit 28 , and the prover has to reply immediately with the
8-th bit of � 0, denoted � 0

8 , if 28 = 0, or the 8-th bit of � 1, denoted � 1
8 , otherwise. This fast ex-

change is repeated a fixed number of times. After the fast phase, the prover is expected to provide
prf (〈=% , =+ ,<+ , 21 . . . 2=, A1 . . . A=〉) to the verifier as a transcript of the session for an additional
check. If all the checks pass and if enough correct answers are received within a sufficiently short

https://gitlab.inria.fr/adebant/db-verif

4 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Verifier Prover

pick =% fresh
f = sign(=% , ssk(%))

aenc(〈=% , f〉, pk(+))

check signature
and

pick<+ , =+ fresh
〈<+ , =+ 〉

� 0
= prf (〈=% , =+ 〉)

� 1
= =% ⊕<+ ⊕ � 0

pick 28 ∈ {0, 1}
28

A8 =

{
� 0
8 if 28 = 0

� 1
8 if 28 = 1

A8

Fast phase − for 8 = 1 to =

prf (〈=% , =+ ,<+ , 21 . . . 2=, A1 . . . A=〉)

check all A8
and transcript

Fig. 1. SPADE protocol

time after the corresponding challenge 28 has been sent out, then the verifier is convinced that the
prover is located in his vicinity and accepts the session.

2.2 Different types of fraud

Regarding the literature, the different attack scenarios that may apply on distance-bounding proto-
cols have been gathered into three main classes:Mafia fraud [29], Terrorist fraud [28], andDistance
fraud [28]. Recently, Cremers et al. have discovered a new class of attacks called Distance Hijack-

ing attack [23]. Nowadays, the security analyses are thus performed w.r.t. to these four classes of
attacks which differ mainly by the honesty and the locations of the main protagonists:

• Mafia fraud: an attacker located in-between an honest verifier and an honest distant prover
tries to make the verifier authenticate the prover.

• Distance Hijacking attack: a distant dishonest prover abuses honest parties to be authenti-
cated by an honest verifier.

• Distance fraud: a distant dishonest prover tries to be authenticated by an honest verifier.
• Terrorist fraud: a distant dishonest prover accepts to collude with an attacker to be authen-
ticated once by an honest verifier. However the collusion should not give any advantage to
the attacker for future attacks, meaning that the attacker should not be able to authenticate
again on behalf of the dishonest prover who colluded with him.

The Mafia fraud is the class that encompasses the aforementioned relay attacks that applies
to tap-to-pay transactions or keyless entry systems embedded in cars. The Terrorist fraud is an
advanced scenario in which a prover accepts to collude with the attacker once. However, this col-
lusion should not enable the attacker to mount future attacks. By consequence, in such a scenario,

So near and yet so far –
Symbolic verification of distance-bounding protocols 5

the dishonest prover will not accept, for instance, to reveal his long-term keys since this will ren-
der future attacks possible. The two remaining classes of attacks, Distance fraud and Distance
Hijacking attack, are very similar. In case of Distance fraud, the attacker is alone, whereas he can
abuse honest parties in a Distance Hijacking attack. Hence, Distance Hijacking attacks encompass
Distance frauds.

2.3 Related work

In 2007, Meadows et al. [47] proposed the first symbolic model to analyse distance-bounding pro-
tocols. This framework relies on an authentication logic that faithfully features locations and time,
and all the proofs are carried out manually. Since then, some progress has been done towards
automation.
In 2011, Basin et al. [7] proposed another symbolic framework to analyse distance-bounding

protocols. It extends an existing model based on multiset rewriting rules with time and locations
in a general setting. The protocol descriptions and the deduction capabilities of the attackers re-
main unchanged; only the network rule has been adapted: a message can be received at time C'
by an agent � if, and only if, it has been sent by an agent � soon enough to let the message travel
from �’s location to �’s, i.e., at time C(such that C' ≥ C(+ �8BC (�, �). This property faithfully
models physical restrictions and has been used to analyse distance-bounding protocols. Instead of
relying on hand-written proofs, the authors encoded their model into the theorem-proving assis-
tant Isabelle/HOL [52] in order to provide a partially automated framework. Indeed, many lemmas
are generic enough to be protocol-independent and thus re-usable across different analyses. The
approach followed by the authors demonstrates a noteworthy effort to provide a rigorous frame-
work to analyse distance-bounding protocols. Unfortunately, conducting security proofs within
their framework requires a significant effort as protocol-dependent lemmas must be manually de-
fined by the end-user (typically between 8 and 20 for each case study).
In 2015, Chothia et al. [20] aimed at verifying a new payment protocol, named PaySafe, designed

to ensure physical proximity in contactless transactions. To this aim, they developed an approach
based on the ProVerif tool. They managed to encode rather simple topologies that involve only
two locations: the verifier’s location and a remote location (typically for the honest prover when
considering relay attacks). This encoding relies on the notion of phases provided by ProVerif: three
phases are defined, one for each phase of the protocol, following the general structure of distance-
bounding protocols previously presented. Agents at the verifier’s location are allowed to act during
any phase, but remote agents cannot act during the fast phase (intuitively they are too far to
respond to the challenge). The main limitations of this approach are two-fold: they focus on a
unique topology without providing any justification; and they do not formally justify its encoding
in ProVerif. Despite that, this is an appealing approach and we actually get inspiration from this
work to set up our framework.

Meanwhile we established the results presented here, Mauw et al. [44, 45] extended Basin et al.’s
framework [7] to cope with the automation issue, and Chothia et al. [19] presented an extension of
the applied pi-calculus to model distance-bounding protocols. These works deserve detailed atten-
tion, and therefore a precise comparison with our framework will be done later on (see Section 4.4
regarding modelling, and Section 8.5 regarding automation).

3 MODEL

Wemodel security protocols using a process algebra inspired from the applied pi-calculus [2] used
by, e.g., the ProVerif verification tool [10, 11]. In this setting, participants are modelled as processes,
and the communication between them is modelled by means of the exchange of messages that are
represented by a term algebra. However, modelling distance-bounding protocols requires several

6 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

features. For instance, the location of a participant is a relevant piece of information to know
the time needed by a message to travel from one point to another. Timing information is also of
paramount importance since a participant may simply decide to discard a message which arrives
too late. Therefore, in this section, we extend the applied pi-calculus to model these features.

3.1 Messages

As usual in the symbolic setting, we model messages through a term algebra. We consider both
equational theories and reduction relations to represent the properties of the cryptographic prim-
itives. This provides a lot of flexibility and allows one to model various cryptographic primitives.

3.1.1 Term algebra. We consider two infinite and disjoint sets of names: N is the set of basic
names, which are used to represent keys and nonces, whereas A is the set of agent names, i.e.
names which represent the agent identities. We consider an infinite set Σ0 of constant symbols
that are used to represent values known by the attacker, as well as two infinite and disjoint sets
of variables, denoted X and W. Variables in X refer to unknown parts of messages expected by
participants while variables in W are used to store messages learnt by the attacker. We assume a
signature Σ, i.e. a set of function symbols together with their arity. The elements of Σ are split into
constructor and destructor symbols, i.e. Σ = Σ2 ⊎ Σ3 . We denote Σ+

= Σ ∪ Σ0, and Σ
+
2 = Σ2 ∪ Σ0.

Given a signature F , and a set of atomic data A, we denote by T (F ,A) the set of terms built from
atomic data A by applying function symbols in F . A constructor term is a term in T (Σ+

2 ,N∪A∪X).
We denote vars(D) the set of variables that occur in a termD. Amessage is a constructor termD that
is ground, i.e. such that vars(D) = ∅. The application of a substitution f to a term D is written Df .
We denote dom(f) its domain, and img(f) its image. We have that dom(f) = {G | Gf ≠ G} and
img(f) = {Gf | G ∈ dom(f)}. The positions of a term are sequences of integers, and are defined as
usual. We use n to denote the root position of a term.We use C |? to represent the term at position ?
in C . More formally, we have that C |n = C , and C |8 .? = C8 |? when C = f(C1, . . . , C=) and 1 ≤ 8 ≤ =.

Example 1. We consider the signature Σex
= Σ

ex
2 ∪ Σ

ex
3
with:

• Σ
ex
2 = {prf/1, pk/1, sk/1, spk/1, ssk/1, aenc/2, sign/2, 〈 , 〉/2, xor/2,0/0, ok/0, answer/3} ;

• Σ
ex
3
= {adec/2, check/2, proj1/1, proj2/1, eq/2}.

The symbol prf models a hash function, and pk, sk, spk, ssk are used to model the public/private

keys, respectively for encryption and signature, of an agent. We model asymmetric encryption and

decryption using aenc and adec, and a signature mechanism through the sign and check symbols. The

〈 , 〉, proj1 and proj2 symbols are for concatenation and, respectively, left and right projections, while

xor models the exclusive-or operator together with the symbol 0 as the identity element. We provide

an equality test using eq and the constant ok. Finally, answer is a function symbol, a cryptographic

hash, used to model the answer provided by the prover.

Remark 1. For readability purposes, we may use, in the rest of this document the following notations:

〈C1, . . . , C=〉 = 〈C1, 〈C2, . . . , 〈C=−1, C=〉〉〉 for the concatenation of= elements, and c 9 (〈C1, . . . , C=〉) = proj1◦

proj 9−12 (〈C1, . . . , C=〉) the 9 -th projection on a=-tuple, with 9 ∈ {1, . . . , =−1}, while, for 9 = =, we define

c 9 = proj=−12 (〈C1, . . . , C=〉).

3.1.2 Equational theory. Following the approach developed in [11], constructor terms are subject
to an equational theory allowing us to model the algebraic properties of the primitives. An equa-
tional theory consists of a finite set of equations of the form D = E where D, E ∈ T (Σ2 ,X), and
induces an equivalence relation =E over constructor terms. Formally, =E is the smallest congruence
on constructor terms, which contains D = E in E, and that is closed under substitutions of terms
for variables. We assume that it is not degenerate, i.e. there exist D, E such that D ≠E E .

So near and yet so far –
Symbolic verification of distance-bounding protocols 7

Example 2. To reflect the algebraic properties of the exclusive-or operator, we may consider the

equational theory Exor generated by the following equations:

(G ⊕ ~) ⊕ I = G ⊕ (~ ⊕ I) G ⊕ ~ = ~ ⊕ G G ⊕ 0 = G G ⊕ G = 0.

3.1.3 Rewriting rules. As in [11], we give a meaning to destructor symbols. This is done through
a set of rewrite rules of the form g(C1, . . . , C=) → C where g ∈ Σ3 , and C, C1, . . . , C= ∈ T (Σ2 ,X). A
term D can be rewritten in E if there is a position ? in D, and a rewrite rule g(C1, . . . , C=) → C such
that D |? =E g(C1, . . . , C=)\ for some substitution \ such that C1\, . . . , C=\ are constructor terms. In
such a case, we have that E = D [C\]? i.e. D in which the term at position ? has been replaced by C\ .
In the following, we only consider sets of rewrite rules that yield a convergent rewriting system
(modulo E), and we denote D↓ the normal form of a term D.

For modelling purposes, we split the signature Σ into two parts, Σpub and Σpriv, and we denote
Σ
+
pub = Σpub ∪ Σ0. An attacker builds messages by applying public symbols to terms he knows and

that are available through variables inW. Formally, a computation done by the attacker is a recipe,
i.e. a term in T (Σ+

pub,W).

Example 3. Among symbols in Σ
ex, only sk and ssk are in Σpriv. The property of the destructor

symbols are reflected by the following rewriting rules:

adec(aenc(G, pk(~)), sk(~)) → G

check(sign(G, ssk(~)), spk(~)) → G

proj1(〈G,~〉) → G

proj2(〈G,~〉) → ~
eq(G, G) → ok.

Note that eq(D, E) reduces to a message if, and only if, D =E E .

3.2 Protocols

As usual, protocols are modelled by a set of roles, i.e. processes describing the behaviours of each
participant.

3.2.1 Process algebra. Our process algebra is inspired from the applied pi-calculus [2]. We do not
consider else branches. Actually, we do not have conditional. Instead, equality tests are performed
through our let construction relying on the destructor symbol eq. Our grammar below does not
feature parallel composition and replication. These operators are directly taken into account in
our notion of configuration given in Section 3.3.

%,& := 0 | in(G).% | in<C (G).% | let G = E in %

| new =.% | out(D).% | reset.% | end(D0, D1)

where G ∈ X, = ∈ N , D,D0,D1 ∈ T (Σ+
2 ,X ⊎N ⊎ A), E ∈ T (Σ+,X ⊎N ⊎A), and C ∈ R+.

The four instructions on the left are all standard to the applied pi-calculus. As usual, the null
process 0 does nothing. The restriction new =.% generates a fresh name and then executes % . We
have constructions to model input and output actions. The let G = E in % construction tries to
evaluate E to get a constructor term D, then G is bound to D and % is executed; if the evaluation of E
fails, then the process is blocked. The last three instructions are more specific to distance-bounding
protocols. Agents can perform time measurements using their local clock. The reset instruction
allows them to reset their local clock, whereas a guarded input in<C (G).% will be used to model an
agent waiting for a message which is supposed to arrive soon enough, i.e. before C units of time
since his last reset instruction. Finally, we consider a specific command end(D0, D1) that will be
used to express security properties.
As usual, we denote by fv(%) (resp. fn(%)) the set of free variables (resp. names) occurring in

the process % , i.e. the set of variables (resp. names) which are not bound by an input or a let
construction (resp. a new). Conversely, we denote bv(%) (resp. bn(%)) the set of bound variables

8 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

(resp. bound names) in the process. Throughout the paper, we consider 2-party protocols only. A
2-party protocol is a pair (V, P) of processes, called respectively the verifier role and the prover role,
such that fv (V) = {I0

+
, I1+ }, fv(P) = {I0

%
, I1% }, and fn(V) = fn(P) = ∅. Moreover, we assume that any

guarded input is preceded by a reset instruction, and we also assume that the command end(D0, D1)
occurs neither in V nor in P. When needed, we write V(I0

+
, I1

+
) (resp, P(I0

%
, I1

%
)) to make these

variables explicit. Intuitively, these variables will be instantiated by agent names: I0
-
corresponds

to the name of the agent executing the process, whereas I1- is the name of its interlocutor.

Example 4. As a running example, we consider the SPADE distance-bounding protocol [16] pre-

sented in Section 2 (see Figure 1). Symbolic analysis does not allow one to reason at the bit level, and

thus, as done in e.g. [19, 24, 26, 44], the fast phase is abstracted by a single challenge/response ex-

change, and operations performed at the bit level are abstracted too. We thus abstract the answer by

the uninterpreted symbol of function answer taking the challenge and the two pre-computed values

stored in G3 and G4 as argument. We give below the verifier role written in our formalism.

V(I0
+
, I1

+
) := in(G1rep). let 〈G1, G2〉 = adec(G1rep, sk(I

0
+
)) in

let G1
>:

= eq(G1, check(G2, spk(I1+))) in
new =+ . new<+ . out(〈<+ , =+ 〉).

new 2+ . reset. out(2+). in
<2·C0 (G2rep).

let G3 = prf (〈G1, =+ 〉) in let G4 = G1 ⊕<+ ⊕ G3 in

let G2
>:

= eq(G2rep, answer(2+ , G3, G4)) in
in(G3rep). let G

3
>:

= eq(G3rep, prf (〈G1, =+ ,<+ , 2+ , answer(2+ , G3, G4)〉) in 0

3.2.2 Executability. We restrict ourselves to consider protocolsmodelling realistic behaviours.We
assume that all the messages occurring in V(I0

+
, I1

+
) (resp. P(I0

%
, I1

%
)) are deducible by the agent I0

+

(resp. I0
%
) executing the role using the previous inputs he already received, and his initial knowl-

edge, formalised by a finite set of terms I0.

Definition 1. Given a set I0 = {D1, . . . , D: } of terms, a role R(I0, I1) isI0-executable if, for any termD

(resp. E) occurring in an out (resp. a let) construction, there exists a term� ∈ T (Σ+
pub, {F1, . . . ,F:}∪

bn(R) ∪ bv(R)) such that D =E �f↓ (resp. E↓ =E �f↓) where f = {F1 ↦→ D1, . . . ,F: ↦→ D: }.

A 2-party protocol (V, P) is (I+
0 ,I%

0)-executable if V is I+
0 -executable, and P is I%

0 -executable.

In the following, we denote by Vend the role corresponding to V (with variables I0
+
, I1+) in which

the null process has been replaced by the command end(I0
+
, I1

+
).

Example 5. Going back to Example 4, each agent is provided with an identity, two secret keys,

and the corresponding public keys. In our model, public keys are derived from the identities (using a

public function symbol), it is therefore not mandatory to put them into the initial knowledge of an

agent. Thus, the sets I-
0 = {I1- , sk(I

0
-
), ssk(I0

-
)} with - ∈ {+ , %} can be used to model the initial

knowledge of an agent playing the role - .

The process V(I0
+
, I1

+
) (resp. P(I0

%
, I1

%
)) as given in Example 4 isI+

0 -executable (resp.I%
0 -executable).

For instance, we have that the first output of P(I0
%
, I1%), i.e. D = aenc(〈=% , sign(=% , ssk(I0))〉, pk(I1%)),

is such that D = �f with � = aenc(〈=% , sign(=% ,F3)〉, pk(F1)).

3.3 Semantics

The semantics of our calculus is defined using a relation over configurations, and is parametrised
by a topology reflecting the fact that interactions between agents depend on their location.

Definition 2. A topology is a tuple T0 = (A0,M0, Loc0, E0, ?0) where:

So near and yet so far –
Symbolic verification of distance-bounding protocols 9

• A0 ⊆ A is the finite set of agents composing the system;

• M0 ⊆ A0 is the subset of agents that are malicious;

• Loc0 : A0 → R
3 is a mapping defining the position of each agent in space.

• ?0 and E0 are two agents inA0 that represent respectively the prover and the verifier w.r.t. whom

the analysis is performed.

In our model, the distance between two agents is expressed by the time it takes for a message
to travel from one to another. Therefore, we consider DistT0 : A0 × A0 → R, based on Loc0 that
will provide the time a message takes to travel between two agents. It is defined as follows:

DistT0 (0, 1) =
‖Loc0(0) − Loc0(1)‖

20
for any 0, 1 ∈ A0,

with ‖·‖ : R
3 → R the Euclidean norm and 20 the transmission speed. We suppose, from now

on, that 20 is a constant for all agents. Using this equation, an agent 0 can recover, at time C , any
message emitted by any other agent 1 before C − DistT0 (0, 1).
Note that unlike in the classical Dolev-Yao model [30], our model does not consider a unique at-

tacker. We may consider several compromised nodes, which communicate and share their knowl-
edge but these communications are also subject to physical constraints: no message can travel
faster than the transmission speed.

Example 6. Let us consider the topology T (depicted below) composed with three agents, A0 =

{E0, ?0, ?}, with one of them dishonest, M0 = {?}.

E0 ?0
?

C

Since it is not really the physical locations of agents that matter but the distance, in time, between

them, we just consider, in this topology, that the location of agents satisfy the following properties:

DistT (E0, ?) = 0 and DistT (E0, ?0) ≥ C,

where C is an arbitrary positive value, used to define T . It means that E0 and ? share the same location

and the transmission of messages takes no time at all, while it takes more than C to reach ?0.

Our notion of configuration manipulates extended processes, i.e. expressions of the form ⌊%⌋ C00 .
Intuitively, % describes the actions of agent 0, and C0 is the value of the local clock of this process.
We also have to store messages that have been output so far. They are stored into a frame (as done
e.g. in [2]), extended to keep track of the time at which the message has been output and by whom.
More formally, given a topology T0 = (A0,M0, Loc0, E0, ?0), a configuration K (built on top of T0)
is a triplet (P ;Φ; C) where:

• P is a finite multiset of extended process ⌊%⌋ C00 with fv (%) = ∅, 0 ∈ A0 and C0 ∈ R+;

• Φ = {F1
01,C1
−−−→ D1, . . . ,F=

0= ,C=
−−−−→ D=} is an extended frame, i.e. a substitution such that F8 ∈

W, D8 ∈ T (Σ+
2 ,N ⊎A), 08 ∈ A0 and C8 ∈ R+ for 1 ≤ 8 ≤ =;

• C ∈ R+ is the global time of the system.

An initial frame is a frame such that C8 = 0 (1 ≤ 8 ≤ =). We write ⌊Φ⌋ C0 for the restriction of Φ
to the agent 0 at time C , i.e.:

⌊Φ⌋ C0 = {F8
08 ,C8
−−−→ D8 | (F8

08 ,C8
−−−→ D8) ∈ Φ and 08 = 0 and C8 ≤ C}.

Example 7. Continuing our running example, we consider the topology T as described in Exam-

ple 6 with C = C0. This value corresponds to half the time of the guarded input in the role of the verifier

in SPADE as described in Example 4. A configuration could be K0 = (P0;Φ0; 0) with:

10 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

• P0 = ⌊Vend(E0, ?0)⌋
0
E0
⊎ ⌊P(?0, ?)⌋

0
?0
;

• Φ0 =

{
F1

?,0
−−→ E0,F2

?,0
−−→ ?0,F3

?,0
−−→ ?,F4

?,0
−−→ sk(?),F5

?,0
−−→ ssk(?)

}
.

In this configuration, E0 plays the verifier’s role with ?0 and ?0 plays the prover’s role with the dishonest

agent ? . We provide the identities of the agents involved in the topology and the knowledge of the secret

keys of the dishonest agent ? to the attacker through the frame. Intuitively, this initial frame contains

the initial knowledge of agent ? as indicated in the sets (I+
0 ,I%

0) given in Example 5. Of course, this

is just an example, and in general security analyses are conducted considering configurations that

include more agents, other instances of the two roles, and eventually additional terms in the knowledge

of the attacker.

TIM (P ;Φ; C) −→T0 (Shi�(P, X);Φ; C + X) with X ≥ 0

OUT (⌊out(D).%⌋ C00) ⊎ P ;Φ; C)
0,out(D)
−−−−−−→T0 (⌊%⌋

C0
0 ⊎ P ;Φ ⊎ {F

0,C
−−→ D}; C)
with F ∈ W fresh

LET (⌊let G = D in %⌋ C00 ⊎ P ;Φ; C)
0,g
−−→T0 (⌊%{G ↦→ D↓}⌋ C00 ⊎ P ;Φ; C)

when D↓ ∈ T (Σ+
2 ,N ⊎A)

NEW (⌊new =.%⌋ C00 ⊎ P ;Φ; C)
0,g
−−→T0 (⌊%{= ↦→ =′}⌋ C00 ⊎ P ;Φ; C) with =′ ∈ N fresh

RST (⌊reset.%⌋ C00 ⊎ P ;Φ; C)
0,g
−−→T0 (⌊%⌋

0
0 ⊎ P ;Φ; C)

IN (⌊in★(G).%⌋
C0
0 ⊎ P ;Φ; C)

0,in★ (D)
−−−−−−→T0 (⌊%{G ↦→ D}⌋ C00 ⊎ P ;Φ; C)

when there exist 1 ∈ A0 and C1 ∈ R+ such that C1 ≤ C − DistT0 (1, 0) and:

• if 1 ∈ A0 rM0 then D ∈ img(⌊Φ⌋
C1
1
);

• if 1 ∈ M0 then D = 'Φ↓ for some recipe ' such that for allF ∈ vars(') there exists 2 ∈ A0

such thatF ∈ dom(⌊Φ⌋
C1−DistT (2,1)
2).

Moreover, in case ★ is < C6 for some C6 , we assume in addition that C0 < C6 .

Fig. 2. Semantics of our calculus

Given a topology T0 = (A0,M0, Loc0, E0, ?0), the semantics of processes is formally defined by
the rules presented in Figure 2. The first rule (TIM) allows time to elapse, meaning that the global
clock as well as the local clocks will be shifted by X:

Shi�(P, X) =
⊎

⌊% ⌋
C0
0 ∈P

Shi�(⌊%⌋ C00 , X) and Shi�(⌊%⌋ C00 , X) = ⌊%⌋ C0+X0 .

Note that this rule assumes that all the clocks synchronously evolve. Our model abstracts away
clock drift. The second rule (OUT) corresponds to the output of a term by some process: the corre-
sponding term is added to the frame of the current configuration, which means that the attacker
can now have access to the sent term. The third rule (LET) corresponds to the evaluation of the
termD, and in caseD↓ is a message, then % in which G is replaced byD↓ is executed. The rule (NEW)
is used to generate fresh random values. The (RST) rule allows an agent to reset the local clock
of the process. The (IN) rule allows an agent 0 to evolve when receiving a message: the received
message has necessarily been forged and sent at time C1 by some agent 1 who was in possession
of all the necessary information at that time. Moreover, in case of a guarded input with guard C6 ,
the local clock of the process has to satisfy the guard, i.e. C < C6 . Note that the specific command
end(01, 02) which can only occurs at the end of a process cannot be executed.

So near and yet so far –
Symbolic verification of distance-bounding protocols 11

We sometimes simply write −→T0 instead of
0,U
−−→T0 . The relation→

∗
T0
is the reflexive and transitive

closure of→T0 , and we write
tr
−→T0 to emphasise the sequence of labels tr that has been used during

an execution.

Example 8. In order to illustrate the semantics presented in Figure 2, the configuration of Example 7

can be executed as follows:

K0
?0,g
−−−→T

?0,out(aenc(〈=′% ,sign(=
′
% ,ssk(?0)) 〉,pk(?)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→T →T

E0,in(aenc(〈=′% ,sign(=
′
% ,ssk(?0)) 〉,pk(E0)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→T K1

where the configuration K1 is described as follows:

K1 = (⌊+1(E0, ?0)⌋
C0
E0
⊎ ⌊%1 (?0, ?)⌋

C0
?0
;Φ0 ∪

{
F6

?0,0
−−−→ aenc(〈=′% , sign(=

′
% , ssk(?0))〉, pk(?))

}
; C0)

where+1(I0, I1) is the process Vend(I0, I1) without the first input, and %1 (I0, I1) is the process P(I0, I1)

without the first nonce generation and the first output. More precisely, in the execution above, the first

transition is the nonce =′
%
generation executed by ?0. After ?0’s output, the next transition is a TIM

rule in order to let enough time for the message to reach the attacker ? . Then, the final transition

models the input, by E0, of a message constructed by ? based on the previous output sent by ?0. The

recipe used to build the message is '1 = aenc(adec(F6,F4), pk(F1)).

4 SECURITY PROPERTIES

As stated in the introduction, three different classes of attacks are traditionally considered in the
analysis of distance-bounding protocols: Distance fraud, Mafia fraud and Terrorist fraud. In [23], a
fourth type of attacks has been identified: the so-called Distance Hijacking attack. All these attacks
have a similar goal. They aim to make a verifier + believes that a prover % is physically closer to
the verifier+ than it really is. However, they differ by the scenarios under study when performing
the security analysis. In the following, we propose a formal definition for each class of attacks.
Before presenting them, we have to define the set of configurations that need to be studied when
analysing a given protocol (V, P). We call them valid initial configurations.

Definition 3. Let (V, P) be a protocol, T0 = (A0,M0, Loc0, E0, ?0) be a topology, and Φ0 be an initial

frame. A configuration K is a valid initial configuration for (V, P) w.r.t. T0 and Φ0 if:

• K = (⌊Vend(E0, ?0)⌋
0
E0
⊎ P ′;Φ0; 0), and

• for each ⌊% ′⌋ C
′

0′ ∈ P ′, we have C ′ = 0, 0′ ∈ A0, and either % ′
= V(0′, 1 ′) or % ′

= P(0′, 1 ′) for

some 1 ′ ∈ A0.

Typically, a valid initial configuration contains instances of the roles of the protocol under study.
We simply assume that the specific role Vend that will be used to encode the security properties
occurs only once in the configuration, and that it is instantiated by the two identities appearing
in the topology. Depending on the type of frauds we consider, set of topologies under study may
vary.

4.1 Mafia fraud

The distance-bounding protocols have originally been designed to resist Mafia frauds. They consist
in scenarios where an attacker tries to convince a verifier that an honest prover is close to him
even if the prover is actually distant.

Definition 4. Given C0 ∈ R+, we denote C
C0
MF the set of topologies T = (A0,M0, Loc0, E0, ?0) corre-

sponding to Mafia fraud scenarios, i.e. such that E0, ?0 ∈ A0 \M0 and DistT (E0, ?0) ≥ C0.

12 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

In such scenarios, the initial frame only depends on the underlying topology, and more precisely
only on the status (honest/dishonest) of each agent and not on their precise location. It contains
the initial knowledge of each dishonest agent that is defined through a template I0 = (I+

0 ,I%
0)

such that I+
0 is a set of terms in T (Σ+

2 , {I
0
+
, I1

+
}) and I%

0 is a set of terms in T (Σ+
2 , {I

0
%
, I1

%
}). Given

a set of agents A0 and a template I0 = (I+
0 ,I%

0), the initial knowledge of an agent 0 ∈ A0 is
defined as follows:

Knows(I0, 0,A0) =

{
(D0{I

0
+
↦→ 0, I1+ ↦→ 1}) ground | D0 ∈ I+

0 and 1 ∈ A0
}

∪
{
(D0{I

0
%
↦→ 0, I1

%
↦→ 1}) ground | D0 ∈ I%

0 and 1 ∈ A0
} .

The initial frame associated to a topologyT = (A0,M0, Loc0, E0, ?0) and a templateI0, denotedΦT
I0
,

is then defined by:

⌊img(ΦT
I0
)⌋

0

0
= Knows(I0, 0,A0) when 0 ∈ M0, and ⌊img(ΦT

I0
)⌋

0

0
= ∅ otherwise.

Up to a renaming of the frame variables and some duplicates, ΦT
I0
is uniquely defined.

Example 9. One may note that the initial frame Φ0 presented in Example 7, is such that Φ0 = Φ
T
I0

where I0 is the template made of the sets (I+
0 ,I%

0) introduced in Example 5 and T is the topology

presented in Example 6.

Definition 5. Let I0 be a template and (V, P) be a protocol. We say that (V, P) admits a Mafia fraud
w.r.t. C0-proximity if there exist T ∈ C

C0
MF, and a valid initial configurationK for (V, P) w.r.t. T andΦT

I0
such that:

K →∗
T (⌊end(E0, ?0)⌋

CE
E0
⊎ P ;Φ; C) with T = (A0,M0, Loc0, E0, ?0).

The reachability of the end(E0, ?0) event indicates that honest prover ?0 has been authenticated
by the honest verifier E0. We only consider configurations built from the topology T ∈ C

C0
MF, and

thus, by definition of CC0
MF, we have that ?0 is distant from the verifier E0. Note however that the

definition of CC0
MF does not impose any other restriction: some other agents may be involved in a

Mafia fraud.

Example 10. The SPADE protocol has been proved secure w.r.t. Mafia fraud [16]. However, their

model was preventing the attacker to act as a verifier. By relaxing this constraint, we found (us-

ing the approach developed in this paper) that the protocol becomes vulnerable to Mafia fraud as

presented in Figure 3. The attacker (here named ?) first acts as a verifier and we assume that the

honest prover ?0 initiates a session with her by sending aenc(〈=? , f〉, pk(?)). He obtains a valid sig-

nature f = sign(=% , ssk(?0)) that he can use to forge a valid message that he will send to E0, i.e.

aenc(〈=? , f〉, pk(E0)). Then, the protocol executes almost normally but the attacker who is close to the

verifier and who knows =? participates in the fast phase. The verifier E0 thinks that he executed the

protocol with ?0 whereas he is talking to the attacker ? . Therefore, a Mafia fraud exists: an attacker

can make an honest verifier accepts a distant honest prover.

To show how this attack is captured in our framework, we consider the template I0 depicted in

Example 5, the topology T ∈ C
C0
MF used in Example 6 and the configuration K0 defined in Example 7.

According to Definition 3,K0 is a valid initial configuration for the protocol SPADEw.r.t. T andΦ0. We

have that ⌊img(Φ0)⌋
0
? = Knows(I0, ?,A0), ⌊img(Φ0)⌋

0
E0
= ∅, and ⌊img(Φ0)⌋

0
?0

= ∅. The protocol

So near and yet so far –
Symbolic verification of distance-bounding protocols 13

sk(E0), ssk(E0)

Verifier

sk(?), ssk(?)

Attacker

sk(?0), ssk(?0)

Prover

pick =% fresh
f = sign(=% , ssk(?0))

aenc(〈=% , f〉, pk(?))

extract =%
and re-encrypt

aenc(〈=% , f
′〉, pk(E0))

check signature
and

pick<+ , =+ fresh

〈<+ , =+ 〉

� 0
= prf(〈=% , =+ 〉)

� 1
= =% ⊕<+ ⊕ � 0

pick 2 fresh
2

A = answer(2, � 0, � 1)

A

prf (〈=% , =+ ,<+ , 2, A 〉)

check A
and transcript

Fig. 3. Mafia fraud against the SPADE protocol

SPADE is vulnerable to a Mafia fraud as witnessed by the following execution:

K0
?0,g
−−−→T

?0,out (aenc(〈=′% ,sign(=
′
%
,ssk(?0)) 〉,pk(?)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→T →T

E0,in(aenc(〈=′% ,sign(=
′
%
,ssk(?0)) 〉,pk(E0)))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→T

E0,g
−−−→T

E0,g
−−−→T

E0,g
−−−→T

E0,g
−−−→T

E0,out(〈<
′
+
,=′

+
〉)

−−−−−−−−−−−−−→T
E0,g
−−−→T

E0,out(2
′
+
)

−−−−−−−−→T

E0,in
<2·C0 (answer(2′

+
,prf (〈=′

%
,=′

+
〉),=′

%
⊕<′

+
⊕prf (〈=′

%
,=′

+
〉)))

−−−→T
E0,g
−−−→T

E0,g
−−−→T

E0,g
−−−→T

E0,in(prf (〈=′% ,=
′
+
,<′

+
,2′
+
,answer(2′

+
,prf (〈=′

%
,=′

+
〉),=′

%
⊕<′

+
⊕prf (〈=′

%
,=′

+
〉)) 〉))

−−→T
E0,g
−−−→T K5

where the configurationK5 is equal toK5 = (⌊end(E0, ?0)⌋
0
E0
⊎ ⌊%1 (?0, ?)⌋

C0
?0
;Φ5 ; C0),with %1 (I0, I1)

is the process P(I0, I1) without the generation of the first nonce and without the first output, and Φ5

is as follows:

Φ5 = Φ0 ∪

{
F6

?0,0
−−−→ aenc(〈=′% , sign(=

′
% , ssk(?0))〉, pk(?)),F7

E0,C0
−−−→ 〈<′

+ , =
′
+ 〉,F8

E0,C0
−−−→ 2 ′+

}
.

The first line of the execution is the one described in Example 8. Then, E0 checks the input using two

LET transitions, and generates two nonces<′
+ and =′+ before sending them. After that, E0 initiates a

RST transition before it inputs a message constructed by ? using the following recipe:

'2 = answer(F8, prf (〈'
′, proj2 (F7)〉), '

′ ⊕ proj1 (F7) ⊕ prf (〈'′, proj2(F7)〉))

with '′
= proj1 (adec(F6,F4)). The verifier E0 checks the input through three LET transitions and

inputs a final message constructed by the attacker ? using the following recipe:

'3 = prf (〈'′, proj2(F7), proj1(F7),F8, '2〉).

14 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

The verifier performs one last check with a LET transition and reaches finally end(E0, ?0).

Example 11. In his thesis [37], Gerault proposed a fix to prevent the Mafia fraud presented above.

This fix consists in adding the identity of the verifier inside the first signature, i.e. the first message be-

comes aenc(〈=% , f〉, ?: (E0)) with f = sign(〈=% , E0〉, sk(?0)). This indeed prevents the aforementioned

Mafia fraud attack, and actually the approach developed here will allow us to show in Section 8 (Ta-

ble 1) that this fixed protocol is secure w.r.t. Mafia frauds.

4.2 Terrorist fraud

In some aspects, a Terrorist fraud may be considered as a strong version of a Mafia fraud. In this
scenario, a remote prover accepts to collude with an attacker located in the vicinity of a verifier
to be authenticated once. However, this help must not give an advantage to the attacker to mount
future attacks, like impersonations.
Modelling Terrorist fraud is trickier than modelling Mafia fraud. Indeed, the distant prover is

neither honest (he may not follow the protocol rules) nor fully dishonest (he does not accept to
reveal his long-term keys which would eventually lead to an impersonation attack). To model
these scenarios, first, we will consider all the possible behaviours for this semi-dishonest prover
that allow the attacker to authenticate at least once, considering the simple topology defined below.

Definition 6. Given C0 ∈ R+, we denote T
C0
simple the topology T = ({E0, ?0, ?}, {?}, Loc0, E0, ?0) such

that DistT (E0, ?) = 0, and DistT (E0, ?0) = C0.

We may note that this topology is not uniquely defined (e.g. the precise location of each agent
is not fixed) but this does not have any impact on our development.
Then, to be Terrorist fraud resistant, we have to check that any of these behaviours will allow the

attacker to re-authenticate later on. This shows that the prover cannot reveal enough information
to let the attacker authenticate once without running the risk of being impersonated after.

Definition 7. Let C0 ∈ R+, and (V, P) be a protocol. A semi-dishonest prover for (V, P) w.r.t. C0 is a
process %sd together with an initial frame Φsd such that:

({ ⌊Vend (E0, ?0)⌋
0
E0
; ⌊%sd⌋

0
?0
}; ∅; 0) →∗

T
C0
simple

({ ⌊end(E0, ?0)⌋
CE
E0
; ⌊0⌋

C?
?0};Φ; C)

for some C , CE , C? , and Φ such that Φ and Φsd coincide up to their timestamps.

Note that a semi-dishonest prover can be completely dishonest in the sense that he may leak
all his credentials. This will indeed allow the attacker to play the role of the prover and to be
authenticated by the verifier. However, such a semi-dishonest prover cannot be equal to the role
of the prover. Indeed, such an honest prover role will not allow a distant prover to authenticate
with a verifier; unless for a badly designed protocol. The semi-dishonest prover will need to leak
some information to the attacker who is close to the verifier to be authenticated.
In our definition of semi-dishonest prover, we do not try to precisely characterize its knowledge,

and we therefore consider some unrealistic behaviours. For instance, it may seem unrealistic to
assume that such a semi-dishonest prover knows the secret key of the verifier. This leads to a fairly
strong notion of Terrorist fraud resistance. Later on, we will show that, for the class of well-formed
protocols, it is actually sufficient to consider a particular semi-dishonest prover (the most general
one) to perform the security analysis. This most general one is derived from the prover role, and
does not have unexpected behaviours.

Example 12. Throughout Section 4.2 and Section 6 devoted to Terrorist frauds, we consider the

updated version of the SPADE protocol as given in Example 11, fixing the Mafia fraud described

above. This will allow us to better illustrate the different notions introduced in these sections. As we

So near and yet so far –
Symbolic verification of distance-bounding protocols 15

have seen, this update adds the identity of the verifier in the signature within the first message, i.e.

aenc(〈=% , sign(〈=% , I1% 〉, ssk(I
0
%
))〉, pk(I1

%
)) and modifies the corresponding consistency checks on the

Verifier side. Considering this new protocol, a semi-dishonest prover could be as follows:

%1
sd

:= new =% . out(aenc(〈=% , sign(〈=% , E0〉, ssk(?0))〉, pk(E0))).
in(G). let G1 = proj1(G) in let G2 = proj2(G) in
let G3 = prf (〈=% , G2〉) in let G4 = =% ⊕ G1 ⊕ G3 in

out(G3). out(G4). in(~2).

out(answer(~2 , G3, G4)). out(prf (〈=% , G2, G1, ~2 , answer(~2 , G3, G4)〉)).0.

Up to some renaming of fresh names, the corresponding frame Φ1
sd

is:

Φ
1
sd =

{
F6

?0,0
−−−→ aenc(〈=% , sign(〈=% , E0〉, ssk(?0))〉, pk(E0)),F7

E0,C0
−−−→ 〈<+ , =+ 〉,

F8
?0,2·C0
−−−−−→ prf (〈=% , =+ 〉),F9

?0,2·C0
−−−−−→ =% ⊕<+ ⊕ prf (〈=% , =+ 〉),F10

E0,3·C0
−−−−→ 2+ ,

F11
?0,4·C0
−−−−−→ answer(2+ , prf (〈=% , =+ 〉, =% ⊕<+ ⊕ prf (〈=% , =+ 〉),

F12
?0,4·C0
−−−−−→ prf (〈=% , =+ ,<+ , 2+ , answer(2+ , prf (〈=% , =+ 〉, =% ⊕<+ ⊕ prf (〈=% , =+ 〉)〉)

}
.

This corresponds to a semi-dishonest prover who performs the computations of both� 0 and� 1 and

reveals these two messages (before the fast phase starts) to his accomplice who is close to the verifier.

Therefore, the accomplice will be able to answer to the challenges provided by the verifier using the

recipe ' = answer(F10,F8,F9) whereF10 is the handle binding the challenge sent by the verifier, and

F8, F9 are the two handles binding the messages G3 and G4 leaked by the semi-dishonest prover and

that his accomplice can receive before the fast phase starts.

We are now able to define our notion of Terrorist fraud resistance. Intuitively, if the distant
semi-dishonest prover ?0 gives to his accomplice ? enough information to pass authentication
once, then this accomplice will be able to impersonate ?0 in the future, i.e. ? will be able to make
the verifier authenticate ?0, even if ?0 no longer colludes.

Definition 8. Let I0 be a template. We say that a protocol (V, P) is Terrorist fraud resistant w.r.t.
C0-proximity if, for all semi-dishonest provers %sd (w.r.t. C0) with frame Φsd, there exist a topology

T ∈ C
C0
MF and a valid initial configuration K w.r.t. T and ΦT

I0
∪ Φsd such that

K →∗
T (⌊end(E0, ?0)⌋

C′

E0
⊎ P ;Φ; C) where T = (A0,M0, Loc0, E0, ?0).

Again, the reachability of the end(E0, ?0) event indicates that the honest prover ?0 has been
authenticated by the honest verifier E0. Contrary to the Mafia frauds, we may note that the initial
configurationK has been built relying on the frame ΦT

I0
∪Φsd (and not ΦT

I0
only). This reflects the

fact that the prover has colluded with the attacker to be authenticated once, and the attacker has
gained some knowledge. We now want to be sure that this additional knowledge will not allow
the attacker to mount further attacks, i.e. to authenticate again.
We can note that unlike standard reachability properties, exhibiting a trace of execution is not

sufficient to prove the existence of a Terrorist fraud. Indeed, it requires to exhibit a semi-dishonest
prover and check that for all the possible executions, none of them leads to a re-authentication.
Unfortunately, exhibiting a trace is not sufficient to prove Terrorist fraud resistance neither: the
re-authentication must be possible for all the semi-dishonest provers. Each direction requires us
to explore an infinite set: either the set of traces or the set of semi-dishonest provers. A situation
in which Terrorist fraud analysis is simple is when the protocol already suffers from a Mafia fraud.
The following proposition applies.

16 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Proposition 1. Let I0 be a template, and (V, P) be a protocol. If (V, P) admits a Mafia fraud, then it

is Terrorist fraud resistant (w.r.t. C0-proximity).

Indeed, an execution that witnesses the existence of a Mafia fraud can be leveraged as a witness
of re-authentication for any semi-dishonest prover. By definition of a Mafia fraud, the execution
starts with a configuration K that is a valid initial configuration for (V, P) w.r.t. T and Φ

T
I0
. It can

be extended as a valid initial configuration for (V, P) w.r.t. T and Φ
T
I0
∪ Φsd by adding elements

in the initial frame. This does not alter the trace since it simply increases the initial knowledge of
the attackers.
Regarding the literature, this implication is debatable. Indeed, a contradictory implication is

sometimes stated [3, 19]: if a protocol admits a Mafia fraud then it admits a Terrorist fraud. To
explain such a gap, we start by recalling the informal definition of Terrorist fraud: a Terrorist
fraud is a scenario in which a distant dishonest prover accepts to collude with an attacker to be
authenticated once by an honest verifier, but without giving any advantage to the attacker in the
future. Therefore, there are two ways to formally define it:

(1) consider all the dishonest provers that do not give any advantage to the attacker for future
(i.e. do not enable a re-authentication); and check whether they can be authenticated once;

(2) consider all the dishonest provers that can be authenticated once; and check whether they
give an advantage to the attacker for future attacks.

The first definition is appealing since it expresses Terrorist fraud as a unique reachability issue: is
authentication possible? The implication "Mafia fraud implies Terrorist fraud" is quite immediate:
if there is a Mafia fraud then authentication is possible. However, it remains to define the set of
"dishonest provers that do not give any advantage to the attacker" and this appears to be a difficult
task, especially in symbolic models. The second definition is more in line with ours. It provides a
more complex security property but it does not elude the difficulty of defining the "advantage" by
pushing it inside the definition of admissible collusion. The two definitions seem to match when
analysing protocols that are Mafia fraud resistant.

Example 13. The original SPADE protocol is vulnerable to a Mafia fraud. Following the previous

remark we can thus immediately conclude that it is Terrorist fraud resistant. Now, considering the fixed

version presented in Example 11 and which is resistant to Mafia frauds, we can show that it is also

Terrorist fraud resistant, i.e. for all the semi-dishonest provers there exists a trace of re-authentication.

For illustration purposes, we consider the semi-dishonest prover given in Example 12, and we show

that re-authentication is indeed possible. To do this, the attacker replays the first message sent by ?0
and stored inF6 (first element in the frame Φ1

sd
). Then, he is able to answer all the messages requested

by E0 since he can deduce =% from the frame:

=% = 'Φ1
sd
↓ with ' = F8 ⊕ F9 ⊕ proj1(F7).

Indeed, all the messages (except the first one that the attacker replays) of a protocol session are built

applying public symbols of function (e.g. prf, ⊕, answer) to the atomic the data =% (known by the

attacker), =′
+
and <′

+
two fresh values generated by the verifier and sent to the attacker during the

execution of the session.

The analysis done in Example 13 is not sufficient to establish that the protocol is Terrorist fraud
resistant. Indeed, a single dishonest prover has been considered so far. Moreover, the analysis has
been done considering a rather simple topology. The reduction results developed in Section 5 and
Section 6, will allow us to formally establish Terrorist fraud resistance. In particular, in Section 6,
we show that the semi-dishonest prover given in Example 12 is the most general one, and thus the
only one that has to be considered when performing the security analysis.

So near and yet so far –
Symbolic verification of distance-bounding protocols 17

4.3 Distance Hijacking a�acks

Another class of attacks a distance-bounding protocol should resist is theDistance Hijacking attack
in which a dishonest prover tries to be authenticated by a remote verifier. To succeed the dishonest
prover may hijack honest agents located (or not) in the vicinity of the verifier.

Definition 9. Given C0 ∈ R+, we denote C
C0
DH the set of topologies T = (A0,M0, Loc0, E0, ?0) cor-

responding to Distance Hijacking scenarios, i.e. such that ?0 ∈ M0, and DistT (0, E0) ≥ C0 for any

0 ∈ M0.

This definition encompasses the particular case in which nobody is located in the vicinity of the
verifier, known as Distance fraud.

Definition 10. Let I0 be a template. We say that a protocol (V, P) admits a Distance Hijacking
attack w.r.t. C0-proximity if there exist T ∈ C

C0
DH, and a valid initial configuration K w.r.t. T and ΦT

I0
such that

K →∗
T (⌊end(E0, ?0)⌋

CE
E0
⊎ P ;Φ; C) with T = (A0,M0, Loc0, E0, ?0).

This definition is similar to the one for Mafia fraud. However, we do not consider the same set
of topologies. Note that a topology in C

C0
DH does not allow a dishonest agent to be present in the

vicinity of E0. Moreover, contrary to the case of a Mafia fraud, ?0 is assumed to be dishonest.

sk(E0), ssk(E0)

Verifier

sk(?), ssk(?)

Prover

sk(?0), ssk(?0)

Attacker

pick =% fresh
f = sign(=% , ssk(?))

aenc(〈=% , f〉, pk(?0))

extract =%
f ′ = sign(=% , ssk(?0))

aenc(〈=% , f
′〉, pk(E0))

check signature
and

pick<+ , =+ fresh

. . .

Fig. 4. Distance hijacking a�ack against the SPADE protocol

Example 14. The SPADE protocol has been proved secure w.r.t. Distance Hijacking attacks [16].

However, as already said, their model was preventing the attacker to act as a verifier. By relaxing

this constraint, the protocol becomes vulnerable to a Distance Hijacking attack, briefly presented in

Figure 4. The attacker acts as a verifier and we assume that an honest prover initiates a session with

him. He is then able to reuse the nonce =% sent by the prover to initiate a session with the verifier E0.

The rest of the protocol will then be executed between the verifier E0 and the honest prover ? (who

thinks he is talking with the verifier ?0). Formally, this attack is caught by our definition considering:

• T = ({E0, ?0, ?}, {?0}, Loc0, E0, ?0) with DistT (E0, ?0) = C0 and DistT (E0, ?) = 0, and

18 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

• K0 = (⌊Vend(E0, ?0)⌋
0
E0
⊎ ⌊P(?, ?0)⌋

0
? ;Φ0; 0) where

Φ0 = {F1
?0,0
−−−→ E0, F2

?0,0
−−−→ ?0, F3

?0,0
−−−→ ?, F4

?0,0
−−−→ sk(?0), F5

?0,0
−−−→ ssk(?0)}.

4.4 Comparison with existing approaches regarding the modelling aspect

We elaborate now on two recent symbolic models, developed for analysing distance-bounding
protocols by Chothia et al. [19, 20] and Mauw et al. [44, 45]. In particular, we will compare the
definitions of the security properties.

4.4.1 Chothia et al.’s model. This model, published in 2015, is the basis of our work. Hence, our
definitions of Mafia fraud and Distance Hijacking attack are in line with those proposed in [20].
The main difference lies in the quantification over the topologies: Chothia et al. define the security
properties w.r.t. to rather simple topologies made of, at most, 4 agents, without providing any
justification. The reduction results described in Section 5 provide such a justification and also
make clear the requirements.
Now, regarding Terrorist fraud, the definition proposed in [19] differs from ours. While we are

following the second definition of Terrorist fraud mentioned in Section 4.2, they are following the
first one. Their security property involves what is called a terrorist prover which performs any op-
eration on behalf of the attacker. It can for example encrypt, decrypt, or sign any value the attacker
wishes, but never reveals its secrets. Even if this notion of terrorist prover is appealing, because
suitable for automation, they do not explain how to write such a process and we do think that it
may be a difficult task. In the following, we present two examples that illustrate such difficulties.

Example 15. Consider a protocol such that the prover role relies on a secret : and a hash func-

tion h. Given an input D sent by his accomplice, a legitimate behaviour of the terrorist prover may

be to reveal the hash value of the input data together with his secret key, i.e. h(〈:,D〉). Indeed such

a message might help his accomplice and does not reveal any information about : . Formally, the

terrorist prover should contain the oracle: P1 = in(G).out(h(〈:, G〉)). In the same spirit, we could

argue that the oracle P2 = in(G).out(h(〈G, :〉)) is also useful, and perhaps also the oracle P3 =

in(G1).in(G2).out(h(〈G1, 〈:, G2〉〉)), etc. Iterating such a reasoning, it is unclear how to write a finite

terrorist prover that will provide all the valuable help his accomplice may need.

Another issue comes up when considering equational theories modelling operators with alge-
braic properties, like the exclusive-or. It seems difficult (perhaps even impossible) to be sure that
the terrorist prover we consider will not reveal some secrets (possibly indirectly).

Example 16. Consider an equational theory made of three public symbols of function g, f1 and f2
such that g(f1(G,~), f2(G,~)) = ~. Following the idea developed in [19], the terrorist prover should

contain the two oracles P1 = in(G).out(f1(G, :)) and P2 = in(G).out(f2(〈G, :〉)). Even though

these two oracles are individually legitimate, together, they will allow an attacker to get f1(<,:) and

f2(<,:) for some message< and thus retrieve the secret key : . This example clearly shows that it is

not obvious to describe in a syntactic way the help the terrorist prover is willing to provide (even for

rather simple equational theories).

4.4.2 Mauw et al.’s model. Meanwhile we were developing our framework [26, 27], Mauw et

al. proposed another model based on multiset rewriting. Regarding Terrorist fraud, their security
property is completely in line with ours. Indeed, they seem equivalent up to a different convention
naming (i.e. valid extension instead of semi-dishonest prover), and small differences that might
arise due to the specificities of each formalism (applied pi-calculus versus multiset rewriting rules).
They also consider two-step scenarios in which a semi-dishonest prover tries to authenticate once
and then check whether it can be re-authenticated later on. However, while we are considering a

So near and yet so far –
Symbolic verification of distance-bounding protocols 19

unique and rather simple topology T
C0
simple for the first authentication, they consider any topology

T ∈ CC0
MF. Their definition is thus slightly more general than ours.

Regarding Mafia fraud and Distance Hijacking attack, we can note a difference. Indeed, instead
of modelling these two classes of attacks separately, they define a unique property that gathers
both, named secure distance-bounding. They claim that:

A protocol is distance-bounding secure if for all trace of execution tr that con-
tains the event claim(+ , %, G,~) for an honest agent + , then there are two ac-
tions (CG , UG) and (C~ , U~) in tr which correspond to G and ~ and such that
(C~ − CG) ≤ 2 · Dist(+ , % ′) with % ≈ % ′.

The notation % ≈ % ′ allows to replace agent % by any dishonest agent when % is dishonest. Indeed,
in this case, it can share all its credentials with an accomplice who can then impersonate him. The
verifier can thus only estimate its distance to the closest malicious agent. It is important to note
that this security property gathers both Mafia fraud and Distance Hijacking attack since it applies
to scenarios in which the prover % may be honest or dishonest.
According to the authors, this property can be constrained to focus on Mafia fraud only by

assuming the prover % to be honest. Therefore, we have that:

• a protocol admits a Mafia fraud if secure distance-bounding does not hold when considering
% to be honest; and

• a protocol admits a Distance Hijacking attack if secure distance-bounding holds when con-
sidering % to be honest, and does not hold otherwise.

This means that their framework does not allow one to analyse these security properties indepen-
dently whereas we think it may be interesting in practice. For instance, if the infrastructure in
which the distance-bounding protocol is implemented enforces, by design, that a malicious agent
cannot enter in the verifier’s proximity, e.g. relying on CCTV (Closed-Circuit Television).

5 REDUCING TOPOLOGIES

When analysing a protocol w.r.t. Distance Hijacking, Mafia or Terrorist fraud, an infinite number
of topologies must be considered. Indeed, an infinite number of them belong to C

C0
DH and C

C0
MF. In

this section, we establish three reduction results to get rid of this source of unboundedness. More
precisely we prove that, for each class of attacks, we can focus the analysis on a rather simple
topology (depicted in Figure 5) involving at most four agents.

malicious node

honest node

E0 ?0
81 82

C0
E0

40

?0
C0

Fig. 5. Topologies T C0
MF and T

C0
DH

5.1 Mafia and Terrorist frauds

The same set of topologies, CC0
MF, must be considered when verifying Mafia or Terrorist fraud re-

sistance. In the reminder of this section, we prove that if a trace exists considering an arbitrary
topology T ∈ C

C0
MF then, up to time shifts, the same trace can be executed in T

C0
MF. This proof

proceeds in four stages:

(1) we transform all the honest agents but E0 and ?0 in dishonest ones (Lemma 1);
(2) relying on the executability hypothesis, we simplify the initial configuration (Lemma 2);
(3) we reduce the number of attackers by placing them ideally (Lemma 3);
(4) we rename agents preserving their locations to reach the reduced topology T

C0
MF (Lemma 4).

20 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

The first stage consists in proving that we can corrupt honest participants without altering the
set of possible traces. In other words, a dishonest agent is able to behave as an honest one.

Lemma 1. Let T0 = (A0,M0, Loc0, E0, ?0) be a topology, and K0 be a configuration built on T0. Let

H0 ⊆ A0 rM0. Let K be a configuration such that K0
tr
−→T0 K . We have that K0

tr
−→T′ K where

T ′
= (A0,M0 ∪H0, Loc0, E0, ?0).

In the second stage, we prove that, relying on the executability hypothesis, it is not necessary
to consider processes executed by dishonest agents. Indeed, the initial knowledge contained in the
frame is actually enough to mimic these processes.

Lemma 2. Let T0 be a topology, D0 be a subset of malicious agents, and K0 = (P0;Φ0; C0) be a
configuration built on T0 such that %0 is executable w.r.t. img(⌊Φ0⌋

C0
0) for any ⌊%0⌋

C0
0 ∈ P0 with

0 ∈ D0. Let K = (P ;Φ0 ⊎ Φ
+; C) be a configuration such that K0

tr
−→T0 K . We have that

(P0;Φ0; C0)
trf
−−→T0 (Pf ;Φ0 ⊎ Φ+f ; C)

where P0 (resp. P, Φ+, tr) is obtained from P0 (resp. P , Φ+, tr) by removing processes (resp. frame or

trace elements) located in 0 ∈ D0 and f (=) = c0 ∈ Σ0 for any name = freshly generated to trigger the

rules NEW executed by agent 0 ∈ D0 in tr.

The two first stages simplify the initial configuration but many dishonest agents located at
many different locations still belong to the topology. To reduce the number of these dishonest
agents, we got some inspiration from the work done by Nigam et al. in [51]. In [51], the authors
prove that considering topologies in which each honest agent is accompanied by a dishonest one
located at the same place is enough. These canonical topologies are defined as follows: given a set
� = {01, . . . , 0? } of honest agents together with a location function Loc� : � ↦→ R

3, we define the
canonical topology TLoc� associated to Loc� as TLoc� = (� ⊎M0,M0, Loc� ⊎ Loc0, E0, ?0) where:

M0 = {81, . . . , 8?} with 81 . . . , 8? ∈ A \ � ; and Loc0(8 9) = Loc� (0 9) for 9 ∈ {1, . . . , ?}.

Lemma 3. Let T = (A0,M0, Loc, E0, ?0) be a topology, K0 = (P0;Φ0; C0) and K be two configura-

tions built on T0 such that K0
tr
−→T K , and � be a set of agents such that

{0 | ⌊%⌋ C0 ∈ P0 or ⌊Φ0⌋
C
0 ≠ ∅} ⊆ � ⊆ A0 \M0.

We have that (P0;Φ0; C0)
tr
−→T′ K where T ′ is the canonical topology associated to � and Loc |� .

Note that� must at least contain the names of the agents executing processes in P0 or occurring
in the frame Φ0 to maintain that K0 is a configuration when considering the topology TLoc� .
Finally, the last step consists in reducing the frame. Indeed, this framemay still containmessages

involving names of agents who are no longer present in the topology. To avoid such a situation,
we prove in Lemma 4 that a renaming of agents can be applied without affecting the execution.

Lemma 4. LetK,K ′ be two configurations built on T = (A0,M0, Loc, E0, ?0) such thatK
tr
−→T K ′,

and d : A → A0 be a renaming such that Loc(d (0)) = Loc(0) for any 0 ∈ A0, and d (0) ∈ M0 for

any 0 ∈ M0. We have that Kd
trd
−−→T K ′d .

Combining these four lemmas we are now able to state and prove (see Appendix A) the main
reduction that allows us to get rid of the quantification over all the topologies by simply analysing
a protocol w.r.t. to the topology T C0

MF. Given a frame Φ0, we note names(Φ0) the set of agent names
occurring in it.

So near and yet so far –
Symbolic verification of distance-bounding protocols 21

Theorem 1. Let I0 = (I+
0 ,I%

0) be a template, (V, P) a protocol, C0 ∈ R+ a threshold, and Φ0 an initial

frame such that names(Φ0) ⊆ {E0, ?0}. There exists a topology T0 = (A0,M0, Loc0, E0, ?0) ∈ C
C0
MF

and a valid initial configuration K for (V, P) w.r.t. T0 and Φ
T0
I0
∪ Φ0 such that

K
tr
−→T0 (⌊end(E0, ?0)⌋

CE
E0
⊎ P ;Φ; C)

if, and only if, there exists a valid initial configuration K ′ for (V, P) w.r.t. Φ
T
C0
MF

I0
∪ Φ0 such that

K ′ tr′
−→

T
C0
MF

(⌊end(E0, ?0)⌋
CE
E0
⊎ P ′;Φ′; C ′).

As a direct corollary of the theorem above (applied with Φ0 = ∅), we have that we can restrict
ourselves to consider the topology T

C0
MF when looking for a Mafia fraud.

Corollary 1. Let I0 be a template, (V, P) a protocol, and C0 ∈ R+ a threshold. We have that (V, P)

admits a Mafia fraud w.r.t. C0-proximity if, and only if, there is an attack against C0-proximity in T
C0
MF.

Theorem 1 also allows us to focus on a single topology when considering Terrorist fraud resis-
tance. However, this requires us to show that we can restrict ourselves to consider initial frames
satisfying the hypothesis of Theorem 1, i.e., such that names(Φ0) ⊆ {E0, ?0}.

Corollary 2. Let I0 be a template, (V, P) a protocol, and C0 ∈ R+ a threshold. We have that (V, P)

is Terrorist fraud resistant w.r.t. C0-proximity if, and only if, for all semi-dishonest prover %sd w.r.t. C0
with frame Φsd such that names(Φsd) ⊆ {E0, ?0}, there exists a valid initial configuration K0 w.r.t.

T
C0
MF and Φ

T
C0
MF

I0
∪ Φsd such that K0 →

∗

T
C0
MF

(⌊end(E0, ?0)⌋
C′

E0
⊎ P ;Φ; C).

5.2 Distance Hijacking a�acks

Unfortunately, the reduction proposed in case of Mafia and Terrorist fraud does not apply for
Distance Hijacking attack. Indeed, the third step of the reduction consists in placing a dishonest
agent close to each honest one. This step introduces a dishonest agent in the vicinity of the verifier
which is prohibited when considering Distance Hijacking scenarios.

Nevertheless, we show that under reasonable conditions, we can reduce towards the topology
depicted in Figure 5 defined as follows: T C0

DH = (ADH,MDH, LocDH, E0, ?0) with ADH = {?0, E0, 40},
MDH = {?0}, LocDH(?0) = LocDH(40), and DistTC0

DH
(?0, E0) = C0.

Given a process % , we denote % the process obtained from % by removing reset instructions,
and replacing each occurrence of in<C (G) by in(G). This notation is extended to a multiset of
(extended) processes by applying the transformation on each (extended) process.

Theorem 2. Let I0 be a template, (V, P) a protocol, and C0 ∈ R+ a threshold. Moreover, we assume

that V(E0, ?0) is derived from the following grammar:

% := 0 | in(G).% | let G = E in %

| new =.% | out(D).% | reset.out(D ′).in<C (G).%

where G ∈ X, = ∈ N ,D,D ′ ∈ T (Σ+
2 ,X∪Z∪N), E ∈ T (Σ+,X∪Z∪N) and C ≤ 2 ·C0. If (V, P) admits

a Distance Hijacking attack w.r.t. C0-proximity, then there exists a valid initial configuration K0 for

(V, P) w.r.t. T C0
DH and Φ

T
C0
DH

I0
such that K0 = (P0 ∪ { ⌊Vend (E0, ?0)⌋

0
E0
};Φ

T
C0
DH

I0
; 0) and

(P0 ∪ { ⌊Vend(E0, ?0)⌋
0
E0
};Φ

T
C0
DH

I0
; 0) →∗

T
C0
DH

(⌊end(E0, ?0)⌋
CE
E0
⊎ P ′;Φ; C).

The assumption on the shape of the role V means that the verifier is made of (possibly many)
timed challenge/response steps. Such a step starts by setting the local clock of the verifier to 0 using
the reset command and finishes by a guarded input to prevent remote agents from answering.

22 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Moreover, the resulting trace in the reduced topology T
C0
DH does no strictly appear as a Distance

Hijacking attack w.r.t. C0-proximity. Indeed, the initial configuration must be weakened by keeping
only the reset actions and the guarded inputs of the tested verifier role, i.e. the one that contains
the end(E0, ?0) command. As we will see in Section 8, this change is tight enough to not introduce
false attacks and enable the verification of many distance-bounding protocols.
The proof of this theorem is more complex than the one presented in the previous section for

Mafia and Terrorist frauds. The idea of this reduction is to move all the agents in the vicinity of E0 at
the same location as E0. However, this will lengthen the distance between such an agent and those
who are distant from E0. This may invalidate the witness trace of attack if a message travelling
between these two agents was needed to pass a guarded input. To ease the manipulations of the
actions in a trace, we will first define more expressive labels, i.e. annotations, and then an untimed
semantics, which will give us more flexibility to reorder actions in the trace such that no remote
agent execute actions during a challenge/response step. Finally, we will show how to lift a trace
in this untimed semantics into a trace in our original timed semantics.

Annotations. We extend the existing labels with more informative annotations. More precisely,
the first annotation will identify which process in the multiset has performed the action (session
identifier). This will allow us to identify which specific agent performed some action. We also
annotate the label with the global time at which the action has been done. In case of an output, we
indicate the name of the handleF that has been used to store the output in the frame too. Finally,
in case of an input, we indicate by a triplet (1, C1 , ') the name 1 of the agent responsible of the
corresponding output, the time C1 at which this output has been performed, as well as the recipe '
used to build this output.
Formally, a label is either empty (for the TIM rule) or of the form0, U with U ∈ {g, out(D), in★(D)},

and thus an annotated label is:

• empty for the TIM rule;
• (0, U, B, C,F) when the underlying action 0, U is of the form 0, out(D). In such a case, B is the
session identifier of the agent responsible of this action, C is the global time at which this
output has been done, andF is the handle added in the frame;

• (0, U, B, C, (1, C1 , ')) when the underlying action 0, U is of the form 0, in★(D). In such a case, B
is the session identifier of the agent responsible of this action, C is the global time at which
this input has been done, 1 is the agent responsible of the corresponding output, C1 the time
at which this output has been done (C1 ≤ C), and ' the recipe that has been used to forge this
output;

• (0, U, B, C, ∅) otherwise.

Thanks to these annotations, we are able to formally define dependencies between actions. This
will be useful when reordering actions.

Definition 11. Given an annotated execution K0
!1
−→T · · ·

!=
−−→T K= with !8 = (08 , U8 , B8 , C8 , A8),

!9 = (0 9 , U 9 , B 9 , C 9 , A 9), we say that !9 is dependent of !8 , denoted !9 ↩→ !8 , if 8 < 9 , and:

• either B8 = B 9 (and thus 08 = 0 9), and in that case !9 is sequentially-dependent of !8 , denoted
!9 ↩→B !8 ;

• or U8 = out(E), U 9 = in★(D), and A8 ∈ vars(' 9) with A 9 = (1 9 , C1 9
, ' 9). In that case !9 is

data-dependent of !8 , denoted !9 ↩→3 !8 .

We note ↩→∗ the transitive closure of ↩→ and !9 6↩→ !8 when !9 is not dependent of !8 , i.e. !9 6↩→
∗ !8 .

So near and yet so far –
Symbolic verification of distance-bounding protocols 23

Note that if two actions are dependent, i.e. (0 9 , U 9 , B 9 , C 9 , A 9) ↩→
∗ (08 , U8 , B8, C8 , A8), then either they

have been executed by the same agent or a message must have travelled from the location of
agent 08 to the location of agent 0 9 . This is formally stated in the following lemma.

Lemma 5. Let T be a topology,K0
!1!=
−−−−−−→T K1 be an execution, and 8, 9 ∈ {1, . . . , =} be such that

!9 ↩→
∗ !8 . We have that C 9 ≥ C8 + DistT (08 , 0 9) where !8 = (08 , U8, B8, C8 , A8) and !9 = (0 9 , U 9 , B 9 , C 9 , A 9).

5.2.1 Untimed semantics. To have more flexibility when reordering actions, we define an untimed
semantics. Given a configurationK = (P ;Φ; C), we note untimed(K) the configuration associated
to K , i.e. untimed(K) = (P ′;Φ′) with:

• P ′
= { ⌊%⌋ 0 | ⌊%⌋ C0 ∈ P for some C};

• Φ
′
= {F

0
−→ D | (F

0,C
−−→ D) ∈ Φ for some C}.

The untimed semantics is then defined as follows: K
0,U,B,A

T K ′ if there exist K0 and K ′
0 such

thatK0
0,U,B,C,A ′

−−−−−−→T K ′
0 (for some rule other than TIM) with K = untimed(K0),K ′

= untimed(K ′
0),

and A is equal to A ′ up to the time annotation C1 in case of an input.
We may note that Definition 11 can be immediately adapted for untimed actions. As mentioned

above, this untimed semantics provides more flexibility to reorder actions in a trace. Indeed, if two
actions are independent, i.e. do not belong to the same process nor are an output and an input
causally dependent, then we can swap the actions in the trace.

Lemma 6. Let T be a topology, and K0
!1

T K
!2

T K2 be an execution such that !2 6↩→ !1. We

have that K0
!2

T K ′ !1
T K2 for some configuration K ′.

5.2.2 Towards the proof of Theorem 2. This proof proceeds in five steps:

(1) we prove that an attack against C0-proximity for (V, P) in topology T remains an attack con-
sidering the configuration in which the reset instructions and the guards have been removed;

(2) we consider the trace witnessing the attack w.r.t. the untimed semantics and we reorder the
actions: only agents close to E0 will act between a reset and the following guarded input;

(3) we move the agents close to E0 at E0’s location and the agents far from E0 to ?0’s location;
(4) we transform this untimed trace into a trace w.r.t. the timed semantics;
(5) we reduce the size of the initial frame by applying Lemma 4.

Among these five steps, we may note that the first, the third and the fifth ones are almost im-
mediate. Indeed, in the first step, we simply remove reset actions and replace guarded inputs by
standard inputs. These transformations enable more behaviours. In the third step, the main point
is that the topology is no longer relevant in the untimed semantics. Finally, the fifth step is the
same as the last step of the proof of Theorem 1 presented before.
Let us focus on the steps (2) and (4). The step (2) is a consequence of the conjunction of Propo-

sition 2 and Lemma 5. Even if the full proof is presented in Appendix B, the main idea is to move
all the actions that do not depend on the reset or the guarded input outside the fast phase (thanks
to Lemma 6). Then, applying Lemma 5 on the remaining actions in the fast phase, we deduce that
they must have been executed by agents close to the verifier E0.

Proposition 2. Let T be a topology, andK0
tr1 ...tr=

T K= be an execution with = ≥ 2. We have that

there exists a bijection i : {1, . . . , =} → {1, . . . , =} such that:

• K0
tr′1 ...tr

′
=

T K= with tr8 = tr′
i (8)

for all 8 ∈ {1, . . . , =}; and

• for all 9 such that i (1) < 9 < i (=), we have that tr′
i (=)

↩→∗ tr′9 ↩→
∗ tr′

i (1)
.

24 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

The step (4) consists in transforming a trace in the untimed semantics into a trace in the original
one. To do so, we can first remark that, after having cleaned the trace, all the agents acting between
a reset and the following guarded input are located at the same place. Thanks to this observation,
it then become easy to lift the trace into the timed semantics. This allows us to prove Theorem 2
whose full proof is presented in Appendix B.

5.3 About restricted agents

The reduction results presented in the two previous sections assume that an agent is able to act as a
verifier and as a prover at the same time. This assumption is evident when looking at Lemma 4: the
projection function d does not make any difference between agent identities that execute prover
roles or verifier roles.
Depending on the application, it can happen that some scenarios are not possible. For example,

some protocols, like EMV-payment protocols, have been designed assuming that identities are
correctly distributed by an authority, i.e. an agent cannot simultaneously be a prover and a verifier.
Hopefully, our reduction results can easily be adapted to handle this restriction. We obtain similar
reduced topologies in which almost all the agents must be duplicated in order to get one honest
(resp. dishonest) prover representative and one honest (resp. dishonest) verifier representative at
each location. These two topologies are presented in Figure 6.

malicious node

honest node

E0 ?0

E1 E2

?1 ?2

C0
E0 ?0C0

40?1

E1
?2 E2

Fig. 6. Topologies T C0
MFnew

, and T
C0
DHnew

All the results presented so far in this chapter apply modulo small changes. As expected, Def-
inition 3 has to be adapted in order to carefully fill the initial configuration depending on each
identity (either a prover of a verifier). Finally, amongst all the technical lemmas, only Lemma 4
must be slightly modified in order to respect the status (prover/verifier) of the agents when apply-
ing the projection function. The proof can be immediately adapted keeping in mind that a prover
(resp. verifier) identity must only be projected on another prover (resp. verifier) identity.

Note that it is important to decide whether an agent is able to act as a prover and a verifier at the
same time or not. Indeed, depending on this choice of modelling, protocols may be proved secure
or not. An example of such a protocol is the SPADE protocol [16] which can be proved Mafia fraud
resistant when distinguishing both status, but suffers from a Mafia fraud if an agent can act as a
verifier and a prover at the same time.

6 REDUCING ORACLES

When considering Terrorist frauds, another reduction result is needed to get rid of the infinite num-
ber of semi-dishonest provers that should be considered. This result only holds for a restricted class
of protocols, named well-formed distance-bounding protocols, that match few additional assump-
tions. These assumptions rely on what we call a unifier for a set U of equations and a quasi-free
symbol of function. These two notions are introduced in a preliminaries section before develop-
ing our reduction result in the following one. The detailed proofs of lemmas, propositions, and
theorems introduced in this section are available in Appendix C.

So near and yet so far –
Symbolic verification of distance-bounding protocols 25

6.1 Preliminaries

As usual, given a set U of equations between terms, f is a unifier forU if D1f↓ =E D2f↓ and both
D1f↓ and D2f↓ are constructor terms for any D1 = D2 ∈ U . We denote by csu(U) a minimal set of
unifiers forU which is also complete, i.e. such that for any f unifier ofU, there exists \ ∈ csu(U)

such that f =E g ◦ \ for some g .
From now on, we assume that for all set of equationsU, if csu(U) exists then it is reduced to a

singleton. We note \U this element. Even if this assumption seems very restrictive, it is satisfied as
soon as the rewriting system contains only one rule per destructor symbol which is often verified.

Example 17. Let us consider:

U =

{
G1 = proj1(adec(G

1
rep, sk(E))), G2 = proj2 (adec(G

1
rep, sk(E))), G

1
ok = eq(G1, check(G2, spk(?))),

G3 = prf (〈G1, =+ 〉), G4 = G1 ⊕<+ ⊕ G3, G
2
ok = eq(G2rep, answer(2+ , G3, G4)),

G3ok = eq(G3rep, prf (〈G2, =+ ,<+ , 2+ , answer(2+ , G3, G4)〉))
}
.

We have that csu(U) = {\U}, where \U is the following substitution:
{
G1rep ↦→ aenc(〈G1, sign(G1, ssk(?))〉, pk(E)), G2 ↦→ sign(G1, ssk(%)), G

1
ok ↦→ ok,

G3 ↦→ prf (〈G1, =+ 〉), G4 ↦→ G1 ⊕<+ ⊕ prf (〈G1, =+ 〉),

G2rep ↦→ answer(2+ , prf (〈G1, =+ 〉), G1 ⊕<+ ⊕ prf (〈G1, =+ 〉)), G
2
ok ↦→ ok,

G3rep ↦→ prf (〈G1, =+ ,<+ , 2+ , answer(2+ , prf (〈G1, =+ 〉), G1 ⊕<+ ⊕ prf (〈G1, =+ 〉))〉), G
3
ok ↦→ ok

}
.

A symbol of function f ∈ Σ
+
2 is quasi-free if it occurs neither in the equations used to generate the

relation =E nor in the right-hand side of a rewriting rule. This implies that such a symbol cannot
be introduced during a normalisation.
Since such symbols does not interact with the rewriting system and the equational theory, we

will be able to reduce the number semi-dishonest provers as soon as the challenge only appears
under quasi-free symbols of function in the answer. The following lemma states that if a term
D reduces to a term f(D1, . . . ,D:) with f a quasi-free symbol of function then it must contain
f(D1, . . . ,D:) as a subterm (up to some normalisation steps).

Lemma 7. Let C0 be a term such that C0↓ =E f(D1, . . . ,D:) with f a quasi-free function symbol. We

have that there exist D ′
1, . . . ,D

′
:
such that f(D ′

1, . . . ,D
′
:
) ∈ st (C0) and D

′
8↓ =E D8 for any 8 ∈ {1, . . . , :}.

Example 18. In order to illustrate Lemma 7, let us consider f a quasi-free symbol of function and

the term D = adec(aenc(f(proj1(〈G,~〉)), pk(83)), sk(83)). We have that D reduces to f(G), i.e. D↓ =

f(G), which already occurs in st (D) up to a normalisation step. Indeed, f(proj1(〈G,~〉)) ∈ st (D) and

f(proj1(〈G,~〉)) → f(G).

Given an execution, we know that each input message can be forged by some recipes. Assuming
that D is the answer to some challenge 2 , and that a recipe ' has been used to compute D. The
following lemma allows us to decompose this recipe ' in order to obtain sub-recipes that deduce
the maximal subterms of D which do not contain 2 .

Lemma 8. Let Φ be a frame and 2 ∈ N such that 2 ∉ st (img(Φ)), and Φ+
= Φ ∪ {F2

E0,C0
−−−→ 2}. Let '

be a recipe such that 'Φ+↓ =E D. Let� be a context of minimal size made of quasi-free public function

symbols such that D = � [2,D1, . . . , D?] for some D1, . . . ,D? and 2 does not occur in st ({D1, . . . ,D? }).

For any 8 ∈ {1, . . . , ?}, we have that there exists '8 such that '8Φ
+↓ =E D8 .

26 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Example 19. In order to illustrate Lemma 8, we consider the frame Φ = {F0
0,C0
−−−→ D1,F1

0,C0
−−−→ D2},

the termD = f(2, 〈D1, D2〉), and the recipe ' = f(F2 , 〈F1,F2〉). We have that '(Φ⊎{F2
E0,CE
−−−→ 2})↓ = D.

Thanks to Lemma 8, we have that ' contains a subterm which deduces 〈D1, D2〉. Indeed, such a recipe

is for example '′
= 〈F1,F2〉. This reasoning may be applied to more complex terms whenever all the

symbols on top of 2 in D are quasi-free.

6.2 Most general semi-dishonest prover

To get rid of all the semi-dishonest provers when verifying Terrorist fraud resistance, we have to
restrict the class of protocols we consider.

Definition 12. A well-formed distance-bounding protocol is a protocol (V, P) such that:

(i) The two roles have the following form:

• V(I0
+
, I1+) = block+ .new 2+ .reset.out(2+).in

<2·C0 (G).block′+ ; and

• P(I0
%
, I1

%
) = block% .in(~2).out(D).block

′
%

where block- and block′- with - ∈ {+ , %} is a sequence of actions without reset and guarded

input instructions. Moreover, we assume that out(2) (resp. in(~2)) corresponds to the 80
th com-

munication action of V(I0
+
, I1+) (resp. P(I

0
%
, I1%)) for some 80.

(ii) (⌊Ṽ⌋
0
E0
⊎ ⌊P̃⌋

0
?0
; ∅; 0)

tr
−→T0

basic
(⌊0⌋ 0E0 ⊎ ⌊0⌋ 0?0 ;Φ; 0) with

tr =

(01, out(<1)).(11, in(<1)) . . . (080−1, out(<80−1)).(180−1, in(<80−1))

(E0, out(<80)).(?0, in(<80)).(?0, out(<80+1)).(E0, in
<2·C0 (<80+1))

(080+2), out(<80+2).(180+2, in(<80+2)) . . . (0=, out(<=)).(1=, in(<=))

up to g actions, and {08 , 18} = {E0, ?0} for any 8 ∈ {1, . . . , =} r {80, 80 + 1}. The processes Ṽ (resp.
P̃) corresponds to V(E0, ?0) (resp. P(?0, E0)) in which new commands are removed, and T 0

basic is

the topology only composed of agents E0, ?0 honest and located at the same place.

(iii) Let U = {G = D | ”let G = D in ” occurs in V(E0, ?0)} and {\U} its complete set of unifiers.

We assume that (G1, . . . , G:)\U↓f=E<81 , . . . ,<8: where G1, . . . , G: are the variables occurring

in input in the role V0(E0, ?0), 81, . . . , 8: are the indices among 1, . . . , = corresponding to input

performed by E0, and f is a bijective renaming from variables to bn(P(?0, E0)).

(iv) We assume the existence of a context � made of quasi-free public function symbols such that

D = � [~2 , D1, . . . , D;], and ~2 does not occur in D1, . . . , D; .

The first condition put some restrictions on the syntactic definition of the protocol. Indeed,
we assume that a well-formed distance-bounding protocol is a two-party protocol with rather
simple roles: the fast phase of the verifier role consists in a single challenge/response exchange.
The second condition assumes that if no attacker interferes, these two roles together will execute
until the end. For sake of simplicity we consider instances of the roles in which bound names are
not freshened. This is possible because we consider only one instance of each role (and they do
not share bound names). The third condition gives us a constraint about the messages that are
exchanged. Even if this condition may seem restrictive, it is always verified. Otherwise, it would
mean that some terms that are exchanged are never checked, i.e. are useless. Finally, the fourth
condition is used to ensure that there exists at least one semi-dishonest prover. This semi-dishonest
prover will output the terms D1, . . . ,D; in advance to let his accomplice compute (as indicated
by �) the answer to the challenge from D1, . . . ,D; and the challenge 2+ he will receive from the
verifier. Actually, the best strategy for the semi-dishonest prover will consist in considering �V,P

the smallest context (in terms of number of symbols) satisfying the requirements.

Example 20. We can demonstrate that the SPADE protocol described in Example 4 is a well-formed

distance-bounding protocol. The item (i) is straightforward with the descriptions of V(I0
+
, I1

+
) and

So near and yet so far –
Symbolic verification of distance-bounding protocols 27

P(I0
%
, I1%), which also give 80 = 3. For item (ii), we can exhibit the corresponding trace (up to g actions

and name freshening):

tr = (?0, out(<1)) . (E0, in(<1)) . (E0, out(<2)) . (?0, in(<2)) . (E0, out(2+)) . (?0, in(2+))

(?0, out(<4)) . (E0, in
<2·C0 (<4)) . (?0, out(<5)) . (E0, in(<5))

with the following abbreviations:

<1 = aenc(〈=% , sign(=% , ssk(?0))〉, pk(?)),

<2 = 〈<+ , =+ 〉,

<4 = answer(2+ , prf (〈=% , =+ 〉), =% ⊕<+ ⊕ prf (〈=% , =+ 〉)), and

<5 = prf (〈=% , =+ ,<+ , 2+ , answer(2+ , prf (〈=% , =+ 〉), =% ⊕<+ ⊕ prf (〈=% , =+ 〉))〉).

The set U described in item (iii) is exactly the same as the one presented in Example 17, which also

provides the corresponding \U . The substitution f is reduced to {G1 ↦→ =% }. Finally, for item (iv), we

have that � = answer(_, _, _) satisfies the requirement since D = answer(~2 , G3, G4).

Up to now, according to Definition 8 (and Corollary 2) we had to consider all the possible semi-
dishonest provers. Restricting our analysis to well-formed distance-bounding protocols, we are
now able to define themost general semi-dishonest prover and prove that it is sufficient to focus on
it during our security analysis.

Definition 13. Let (V, P) be a well-formed distance-bounding protocol. Following the notations of

Definition 12, we note P∗ the following process:
(
block% .out(D1) . . . out(D;).in(~2).out(D).block

′
%

)
{I0

%
↦→ ?0, I

1
% ↦→ E0}

where D1, . . . ,D; are the terms such that D = �V,P [~2 ,D1, . . . ,D;].

Example 21. If we consider the semi-dishonest prover presented in Example 12, one can see that it

corresponds to the process P∗ defined above.

The behaviour of themost general semi-dishonest prover consists in providing to his accomplice
all the material needed to pass the fast phase just before it starts. For this purpose, he computes
and sends the maximal sub-terms of D that do not contain the challenge ~2 . His accomplice is then
able to re-construct the response to the challenge using the context�V,P.
As assumed in the speech up to now, the process P∗ is a semi-dishonest prover, i.e. put together

with ⌊V(E0, ?0)⌋
0
E0
the two processes can be fully executed. This is immediate from the definition of

a well-formed distance-bounding protocol and the close correspondence between P∗ and P(?0, E0).
Lemma 9 formally states this property.

Lemma 9. Let (V, P) be a well-formed distance-bounding protocol. The process P∗ (as defined in

Definition 13) is a semi-dishonest prover, called the most general semi-dishonest prover. Moreover,

we can assume that the trace tr∗ witnessing this fact is such that :

tr∗ =

(01, out(<1)).(11, in(<1)) . . . (080−1, out(<80−1)).(180−1, in(<80−1)).

(?0, out(<
1
80+1

)).(?0, out(<
;
80+1

)).

(E0, out(<80)).(E0, in
<2·C0 (<80+1))

(?0, in(<80)).(?0, out(<80+1)).

(080+2, out(<80+2)).(180+2, in(<80+2)) . . . (0=, out(<=)).(1=, in(<=))

up to g actions where:

• {08 , 18} = {E0, ?0} for any 8 ∈ {1, . . . , =} r {80, 80 + 1};

• <80+1=E�V,P [<80,<
1
80+1

, . . . ,<;
80+1

]

28 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

• (G1, . . . , G:)\U↓f=E<81, . . . ,<8: where G1, . . . , G: are the variables occurring in input in the role

V(E0, ?0) and 81, . . . , 8: are the indices among 1, . . . , = corresponding to input performed by E0,

U = {G = D | ”let G = D in ” occurs in V(E0, ?0)}, and f is a bijective renaming from variables

to bn(P∗). This equality holds up to a bijective renaming of names freshly generated along the

execution.

We note Φ∗ the initial frame associated to the most general semi-dishonest prover, i.e. the frame
resulting from the execution of tr∗ in which all the annotated times are set to 0.

A noteworthy point is the strong correspondence that exists between Φ
∗ and any frame Φsd

associated to an arbitrary semi-dishonest prover Psd. We can prove that any semi-dishonest prover
discloses, at least, as much information as P∗, up to some substitution f .

Proposition 3. Let (V, P) be a well-formed distance-bounding protocol, and P∗ be its most general

semi-dishonest prover with Φ
∗ its associated frame. Let exec∗ be an execution witnessing the fact

that P∗ together with Φ
∗ is a semi-dishonest prover (as given in Lemma 9). We have that exec∗ is as

follows:

exec∗ : ({ ⌊V(E0, ?0)⌋
0
E0
, ⌊P∗⌋ 0?0}; ∅; 0)

tr∗
−−→

T
C0
simple

({ ⌊0⌋
C∗E
E0 , ⌊0⌋

C∗?
?0};Φ

∗; C∗).

Let Psd be a semi-dishonest prover for (V, P) together with its associated frame Φsd, and exec be the

execution witnessing this fact, i.e.

exec : ({ ⌊V(E0, ?0)⌋
0
E0
, ⌊Psd⌋

0
?0
}; ∅; 0)

tr
−→

T
C0
simple

({ ⌊0⌋ CEE0 , ⌊0⌋
C?
?0};Φsd; C).

We have that there exists a substitution f : N → T (Σ+
2 ,N ∪ A) from names freshly generated

by P∗ to constructor terms such that:

(i) if (E0, in(D)) ∈ tr∗ (resp. (E0, in<C (D)) ∈ tr∗), then (E0, in(Df)) ∈ tr (resp. (E0, in<C (Df)) ∈ tr);
(ii) if (0, out(D)) ∈ tr∗ for some 0 ∈ {E0, ?0}, then 'Φsd↓=EDf for some recipe '.

6.3 Main result

We are now able to state and prove the main reduction result which allows us to get rid of the
universal quantification over the semi-dishonest prover by focusing on the most general one.

Theorem 3. Let I0 be a template, (V, P) be a well-formed distance-bounding protocol. Let Φ∗ be

the frame associated to the most general semi-dishonest prover of (V, P). We have that (V, P) is Terror-

ist fraud resistant w.r.t. C0-proximity if, and only if, there exist a topology T = (A0,M0, Loc0, E0, ?0) ∈

C
C0
MF and a valid initial configurationK0 for (V, P) w.r.t.T andΦ∗∪ΦT

I0
such thatK0→

∗
T
(⌊end(E0, ?0)⌋

C′

E0
⊎

P ;Φ; C).

The following corollary is immediate putting together Theorem 3 and Theorem 1. It shows that
when checking for Terrorist fraud resistance, it is sufficient to focus on a particular semi-dishonest
prover and a particular topology.

Corollary 3. Let I0 be a template, (V, P) be a well-formed distance-bounding protocol. Let Φ∗ be the

frame associated to the most general semi-dishonest prover of (V, P). We have that (V, P) is Terrorist

fraud resistant w.r.t. C0-proximity if, and only if, there exists a valid initial configuration K0 for (V, P)

w.r.t. T C0
MF and Φ

∗ ∪ Φ
T
C0
MF

I0
such that K0 →

∗

T
C0
MF

(⌊end(E0, ?0)⌋
C′

E0
⊎ P ;Φ; C).

So near and yet so far –
Symbolic verification of distance-bounding protocols 29

In (8 : in(G).% ⊎ P ;q ; 8)
in(D)
=====⇒ (8 : %{G ↦→ D} ⊎ P ;q ; 8) when 'q↓ = D for some recipe '

and D is a message

Out (8 : out(D).% ⊎ P ;q ; 8)
out(D)
======⇒ (8 : % ⊎ P ;q ⊎ {F ↦→ D}; 8) with F ∈ W fresh.

Let (8 : let G = E in % ⊎ P ;q ; 8)
g
=⇒ (8 : %{G ↦→ E↓} ⊎ P ;q ; 8) when E↓ is a message.

New (8 : new =.% ⊎ P ;q ; 8)
g
=⇒ (8 : %{= ↦→ =′} ⊎ P ;q ; 8) with =′ ∈ N fresh.

Rep (8 : !% ⊎ P ;q ; 8)
g
=⇒ (8 : % ⊎ (8 : !%) ⊎ P ;q ; 8)

Move (P ;q ; 8)
phase 8′

=======⇒ (P ;q ; 8 ′) with 8 ′ > 8 .

Phase (8 : 8 ′ : % ⊎ P ;q ; 8)
g
=⇒ (8 ′ : % ⊎ P ;q ; 8)

Fig. 7. Semantics for the ProVerif calculus

7 ENCODING IN PROVERIF

In Section 5, we proved that we can focus on two rather simple topologies when analysing a
protocol. Unfortunately, existing tools are not suitable to model them. In the following, we present
a framework based on the existing verification tool ProVerif, to get rid of these reduced topologies.

7.1 ProVerif in a nutshell

ProVerif [10] is an automated verification tool developed to analyse standard protocols, i.e. without
time and location considerations. It has been successfully applied to secure messaging protocols
[43], e-voting schemes [21, 39], or avionic protocols [12]. ProVerif allows to model a wide class
of cryptographic primitives like symmetric/asymmetric encryption, signatures, hash functions...
and describes protocols through a process algebra close to the one presented in Section 3.2.1. Our
methodology applies considering the following subset of the ProVerif calculus:

% := 0 | in(G).% | out(D).% | let G = E in % | new =.% | 8 : % | !%.

Almost all the commands are similar to those defined in our timed semantics. The main differ-
ence is the notion of phase, denoted 8 : % . Informally, phases model synchronisation points in the
execution of a protocol. An execution always starts at phase 0. It can arbitrarily increase during the
execution but during phase 8 only processes that are actually at this stage can be executed. Another
difference is the presence of the replication !% command which was deliberately omitted in our
timed model since an arbitrary number of sessions may be added in a valid initial configuration.
This syntactic sugar will be useful to define the configuration under study in ProVerif.

This new semantics is formally described by a relation ⇒ over configurations. A configuration
is a tuple (P ;q ; 8)where P is a multiset of processes, q is a usual frame (without time annotations)
and 8 ∈ N is the current phase. All the rules are given in Figure 7.

7.2 Our transformation

Given a protocol (V, P), we propose a transformation that encodes the reduced topologies T C0
MF and

T C0
DH into the ProVerif tool. However it requires that the role Vend(I0, I1) containing the special
command end(I0, I1) is made of a unique challenge/response exchange, i.e. is of the form:

block1 . reset . out(D) . in
<C (G) . block2 . end(E0, ?0)

where blocki is a sequence of actions (only simple inputs, outputs, let, and new instructions are
allowed).

30 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

The main idea for the transformation is to use the notion of phases provided by ProVerif to
encode the fast phase, i.e. the challenge/response exchange. To do so we consider three phases:
phase 0 before the fast phase, phase 1 that starts when executing the reset action and stops just
after the input of the response, i.e. the in<C (G) action, and finally phase 2 for the remaining of the
protocol. The two locations of the reduced topologies are then modelled as follows: agents close
the the verifier are allowed to execute actions during phase 1 while distant agents are not. Given
a parametrised role as defined in Section 3.2.1 (with no reset and in<C (G) commands), the two
corresponding transformations, denoted F < and F ≥ , are thus defined as follows:

• transformation F < : this transformation introduces the phase instructions with 8 = 0, 1 and
2 considering all the possible ways of splitting the role into three phases (0, 1, and 2). Each
phase instruction is placed before an in instruction. Such a slicing is actually sufficient for
our purposes.

• transformation F ≥ : this transformation does the same butwe forbid the use of the instruction
phase 1, jumping directly from phase 0 to phase 2.

The configuration, denotedF (T , (V, P),Φ0, C0), is the tuple (P ;q ; 0)whereq is such that img(q) =

img(Φ0), and P is the multiset that contains the following processes:

• V′end(E0, ?0) = block1 . 1 : out(D) . in(G) . 2 : block2 . end(E0, ?0);

• !'(00, .., 0=) when '(I0, .., I=) ∈ {F < (V),F < (P)}, 00, .., 0= ∈ A0, DistT (E0, 00) < C0;
• !'(00, .., 0=) when '(I0, .., I=) ∈ {F ≥ (V),F ≥ (P)}, 00, .., 0= ∈ A0, DistT (E0, 00) ≥ C0;

Relying on Proposition 2 and Lemma 5 we are able to establish the following result that formally
justifies the correctness of our transformation. The detailed proof is available in Appendix D.

Proposition 4. Let C0 ∈ R+, T0 = (A0,M0, Loc0, E0, ?0) be a topology, and (V, P) be a protocol such

that Vend(E0, ?0) has the following form:

block1 . reset . out(D) . in<C (G) . block2 . end(E0, ?0) with C ≤ 2 · C0

LetK0 be a valid initial configuration for (V, P) w.r.t. T and Φ0. IfK0
tr
−→T0 (⌊end(E0, ?0)⌋

CE
E0
⊎P ;Φ; C)

with DistT0 (E0, ?0) ≥ 2 · C0 then we have that:

F (T0, (V, P),Φ0, C0)
tr′

===⇒ ({2 : end(E0, ?0)} ⊎ P ′;q ; 2).

Moreover, in case there is no 0 ∈ M0 such that DistT (0, E0) < C0, we have that for any in(D)

occurring in tr′ during phase 1, the underlying recipe ' is either of the form F , or only uses handles

output in phase 0.

8 CASE STUDIES

All the results presented above enabled us to perform a comprehensive case studies analysis con-
sidering more than 25 protocols including new EMV (payment) protocols. This analysis has been
conducted on a standard laptop and ProVerif always returned in less than few seconds except on
two examples for which few minutes are necessary. All the material is available in the supplemen-
tary material provided together with this document and in our GitLab repository [1].

8.1 Methodology

All our results allow us to limit the security analysis (w.r.t. Distance Hijacking attack, Mafia fraud,
or Terrorist fraud) of a given protocol to a single ProVerif file. Given the hypothesis that the pro-
tocol is an executable 2-party protocol (Definition 1), our methodology works as described below.
While it would be necessary to check all the possible topologies and configurations as stated in

Definitions 5, 8, or 10, depending on the security property (resp. Mafia fraud, Terrorist fraud or
Distance Hijacking attack) analysed, our reduction results (resp. Theorem 1 forMafia and Terrorist

So near and yet so far –
Symbolic verification of distance-bounding protocols 31

fraud, or Theorem 2 for Distance Hijacking attack) limit the number of topologies to consider to
only one (resp. T C0

MF for Mafia and Terrorist fraud, or T C0
DH for Distance Hijacking attack).

In the case of Mafia fraud and Distance Hijacking attack, if the role V is made of a unique
challenge/response exchange and therefore is of the form stated in Section 7.2, Proposition 4 allows
us to encode, with respect to the topology studied, the two roles V and P into ProVerif according to
the transformation also described in that section.While this transformationmay seem complicated
on paper, it is quite straightforward to apply and could be automatised, if needed, for complex
protocols. Nevertheless, depending on the number of inputs in the processes, this transformation
may lead to some heavy ProVerif files in terms of lines of code.
If ProVerif can not reach the end event, Proposition 4 gives us that the distance-bounding proto-

col considered is secure against Mafia fraud or Distance Hijacking attack. If an attack is discovered,
it should be analysed to see whether it is executable in our timed semantics, and thus corresponds
to a real attack. This whole methodology is summarized by the following corollaries:

Corollary 4. Let I0 be a template, C0 ∈ R+ a threshold, and (V, P) be an I0-executable 2-party

distance-bounding protocol, where V is made of a unique challenge/response exchange. If (V, P) admits

a Mafia fraud w.r.t. C0-proximity, then we have :

F (T
C0
MF, (V, P),Φ

T
C0
MF

I0
, C0)

tr
==⇒ ({2 : end(E0, ?0)} ⊎ P ′;q ; 2).

Corollary 5. Let I0 be a template, C0 ∈ R+ a threshold, and (V, P) be an I0-executable 2-party

distance-bounding protocol, where V is made of a unique challenge/response exchange. If (V, P) admits

a Distance Hijacking attack w.r.t. C0-proximity, then we have :

F (T
C0
DH, (V, P),Φ

T
C0
DH

I0
, C0)

tr
==⇒ ({2 : end(E0, ?0)} ⊎ P ′;q ; 2).

In the case of Terrorist fraud, Definition 8 suggests to consider all possible semi-dishonest
provers and we still need to do so after use of Theorem 1. By adding the hypothesis that our
protocol is also a well-formed distance-bounding protocol, we can use Lemma 9 to define the most
general semi-dishonest prover, and Theorem 3, to encode this process into a frame of initial knowl-
edge. Then, again by assuming that V is made of a unique challenge/response exchange, we make
use of Proposition 4 to encode into ProVerif, with respect to the topology T

C0
MF, the computed ini-

tial frame, representing the knowledge learn from the semi-dishonest prover, and the roles V and
P following our transformation.
If ProVerif can reach the end event, and if we are able to execute the trace in our timed semantics,

then the protocol is Terrorist fraud resistant, otherwise, it is vulnerable to a Terrorist fraud. This
whole methodology is illustrated by the following corollary:

Corollary 6. Let I0 be a template, C0 ∈ R+ a threshold, and (V, P) be an I0-executable 2-party

well-formed distance-bounding protocol, where V is made of a unique challenge/response exchange. If

(V, P)is a Terrorist fraud resistant w.r.t. C0-proximity, then we have :

F (T
C0
MF, (V, P),Φ

∗ ∪ Φ
T
C0
MF

I0
, C0)

tr
==⇒ ({2 : end(E0, ?0)} ⊎ P ′;q ; 2).

It is worth noting that ProVerif never returned false attacks across our case studies. The over-
approximations related to Theorem 2, Proposition 4 and the core procedure of ProVerif appear
tight enough to analyse distance-bounding protocols.

32 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

8.2 Limitations

Unfortunately, this methodology has some limitations due to either our theoretical development
or the existing tools and in particular, the ProVerif tool we decided to use. To overcome them, some
abstractions have been done when analysing protocols.
First, as mentioned in Example 4, our theoretical model does not allow an accurate modelling of

bit-level operations. The first abstraction is to collapse the fast phase, often made of several round-
trip bits, into a simple challenge/response exchange using a fresh nonce as a challenge. In addition,
when the response is too bit-level dependent then it is abstracted using an uninterpreted symbol of
function with relevant arguments. Following this abstraction, the protocols Tree-based [6], Pouli-
dor [55], and Uniform [46] have the same modelling as the Hancke and Kuhn protocol.
Then, even if our theoretical model is generic enough to model associative and commutative

operators, ProVerif, like almost all the existing automated verification tools, does not support them.
Since distance-bounding protocols often rely on the exclusive-or operator, we decided to model a
weaker operator through the following rules:

(G ⊕ ~) ⊕ G → ~ (G ⊕ ~) ⊕ ~ → G G ⊕ (G ⊕ ~) → ~ ~ ⊕ (G ⊕ ~) → G.

Similarly, few protocols rely on an algebraic properties of the exponentiation in finite cyclic
fields. Denoting by 6 a generator, we decided to model such an operator by the following equation:

exp(exp(6, G),~) = exp(exp(6,~), G).

Finally, ProVerif was always returning false attacks when applying ourmethodology to Distance
Hijacking scenarios, i.e. scenarios in which there is no dishonest agent in the neighbourhood of the
verifier. Indeed, even if we do not consider dishonest agents executing roles of the protocols during
phase 1, the built-in ProVerif attacker is still able to interact with participants. To prevent such
behaviours, we slightly modified the ProVerif tool: during phase 1 the attacker can only forward
messages already sent, or forge new messages using knowledge obtained in phase 0. Based on the
extra property stated in Proposition 4, this modification will not miss attacks. Indeed, according to
Proposition 4, a recipe involved in an input in phase 1 is either of the formF (a forward message),
or only uses handles from phase 0 (i.e. the message has been forged using knowledge obtained in
phase 0). Due to some optimisations in the ProVerif code, we noticed that we could not prevent the
attacker from using native tuples in phase 1. Therefore, we model tuples using our own function
symbols.

8.3 Application to distance-bounding protocols

First, one may note that almost all the protocols meet the requirements of our theoretical devel-
opment. The Brands and Chaum with signature and MAD protocols are the two unique protocols
that do not match the requirements for Terrorist fraud analysis. Indeed, the former does not sat-
isfy item (iv) of Definition 12 since the response to a challenge 2 is 2 ⊕< with ⊕ a non quasi-free
symbol of function. The last does not satisfies item (i) due to a lack of freshness of the challenge.
Our results, summarised in Table 1, are in line with those presented by Mauw et. al. in [44, 45].

However, some differences with the ones presented by Chothia et. al. in [19] exist. First, due to
a slightly different modelling of the protocol, the Hancke and Kuhn protocol is claimed to be
Terrorist fraud resistant in [19], whereas an attack exists. Second, in [19], it is assumed that a
message cannot be received by both a local and a distant agent. This modelling choice is more
restrictive than ours and prevent them from detecting some Distance Hijacking attacks, e.g. the
one on the MAD protocol, as well as the one on the Meadows protocol (variant 5 := 〈=+ , =% ⊕ idP〉).
The SPADE protocol, presented as a running example in the previous sections, has been analysed

and ProVerif correctly retrieved the Mafia fraud depicted in Example 10. This attack, which also

So near and yet so far –
Symbolic verification of distance-bounding protocols 33

applies on the TREAD protocol, has been reported to the authors who proposed a fix. It consists in
adding the identity of the verifier + inside the signature in the first message of the protocol. This
variant has been proved Mafia fraud resistant. Coming back again on the running example, the
reader can see that SPADE is proved Terrorist fraud resistant as explained in Examples 13 and 21.
ProVerif always returned in less than few second except for the analysis of the Distance Hijack-

ing scenario for the protocol SKI for which the analysis takes about 1 minute.

8.4 Application to payment protocols

In addition to standard distance-bounding protocols, we also applied our technique to new EMV
protocols, PaySafe, NXP and MasterCard RRP, designed to avoid relay attacks in the context of
payment protocols. A noteworthy difference between these three protocols lies in the threshold
used to define the proximity of the participants. In PaySafe, the threshold is a constant known by
the reader at the beginning of the protocol. In contrast, in NXP and MasterCard RRP, the threshold
is sent by the card to the reader during the initialisation step. Unfortunately, our model does not
allow to consider messages including time values (a message is a term built over names and agent
identities). To overcome this limitation, similarly to [19], we decided to first prove authenticity
and integrity (two standard properties) of the threshold using ProVerif and then verify Mafia fraud,
Distance Hijacking attack and Terrorist fraud assuming a public constant threshold.
All the results are presented in Table 2. ProVerif returns in few seconds except for the Distance

Hijacking scenario for the MasterCard RRP protocol. On this example, ProVerif was unable to
reach a conclusion within few hours, and thus we decided to consider ProVerif’s native tuples
outside the fast phase. We actually only replace external pairs. This encoding allows us to get a
result within 2 minutes.
As expected, the three protocols are resistant to relay attacks, i.e. Mafia fraud, but not to Distance

Hijacking attack and Terrorist fraud. These weaknesses are not surprising since these protocols
have not been designed to resist to these classes of attacks. However, it is legitimate to wonder if
these scenarios of attacks are relevant when considering payments protocols. In case of Distance
Hijacking scenarios, one may note that an attacker may have incentives to abuse an honest agent.
Indeed, a purchase might be considered as a proof of location since readers are assumed to only
authenticate close participants. Distance Hijacking resistance may thus be desirable. In contrast,
allowing Terrorist fraud could be a feature of the card. It would permit its user to agree for a
one-time payment to a third-party while not being physically next to it, without risking any non-
expected following payment, similarly to the current virtual credit card system. For this reason
Terrorist fraud resistance does seem to be relevant.

8.5 Comparison with existing approaches regarding the verification aspect

We pursue the comparison between our approach and the ones developed in [19, 44, 45] focusing
on how automation has been achieved.
As already mentioned, in the approach developed in [19], the security analysis is performed

focusing on the rather simple topologies similar to T C0
MF and T

C0
DH. Here, we provide a strong formal

foundation showing that this can indeed be done without missing any attack. This corresponds to
the reduction results presented in Section 5. Another difference can be found in the way of mod-
elling scenarios without malicious agents in the vicinity of the verifier (e.g., Distance Hijacking
attacks).Whereas Chothia et al. resort to private channels during the challenge/response exchange
to prevent the attacker from interacting with participants, relying on the theoretical result estab-
lished in Proposition 4, we decided to slightly modify the ProVerif tool to forbid the ProVerif’s at-
tacker to manipulate messages during phase 1. This has been achieved by discarding Horn clauses

34 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Protocols MF DH TF Hyp.

Basin’s toy example [7] ✓ ✓ ✓ –

Brands and Chaum [15]
• Signature ✓ ✗ o.o.s. xor
• Fiat-Shamir ✓ ✗ ✗ exp.

CRCS No-revealing sign [53]
• No-revealing sign ✓ ✓ ✗ –
• Revealing sign ✓ ✗ ✗ –

Eff-PKDB [41]
• No protection (new) ✓ ✓ ✓ xor, exp.
• Protected (new) ✓ ✓ ✓ xor, exp.

Hancke and Kuhn ✓ ✓ ✗ –

MAD (One-Way) [17] ✓ ✗ o.o.s. xor

Meadows et al. [47]
• 5 := 〈=+ ⊕ =% , idP〉 (new) ✓ ✓ ✗ xor
• 5 := 〈=+ , =% ⊕ idP〉 ✓ ✗ ✗ xor
• 5 := =+ ⊕ h(=% , idP) ✓ ✓ ✗ xor
• 5 := 〈=+ , idP, =% 〉 ✓ ✓ ✗ –

Munilla et al. [50] ✓ ✓ ✗ –

SKI [14] (new) ✓ ✓ ✓ xor

SPADE
• Original [16] (new) ✗ ✗ ✓ xor
• Fixed [37] (new) ✓ ✗ ✓ xor

Swiss-Knife
• Original [42] ✓ ✓ ✓ xor
•Modified version [35] (new) ✓ ✓ ✗ xor

TREAD asymmetric [4, 37]
• Original (using idpriv) ✗ ✗ ✓ xor
• Fixed (using idpriv) (new) ✓ ✗ ✓ xor
• Original (using idpub) ✗ ✗ ✓ xor
• Fixed (using idpub) (new) ✓ ✗ ✓ xor

TREAD symmetric [4] ✓ ✗ ✓ xor

Table 1. Results on our case studies (✗: a�ack found, ✓: proved secure, >.>.B .: out of scope).
MF = Mafia fraud, DH = Distance Hijacking a�ack, TF = Terrorist fraud.
All the results are obtained within few seconds on a standard laptop.
(new) means that no symbolic analysis reported before.

So near and yet so far –
Symbolic verification of distance-bounding protocols 35

Protocols MF DH TF

MasterCard RRP [34] ✓ ✗ ✗

NXP [40] ✓ ✗ ✗

PaySafe [20] ✓ ✗ ✗

Table 2. Results of the analysis of EMV protocols (✗: a�ack found, ✓: proved secure).
MF = Mafia fraud, DH = Distance Hijacking a�ack, TF = Terrorist fraud
All the results (but DH for MasterCard RRP) are obtained within few seconds on a standard laptop.

allowing the attacker to perform deduction during phase 1. To be precise, this corresponds to few
lines of codes that have been added in the file pitrans.ml.
Regarding the security analysis conducted in [44, 45] and relying on the Tamarin tool one may

note that the results have been obtained with the autoprove mode of the tool, and do not require
any interaction with the user. Moreover, as already mentioned, the security definitions proposed
in [44, 45] are in line with ours. In particular, when considering Terrorist fraud, their notion of
"valid extensions" of a protocol corresponds to our notion of semi-dishonest provers. However, as
expected, one must consider all the possible "valid initial extensions" when analysing a protocol.
This source of unboundedness makes the automation of the analysis difficult: no existing tools are
able to handle it. In [45], authors illustrate their methodology on a toy example for which they
provide a hand-written proof justifying they can focus on a unique extension. One may note that
this last corresponds to what we call the most-general semi-dishonest prover. Instead of requiring
a hand-written proof for each protocol, we decided to go further in terms of automation and,
under reasonable assumptions, we formally defined this most-general semi-dishonest prover and
proved its completeness. This corresponds to the reduction result presented in Section 6. In case
the conditions needed to apply this reduction result are not satisfied, the corresponding protocol
is declared out of scope (o.o.s.) in Table 1. Note that since these two protocols are vulnerable to
a Terrorist fraud, we might have decided to describe the well-known semi-dishonest provers that
lead to this attack, and prove using ProVerif that no re-authentication is possible. We preferred to
precise (o.o.s) in order to highlight the limitation of our reduction result.
Finally, to make the analysis possible using the existing tool Tamarin, Mauw et al. prove the

equivalence between the security properties expressed in a timedmodel and purely causality-based
properties, i.e. properties solely based on the order of the actions in the trace of execution. Unlike
us, in case of Distance Hijacking scenarios (i.e. without malicious agents close to the verifier), they
have not modified the tool to prevent undesirable behaviours of the built-in attacker. Instead, they
decided to tag all the actions of malicious agents and make the security property trivially satisfied
whenever such a tag occurs during the challenge/response exchange. Unfortunately, similarly to
ProVerif, the built-in attacker model of Tamarin allows the attacker to act at anytime and bypass
their tag mechanism. This may lead to false attacks when analysing a protocol w.r.t. Distance
Hijacking attacks in their framework. Therefore, it is important to check the attack returned by
their tool to make sure that it corresponds to an attack scenario. This issue has been acknowledged
by the authors.

9 CONCLUSION

This paper has been dedicated to the symbolic verification of distance-bounding protocols with
the introduction of a new model allowing one to take into consideration the location of the agents
and the fact that transmitting a message takes time. Then, formal definitions of the three main

36 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

classes of attacks against which distance-bounding protocols are usually analysed have been pro-
posed. A specific interest has been paid on the definition of Terrorist frauds for which modelling
the collusion behaviours was a challenging problem. Regarding automatic verification, we man-
aged to analyse many distance-bounding protocols relying on two reduction results and the phase
mechanism available in the ProVerif tool.
Despite these positive results, we would like to highlight some limitations. First, neither our

framework nor those proposed in [19, 44, 45] take mobility into account. We think that this is
achievable following the approach recently proposed in [13]. This model allows agents to perform
arbitrary movements as soon as they do not move faster than messages. Nonetheless this will
require significant changes to our model to adapt e.g. our security definitions to make precise
when the agents are required to be close (they are now able to move!).

Second, none of the existing frameworks (including ours) allow to faithfullymodel the exclusive-
or operator which is an operator used by most of the distance-bounding protocols. We may note
that our theoretical development (i.e. reduction results developed in Sections 5 and 6) does not suf-
fer from this limitation, this is only a limitation of the existing automated tools. The Tamarin tool
is probably the most advanced one regarding this aspect thanks to its recent extension provided
in [31]. However, this does not seem to be the panacea. For example, we tried to perform our case
studies relying on this tool but we faced up many non-termination issues. The same behaviours
seem to have appeared in [44, 45] since several protocols have been modelled relying on a weak
form of exclusive-or (as in our ProVerif encodings).
Another interesting direction would be to improve the modelling of the fast phase which relies

on bit-level operations, and to switch from a qualitative to a quantitative security analysis. The
recent probabilistic model proposed by Chadha et al. [18] could serve at a starting point. However,
even if this model is promising, it also opens challenging problems. The fast phase is not isolated
to the rest of the protocol, and thus the interactions between messages modelled at the bit level,
and the remaining ones modelled through a standard term algebra remain unclear.

ACKNOWLEDGEMENTS

This work has been partially supported by the European Research Council (ERC) under the Euro-
peanUnion’s Horizon 2020 research and innovation program (grant agreementNo 714955-POPSTAR).

REFERENCES

[1] https://gitlab.inria.fr/adebant/db-verif.
[2] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc. 28th Symposium on Principles

of Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.
[3] G. Avoine, M. Ali Bingöl, S. Kardas, C. Lauradoux, and B. Martin. A framework for analyzing RFID distance bounding

protocols. Journal of Computer Security, 19(2):289–317, 2011.
[4] G. Avoine, X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert. A terrorist-fraud resistant

and extractor-free anonymous distance-bounding protocol. In Proc. 12th ACM Asia Conference on Computer and

Communications Security (AsiaCCS’17), pages 800–814. ACM Press, 2017.
[5] G. Avoine et al. Security of distance-bounding: A survey. ACM Computing Surveys, 51(5):94:1–94:33, 2019.
[6] G. Avoine and A. Tchamkerten. An efficient distance bounding rfid authentication protocol: balancing false-

acceptance rate and memory requirement. In Proc. 12th International Conference on Information Security (ISC’09),
pages 250–261. Springer, 2009.

[7] D. Basin, S. Capkun, P. Schaller, and B. Schmidt. Formal reasoning about physical properties of security protocols.
ACM Transactions on Information and System Security (TISSEC), 14(2):16, 2011.

[8] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler. A formal analysis of 5G authentication. In Proc.

25th ACM Conference on Computer and Communications Security (CCS’18), pages 1383–1396, 2018.
[9] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference implementations for the TLS 1.3 standard

candidate. In Proc. 38th IEEE Symposium on Security and Privacy (S&P’17), pages 483–503, 2017.

https://gitlab.inria.fr/adebant/db-verif

So near and yet so far –
Symbolic verification of distance-bounding protocols 37

[10] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In Proc. 14th IEEE Computer Security

Foundations Workshop (CSFW’01), pages 82–96, 2001.
[11] B. Blanchet. Modeling and verifying security protocols with the applied pi calculus and proverif. Foundations and

Trends in Privacy and Security, 1(1-2):1–135, 2016.
[12] B. Blanchet. Symbolic and computational mechanized verification of the ARINC823 avionic protocols. In Proc. 30th

IEEE Computer Security Foundations Symposium (CSF’17), pages 68–82, 2017.
[13] I. Boureanu, T. Chothia, A. Debant, and S. Delaune. Security Analysis and Implementation of Relay-Resistant Con-

tactless Payments. In Proc. 27th ACM Conference on Computer and Communications Security (CCS’20), pages 879–898,
2020.

[14] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Secure and lightweight distance-bounding. In Proc. 2nd International

Workshop on Lightweight Cryptography for Security and Privacy (LightSec’13), volume 8162 of LNCS, pages 97–113.
Springer, 2013.

[15] S. Brands and D. Chaum. Distance-bounding protocols. In Proc. Workshop on the Theory and Application of Crypto-

graphic Techniques (EUROCRYPT’93), pages 344–359. Springer, 1993.
[16] X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert. A prover-anonymous and terrorist-fraud

resistant distance-bounding protocol. In Proc. 9th ACM Conference on Security & Privacy in Wireless and Mobile

Networks, (WISEC’16), pages 121–133. ACM Press, 2016.
[17] S. Čapkun, L. Buttyán, and J.-P. Hubaux. Sector: secure tracking of node encounters in multi-hop wireless networks.

In Proc. 1st ACM workshop on Security of ad hoc and sensor networks, pages 21–32. ACM, 2003.
[18] R. Chadha, A. Prasad Sistla, and M. Viswanathan. Verification of randomized security protocols. In Proc. 32nd Annual

IEEE Symposium on Logic in Computer Science, (LICS’17), pages 1–12. IEEE Computer Society, 2017.
[19] T. Chothia, J. de Ruiter, and B. Smyth. Modelling and analysis of a hierarchy of distance bounding attacks. In Proc.

27th USENIX Security Symposium (USENIX’18), 2018.
[20] T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thompson. Relay cost bounding for contactless EMV

payments. In Proc. 19th International Conference on Financial Cryptography and Data Security (FC’15), LNCS, 2015.
[21] V. Cortier, A. Filipiak, and J. Lallemand. BeleniosVS: Secrecy and verifiability against a corrupted voting device. In

Proc. 32nd Computer Security Foundations Symposium (CSF’19), pages 367–381, 2019.
[22] V. Cortier, D. Galindo, andM. Turuani. A formal analysis of the neuchâtel e-voting protocol. In Proc. 3rd IEEE European

Symposium on Security and Privacy (EuroS&P’18), pages 430–442, 2018.
[23] C. Cremers, K. Rasmussen, B. Schmidt, and S. Capkun. Distance hijacking attacks on distance bounding protocols. In

Proc. 33rd IEEE Symposium on Security and Privacy (S&P’12), pages 113–127, 2012.
[24] A. Debant and S. Delaune. Symbolic verification of distance bounding protocols. In Proc. 8th International Conference

on Principles of Security and Trust (POST’19), LNCS, pages 149–174. Springer, 2019.
[25] A. Debant, S. Delaune, and Wiedling C. So near and yet so far - symbolic verification of distance-bounding protocols.

Research report, Univ Rennes, CNRS, IRISA, France, October 2020.
[26] A. Debant, S. Delaune, and C. Wiedling. A symbolic framework to analyse physical proximity in security proto-

cols. In Proc. 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science,

(FSTTCS’18), volume 122 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
[27] A. Debant, S. Delaune, and C. Wiedling. Symbolic analysis of terrorist fraud resistance. In Proc. 24th European

Symposium on Research in Computer Security (ESORICS’19), volume 11735 of LNCS, pages 383–403. Springer, 2019.
[28] Y. Desmedt. Major security problems with the ‘unforgeable’ (Feige)-Fiat-Shamir proofs of identity and how to over-

come them. In Proc. SECURICOM’88.
[29] Y. Desmedt, C. Goutier, and S. Bengio. Special uses and abuses of the Fiat-Shamir passport protocol. In Proc. 7th

Conference on the Theory and Applications of Cryptographic Techniques (CRYPTO’87), pages 21–39. Springer, 1987.
[30] D. Dolev and A. C. Yao. On the security of public key protocols. In Proc. 22nd Symposium on Foundations of Computer

Science (FCS’81), pages 350–357, 1981.
[31] J. Dreier, L. Hirschi, S. Radomirovic, and R. Sasse. Automated Unbounded Verification of Stateful Cryptographic

Protocols with Exclusive OR. In Proc. 31st IEEE Computer Security Foundations Symposium (CSF’18), 2018.
[32] S. Drimer, S. J Murdoch, et al. Keep your enemies close: Distance bounding against smartcard relay attacks. In Proc.

16th USENIX Security Symposium, (USENIX’07), volume 312, 2007.
[33] Ulrich Dürholz, Marc Fischlin, Michael Kasper, and Cristina Onete. A formal approach to distance-bounding RFID

protocols. In Proc. 14th International Conference on Information Security (ISC’11), volume 7001 of LNCS. Springer, 2011.
[34] EMVCo. EMV contactless specifications for payment systems, version 2.6, 2016.
[35] M. Fischlin and C. Onete. Subtle kinks in distance-bounding: an analysis of prominent protocols. In Proc. 6th ACM

conference on Security and privacy in wireless and mobile networks, pages 195–206, 2013.
[36] A. Francillon, B. Danev, and S. Capkun. Relay attacks on passive keyless entry and start systems in modern cars. In

Proc. Network and Distributed System Security Symposium (NDSS’11). The Internet Society, 2011.

38 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

[37] D. Gérault. Security Analysis of Contactless Communication Protocols. PhD thesis, Université Clermont Auvergne,
2018.

[38] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. Basin. A spectral analysis of Noise: A comprehensive,
automated, formal analysis of Diffie-Hellman protocols. In Proc. 29th USENIX Security Symposium, (USENIX’20).

[39] L. Hirschi and C. Cremers. Improving automated symbolic analysis of ballot secrecy for e-voting protocols: A method
based on sufficient conditions. In Proc. 4th IEEE European Symposium on Security and Privacy (EuroS&P’19), pages 635–
650, 2019.

[40] P. Janssens. Proximity check for communication devices, October 31 2017. US Patent 9,805,228.
[41] H. Kilinç and S. Vaudenay. Efficient public-key distance bounding protocol. In Proc. 22nd International Conference

on the Theory and Application of Cryptology and Information Security (ASIACRYPT’16), volume 10032 of LNCS, pages
873–901, 2016.

[42] Chong Hee Kim, G. Avoine, F. Koeune, F.-X. Standaert, and O. Pereira. The Swiss-Knife RFID distance bounding
protocol. In Proc. 11th International Conference on Information Security and Cryptology (ICISC’08), LNCS. Springer,
2008.

[43] N. Kobeissi, K. Bhargavan, and B. Blanchet. Automated verification for secure messaging protocols and their imple-
mentations: A symbolic and computational approach. In Proc. 2nd IEEE European Symposium on Security and Privacy

(EuroS&P’17), pages 435–450, 2017.
[44] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua. Distance-bounding protocols: Verification without time and

location. In Proc. 39th IEEE Symposium on Security and Privacy (S&P’18), pages 152–169, 2018.
[45] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua. Post-Collusion Security and Distance Bounding. In Proc. 26th

ACM Conference on Computer and Communications Security (CCS’19), pages 941–958. ACM, 2019.
[46] S. Mauw, J. Toro-Pozo, and R. Trujillo-Rasua. A class of precomputation-based distance-bounding protocols. In Proc.

1st IEEE European Symposium on Security and Privacy (EuroS&P’16). IEEE, 2016.
[47] C. Meadows, R. Poovendran, D. Pavlovic, L. Chang, and P. Syverson. Distance bounding protocols: Authentication

logic analysis and collusion attacks. In Proc. Secure localization and time synchronization for wireless sensor and ad hoc

networks, pages 279–298. Springer, 2007.
[48] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The Tamarin Prover for the Symbolic Analysis of Security Protocols.

In Proc. 25th International Conference on Computer Aided Verification (CAV’13), LNCS. Springer, 2013.
[49] J. Mitchell, A. Scedrov, N. Durgin, and P. Lincoln. Undecidability of bounded security protocols. In Proc. Workshop on

Formal Methods and Security Protocols, 1999.
[50] J. Munilla and A. Peinado. Distance bounding protocols for rfid enhanced by using void-challenges and analysis in

noisy channels. Wireless communications and mobile computing, 8(9):1227–1232, 2008.
[51] V. Nigam, C. Talcott, and A. A. Urquiza. Towards the automated verification of cyber-physical security protocols:

Bounding the number of timed intruders. In Proc. 21st European Symposium on Research in Computer Security (ES-

ORICS’16), pages 450–470. Springer, 2016.
[52] T. Nipkow, L. C Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-order logic, volume 2283. Springer

Science & Business Media, 2002.
[53] K. B. Rasmussen and S. Capkun. Realization of rf distance bounding. In Proc. 19th USENIX Security Symposium,

(USENIX’10), pages 389–402, 2010.
[54] B. Schmidt, R. Sasse, C. Cremers, and D. Basin. Automated verification of group key agreement protocols. In Proc.

35th IEEE Symposium on Security and Privacy (S&P’14), pages 179–194, 2014.
[55] R. Trujillo-Rasua, B. Martin, and G. Avoine. The Poulidor distance-bounding protocol. In Proc. International Workshop

on Radio Frequency Identification: Security and Privacy Issues, pages 239–257. Springer, 2010.

So near and yet so far –
Symbolic verification of distance-bounding protocols 39

A PROOFS FOR SECTION 5.1

Lemma 1. Let T0 = (A0,M0, Loc0, E0, ?0) be a topology, and K0 be a configuration built on T0. Let

H0 ⊆ A0 rM0. Let K be a configuration such that K0
tr
−→T0 K . We have that K0

tr
−→T′ K where

T ′
= (A0,M0 ∪H0, Loc0, E0, ?0).

Proof. We show this result by induction on the length of the derivation K0
tr
−→T0 K . The base

case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to show that:

K1
0,U
−−→T0 K2 implies K1

0,U
−−→T′ K2.

LetK1 = (P1;Φ1; C1). We consider each rule of the semantics one by one. Actually, the only rule that
depends on the status (honest/dishonest) of the agents of the underlying topology is the rule IN. In
such a case, we have that U = in★(D) for some D. Moreover, following the notation introduced in
Figure 2, we know that there exist 1 ∈ A0 (the agent responsible of the corresponding output) and
C1 ∈ R+ (the time at which the output has been triggered). The only interesting case is when1 ∈ H0,
and therefore 1 is now a malicious agent in the topology T ′ whereas 1 was an honest one in the
topology T0. Since, the IN rule was triggered in T0, we know that D ∈ img(⌊Φ1⌋

C1
1
), and therefore

there exists F ∈ dom(⌊Φ1⌋
C1
1
) such that FΦ1↓ = D. Actually, it is easy to see that choosing the

recipe ' = F (and 2 = 1) allows us to conclude. Indeed, we have that C1 − DistT′ (1,1) = C1 , and
therefore we conclude since we have already shown thatF ∈ dom(⌊Φ1⌋

C1
1
). �

Lemma 2. Let T0 be a topology, D0 be a subset of malicious agents, and K0 = (P0;Φ0; C0) be a

configuration built on T0 such that %0 is executable w.r.t. img(⌊Φ0⌋
C0
0) for any ⌊%0⌋

C0
0 ∈ P0 with

0 ∈ D0. Let K = (P ;Φ0 ⊎ Φ
+; C) be a configuration such that K0

tr
−→T0 K . We have that

(P0;Φ0; C0)
trf
−−→T0 (Pf ;Φ0 ⊎ Φ+f ; C)

where P0 (resp. P, Φ+, tr) is obtained from P0 (resp. P , Φ+, tr) by removing processes (resp. frame or

trace elements) located in 0 ∈ D0 and f (=) = c0 ∈ Σ0 for any name = freshly generated to trigger the

rules NEW executed by agent 0 ∈ D0 in tr.

Proof. We show this result assuming that D0 contains a unique element 00. The general result
can then easily be obtained by a simple induction on the size of D0. More precisely, we show the

following results by induction on the length of K0
tr
−→T0 K = (P ;Φ0 ⊎ Φ

+; C):

(1) for all ⌊%⌋ C000 ∈ P , %f is executable w.r.t. Ψ(C);

(2) for allF
00,C0
−−−→ D ∈ Φ

+, there exists ' ∈ T (Σ+
pub, dom(Ψ(C0))) such that 'Ψ(C0)↓ =E Df ;

(3) (P0;Φ0, C0)
trf
−−→T (Pf ;Φ0 ⊎ Φ+f ; C);

where Ψ(C) = Φ0 ⊎ { ⌊Φ+f⌋
C−DistT0 (1,00)

1
| 1 ≠ 00}.

The base case, i.e. when tr is empty, is trivial. Now, we assume that

K0
tr
−→T0 K = (P ;Φ0 ⊎ Φ

+; C)
0,U
−−→T0 K

′
= (P ′;Φ0 ⊎ Φ

′; C ′)

and thanks to our induction hypothesis, we know that the three properties above hold on K . We
note f ′ the substitution regarding the trace tr.(0, U). We do a case analysis on the rule involved in
the last step.

Rule TIM. In such a case, we have thatΦ′
= Φ

+ andP ′
= P . Since C ′ ≥ C , we have thatΨ(C) ⊆ Ψ(C ′),

and this allows us to conclude.

40 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Rule OUT. Items (1) and (3) are quite obvious. Regarding item (2), the only non trivial case is

when 0 = 00. We have to show that the element added to the frame, namelyF
00,C
−−−→ D satisfies the

expected property. Let P = { ⌊out(D).%⌋ C000 } ∪P1 and P ′
= {?A>24BB 5 ;>>A%00C0} ∪P1. By item (1),

we know that the process out(Df).%f responsible of this output is executable w.r.t. img(Ψ(C)),
and thus there exists ' ∈ T (Σ+

pub, dom(Ψ(C)) ∪ bn(out(Df).%f) ∪ bv(out(Df).%f)) such that

'Ψ(C)↓ = Df . More precisely ' ∈ T (Σ+
pub, dom(Ψ(C))) because Df does not contain any bound

names/variables.

Rule LET. Items (2) and (3) are quite immediate. Indeed, regarding item (2) we conclude by re-
marking that f ′

= f and Φ
′
= Φ

+. Regarding item (3) we simply note that if a term D↓ is a
constructor term then Df↓ is a constructor term too. Finally, the only non trivial point to estab-
lish is item (1) when 0 = 00. Let P = ⌊let G = E in % ′⌋ C000 ⊎ P1, P ′

= ⌊% ′{G ↦→ E↓}⌋ C000 ⊎ P1,
Φ
′
= Φ

+, C ′ = C , and f ′
= f . By hypothesis, we know that the process (let G = Ef in % ′f) is

executable w.r.t. Ψ(C), thus there exists ' ∈ T (Σ+
pub, dom(Ψ(C))) such that 'Ψ(C)↓ = Ef↓ (not

that E does not contain any bound names/variables). To prove item (1), we have to show that
(% ′{G ↦→ E↓})f is executable w.r.t. Ψ(C ′) = Ψ(C). LetD be a term occurring in an output (resp. a let)
in (% ′{G ↦→ E↓})f = % ′f{G ↦→ Ef↓}. We have that there exists D0 that occurs in an output (resp.
a let) in % ′f such that D0{G ↦→ Ef↓} = D, and by hypothesis, we know that (let G = Ef in % ′f)

is executable w.r.t. Ψ(C), i.e. there exists '0 ∈ T (Σ+
pub, dom(Ψ(C)) ∪ bn(% ′f) ∪ bv(% ′f) ∪ {G})

such that '0Ψ(C)↓ = D0↓ (actually there is no need of normalisation in case of an output). Let
'′

= '0{G ↦→ '}. We have that '′ ∈ T (Σ+
pub, dom(Ψ(C)) ∪ bn(% ′f) ∪ bv(% ′f)) and

'′
Ψ(C ′)↓ = ('0{G ↦→ '})Ψ(C)↓ = ('0Ψ(C){G ↦→ Ef↓})↓ = (D0↓{G ↦→ Ef↓})↓ = D↓.

Note that D = D0{G ↦→ Ef↓} is a constructor term when D0 is is a constructor term. Thus, no
normalisation is needed in case D is a term occurring in an output, and we have that '′

Ψ(C ′)↓ = D.

Rule NEW. In that case we have that P = ⌊new =.% ′⌋ C00 ⊎ P1, P ′
= ⌊% ′{= ↦→ =′}⌋ C00 ⊎ P1, Φ′

= Φ
+

and C ′ = C . The only interesting case is when 0 = 00 and thus f ′
= f ∪ {=′ ↦→ c0}. Note that items

(2) and (3) are immediate: we have that tr.(00, g) = tr and =′ is fresh and thus neither occurs in
P1 nor in Φ

+.
Regarding item (1) we have to prove that % ′{= ↦→ =′}f ′ is executable w.r.t. Ψ(C). Let D be a

term occurring in an output (resp. a let) in % ′{= ↦→ =′}. We have that there exists D0 that occurs
in an output (resp. a let) in % ′ such that D0{= ↦→ =′} = D. By hypothesis, (new =.% ′)f is executable
w.r.t. Ψ(C), and thus there exists ' ∈ T (Σ+

pub, dom(Ψ(C)) ∪ bn(% ′f) ∪ {=} ∪ bv(% ′f)) such that

'Ψ(C)↓ = D0f in case of an output (resp. D0f↓ in case of a let). We note '′
= '{= ↦→ c0}. We have

that % ′f = % ′f ′, and thus we obtain that '′ ∈ T (Σ+
pub, dom(Ψ(C)) ∪ bn(% ′f ′) ∪ bv(% ′f ′)) and:

'′
Ψ(C)↓ = '{= ↦→ c0}Ψ(C)↓ = 'Ψ(C)↓{= ↦→ c0}↓ = D0f↓{= ↦→ c0}↓ = Df ′↓.

Note that Df ′
= D0f{= ↦→ c0} is a constructor term when D0 is a constructor term. Thus, no

normalisation is needed in case D is a term occurring in an output.

Rule RST. In such a case, the result trivially holds.

Rule IN. In case 0 = 00, the only non trivial point is to establish item (1), and this can be done in
a similar way as it was done in Rule LET. Otherwise, i.e. when 0 ≠ 00, the non trivial point is to
establish item (3). Let U = in★(D). We have to establish that the IN rule can still be fired with the
value Df↓ despite the fact that some elements have been removed from Φ

+.
Following the notations introduced in Section 3.3, we know that there exist 1 ∈ A0 and C1 ∈ R+

such that C1 ≤ C − DistT0 (1, 0) and a recipe ' such that '(Φ0 ⊎ Φ
+)↓ = D and for all F ∈ E0AB (')

there exists 2 ∈ A0 such thatF ∈ 3><(⌊Φ0 ⊎ Φ
+⌋

C1−DistT0 (2,1)
2).

So near and yet so far –
Symbolic verification of distance-bounding protocols 41

(1) If 1 ∉ M0 then we know that ' = F0 for some F0 and we have that ⌊Φ0 ⊎ Φ
+⌋

C1
1

=

⌊Φ0 ⊎ Φ+⌋
C1
1 because1 ≠ 00. Thus, the rule can be applied considering the frame ⌊Φ0 ⊎ Φ+f⌋

C1
1 .

(2) If 1 ∈ M0, then in case 2 ≠ 00, or 2 = 00 with F ∈ Φ0, then it is straightforward (f does

not applies on it). The interesting case is whenF ∈ dom(⌊Φ+⌋
C1−DistT0 (00,1)
00), and we have to

reconstruct (FΦ
+)f↓with elements available in Φ0 ⊎ Φ+f .

Let F be a variable such that F ∈ vars(') and F ∈ dom(⌊Φ+⌋
C1−DistT0 (00,1)
00). Thanks to

item (2), we know that there exists CF ≤ C1−DistT0 (00, 1) and a recipe'F ∈ T (Σpub, dom(Ψ(CF)))

such that 'FΨ(CF)↓ =E (FΦ
+)f . By definition of Ψ(_), we have that

Ψ(CF) = Φ0 ⊎ { ⌊Φ+f⌋
CF−DistT0 (2,00)
2 | 2 ≠ 00}.

Moreover, we know that

CF − DistT0 (2, 00) ≤ C1 − (DistT0 (2, 00) + DistT0 (00, 1)) ≤ C1 − DistT0 (2, 1).

Thus, we have that vars('F) ⊆ dom(Φ0) ⊎ dom({ ⌊Φ+f⌋
C1−DistT0 (2,1)
2 | 2 ≠ 00}.

Let \ be the substitution with domain vars(') ∩ dom(⌊Φ+f⌋
C1−DistT0 (00,1)
00) and such that

\ (F) = 'F as defined above. We have that '\ ∈ T (Σ+
pub, 3><(Φ0 ⊎ Φ+f)) and

'\ (Φ0 ⊎ Φ+f)↓ = '(Φ0 ⊎ {F ↦→ 'F (Φ0 ⊎ Φ+f) | F ∈ dom(\)})↓

= '(Φ0 ⊎ {F ↦→ (FΦ
+)f | F ∈ dom(\)})↓

= '(Φ0 ⊎ Φ
+f)↓

= ('(Φ0 ⊎ Φ
+))f↓

= ('(Φ0 ⊎ Φ
+)↓)f↓

= Df↓

Note that for all F ∈ vars('\), by definition of Ψ(CF), we have that F
2,C2
−−→ E ∈ Φ0 ⊎ Φ+f

(for some 2, C2 , E) such that C2 ≤ C1 −DistT0 (2, 1), and thus the IN rule can be triggered at the
same time and relying on the same agent 1 as in the original execution trace.

�

Lemma 3. Let T = (A0,M0, Loc, E0, ?0) be a topology, K0 = (P0;Φ0; C0) and K be two configura-

tions built on T0 such that K0
tr
−→T K , and � be a set of agents such that

{0 | ⌊%⌋ C0 ∈ P0 or ⌊Φ0⌋
C
0 ≠ ∅} ⊆ � ⊆ A0 \M0.

We have that (P0;Φ0; C0)
tr
−→T′ K where T ′ is the canonical topology associated to � and Loc |� .

Proof. We show this result by induction on the length of the derivation K0
tr
−→T′ K . The base

case, i.e. tr is the empty trace, is trivial. To conclude, it is sufficient to show that:

K1
0,U
−−→T K2 implies K1

0,U
−−→T′ K2.

In the following, we note T ′
= (A′,M ′, Loc′, E0, ?0). We do the proof considering each rule of

the semantics one by one but, actually, the only rule that depends on the underlying topology is
the rule IN. In such a case, we have that U = in★(D) for some message D. Moreover, we denote
K1 = (P1;Φ1; C1) and following the notations introduced in Figure 2, we know that there exist
1 ∈ A0 (the agent responsible of the corresponding output) and C1 ≤ C1 − DistT (1, 0) (the time at
which the output has been triggered) that satisfy the conditions of the rule. We distinguish two
cases:

42 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

(1) In case 1 ∈ A0 rM0, then we know that there exists F ∈ img(⌊Φ1⌋
C1
1
) such thatFΦ1↓ = D.

By definition of � , we have that 1 ∈ � , and therefore 1 ∈ A′
rM ′. The same rule applies

for the same reason.
(2) In case 1 ∈ M0, then we know that there exists a recipe ' such that 'Φ1↓ = D, and for all

F ∈ vars(') there exists 2 ∈ A0 such that F ∈ dom(⌊Φ1⌋
C1−DistT (2,1)
2). We show that the

same rule applies using the same recipe '. However, the agent responsible of the output
will be the agent 80 such that Loc′(80) = Loc′(0) = Loc(0) (note that 0 ∈ �), and this
output will be performed at time C1 (instead of C1). We have that 'Φ1↓ = D. Now, let F ∈

vars('). Let 2 ∈ A0 such that F ∈ dom(⌊Φ1⌋
C1−DistT (2,1)
2). We have that 2 ∈ � . It remains

to show that F ∈ dom(⌊Φ1⌋
C1−DistT′ (2,80)
2). For this, it is actually sufficient to establish that

C1 − DistT′ (2, 80) ≥ C1 − DistT (2, 1). We know that:

C1 − DistT (1, 0) ≥ C1
⇒ C1 − DistT (1, 0) − DistT (2, 1) ≥ C1 − DistT (2, 1)
⇒ C1 − (DistT (1, 0) + DistT (2, 1)) ≥ C1 − DistT (2, 1)
⇒ C1 − DistT (2, 0) ≥ C1 − DistT (2, 1)

The last implication comes from the triangle inequality for the distance. Then, we obtain the
expected result since Loc′(80) = Loc′(0), and thus DistT (2, 0) = DistT′ (2, 0) since 0, 2 ∈ � .

This concludes the proof. �

Lemma 4. LetK,K ′ be two configurations built on T = (A0,M0, Loc, E0, ?0) such thatK
tr
−→T K ′,

and d : A → A0 be a renaming such that Loc(d (0)) = Loc(0) for any 0 ∈ A0, and d (0) ∈ M0 for

any 0 ∈ M0. We have that Kd
trd
−−→T K ′d .

Proof. We show this result by induction on the length ofK
tr
−→T K ′. The base case, i.e. tr is the

empty trace, is trivial. To conclude, it is sufficient to show thatK1
0,U
−−→T K2 withK1 a configuration

built on T implies that K1d
d (0),d (U)
−−−−−−−→T K2d . First, note that K1 only involves processes located

at 0 ∈ A0, and therefore actions along the derivation are only executed by agents in A0 whose
locations remain unchanged by d . We consider each rule of the semantics one by one. The only
rules that are not trivial are the rules LET and IN.

Case of the rule LET. In such a case, we have that K1 = (P1;Φ1; C1) and K2 = (P2;Φ2; C2) with

P1 = ⌊let G = D in %⌋ C00 ⊎ P , P2 = ⌊%{G ↦→ D↓}⌋ C00 ⊎ P , Φ2 = Φ1, and C2 = C1. We know that
D↓ ∈ T (Σ+

2 ,N ⊎ A), and therefore we have that (Dd)↓ ∈ T (Σ+
2 ,N ⊎ A) by applying the same

rewriting rule at each step. This allows us to apply the rule LET and to obtain the expected result.

Case of the rule IN. In such a case, we have that K1 = (P1;Φ1; C1) and K2 = (P2;Φ2; C2) with P1 =

⌊in★(G).%⌋
C0
0 ⊎P , P2 = ⌊%{G ↦→ D}⌋ C00 ⊎P ,Φ2 = Φ1, and C2 = C1. We know that there exists 1 ∈ A0,

C1 ∈ R+ such that C1 ≤ C1 − DistT (1, 0), and a recipe ' such that D = 'Φ1↓, and for allF ∈ vars(')

there exists 2 ∈ A0 such thatF ∈ dom(⌊Φ1⌋
C1−DistT (2,1)
2). Moreover, when 1 ∈ A0 rM0, we know

that' ∈ W. To conclude that the rule IN can be applied, we simply have to show that'(Φd)↓ = Dd .
Note that the renaming d keeps the locations of the agents in A0 unchanged, and therefore the
conditions about distance are still satisfied. We have that '(Φd)↓ = ('Φ)d↓ since ' ∈ T (Σ+

pub,W).

We know that ('Φ)↓ = D, and therefore we have that ('Φ)d↓ = Dd by applying the same rewriting
rule at each step. Note that Dd does not contain any destructor symbol and is thus in normal form.
To conclude, it remains to ensure that when d (1) ∈ A0 rM0, then ' ∈ W. Actually, we know
that if d (1) ∉ M0 then 1 ∉ M0 by hypothesis, and this allows us to conclude. �

So near and yet so far –
Symbolic verification of distance-bounding protocols 43

The following proposition shows that, assuming that each guarded input is preceded by a reset
in the configuration under study, then it is possible to follow the same execution starting with an
initial configuration, i.e. with global time set to 0.

Proposition 5. Let T = (A0,M0, Loc, E0, ?0) be a topology and K = (P ;Φ; C) be a configuration

such that any guarded input in P is preceded by a reset. LetK ′
= (P ′;Φ′; C ′) be a configuration such

that K
tr
−→T K ′. We have that K0 = (P ;Φ; 0)

tr
−→T K ′

0 for some K ′
0 = (P ′

0;Φ
′
0; C

′
0) such that:

(1) {(%, 0) | ⌊%⌋ _0 ∈ P ′} = {(%, 0) | ⌊%⌋ _0 ∈ P ′
0};

(2) {(F, 0,D) | F
0,_
−−→ D ∈ Φ

′} = {(F, 0,D) | F
0,_
−−→ D ∈ Φ

′
0}.

Proof. We prove the result together with the three properties below by induction on the length

of the derivation K
tr
−→T K ′

= (P ′;Φ ⊎ Ψ
′; C ′) where X = max({DistT (0, 1) | 0, 1 ∈ A0} ∪ {C}).

(i) if ⌊%⌋ C00 ∈ P ′ and % contains a guarded input that is not preceded by a reset then ⌊%⌋ C00 ∈ P ′
0

(with the same value for C0);
(ii) C ′0 = C ′ − C + X;

(iii) Φ′
0 = Φ ⊎ Shi�(Ψ′, X − C) with Shi�(Ψ′, X − C) = {F

0,C0+X−C
−−−−−−→ D | F

0,C0
−−−→ D ∈ Ψ

′}.

Base case: In such a case, we have that K ′
= K , and thus C ′ = C , P ′

= P , Φ′
= Φ, and Ψ

′
= ∅. Let

K ′
0 = (Shi�(P, X);Φ; X). We have thatK0 −→T K ′

0 using the TIM rule. Note that item (i) is satisfied
since by hypothesis in P ′ (= P), any guarded input is preceded by a reset. Regarding (ii), we have
that C ′0 = X = C ′ − C + X since C ′ = C . Since Φ′

0 = Φ, and Ψ
′
= ∅, item (iii) is also satisfied. Then items

(1) and (2) are trivially satisfied.

Induction step: In such a case, we have that K
tr
−→T K ′′ 0,U

−−→T K ′ with K ′′
= (P ′′;Φ′′; C ′′) and

Φ
′′
= Φ ⊎ Ψ

′′. By induction hypothesis, we know that there exists K ′′
0 = (P ′′

0 ;Φ
′′
0 ; C

′′
0) such that

K0
tr
−→T K ′′

0 with:

(1) {(%, 0) | ⌊%⌋ _0 ∈ P ′′} = {(%, 0) | ⌊%⌋ _0 ∈ P ′′
0 };

(2) {(F, 0,D) | F
0,_
−−→ D ∈ Φ

′′} = {(F, 0,D) | F
0,_
−−→ D ∈ Φ

′′
0 }.

We have also that:

(i) if ⌊%⌋ C00 ∈ P ′′ and % contains a guarded input that is not preceded by a reset then ⌊%⌋ C00 ∈ P ′′
0 ;

(ii) C ′′0 = C ′′ − C + X;
(iii) Φ′′

0 = Φ ⊎ Shi�(Ψ′′, X − C).

We consider the rule involved in K ′′ 0,U
−−→T K ′ and we show that the same rule can be applied

on K ′′
0 , and allows one to getK ′

0 with the five properties stated above.

Case TIM rule. In such a case, we have that K ′
= (P ′′;Φ′′; C ′′ + X0) for some X0, and we apply the

same rule with the delay X0 onK ′′
0 . We obtainK ′

0 = (P ′′
0 ;Φ

′′
0 ; C

′′
0 +X0), and we easily check that all

the properties are satisfied.

Case OUT rule. In such a case,K ′
= (P ′;Φ′′⊎{F

0,C′′

−−−→ D}; C ′′) (for some P ′,F , 0, andD). Relying on

item 1, we apply the same rule on K ′′
0 , and obtain K ′

0 = (P ′
0;Φ

′′
0 ⊎ {F

0,C′′0
−−−→ D}; C ′′0) (for some P ′

0).
We have that items 1 and 2 are clearly satisfied as well as item (i). Now, regarding item (ii), we
have that C ′0 = C ′′0 and C ′ = C ′′. Therefore, we conclude that C ′0 = C ′ − C + X thanks to our induction
hypothesis. Now, to establish that Φ′

0 = Φ ⊎ Shi�(Ψ′, X − C), relying on our induction hypothesis,
it only remains to show that C ′′0 = C ′′ + (X − C) (this is item (88)).

44 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Case LET and NEW rules. In such a case, K ′
= (P ′;Φ′′; C ′′) (for some P ′), and we apply that same

rule on K ′′
0 , and obtain K ′

0 = (P ′
0;Φ

′′
0 ; C

′′
0). We conclude easily (for each property) relying on our

induction hypothesis.

Case RST rule. In such a case,K ′
= (P ′;Φ′′; C ′′) with P ′

= { ⌊%⌋ 00}∪Q
′ for some %, 0, C0 andQ′, and

P ′′
= { ⌊reset.%⌋ C

0

0 } ∪ Q′. We apply the same rule onK ′′
0 , and obtain K ′

0 = (P ′
0;Φ

′′
0 ; C

′′
0). Relying

on our induction hypothesis, we easily obtain the fact that items 1 and 2 are satisfied. Regarding
item (i), we conclude using our induction hypothesis for processes in Q′, and the property is
satisfied for ⌊%⌋ 00 . Regarding items (ii) and (iii), since the global time and the frame have not
evolved, we conclude relying on our induction hypothesis.

Case IN rule. In such a case, K ′
= (P ′;Φ′′; C ′′) (for some P ′), and we apply the same rule on K ′′

0
to get K ′

0 = (P ′
0;Φ

′′
0 ; C

′′
0). The difficult part is to show that the rule can indeed be applied on K ′′

0 .

By hypothesis, we know thatK ′′
0,in★ (D)
−−−−−−→T K ′, and thus P ′′

= ⌊in★(G).%⌋
C0

0 ∪Q for some G, 0, C0

and Q, and we know that there exists 1 ∈ A0 and C1 ∈ R+ such that C1 < C ′′ − DistT (1, 0) and:

• if 1 ∈ A0 rM0 then D ∈ img(⌊Φ′′⌋ C
1

1);
• if 1 ∈ M0 then D = 'Φ↓ for some recipe ' such that for allF ∈ vars(') there exists 2 ∈ A0

such thatF ∈ dom(⌊Φ′′⌋
C1−DistT (2,1)
2).

Moreover, in case ★ is < C6 for some C6 , we know in addition that C0 < C6 .
We first assume that in★(D) is a simple input (not a guarded one). We show that we can apply

onK ′′
0 the same rule using the same recipe '. The message will be sent by the same agent 1 ∈ A0.

The time C10 at which the message is sent is C10 = C1 + (X − C). Note that C10 ≥ C1 since X − C ≥

0, and img(⌊Ψ′′⌋ C
1

1) = img(⌊Ψ′′
0 ⌋

C10
1
) (and dom(⌊Ψ′′⌋ C

1

1) = dom(⌊Ψ′′
0 ⌋

C10
1
) as well) since Ψ

′′
0 =

Shi�(Ψ′′, X − C), and C10 = C1 + (X − C). We distinguish two cases:

• if 1 ∈ A0 rM0 then we know that

D ∈ img(⌊Φ′′⌋ C
1

1)

= img(⌊Φ⌋ C
1

1) ∪ img(⌊Ψ′′⌋ C
1

1)

⊆ img(⌊Φ⌋
C10
1
) ∪ img(⌊Ψ′′

0 ⌋
C10
1
)

= img(⌊Φ′′
0 ⌋

C10
1
)

• if 1 ∈ M0 then we considerF ∈ vars('). We have that:

F ∈ dom(⌊Φ′′⌋
C1−DistT (2,1)
2)

= dom(⌊Φ⌋
C1−DistT (2,1)
2) ∪ dom(⌊Ψ′′⌋

C1−DistT (2,1)
2)

⊆ dom(⌊Φ⌋
C10 −DistT (2,1)
2) ∪ dom(⌊Ψ′′

0 ⌋
C10 −DistT (2,1)
2)

= dom(⌊Φ′′⌋
C10 −DistT (2,1)
2)

Thus, in both cases, this allows us to conclude. Now, in case★ is < C6 , by hypothesis we know that

C0 < C6 , and thanks to item (i), we know that P ′′
0 = ⌊in★(G).%⌋

C0

0 ∪Q0. This allows us to conclude.
�

Theorem 1. Let I0 = (I+
0 ,I%

0) be a template, (V, P) a protocol, C0 ∈ R+ a threshold, and Φ0 an initial

frame such that names(Φ0) ⊆ {E0, ?0}. There exists a topology T0 = (A0,M0, Loc0, E0, ?0) ∈ CC0
MF

and a valid initial configuration K for (V, P) w.r.t. T0 and Φ
T0
I0
∪ Φ0 such that

K
tr
−→T0 (⌊end(E0, ?0)⌋

CE
E0
⊎ P ;Φ; C)

if, and only if, there exists a valid initial configuration K ′ for (V, P) w.r.t. Φ
T
C0
MF

I0
∪ Φ0 such that

So near and yet so far –
Symbolic verification of distance-bounding protocols 45

K ′ tr′
−→

T
C0
MF

(⌊end(E0, ?0)⌋
CE
E0
⊎ P ′;Φ′; C ′).

Proof. Since T C0
MF ∈ C

C0
MF, the implication from right to left is easy to prove. Thus, we consider

the other one (⇒). Let T0 = (A0,M0, Loc0, E0, ?0) ∈ C
C0
MF and K0 = (P0;Φ

T0
I0
∪ Φ0; 0) be a valid

initial configuration for (V, P) w.r.t. T0 and Φ
T0
I0
∪ Φ0 such that

K0
tr
−→T0 (⌊end(E0, ?0).%⌋

C0
E0
⊎ P ;ΦT0

I0
∪ Φ0 ∪ Φ; C).

To establish this result, we combine the previous lemmas to show that there exists a correspond-
ing trace of execution in T

C0
MF. As already announced, the proof is performed in four steps.

Step 1.Applying Lemma1withH = A0\(M0∪{E0, ?0}), we obtain a topologyT1 = (A1,M1, Loc1, E0, ?0)

where A1 = A0,M1 = A0 \ {E0, ?0}, and Loc1 = Loc0. We have that:

K0
tr
−→T1 (⌊end(E0, ?0)⌋

C0
E0
⊎ P ;ΦT0

I0
∪ Φ0 ∪ Φ; C).

We now consider the configuration K+
0 = (P0;Φ

T1
I0
∪ Φ0; 0). Since Φ

T0
I0

⊆ Φ
T1
I0
(indeed by adding

malicious agents, we have only increased the knowledge of the attacker) and thus we have that:

K+
0

tr
−→T1 (⌊end(E0, ?0)⌋

C0
E0
⊎ P ;ΦT1

I0
∪ Φ0 ∪ Φ; C).

Step 2. Since the configuration K0 is valid, we know that for all ⌊&⌋ C000 ∈ P0 (but Vend(E0, ?0)),

either & = V(00, 01) or & = P(00, 01) for some 01 ∈ A0 = A1. We assume w.l.o.g. that we are in
the first case. Let g = {I0

+
↦→ 00, I

1
+ ↦→ 01}. We know that for any term D occurring in an output

or a let construction in & , there exists a corresponding term D ′ occurring in an output or a let
construction in V such that D = D ′g . Let I0

+
= {E1, . . . , E: }, and f = {F1 ↦→ E1, . . . ,F: ↦→ E: }.

Since V is I0
+
-executable by definition of a protocol, there exists a term ' ∈ T (Σ+

pub, {F1, . . . ,F:}∪

bn(V) ∪ bv(V)) such that D ′
= 'f↓. Thus, we know that D↓ = D ′g↓ = 'f↓g↓ = 'fg↓. Actually, we

have that {E1g, . . . , E:g} ⊆ Knows(I0, 00,A1). Therefore if 00 ∈ M1, since Knows(I0, 00,A1) ⊆

img(⌊ΦT1
I0
⌋
0

00
), we have that & is executable w.r.t. img(ΦT1

I0
∪ Φ0).

Therefore, we can apply Lemma 2 with K+
0 = (P0;Φ

T1
I0
∪Φ0; 0) and D0 = M1 and conclude that:

(P0;Φ
T1
I0
∪ Φ0; 0)

trf2
−−−→T1 (⌊end(E0, ?0)⌋

C0
E0
⊎ Pf2;Φ

T1
I0
∪ Φ0 ∪ Φf2; C)

where f2(=) = c0 ∈ Σ0 for any name = freshly generated by an agent in M1 and P (resp. Φ,
and tr) is obtained from P (resp. Φ, tr) by removing processes (frame elements, actions) located
in 0 ∈ D0 = M1.

Step 3.We now consider ΦT1+

I0
the same asΦT1

I0
but frame elements located at 0 ∈ M1\{E0, ?0, 82} are

moved to E0 and those located at 82 are moved to ?0. Let X0 = max(DistT1 (0, 1)) for any 0, 1 ∈ A1.
Clearly, we have that:

(P0;Φ
T1+

I0
∪ Φ0; X0)

trf2
−−−→T1 (⌊end(E0, ?0)⌋

C0
E0
⊎ Pf2;Φ

T1+

I0
∪ Φ0 ∪ Shi�(Φf2, X0); C + X0).

Indeed, adding a delay X0 in the initial configuration, all the messages moved from an agent
0 ∈ M1 to E0 or ?0 can be used by 0 at the time X0 and thus the initial execution can be followed
shifted by X0. Applying Proposition 5, we can turn the first configuration into an initial one, i.e.
with a global time set to 0. Therefore, we have that:

(P0;Φ
T1+

I0
∪ Φ0; 0)

trf2
−−−→T1 (⌊end(E0, ?0)⌋

C0
E0
⊎ P ′;Φ′; C ′)

46 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

where P ′ (resp. Φ′) coincides with Pf2 (resp. Φ
T1+

I0
∪ Φ0 ∪ Shi�(Φf2, X0)) up to local clocks (resp.

timestamps). Then, we apply Lemma 3 on T1 and (P0;Φ
T1+

I0
∪ Φ0; 0) with � = {E0, ?0}. We deduce

that

(P0;Φ
T1+

I0
∪ Φ0; 0)

trf2
−−−→T2 (⌊end(E0, ?0)⌋

C0
E0
⊎ P ′;Φ′; C ′).

where T2 = ({E0, ?0, 81, 82}, {81, 82}, Loc� , E0, ?0) is the canonical topology associated to� and Loc|� .

Step 4. To reduce the size of the initial frame, now we apply Lemma 4 on the configuration K ′
0 =

(P0;Φ
T1+

I0
∪ Φ0; 0) using d : A → A′

1 = {E0, ?0, 81, 82} such that d (0) = 81 for any 0 ∉ A′
1, and

d (0) = 0 otherwise. We have that:

(P0d ;Φ
T1+

I0
d ∪ Φ0d ; 0)

trf2d
−−−−→T2 (⌊end(E0, ?0)⌋

C0
E0
⊎ P ′d ;Φ′d ; C ′).

One may note that we can shorten the distance between E0, 81 and ?0, 82 and keep the trace
executable. The resulting topology, i.e. (A′

1, {81, 82}, Loc, E0, ?0) with Loc(E0) = Loc(81), Loc(?0) =
Loc(82) and DistT (E0, ?0) = C0, corresponds to T

C0
MF.

To end this proof, it remains to turn (P0d ;Φ
T1+

I0
d ∪ Φ0d ; 0) into a valid initial configuration. To

do that, we simply have to move frame elements (those that we have added during Step 1 and
moved during Step 3) located in E0 to 81 and those located in ?0 to 82. This will not change the
underlying execution since 81 (resp. 82) is located at the same place as E0 (resp. ?0). In case there
is no frame elements in 81 or 82 we add some elements, more precisely we add Knows(I0, 81,A′

1)

or Knows(I0, 82,A′
1). These additional elements will not alter the underlying execution and the

resulting frame corresponds to Φ
T
C0
MF

I0
up to possibly many replicates of the initial knowledge of

agent 81.
We may note that the process part P0d of the configuration satisfies Definition 3. Indeed, since

K0 is valid, we have that ⌊Vend(E0, ?0)⌋
0
E0
∈ P0 and by constructionP0d still contains ⌊Vend(E0, ?0)⌋

0
E0
.

Moreover, for all ⌊% ′⌋ C
′

0′ ∈ P0d , by construction, we know that 0′ ∈ {E0, ?0} = A′
1 \ M ′

1. Fi-

nally, we have that there exists ⌊% ′′⌋ C
′

0′ ∈ P0 such that % ′′
= V(0′, 01) (resp. % ′′

= P(0′, 01)) and
% ′

= % ′′d = V(0′, d (01)) (resp. % ′
= % ′′d = P(0′, d (01))). with d (01) ∈ A′

1. Therefore, we have that

(P0d ;Φ
T
C0
MF

I0
∪ Φ0; 0) = (P0d ;Φ

T
C0
MF

I0
∪ Φ0d ; 0) is a valid initial configuration for (V, P) w.r.t. T C0

MF.
This concludes the proof. �

Corollary 2. Let I0 be a template, (V, P) a protocol, and C0 ∈ R+ a threshold. We have that (V, P)

is Terrorist fraud resistant w.r.t. C0-proximity if, and only if, for all semi-dishonest prover %sd w.r.t. C0
with frame Φsd such that names(Φsd) ⊆ {E0, ?0}, there exists a valid initial configuration K0 w.r.t.

T
C0
MF and Φ

T
C0
MF

I0
∪ Φsd such that K0 →

∗

T
C0
MF

(⌊end(E0, ?0)⌋
C′

E0
⊎ P ;Φ; C).

Proof. The implication from right to left is almost trivial. We consider a semi-dishonest prover
%sd with frame Φsd. If names(Φsd) ⊆ {E0, ?0}, then we choose the topology T C0

MF ∈ C
C0
MF and we con-

clude relying on our hypothesis. Otherwise, we consider a bijective renaming f from agent names
outside {E0, ??} to fresh constants in Σ0 (i.e. never used in (V, P)) and it is easy to see that %sdf
with associated frame Φsdf is also a semi-dishonest prover. Now, we can rely on our hypothesis to
obtain an execution trace in T

C0
MF (starting with Φsdf) and applying f−1 on it allows us to conclude.

Regarding the other implication, we consider a semi-dishonest prover %sd with frame Φsd such
that names(Φsd) ⊆ {E0, ?0}. By hypothesis, there exists a valid initial configuration K0 for (V, P)

So near and yet so far –
Symbolic verification of distance-bounding protocols 47

w.r.t. T ∈ CMF and Φ
T
I0
∪ Φsd such that:

K0
tr
−→T (⌊end(E0, ?0)⌋

CE
E0
⊎ P ;Φ; C) with DistT (E0, ?0) ≥ C0 .

Theorem 1 applies since names(Φsd) ⊆ {E0, ?0}, and thus we easily conclude. �

B PROOFS FOR SECTION 5.2

Lemma 5. Let T be a topology,K0
!1!=
−−−−−−→T K1 be an execution, and 8, 9 ∈ {1, . . . , =} be such that

!9 ↩→
∗ !8 . We have that C 9 ≥ C8 + DistT (08 , 0 9) where !8 = (08 , U8, B8, C8 , A8) and !9 = (0 9 , U 9 , B 9 , C 9 , A 9).

Proof. By definition of ↩→∗, there exists : ≥ 1 and 81, . . . , 8: ∈ {1, . . . , =} such that:

!9 = !81 ↩→ !82 ↩→ . . . ↩→ !8: = !8 .

We do the proof by induction on the length of this sequence. If : = 1 then !8 = !9 , and thus
C8 = C 9 and 08 = 0 9 . The result trivially holds. Otherwise, relying on the induction hypothesis,
we deduce that C82 ≥ C8 + DistT (08 , 082). We distinguish two cases depending on the nature of the
dependency !9 ↩→ !82 .

Case !9 ↩→B !82 . In such a case, we have that 0 9 = 082 and 9 ≥ 82, and thus C 9 ≥ C82 . Therefore, we

have:
C 9 ≥ C82 ≥ C8 + DistT (08 , 082) = C8 + DistT (08 , 0 9).

Case !9 ↩→3 !82 . In such a case, we have that A 9 = (1, C1 , '), A82 = F andF ∈ vars('). By definition

of the IN rule we have that C 9 ≥ C1 + DistT (1, 0 9), and C1 ≥ C82 + DistT (082 , 1). Combining these
inequalities with the one given by our induction hypothesis, we get:

C82 + C 9 + C1 ≥ C8 + C1 + C82 + DistT (08 , 082) + DistT (1,0 9) + DistT (082 , 1).

Relying on the triangle inequality, we get C 9 ≥ C8 + DistT (08 , 0 9), and we conclude the proof. �

Lemma 6. Let T be a topology, and K0
!1

T K
!2

T K2 be an execution such that !2 6↩→ !1. We

have that K0
!2

T K ′ !1
T K2 for some configuration K ′.

Proof. Let K0 = (P0;Φ0), K = (P ;Φ), and K2 = (P2;Φ2) be such that K0
!1

T K
!2

T K2

with !2 6↩→ !1. Let !1 = (01, U1, B1, A1) and !2 = (02, U2, B2, A2). Since !2 6↩→ !1 we have that B1 ≠ B2.
Therefore, we have that P0 = ⌊act1.%1⌋ 01 ∪ ⌊act2.%2⌋ 02 ⊎ Q, P = ⌊% ′

1⌋ 01 ∪ ⌊act2.%2⌋ act2 ⊎ Q, and
P2 = ⌊% ′

1⌋ 01 ∪ ⌊% ′
2⌋ 02 ⊎ Q for some actions act1 and act2.

In case U1 = out(E) and U2 = in★(D), we have that Φ2 = Φ = Φ0⊎{F
01
−→ E}. Since !2 6↩→3 !1, we

know thatF ∉ vars(A2), and thus vars(A2) ⊆ dom(Φ0). Now, letK ′
= (⌊act1.%1⌋ 01⊎ ⌊% ′

2⌋ 02⊎Q;Φ0).

Relying on the fact that F ∉ vars(A2) in case U1 = out(E) and U2 = in★(D), it is easy to see that

K0
!2

T K ′ !1
T K2. The other cases can be done in a rather similar way. �

Proposition 2. Let T be a topology, andK0
tr1 ...tr=

T K= be an execution with = ≥ 2. We have that

there exists a bijection i : {1, . . . , =} → {1, . . . , =} such that:

• K0
tr′1 ...tr

′
=

T K= with tr8 = tr′
i (8)

for all 8 ∈ {1, . . . , =}; and

• for all 9 such that i (1) < 9 < i (=), we have that tr′
i (=)

↩→∗ tr′9 ↩→
∗ tr′

i (1)
.

Proof. We split the proof in two parts: first we prove that there exists a bijective function i1
cleaning the trace between tr1 and tr= moving actions independent from tr1 before it. Then we
prove that there exists a bijective function i2 cleaning the trace moving actions from which tr=
does not depend on after it. Considering i = i2 ◦ i1 we will be able to conclude.

48 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Claim 1. Let K0
tr1 ...tr=

T K= be an execution with = ≥ 1. There exists a bijective function i1 :
{1, . . . , =} → {1, . . . , =} such that:

• K0
tr′1 ...tr

′
=

T K= with tr8 = tr′
i1 (8)

for all 8 ∈ {1, . . . , =}; and

• for all 9 > i1 (1), tr′9 ↩→
∗ tr′

i1 (1)
.

We show this claim by induction on the length of the execution. If = = 1 then the results holds

considering i1 = 83 and tr′1 = tr1. Otherwise, we have that K0
tr1 ...tr=

T K=
tr=+1

T K=+1, and
by induction hypothesis we have that there exists a bijective function i : {1, . . . , =} → {1, . . . , =}
such that:

• K0
tr′1 ...tr

′
=

T K= with tr8 = tr′
i (8)

for all 8 ∈ {1, . . . , =}; and

• for all 9 such that i (1) < 9 ≤ =, we have tr′9 ↩→
∗ tr′

i (1)
.

If tr=+1 ↩→∗ tr′
i (1) (= tr1) then we consider the bijective function i1 = i ∪ {= + 1 ↦→ = + 1}

and this allows us to conclude. Otherwise, we have that tr=+1 6↩→∗ tr′
i (1)

(= tr1) and, by induction

hypothesis, we have tr=+1 6↩→∗ tr′9 for any i (1) < 9 ≤ =. Repeatedly applying Lemma 6 we obtain
that

K0
tr′1 ...tr=+1tri (1) ...tr

′
=

T K=+1 .

Considering the bijective function i1 defined as follows:

i1 (8) =

i (8) if i (8) < i (1)

i (8) + 1 if i (8) ≥ i (1)

i (1) if 8 = = + 1

we prove the claim.

Claim 2. Let K0
tr1 ...tr=

T K= be an execution with = ≥ 1. There exists a bijective function i2 :
{1, . . . , =} → {1, . . . , =} such that:

• K0
tr′1 ...tr

′
=

T K= with tr8 = tr′
i2 (8)

for all 8 ∈ {1, . . . , =}; and

• for all 9 < i2 (=), we have that tr′i2 (=)
↩→∗ tr′9 .

Similarly to the proof done for the previous claim, we first apply the induction hypothesis to

K1
tr2 ...tr=+1

T K=+1 and we obtain i : {2, . . . , =} → {2, . . . , =} (a shift of 1 has been applied to
ease the reasoning). If tr1 ↩→∗ tr′

i2 (=)
(= tr=) then we conclude considering i2 = i ∪ {1 ↦→ 1}.

Otherwise, by repeatedly applying Lemma 6, we move tr1 at the right place in the trace, i.e. just
after tr′

i2 (=)
.

We are now able to prove the corollary combining these two claims. First we apply Claim 1 con-

sidering the traceK0
tr1 ...tr=−1

T K=−1. We obtain the existence ofi1 : {1, . . . , =−1} → {1, . . . , =−1}
and a new execution

K0
tr′1 ...tr

′
=−1

T K=−1
tr=

T K=

such that:

• tr8 = tr′
i1 (8)

for all 8 ∈ {1, . . . , = − 1}; and

• for all 9 such that i1 (1) < 9 < =, we have that tr′9 ↩→
∗ tr′

i1 (1)
(= tr1).

So near and yet so far –
Symbolic verification of distance-bounding protocols 49

For sake of uniformity, let tr′= = tr= , and we extend i1 on {1, . . . , =} as follows: i1 (=) = =.

Then we apply Claim 2 on the resulting execution starting at tr′
i1 (1)+1

to obtain that there exists

a bijective function i2 : {i1 (1) + 1, . . . , =} → {i1 (1) + 1, . . . , =} and an execution

K0

tr′1 ...tr
′
i1 (1)

·tr′′
i1 (1)+1

· · ·tr′′=
T K=

such that:

• tr′8 = tr′′
i2 (8)

for all 8 ∈ {i1 (1) + 1, . . . , =}; and

• for all 9 such that i1 (1) + 1 ≤ 9 < i2 (=), we have that tr= = tr′= = tr′′
i2 (=)

↩→∗ tr′′9 .

For sake of uniformity, let tr′′1 . . . tr′′
i (1) = tr′1 . . . tr

′
i (1) , and we extend i2 on {1, . . . , =} as follows:

i2 (8) = 8 for all 8 ∈ {1, . . . , i (1)}.
We now show that the bijective function i = i2 ◦ i1 satisfies the requirements, i.e.:

(1) tr8 = tr′′
i (8)

for all 8 ∈ {1, . . . , =};

(2) for all 9 such that i (1) < 9 < i (=), we have that tr′′
i (=)

↩→∗ tr′′9 ↩→∗ tr′′
i (1)

.

First, we note that:

• i (=) = i2 (=); and
• i (8) = i1 (8) when i1 (8) ≤ i1 (1).

Now, we establish that the 2 requirements are satisfied:

(1) First, we have that tr= = tr′= = tr′′
i2 (=)

= tr′′
i (=)

. Otherwise, considering 8 ∈ {1, . . . , = − 1}, we

have that tr8 = tr′
i1 (8)

. Now, we distinguish two cases:

• i1 (8) ≤ i1 (1): we have that tr′′i1 (8)
= tr′

i1 (8)
, and thus tr8 = tr′′

i1 (8)
= tr′′

i (8)
.

• i1 (8) > i1 (1): we have that tr′i1 (8)
= tr′′

i2 (i1 (8))
= tr′′

i (8)
, and thus tr8 = tr′′

i (8)
.

(2) We have shown that:
• for all 9 such that i1 (1) < 9 < =, we have that tr′9 ↩→

∗ tr′
i1 (1)

= tr′′
i1 (1)

, and thus for all 9

such that i1 (1) < 9 < i2 (=), we have that tr′′9 ↩→∗ tr′
i1 (1)

= tr′′
i (1) since i1 (1) = i (1) and

{tr′i1 (1)+1
, . . . , tr′=−1} ⊇ {tr′′i1 (1)+1

, . . . , tr′′i2 (=)−1
}

• for all 9 such that i1 (1) + 1 ≤ 9 < i2 (=) (= i (=)), we have that

tr= = tr′= = tr′′i2 (=)
↩→∗ tr′′9 .

This concludes the proof. �

Given a configuration K = (P ;Φ; C) (resp. K = (P ;Φ)), we note q (K) its associated frame, i.e.
q (K) = Φ.

Theorem 2. Let I0 be a template, (V, P) a protocol, and C0 ∈ R+ a threshold. Moreover, we assume

that V(E0, ?0) is derived from the following grammar:

% := 0 | in(G).% | let G = E in %

| new =.% | out(D).% | reset.out(D ′).in<C (G).%

where G ∈ X, = ∈ N ,D,D ′ ∈ T (Σ+
2 ,X∪Z∪N), E ∈ T (Σ+,X∪Z∪N) and C ≤ 2 ·C0. If (V, P) admits

a Distance Hijacking attack w.r.t. C0-proximity, then there exists a valid initial configuration K0 for

(V, P) w.r.t. T C0
DH and Φ

T
C0
DH

I0
such that K0 = (P0 ∪ { ⌊Vend (E0, ?0)⌋

0
E0
};Φ

T
C0
DH

I0
; 0) and

(P0 ∪ { ⌊Vend(E0, ?0)⌋
0
E0
};Φ

T
C0
DH

I0
; 0) →∗

T
C0
DH

(⌊end(E0, ?0)⌋
CE
E0
⊎ P ′;Φ; C).

50 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Proof. Let T = (A0,M0, Loc, E0, ?0) ∈ CDH and K0 = (P0;ΦT
I0
; 0) be a valid initial configura-

tion for (V, P) w.r.t. T and Φ
T
I0
such that

K0
tr
−→T (⌊end(E0, ?0)⌋

CE
E0
∪ P ;Φ; C) = Kend

where tr is a sequence of annotated labels.

Step 1: We first remove reset commands and replace guarded inputs occurring in processes other

than Vend(E0, ?0) by simple inputs. Denoting K★

0 (resp. K★

end), the counterpart of K0 (resp. Kend)
in which reset commands have been removed and guarded inputs have been replaced by simple
inputs but the occurrences occurring in Vend(E0, ?0), following the same trace as before, we have
that:

K★

0
tr1tr=
−−−−−−→T K★

end.

Indeed, all the required conditions to trigger a simple input will be satisfied since a guarded input
is like a simple input with a constraint regarding time. We denote K★

8 with 8 ∈ {0, . . . , =} the
intermediate configurations, and thus we have that K★

end = K★

= .

Step 2: By definition of the untimed semantics we have that:

K̃★

0
t̃r1

T K̃★

1
t̃r2

T . . .
t̃r=

T K̃★

end = K̃★

=

where K̃★

end, K̃
★

8 , and t̃r8 are the untimed counterparts of K★

end, K
★

8 and tr8 .
Due to the specific shape of the process Vend(E0, ?0), we know that tr1.tr= contains subse-

quences tr80tr 90 such that tr80 corresponds to a reset action and tr90 to a guarded input. Note
that these two actions tr80 and tr 90 are performed by E0. Moreover we know that for all index 8

in between 80 and 90 we have that tr8 is not a guarded input. Applying Proposition 2 to such a
subsequence we obtain that there exists a bijective function i : {80, . . . , 90} → {80, . . . , 90} such
that:

• K̃★

80−1

tr′80
.....tr′90

T K̃★

90
with t̃r8 = tr′

i (8)
for all 8 ∈ {80, . . . , 90}; and

• for all 9 such that i (80) < 9 < i (90), we have that tr′i (90)
↩→∗ tr′9 ↩→

∗ tr′
i (80)

.

We are now showing that any agent involved in an action between tr′
i (80)

and tr′
i (90)

in the new

resulting trace is actually in the vicinity of E0, i.e. an agent in the set:

Close(E0)
def
= {0 ∈ A0 | DistT (E0, 0) < C0}.

Let 9 be such that i (80) < 9 < i (90). Since we have that tr′i (90)
↩→∗ tr′9 ↩→

∗ tr′
i (80)

, we deduce

that t̃r 90 ↩→
∗ t̃ri−1 (9) ↩→

∗ t̃r80 and thus tr90 ↩→
∗ tri−1 (9) ↩→

∗ tr80 . Denoting tr8 = (08 , U8 , B8 , C8 , A8) for
all 8 ∈ {1, . . . , =}, and applying Lemma 5 twice, we obtain that:

C 90 ≥ Ci−1 (9) + DistT (0i−1 (9) , E0) and Ci−1 (9) ≥ C80 + DistT (E0, 0i−1 (9)).

Therefore, we have that C 90 − C80 ≥ 2Dist(E0, 0i−1 (9)), and exploiting the shape of Vend(E0, ?0) we
deduce that 2× C0 > C 90 − C80 ≥ 2Dist(E0, 0i−1 (9)). In summary we have that all the actions executed
between tr′

i (80)
and tr′

i (90)
are executed by agents 0 ∈ Close(E0).

Similarly, for any index 9 such that i (80) < 9 ≤ i (90) and Ui−1 (9) = in(D) we have that either

1 ∈ Close(E0) or vars(') ⊆ q (K̃★

80−1
) where Ai−1 (9) = (1, C1 , '). Indeed, assume that there exists

F ∈ vars(') \ dom(q (K̃★

80−1
)). We note 8 the index corresponding to this output and we have that

i (80) < 8 < i (90). Thus, we have that:

tr′i (90)
↩→∗ tr′9 ↩→3 tr′8 ↩→

∗ tr′i (80)
.

So near and yet so far –
Symbolic verification of distance-bounding protocols 51

Lemma 5 and the definition of ↩→3 give us the following equations:

• C 90 − Ci−1 (9) ≥ DistT (0i−1 (9) , E0),
• Ci−1 (9) − C1 ≥ DistT (1, 0i−1 (9)),
• C1 − Ci−1 (8) ≥ DistT (0i−1 (8) , 1), and
• Ci−1 (8) − C80 ≥ DistT (E0, 0i−1 (8)).

Relying on the triangle inequality, this leads to 2× C0 > C 90 − C80 ≥ 2DistT (E0, 1), and this allows us
to deduce that 1 ∈ Close(E0).

Step 3: We consider the topology T ′
= (A0,M0, Loc′, E0, ?0) such that Loc′(E0) = Loc(E0), and

Loc′(?0) is such that DistT′ (E0, ?0) = C0 and:

Loc′(0) =

{
Loc′(E0) if 0 ∈ Close(E0)
Loc′(?0) otherwise.

In this topology, the agents distant from E0 are moved to ?0, and agents in the neighbourhood of E0
are moved to E0. We denote t̃r8 = tr′8 for 8 ∈ {1, . . . , 80 − 1, 90 + 1, . . . , =}, i.e. those not affected by

Step 2. In this topology T ′, we only have two locations, and we have that K̃★

0

tr′1tr
′
=

T′ K̃★

end
since the locations of the agents are no longer relevant in the untimed semantics.

Step 4: We now show that we can come back to a timed execution, i.e. one executable in the

timed semantics by induction on the number of guarded inputs in the trace. Given a configura-

tion K̂0 such that untimed(K̂0) = K̃★

0 , we show that there exists a configuration K̂= such that

untimed(K̂=) = K̃★

= = K̃★

end. To show this result, we split our execution trace K̃★

0

tr′1tr
′
=

T′ K̃★

=

on several blocks of actions: a block is either a trace with no guarded input, or a sequence of ac-
tions starting with a reset and ending at the next occurrence of a guarded input. Note that the
block of the first kind can easily be lifted to the timed semantics. Regarding the block of the second
kind, we show that the lifting is possible thanks to the properties established at Step 2.
To conclude this step, we now show how to exploit properties established at Step 2 to lift a block

starting with a reset instruction and ending with a guarded input.

Let K̃★

reset

tr′80tr
′
90

T′ K̃★

in
be such a block, and let K̂ be such that untimed(K̂) = K̃★

reset ,

and let Ĉ the global time of configuration K̂ . We have to show that there exists K̂in such that

K̂
t̂r80t̂r90
−−−−−−−→T′ K̂in, with tr′8 the untimed counterpart of t̂r8 and untimed(K̂in) = K̃★

in
. We start by

applying the rule TIMwith the delay X equals to 2×C0. Let K̂+ be the resulting configuration. Then
we have to show that the sequence of actions tr′80tr

′
90
can be executed without introducing any

delay. Moreover, we show that the resulting configuration K̂in is such that untimed(K̂in) = K̃★

in
.

Actually, the correspondence between timed and untimed configurations is maintained along the
trace. The only difficult part is when the underlying action is an input. We know that this input is
performed by 0 ∈ Close(E0). Let in★(D) be an input occurring in the block and let Φ′ the current
frame in the untimed semantics when this action occurs and Φ̂ its corresponding frame in the
timed trace. By definition of the untimed semantics, we know that there exists a recipe ' such that
'Φ′↓ = D. Thus, we know that'Φ̂↓ = D. To conclude, it remains to show that the timing constraints
are satisfied. We distinguish two cases:

• The input has been forged by an agent 1 ∈ Close(E0). Any F used in the recipe ' is either

in dom(q (K̃★

reset)) or output after tr
′
80
by an agent located at the same place as E0. In both

cases, since the global time has elapsed of 2C0 between K̂ and K̂+, we know that all theseF

52 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

will be available at time Ĉ + 2C0 for 1. Since 0 and 1 are located at the same place, we also
have that this input can be done at time Ĉ + 2C0.

• The input has been forged by an agent1 ∉ Close(E0). In such a case, we know that vars(') ⊆

dom(q (K̃★

reset)), and thus thanks to the delay of 2C0 that has been applied between K̂ and K̂+,
we know that the input can be received at time Ĉ + 2C0. Indeed, 1 can forge the message at
time Ĉ + C0 and thus it can be received at time Ĉ + 2C0.

Note that, regarding the guarded input, the guard is trivially satisfied since no time has elapsed
since the reset has been performed. In summary we have:

K̂0
t̂r1t̂r=
−−−−−−→T′ K̂=

with K̃★

= the untimed counterpart of K̂= and thus, we have that:

K̂= = (⌊end(E0, ?0)⌋
ĈE
E0
∪ P̂; Φ̂= ; Ĉ=) for some P̂, Φ̂= , ĈE and Ĉ= .

Step 5: To finish, it remains to reduce the topology T ′ to T
C0
DH = (ADH,MDH, LocDH, E0, ?0).

Let us consider the renaming

d (0) =

E0 if 0 ∈ Close(E0)
?0 if 0 ∉ Close(E0) and 0 ∈ M0

40 if 0 ∉ Close(E0) and 0 ∉ M0

Since LocDH(d (0)) = Loc′(0) for any 0 ∈ A0, and d (0) ∈ MDH if, and only if 0 ∈ M0, thanks to
Lemma 4, we have that:

K̂0d
t̂r0d.....t̂r=d
−−−−−−−−−→

T
C0
DH

K̂=d.

We can assume w.l.o.g. that K̂0 has global time 0, and only contain frame elements at time 0. Let

Φ0 = q (K̂0). Thus, to conclude, it remains to show that the frame associated to K̂0d , i.e. q (K̂0d),
is the expected one. Thus, we have to establish that:

• img(⌊q (K̂0d)⌋
0

E0
) = img(⌊q (K̂0d)⌋

0

40
) = ∅, and

• img(⌊q (K̂0d)⌋
0

?0
) = Knows(I0, ?0, {E0, ?0, 40}).

Relying on the fact that any agent 0 such that d (0) = E0 is honest, we have that:

img(⌊q (K̂0d)⌋
0

E0
) = img(⌊Φ0d⌋

0
E0

=
⋃

{0∈A0 | d (0)=E0 } img(⌊Φ0⌋
0
0)d

=
⋃

{0∈A0 | d (0)=E0 } ∅

= ∅

Actually, the same reasoning applied regarding 40. Then, we have that:

img(⌊q (K̂0d)⌋
0

?0
) =

⋃
{0∈A0 | d (0)=?0 } img(⌊Φ0⌋

0
0)d

=
⋃

{0∈A0 | d (0)=?0 } Knows(I0, 0,A0)d

=
⋃

{0∈A0 | d (0)=?0 } Knows(I0, d (0), d (A0))

=
⋃

{0∈A0 | d (0)=?0 } Knows(I0, ?0, {?0, E0, 40})

This allows us to conclude. �

So near and yet so far –
Symbolic verification of distance-bounding protocols 53

C PROOFS FOR SECTION 6

Lemma 7. Let C0 be a term such that C0↓ =E f(D1, . . . ,D:) with f a quasi-free function symbol. We

have that there exist D ′
1, . . . ,D

′
:
such that f(D ′

1, . . . ,D
′
:
) ∈ st (C0) and D

′
8↓ =E D8 for any 8 ∈ {1, . . . , :}.

Proof. Let C0 be a term, and C0↓ its normal form. Therefore, we have that C0 → C1 → C2 . . . →

C= = C0↓. We prove the result by induction on the length = of this derivation.

Base case: = = 0. We have that C0↓ = C0, and thus C0 =E f(D1, . . . , D:). Since our theory is non-
trivial, and since f does not occur in equations in E, we have that there exists D ′

1, . . . , D
′
:
such that

f(D ′
1, . . . ,D

′
:
) ∈ st (C0) and D ′

8 =E D8 for any 8 ∈ {1, . . . , :}. Note that D ′
1, . . . , D

′
:
are in normal form

since C0 is in normal form, and thus the result holds.

Induction step. In such a case, applying our induction hypothesis, we know that there existD ′
1, . . . , D

′
:

such that f(D ′
1, . . . ,D

′
:
) ∈ st (C1) and D ′

8↓ =E D8 for any 8 ∈ {1, . . . , :}. We denote g(E ′1, . . . , E
′
ℓ) → E ′

the rewrite rule applied at position ? to rewrite C0 in C1. We have that there exists a substitution \

such that C0 |? =E 6(E ′1, . . . , E
′
:
)\ and C1 = C0 [E

′\]? . We have that f(D ′
1, . . . ,D

′
=) ∈ st (C1), and we

distinguish two cases depending on the position ?f at which this subterm occurs in C1 = C0 [E\]? :

(1) ?f is a position in C0 [_]? . In such a case, we have that either f(D ′
1, . . . ,D

′
=) ∈ st (C0 [_]?) (in

case ?f is not a prefix of ?); or C0 |?f = f(D ′′
1 , . . . , D

′′
=) for some D ′′

1 , . . . ,D
′′
= , and we have that

C0 |?f → f(D ′
1, . . . ,D

′
=) withD

′′
8 = D ′

8 orD
′′
8 → D ′

8 . Therefore, we have that there existD
′′
1 , . . . ,D

′′
=

such that f(D ′
1, . . . , D

′
=) ∈ st (C0) and D ′′

8 ↓ =E D8 for any 8 ∈ {1, . . . , :}.
(2) ?f is a position below ? , i.e. ? is a prefix of ?f . In such a case, since f does not occur in E ′

(by definition of quasi-free), we have that f(D ′
1, . . . , D

′
:
) ∈ st (G\) for some G ∈ vars(E ′) ⊆

vars(E ′1, . . . , E
′
ℓ). Therefore, we have that there exists C

′
=E C0 |? such that f(D ′

1, . . . ,D
′
:
) ∈ st (C ′).

Since we only consider non-trivial theory, and since f does not occur in equations in E, we
have that there exists D ′′

1 , . . . ,D
′′
:
such that f(D ′′

1 , . . . ,D
′′
:
) ∈ st (C0 |?) and D ′′

8 =E D ′
8 for any

8 ∈ {1, . . . , :}. Note thatD ′′
1 , . . . , D

′′
:
are in normal form since any subterm of C0 |? is in normal

form. Therefore, we have that there exist D ′′
1 , . . . ,D

′′
= such that f(D ′′

1 , . . . , D
′′
=) ∈ st (C0) and

D ′′
8 ↓ =E D8 for any 8 ∈ {1, . . . , :}.

This concludes the proof. �

Lemma 8. Let Φ be a frame and 2 ∈ N such that 2 ∉ st (img(Φ)), and Φ+
= Φ ∪ {F2

E0,C0
−−−→ 2}. Let '

be a recipe such that 'Φ+↓ =E D. Let� be a context of minimal size made of quasi-free public function

symbols such that D = � [2,D1, . . . , D?] for some D1, . . . ,D? and 2 does not occur in st ({D1, . . . ,D? }).

For any 8 ∈ {1, . . . , ?}, we have that there exists '8 such that '8Φ
+↓ =E D8 .

Proof. We prove this result by structural induction on the context � .

Base case: � is empty. In such a case, we have that either ? = 0; or ? = 1 with D1 = D. In both case,
the result trivially holds.

Inductive case: � = f(�1, . . . ,�:). In such a case, by minimality of � , we know that 2 occurs in D.
We have thatD = f(D ′

1, . . . ,D
′
:
) and for all 8 ∈ {1, . . . , :} we note {D81, . . . , D

8
?8
} ⊆ {D1, . . . , D?} the set

of terms involved in the sub-context �8 i.e. �8 [D
8
1, . . . , D

8
?8
] = D ′

8 . Note that
⋃

1≤8≤:{D
8
1, . . . , D

8
?8
} =

{D1, . . . ,D? }.
Applying Lemma7 on'Φ+, we deduce that there exist E1, . . . , E: such that f(E1, . . . , E:) ∈ st ('Φ+)

and E8↓ =E D ′
8 for any 8 ∈ {1, . . . , :}. Now, since 2 occurs in D we have that there exists 80 ∈

{1, . . . , :} such that D801 = 2 . Therefore we have that 2 occurs in E80↓ because �80 only contains
quasi-free function symbols (i.e. function symbols which do not occur in E). By consequence we
have that f(E1, . . . , E:) ∉ img(Φ+) and thus there exists '1, . . . , ': such that f('1, . . . , ':) ∈ st (')

with '8Φ
+↓ =E D

′
8 for any 1 ≤ 8 ≤ : .

54 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

Our induction hypothesis applies for any 8 ∈ {1, . . . , :} andwe obtain that for all E ∈ {D81, . . . , D
8
?8
},

there exists a recipe 'E such that 'EΦ
+↓ =E E . Considering the previous remark stating that⋃

1≤8≤:{D
8
1, . . . ,D

8
?8
} = {D1, . . . , D?}, this allows us conclude the proof. �

Lemma 9. Let (V, P) be a well-formed distance-bounding protocol. The process P∗ (as defined in

Definition 13) is a semi-dishonest prover, called the most general semi-dishonest prover. Moreover,

we can assume that the trace tr∗ witnessing this fact is such that :

tr∗ =

(01, out(<1)).(11, in(<1)) . . . (080−1, out(<80−1)).(180−1, in(<80−1)).

(?0, out(<
1
80+1

)).(?0, out(<
;
80+1

)).

(E0, out(<80)).(E0, in
<2·C0 (<80+1))

(?0, in(<80)).(?0, out(<80+1)).

(080+2, out(<80+2)).(180+2, in(<80+2)) . . . (0=, out(<=)).(1=, in(<=))

up to g actions where:

• {08 , 18} = {E0, ?0} for any 8 ∈ {1, . . . , =} r {80, 80 + 1};
• <80+1=E�V,P [<80,<

1
80+1

, . . . ,<;
80+1

]

• (G1, . . . , G:)\U↓f=E<81, . . . ,<8: where G1, . . . , G: are the variables occurring in input in the role

V(E0, ?0) and 81, . . . , 8: are the indices among 1, . . . , = corresponding to input performed by E0,

U = {G = D | ”let G = D in ” occurs in V(E0, ?0)}, and f is a bijective renaming from variables

to bn(P∗). This equality holds up to a bijective renaming of names freshly generated along the

execution.

Proof. This proof strongly relies on Definition 12. First, remark that tr∗ corresponds to the trace
tr in which the extra outputs of P∗ are executed just before the 80th communication action i.e. the
output of the challenge; and the answer to the challenge received by E0 is anticipated. We show
that this sequence of actions tr∗ is an execution w.r.t. our semantics:

• 1st line of actions: The actions can be executed following our semantics applying a TIM rule
with a delay X = C0 before each input. Indeed this delay enables the agent 18 to receive the
message<8 sent by 08 . Moreover, since there is no guarded input the IN rule always applies.

• 2nd line of actions: It only contains outputs and thus can trivially be executed.
• 3rd line of actions: Before executing the output, we apply a TIM rule to let available all
the previous messages (including<1

80+1
, . . . ,<;

80+1
) for the malicious agent ? . Since �V,P only

contains public symbols of functions (otherwise there is a contradiction with item (8E) of
Definition 12), we have that ' = �V,P [F80,F

1
80+1

, . . . ,F;
80+1

] where F80 is the frame variable

binding<80 and F
9
80+1

, (1 ≤ 9 ≤ ;) is the frame variable binding< 9
80+1

, is a recipe deducing
<80+1. Finally the guarded input can be executed because w.l.o.g. we may assume that the
reset action has been made right before the output of<80 .

• 4th and 5th lines of actions: These actions can be executed for the same reason as the first
line applying a TIM rule with a delay X = C0 before each input.

Regarding the three items we have to establish, their are all consequences of Definition 12 and
Definition 13. �

Proposition 3. Let (V, P) be a well-formed distance-bounding protocol, and P∗ be its most general

semi-dishonest prover with Φ
∗ its associated frame. Let exec∗ be an execution witnessing the fact

that P∗ together with Φ
∗ is a semi-dishonest prover (as given in Lemma 9). We have that exec∗ is as

follows:

exec∗ : ({ ⌊V(E0, ?0)⌋
0
E0
, ⌊P∗⌋ 0?0}; ∅; 0)

tr∗
−−→

T
C0
simple

({ ⌊0⌋
C∗E
E0 , ⌊0⌋

C∗?
?0};Φ

∗; C∗).

So near and yet so far –
Symbolic verification of distance-bounding protocols 55

Let Psd be a semi-dishonest prover for (V, P) together with its associated frame Φsd, and exec be the

execution witnessing this fact, i.e.

exec : ({ ⌊V(E0, ?0)⌋
0
E0
, ⌊Psd⌋

0
?0
}; ∅; 0)

tr
−→

T
C0
simple

({ ⌊0⌋ CEE0 , ⌊0⌋
C?
?0};Φsd; C).

We have that there exists a substitution f : N → T (Σ+
2 ,N ∪ A) from names freshly generated

by P∗ to constructor terms such that:

(i) if (E0, in(D)) ∈ tr∗ (resp. (E0, in<C (D)) ∈ tr∗), then (E0, in(Df)) ∈ tr (resp. (E0, in<C (Df)) ∈ tr);
(ii) if (0, out(D)) ∈ tr∗ for some 0 ∈ {E0, ?0}, then 'Φsd↓=EDf for some recipe '.

Proof. Along an execution, variables occurring in input as well as those occurring in a let
instruction are instantiated. We denote by gtr (resp gtr∗) the substitution associated to the execution
exec (resp. exec∗).
Relying on Lemma 9, we note g : X → N the bijective renaming from variables to names freshly

generated by P∗ such that (G1, . . . , G:)\U↓g =E <81, . . . ,<8: where G1, . . . , G: are the variables oc-
curring in input in V(E0, ?0) and<81, . . . ,<8: are the inputted terms in tr∗. By definition of \U we
have that there exists f ′ such that G 9gtr↓ =E G 9\Uf ′↓ for any 9 ∈ {1, . . . , :}. Since G 9gtr and G 9\U↓

are constructor terms, we have that G 9gtr =E G 9\U↓f
′ for any 9 ∈ {1, . . . , :}.

We consider f = g−1f ′ and establish each item separately.

Item (i): We consider V(E0, ?0) = act1act:′ . On the first side, because (E0, in
★(D)) ∈ tr∗, we

have that there exists 9 ∈ {1, . . . , :} such that G 9gtr∗ = D (= <8 9). By definition of g , we have that
D = G 9\U↓g .

On the other side, we know that the process has been entirely executed in tr and therefore there
exists (E0, in

★(D ′)) ∈ tr such that D ′
= G 9gtr. By definition of f ′, we have D ′

=E G 9\U↓f ′. By
consequence we obtain that D ′

= G 9gtr =E G 9\U↓f
′
= (Dg−1)f ′

= Df . This concludes the proof of
item (8).

Item (ii): We have that (0, out(D)) ∈ tr∗. We distinguish several cases depending on the origin of
this output.
In case 0 = E0, it is an immediate corollary of item (8). Indeed we can prove by induction on the

length of tr that for each configuration K in exec, there exists a configuration K∗ in exec∗ such
that if we note + ∗ the process executed by E0 in K∗ then + ∗f is the process executed by E0 in K .
Now, we assume that 0 = ?0, and we distinguish two cases depending on whether D = <

9
80+1

(1 ≤ 9 ≤ ;) or not. If not, relying on Lemma 9, we have that (E0, in(D)) ∈ tr∗ (or (E0, in<C (D)) ∈ tr∗),
and since item (8) holds we have now that (E0, in(Df)) ∈ tr (or (E0, in<C (Df)) ∈ tr). We can thus
deduce that exists a recipe ' such that 'Φsd↓ =E Df .
Now, we assume that D = <

9
80+1

for some 9 ∈ {1, . . . , ;}. Thanks to Lemma 9, we know that

(E0, in
<2·C0 (<80+1)) ∈ tr∗ and<80+1 = �V,P [<80,<

1
80+1

, . . . ,<;
80+1

] = G\U↓g where G in the variable oc-

curring in the guarded input in V(E0, ?0). According to item (8), we have that (E0, in
<2C0 (<80+1f)) ∈

tr. Moreover, following the hypotheses on the structure of V(E0, ?0), we know that there is a unique
output in tr that is executed by E0 before this guarded input and that contains the challenge<80

(note that <80 = <80f because f only applies on names generated by P∗). In addition, ?0 cannot
receive the challenge soon enough to make an output containing<80 available to fill the guarded
input. Indeed, assume that it was possible, and let Creset (resp. Cout and Cin) the time when the reset
action (resp. output of the challenge, reception of the guarded input) is executed in tr then we have
that:

Cin ≥ Cout + 2 × Dist
T
C0
simple

(E0, ?0) ≥ Creset + 2 × Dist
T
C0
simple

(E0, ?0) = Creset + 2 × C0 .

56 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

This is in contradiction with the constraint imposed by the guarded input: Cin − Creset < 2 × C0.
Finally, denoting Φ

+ the current frame when executing the guarded input in tr, we deduce that

Φ
+
= Φ ∪ {F

E0,Cout
−−−−→ <80} for some sub-frame Φ such that <80 ∉ st (img(Φ)) and there exists a

recipe ' such that 'Φ+↓ =E <80+1f . Lemma 8 applies and we conclude that there exists a recipe 'D
such that 'DΦ+↓ =E <

9
80+1

f = Df and thus 'DΦsd↓ =E Df since Φsd contains Φ+. �

Theorem 3. Let I0 be a template, (V, P) be a well-formed distance-bounding protocol. Let Φ∗ be

the frame associated to the most general semi-dishonest prover of (V, P). We have that (V, P) is Terror-

ist fraud resistant w.r.t. C0-proximity if, and only if, there exist a topology T = (A0,M0, Loc0, E0, ?0) ∈

C
C0
MF and a valid initial configurationK0 for (V, P) w.r.t.T andΦ∗∪ΦT

I0
such thatK0→

∗
T
(⌊end(E0, ?0)⌋

C′

E0
⊎

P ;Φ; C).

Proof. The direct implication is trivial since P∗ is a semi-dishonest prover. We concentrate on
the other implication, and we have to show that the property holds for any semi-dishonest prover.
Let Psd be a semi-dishonest prover for (V, P) with its associated frame Φsd, and trsd be the trace
witnessing this fact. We denote P∗ the most general semi-dishonest prover, Φ∗ its associated frame,
and tr∗ the trace witnessing this fact.
Applying Proposition 3, there exists a substitution f : N → T (Σ+

2 ,N ∪A), from names freshly
generated by P∗ in tr∗ to constructor terms such that:

(i) if (E0, in(D)) ∈ tr∗, then (E0, in(Df)) ∈ trsd (and similarly for the guarded input).
(ii) if (0, out(D)) ∈ tr∗ for some 0 ∈ {E0, ?0}, then 'Φsd↓=EDf for some recipe '.

By hypothesis, there exist a topology T ∈ CC0
MF and a valid initial configuration K0 for (V, P)

w.r.t. T and Φ∗ ∪ Φ
T
I0
such that

K0 = (Pinit;Φ
T
I0
∪ Φ

∗; 0)
tr
−→T (⌊end(E0, ?0)⌋

C′

E0
⊎ P ;ΦT

I0
∪ Φ

∗ ∪ Φout; C)

for some frame Φout. Without loss of generality, we may assume that T = (A0,M0, Loc0, E0, ?0)
with M0 ≠ ∅. Otherwise, we add such a malicious agent, and the trace remains executable. Ap-
plying the substitution f along this execution, we obtain a valid execution (remember that our
calculus does not feature else branches):

(Pinitf ;Φ
T
I0
f ∪ Φ

∗f ; 0)
trf
−−→T (⌊end(E0, ?0)⌋

C′

E0
⊎ Pf ;ΦT

I0
f ∪ Φ

∗f ∪ Φoutf ; C).

Actually, since names occurring in dom(f) are names freshly generated by P∗, we have thatPinitf =

Pinit, ΦT
I0
f = Φ

T
I0
, and therefore, we have that:

(Pinit;Φ
T
I0
∪ Φ

∗f ; 0)
trf
−−→T (⌊end(E0, ?0)⌋

C′

E0
⊎ Pf ;ΦT

I0
∪ Φ

∗f ∪ Φoutf ; C).

Finally, from item (ii), we have that for any D ∈ img(Φ∗), there exists a recipe ' such that
'Φsd↓ =E Df . We can thus deduce that for any term E and recipe 'E such that 'E (Φ

T
I0
∪Φ

∗f)↓ =E E

we have that there exists '′
E such that '′

E (Φ
T
I0
∪ Φsd)↓ =E E . Starting by applying a TIM rule with

a delay X equal to twice the greatest distance between two agents in T , we have:

(Pinit;Φ
T
I0
∪ Φsd; 0)

trf
−−→T (⌊end(E0, ?0)⌋

C′

E0
⊎ P̃;ΦT

I0
∪ Φsd ∪ Φ

′
outf ; C + X).

with Φ
′
out = {F

0,C+X
−−−−→ D | F

0,C
−−→ D ∈ Φout}. The delay X enables a dishonest agent (there is one by

assumption) to build any term occurring in Φ
∗f from Φsd. �

Corollary 3. Let I0 be a template, (V, P) be a well-formed distance-bounding protocol. Let Φ∗ be the

frame associated to the most general semi-dishonest prover of (V, P). We have that (V, P) is Terrorist

So near and yet so far –
Symbolic verification of distance-bounding protocols 57

fraud resistant w.r.t. C0-proximity if, and only if, there exists a valid initial configuration K0 for (V, P)

w.r.t. T C0
MF and Φ

∗ ∪ Φ
T
C0
MF

I0
such that K0 →

∗

T
C0
MF

(⌊end(E0, ?0)⌋
C′

E0
⊎ P ;Φ; C).

Proof. We consider the first implication. If (V, P) is Terrorist fraud resistant w.r.t. C0-proximity
then there exist a topology T ∈ C

C0
MF and a valid initial configuration K for (V, P) w.r.t. T and

Φ
∗ ∪ Φ

T
I0
such that K

tr
−→T (⌊end(E0, ?0)⌋

CE
E0
⊎ P ;Φ; C).

By definition of a protocol, we know that V (resp. P) is I+
0 -executable (resp. I%

0 -executable).
Hence, no agent names but E0 and ?0 may occur in the initial configuration leading to Φ

∗. Since
this initial configuration has an empty frame, agent names are not publicly available, and thus the
attacker ? cannot introduce new identities along the execution leading to Φ

∗. Therefore, we have
that =0<4B (Φ∗) ∩ A ⊆ {E0, ?0} and Theorem 1 applies. We deduce that there exits a valid initial
configuration K0 for (V, P) w.r.t. T

C0
MF and Φ

∗ ∪ Φ
T
I0
such that:

K0
tr′
−→

T
C0
MF

(⌊end(E0, ?0)⌋
C′E
E0 ⊎ P ′;Φ′; C ′).

The other direction is an immediate application of Theorem 3 since T C0
MF ∈ CC0

MF. �

D PROOF OF PROPOSITION 4

Proposition 4. Let C0 ∈ R+, T0 = (A0,M0, Loc0, E0, ?0) be a topology, and (V, P) be a protocol such

that Vend(E0, ?0) has the following form:

block1 . reset . out(D) . in<C (G) . block2 . end(E0, ?0) with C ≤ 2 · C0

LetK0 be a valid initial configuration for (V, P) w.r.t. T and Φ0. IfK0
tr
−→T0 (⌊end(E0, ?0)⌋

CE
E0
⊎P ;Φ; C)

with DistT0 (E0, ?0) ≥ 2 · C0 then we have that:

F (T0, (V, P),Φ0, C0)
tr′

===⇒ ({2 : end(E0, ?0)} ⊎ P ′;q ; 2).

Moreover, in case there is no 0 ∈ M0 such that DistT (0, E0) < C0, we have that for any in(D)

occurring in tr′ during phase 1, the underlying recipe ' is either of the form F , or only uses handles

output in phase 0.

Proof. In the same spirit as the proof of Theorem 2, we are able to prove that:

K̃★

0

tr′1tr
′
=

T0 (⌊end(E0, ?0)⌋ E0 ⊎ P̃; Φ̃)

where K̃★

0 (resp. P̃, Φ̃) is the untimed counterpart of K0 (resp. P , Φ) in which reset commands
have been removed and guarded inputs have been replaced by simple inputs except in Vend(E0, ?0).
Let 80 (resp. 90) be the index of the reset (resp. guarded input) occurring in Vend(E0, ?0). Moreover,
still following the proof of Theorem 2, we have that:

(i) for all 8 ∈ {80, . . . , 90}, the action tr′8 is executed by an agent 08 ∈ Close(E0);
(ii) for all 8 ∈ {80, . . . , 90}, if tr′8 is an input then the agent 18 responsible of the output is such that

18 ∈ Close(E0), or the recipe that is used to trigger the input only contains handles output
before the reset command.

In the following we say that a process is initial if it starts by an input. Let B0 be the session iden-
tifier of the process Vend(E0, ?0). In the following we will prove that there exists a trace preserving
items (i) and (ii) and satisfying the two following additional properties:

(iii) all processes but B0 are either initial when executing the reset action or let unchanged until
the end on the execution, i.e. there is no action in trace corresponding to this process after
the reset action.

58 Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling

(iv) all processes but B0 are either initial when executing the in<C (D) action or let unchanged
until the end on the execution.

Item (iii): Assume that there exists a process in K̃★

reset , the configuration just before the reset

command,with a session identifier B ′ ≠ B0 which is not initial. Let: ∈ {80, . . . , =} be the index of the
first action corresponding to this process, i.e. tagged by the session identifier B ′ in the remaining of
the trace. If : does not exist then the process is let unchanged and item (iii) is satisfied. Otherwise,
we prove the following claim.

Claim 3. For all 8 ∈ {80, . . . , : − 1} we have that tr′
:
6↩→ tr′8 .

Proof. We note tr′
:
= (0: , U: , B

′, A:) and tr′8 = (08 , U8 , B8 , A8). Assume that tr′
:
↩→ tr′8 . If tr

′
:
↩→B tr′8

then we have that B8 = B ′, leading to a contradiction. Otherwise, we have that tr′
:
↩→3 tr′8 and thus

U: = in★(E). Contradiction since the process identified by B ′ in K̃★

reset is assumed not initial. �

Repeatedly applying Lemma 6, we are able to move the action tr′
:
just before K̃★

reset . Applying
the same reasoning for all actions corresponding to B ′ until reaching an initial process, and then

doing the same to all processes that are not initial in K̃★

reset , we obtain an execution:

K̃★

0

tr′1tr
′
80−1

T0

t̃r80�tr8′0−1
T0 K

′
reset

t̃r8′0
.....�tr9′0−1

T0 K
′
in

t̃r9′0
.....t̃r=

T0 (⌊end(E0, ?0)⌋ E0 ⊎ P̃; Φ̃) (★)

satisfying item (iii) by construction. Moreover, items (i) and (ii) holds since we do not introduce
new actions between the reset and the guarded input (actually, we only move actions before the
reset).

Item (iv): We follow the same reasoning as for item (iii). Assume there is a process that is not
initial in K ′

in
and note B ′ its session identifier. Note : the index of the first action corresponding

to session B ′ after K ′
in
. If : does not exist then it means that the process is kept unchanged until

the end on the execution, thus the result holds. Otherwise, similarly as before, we establish the
following claim:

Claim 4. For all 8 ∈ { 9 ′0, . . . , : − 1} we have that t̃r: 6↩→ t̃r8 .

Again, applying Lemma 6 we are able to move action t̃r: right before K ′
in
. We obtain a trace

that satisfies item (iv). Moreover, the three items (i), (ii) and (iii) are still satisfied:

(ii) we do not introduce inputs between the reset and the guarded input;
(iii) the beginning of the trace (before the reset) is not modified;
(i) all the actions we introduce between the reset and the guarded input are executed by agents

0 ∈ Close(E0). Indeed, we have seen that item (ii) holds and thus the process identified by B ′

is initial when executing the reset action. Since it is no longer initial when executing the
guarded input, agent 0 must have executed an action in the meantime. Therefore, relying on
item (ii) that holds on the execution (★), we deduce that 0 ∈ Close(E0);

To conclude, it remains to show that such a trace can actually be mimicked from the configura-
tion F (T0, (V, P),Φ0, C0). Actually, the reset action is replaced by phase 1, and the guarded input
is replaced by a simple input followed by a phase 2 action.

Let ⌊%⌋ C0 be a process occurring in K̃★

0 , we know that % = V(0,1), or % = P(0,1) for some
1 ∈ A0; or % = Vend(E0, ?0). We now consider all the actions performed by this process along the
execution, and in particular, we pay attention on the slicing of all these actions w.r.t. reset action
and the guarded input. This gives us the corresponding process that we have to consider in our
translation, so that it will be able to mimic all the actions of ⌊%⌋ C0 . Items (iii) and (iv) allow one

So near and yet so far –
Symbolic verification of distance-bounding protocols 59

to ensure that our slicing (just before the inputs) is indeed sufficient. Our transformation F ≥ also
forbid actions to be executed during phase 1, and this is justified by our item (i). Finally, item (ii)
allows us to prevent the ProVerif attacker to act in phase 1 in case there is no dishonest participants
in the vicinity of E0. �

	Abstract
	1 Introduction
	2 Background
	2.1 Distance bounding protocols
	2.2 Different types of fraud
	2.3 Related work

	3 Model
	3.1 Messages
	3.2 Protocols
	3.3 Semantics

	4 Security properties
	4.1 Mafia fraud
	4.2 Terrorist fraud
	4.3 Distance Hijacking attacks
	4.4 Comparison with existing approaches regarding the modelling aspect

	5 Reducing topologies
	5.1 Mafia and Terrorist frauds
	5.2 Distance Hijacking attacks
	5.3 About restricted agents

	6 Reducing oracles
	6.1 Preliminaries
	6.2 Most general semi-dishonest prover
	6.3 Main result

	7 Encoding in ProVerif
	7.1 ProVerif in a nutshell
	7.2 Our transformation

	8 Case studies
	8.1 Methodology
	8.2 Limitations
	8.3 Application to distance-bounding protocols
	8.4 Application to payment protocols
	8.5 Comparison with existing approaches regarding the verification aspect

	9 Conclusion
	References
	A Proofs for Section 5.1
	B Proofs for Section 5.2
	C Proofs for Section 6
	D Proof of Proposition 4

