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RÉSUMÉ EN FRANÇAIS

0.1 La hiérarchie de la mémoire

Lors de l’exécution des charges de travail, un ordinateur doit stocker ses calculs en cours
dans un stockage appelé mémoire. Malheureusement, l’accès à la mémoire prend un temps
excessivement élevé. En tant que tel, l’ajout d’une hiérarchie de mémoires progressivement plus
petites avec des latences et un coût énergétique proportionnelles [NW15] — également connu
sous le nom de caches — est devenu la norme pour les systèmes actuels [CKD+10, HP12, LH11].

Bien qu’ils représentent une fraction du contenu de la mémoire, les caches deviennent réal-
isables en raison de la localité des références mémoire: il a été observé que les emplacements
mémoire ont une forte probabilité d’être accédés à plusieurs reprises, et que les emplacements
adjacents ont tendance à avoir une corrélation d’accès élevée; par conséquent, dans un laps de
temps spécifique, seul un petit sous-ensemble de l’espace d’adressage est utilisé par un processus,
et les caches en profitent pour fournir un accès plus rapide dans cette situation courante.

Des tailles de cache plus grands permettent d’améliorer la performance du système: dans
notre configuration simulée, augmenter naïvement la taille du cache de dernier niveau (LLC) de
1 Mo à 2/4 Mo générerait une accélération de 5,0/13,4%, et une réduction du nombre d’échecs
de la LLC de 12,2/32,0%; cependant, cette amélioration n’est pas gratuite et implique de plus
grandes latences d’accès en raison des circuits plus complexes, ce qui réduit ces améliorations.

De plus, l’augmentation de la taille du cache entraîne des coûts de surface et d’énergie plus
élevés [ZIM+07]: les caches représentent une grande quantité de dissipation d’énergie dans une
puce [GH96, VKI+00, MKG98, Yel11]; ainsi, même s’il est souhaitable d’avoir de plus grandes
tailles de cache pour obtenir des ratios d’erreurs plus bas [HSPE08], avoir de plus grandes
capacités entraîne une consommation d’énergie plus élevée. Néanmoins, les caches impliquent
également des économies d’énergie, car ne pas les avoir impliquerait plus d’accès à la mémoire
hors puce, qui ont une consommation d’énergie mille fois plus élevée [NW15]; par conséquent,
les architectes informatiques visent à développer des conceptions de cache plus grandes, mais
économes en énergie.

0.2 Compression de la mémoire

Au fil des années, plusieurs travaux ont proposé des idées pour améliorer la mémoire. Cela
comprend l’augmentation de la capacité [QSP07, AW04a], la réduction du taux de défauts de
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Résumé en Français

cache [AP93, PHM15], la réduction des exigences d’aire des étiquettes [Sez94, WSY95], l’ajout de
la vérification d’erreurs [CH84, CCZ13], entre autres. Ce travail se concentre sur les techniques
qui améliorent la mémoire grâce à la compression.

La compression de mémoire peut avoir multiples objectifs, mais l’approche générale com-
prend la compression et le compactage de données de sorte que les avantages de mémoires plus
grandes soient obtenus sans les principaux inconvénients d’une augmentation physique de leurs
tailles. Cependant, cette mise à niveau n’est pas gratuite et des étapes de compression et de
décompression doivent être ajoutées au processus d’accès, ce qui augmente légèrement l’énergie
et la latence des accèss au cache réussis.

Dans les caches conventionnels, la taille d’une entrée physique dans le tableau de données
(entrée de donées) correspond généralement à la taille de la ligne de cache. Dans les caches
compressés, par contre, plusieurs lignes peuvent être assignées à une seule entrée de donées
[LHK00]. Cela permet effectivement d’augmenter la taille du cache avec peu d’augmentation de
surface: au lieu d’augmenter le nombre de entrées de données, on ajoute un compresseur, un
décompresseur, et quelques circuits pour gérer l’organisation des blocs compressés.

Par conséquent, la complexité du compresseur devient un compromis crucial — les algo-
rithmes de compression génèrent généralement du matériel plus gros et plus complexe à mesure
que de meilleurs facteurs de compression sont obtenus [PSM+12]. De plus, à mesure que plus
de données s’insèrent dans la mémoire, plus d’étiquettes sont nécessaires pour référencer ces
données [AS14b]. Si le nombre d’entrées étiquettes est bas, le taux de compression devient limité
par ce nombre; mais s’il est trop élevée, de la surface et de l’énergie sont gaspillées. Un autre
problème rencontré est que, puisque la latence de décompression affecte de manière critique la
latence de la mémoire, elle doit rester minimale [AA18].

Pour cette raison, bien que, en théorie, la compression du cache puisse être appliquée à tous
les niveaux, il peut être difficile de compresser les caches les plus proches du cœur; puisqu’ils
sont les plus fréquemment utilisés, l’ajout d’une latence de décompression à ce chemin critique
pourrait dégrader considérablement les performances. De plus, trouver le mot critique n’est pas
trivial lorsque les données sont compressées; ainsi, la décompression doit avoir lieu avant d’être
envoyée. Heureusement, il existe certaines techniques qui peuvent être appliquées pour réduire
le temps moyen d’attente pour que les données soient décompressées [LHK99, LHK00, AW04a].

Chaque fois qu’une entrée compressée est écrasée, il peut y avoir un débordement de données,
c’est-à-dire que la nouvelle taille compressée peut devenir plus grande que la précédente. Cela
s’appelle l’expansion de données, et cela nécessite un traitement spécial [LHK00]. S’il reste
suffisamment d’espace dans la tranche de données, les données sont mises à jour, aussi bien
que les informations de métadonnées existantes (telles que la taille compressée); cependant, si
l’entrée n’a pas assez d’espace, les données co-allouées doivent être déplacées ou expulsées pour
générer de la place pour l’entrée redimensionnée.

14



Résumé en Français

Les étapes de déplacement et d’expulsion peuvent être effectuées en dehors du chemin cri-
tique, mais elles impliquent une consommation d’énergie supplémentaire, car plusieurs expulsion-
s/mouvements peuvent être nécessaires pour faire suffisamment de place. De plus, les métadon-
nées des entrées co-allouées doivent être lues et analysées pour calculer les opérations qui doivent
être realisées. L’utilisation de segments de taille fixe peut atténuer le problème d’expansion de
données, car l’espace alloué est toujours arrondi, donc il peut donc y avoir de l’espace pour des
petites extensions.

Lorsqu’elle est appliquée à la mémoire principale, la compression élargit encore plus l’ensemble
des défis: alors que dans les caches, les lignes sont localisées à l’aide des étiquettes, le volume
de ces étiquettes devient insupportable pour les mémoires plus grandes; ainsi, en général, la
mémoire principale ne contiennent pas ces structures. Cela complique la localisation des lignes
compressées. De plus, le Système d’Exploitation (OS) s’appuie sur la taille de la mémoire qui,
avec la compression, n’est plus statique. Comme la quantité de mémoire visible par l’OS est plus
grande que la quantité physique, il ne peut pas savoir quand la mémoire physique est épuisée;
donc, bien qu’il puisse penser qu’il reste de la mémoire à utiliser, il se peut qu’il soit en fait à
court [AF00].

Enfin, on peut également concevoir un système où toute la hiérarchie mémoire est compressée.
Dans un tel système, ayant plusieurs méthodes de compression (e.g., une pour la hiérarchie du
cache, et une autre pour la mémoire principale), bien que ce soit une décision attrayante — on
pourrait choisir des schémas plus rapides pour les caches plus proches du cœur et des schémas
efficaces pour des mémoires plus éloignés — elle pourrait ne pas être optimale. C’est le cas parce
que les transitions entre les niveaux de mémoire nécessiteraient décompressions et compressions
constantes; pourtant, si tous les niveaux utilisaient le même compresseur, les données pourraient
être envoyées compressées pour économiser la bande passante. Par conséquent, décider d’utiliser
ou non un schéma de compression unique pour tous les niveaux est d’une grande importance.

Néanmoins, une hiérarchie de mémoire entièrement compressée peut considérablement améliorer
les performances, et la consommation d’énergie et de bande passante par rapport aux hiérarchies
de mémoire conventionnelles [HR05, LHK00]. Avoir une capacité effective plus élevée implique
moins d’accès à des niveaux de mémoire plus élevés, et moins de défauts de cache et page; ainsi,
la performance globale du système est améliorée. En outre, bien qu’il y ait plus de matériel et
généralement plus de consommation d’énergie statique, la puissance globale peut être réduite en
raison du nombre plus bas de défauts des mémoires plus éloignées du cœur — la bande passante
globale est réduite, car moins de demandes d’accès à un niveau de mémoire moins élevé sont
générées [PSK+13].

De plus, le temps de transferts peut être réduit en raison du fait que des données compressées
sont envoyées — i.e., plus de données peuvent être envoyées dans la même intervalle de temps
[CR95, STBD14]. Enfin, les avantages de la compression de l’ensemble du système sont propor-

15



Résumé en Français

tionnels aux latences de la mémoire; par conséquent, les systèmes avec des latences élevées voient
leurs performances améliorées en raison de la réduction des accès à des niveaux de mémoire plus
élevés.

0.3 Compression Region-Chunk

Les algorithmes de compression matérielle sont généralement des dérivations simplifiées
d’algorithmes de compression de données. C’est le cas pour deux raisons: premièrement, la
complexité matérielle doit rester limitée; deuxièmement, la latence supplémentaire inhérente,
ajoutée en raison de l’étape de décompression, ne doit pas interférer gravement avec la latence
de succès [SASW15, PSM+12].

La compression du cache a tendance à s’appuyer fortement sur les localités spatiales et
temporelles des données; en substance, on s’attend à ce que les valeurs vues précédemment
soient parfaitement ou partiellement répétées. Par conséquent, il existe une prédominance de
compresseurs basés sur des dictionnaires — compresseurs qui utilisent les premières valeurs
d’une ligne comme références pour les valeurs suivantes, appliquant des modèles pour comparer
et faire correspondre les valeurs, généralement au niveau de l’octet. Ces références sont ensuite
utilisées pour supprimer les bits répétés dans les valeurs suivantes (déduplication de valeur)
[KGJ96, CYD+10, AA18].

La déduplication suppose généralement qu’un seul type de données de base soit utilisé à
plusieurs reprises, ce qui n’est pas vrai pour toutes les charges de travail. Pour faire face à cela,
les compresseurs peuvent ajouter des modèles qui seraient visibles si l’hypothèse sous-jacente
était d’un type de données plus petit. Par exemple, le modèle qui correspond à tous les octets
à l’exception du moins significatif d’une valeur de 32 bits est représenté par MMMX — M est
une correspondance d’octet, et X est une incompatibilité d’octets, dans une notation semblable
à des travaux antérieurs [CYD+10, AA18].

Pour capturer un comportement similaire pour les types de données 16 bits, tout en supposant
toujours que les charges de travail contiennent des types de données de 32 bits, le modèle MXMX
peut être ajouté. Cela signifie que pour pouvoir compresser tous les types de données de base,
les compresseurs devraient fournir des modèles pour couvrir toutes les permutations possibles
d’octets correspondants/non correspondants, ce qui est coûteux. Avec l’utilisation croissante des
valeurs de 64 bits, le fait de comprendre toutes les permutations devient encore plus prohibitif.

De plus, avoir plus de modèles améliore l’efficacité de la compression, mais complique le
matériel de décompression, en augmentant sa surcharge de latence. Par exemple, BDI [PSM+12]
peut réaliser une décompression en 1 cycle en ne couvrant que deux modèles. Son taux de
compression moyen (rapport entre les tailles compressées et non compressées) est, cependant,
élevé. Des propositions telles que C-Pack [CYD+10] et FPC-D [AA18] ajoutent plus de modèles
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et atteignent des ratios inférieurs; cependant, leur décompression peut être aussi lente qu’un
mot par cycle.

En général, il a été observé que le contenu de la partie de poids plus fort (MSB) d’une valeur
présente moins de variabilité que son homologue moins fort (LSB); et donc les compresseurs ont
tendance à mieux compresser ce premier [CYD+10, PSM+12, PS16]. Par conséquent, il pourrait
être avantageux de diviser davantage les morceaux en différentes parties, qui sont compressées
différemment. L’intuition est que la probabilité de voir des valeurs égales est proportionnelle à la
taille du bloc (chunk) ( 1

tailleChunk
), donc la probabilité de se référer aux entrées précédentes

du dictionnaire est plus élevée, ce qui augmente l’efficacité de la compression. De plus, étant
donné que chaque partie est toujours censée représenter les mêmes bits respectifs du chunk,
l’hypothèse globale du type de données représentatif de la charge de travail est conservée.

Dans ce manuscrit on présente la compression Region-Chunk (RC), une nouvelle
perspective sur le problème de correspondance. La compression Region-Chunk est un
concept qui permet de mieux isoler ce qui est mis en correspondance et d’explorer la granularité
des types de données des charges de travail. Au lieu de compresser les lignes de cache avec une
granularité de valeur, RC divise chaque valeur en sous-valeurs plus petites — mais de même
taille – dont le contenu est plus susceptible d’être similaire, puis compresse chaque sous-valeur
différemment. Cela permet d’améliorer la déduplication globale et d’augmenter la couverture
des modèles.

Le principal avantage de l’ajout de sous-divisions est que la taille du morceau correspond
toujours au type de données prédominant attendu de la charge de travail globale, mais les oc-
currences de types de données égaux ou plus petits sont compressées plus efficacement — la
granularité plus fine avec laquelle les dictionnaires sont construits réduit la duplication. De plus,
le nombre de modèles couverts est implicitement augmenté, car la combinaison des modèles des
compresseurs de chaque région génère un spectre plus large. Par exemple, pour les chunks de 64
bits, le modèle MMMMMXMM ne fait généralement pas partie des modèles sélectionnés; cepen-
dant, il serait assuré comme une combinaison possible des quatre régions dans un compresseur
R16C64 contenant les modèles MM et MX (MM + MM + MX + MM).

Un autre avantage du raffinage de la granularité est que le compresseur de chaque région
peut être modifié pour couvrir ses besoins. Par exemple, en s’attendant à ce que les régions
MSB aient moins de variabilité que les régions LSB, il serait raisonnable de réduire le nombre
maximum d’entrées de dictionnaire différentes autorisées ou le nombre de modèles couverts,
ce qui réduirait à son tour le nombre de bits de métadonnées nécessaires. Une autre façon de
personnaliser ces compresseurs serait de modifier les modèles eux-mêmes — e.g., en augmentant
ou en diminuant le nombre de bits non correspondants, on pourrait augmenter la probabilité de
déduplication des entrées, ou réduire la taille des données compressées, respectivement.

Bien que ces avantages puissent être directement exploités par les compresseurs à modèles
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en général, l’augmentation de la couverture de modèles est grandement favorable pour élever
l’efficacité des compresseurs base-delta [PSM+12] au niveau de l’état de l’art; par conséquent,
on introduit plusieurs nouveaux compresseurs qui étendent et améliorent les com-
presseurs base-delta pour atteindre des bons taux de compression et une latence
de décompression corte. Ces nouveaux compresseurs couvrent un large éventail de types de
données, décompressent rapidement et améliorent l’efficacité de la déduplication des données,
tout en offrant une complexité de compression atteignable.

0.4 Pairwise Space Sharing

Une fois qu’une ligne est compressée, un schéma de compactage décide où la placer et si elle
peut co-allouer avec d’autres lignes. Certaines techniques de compactage limitent la compression
à des tailles fixes (e.g., 25% et 50% de la taille de la ligne), en ajoutant un remplissage aux
lignes plus petites que ces tailles [SSW14, SSW16]. Ces méthodes contraintes nécessitent un
faible volume de métadonnées, mais limitent les opportunités de co-allocation.

De plus, alors que les compresseurs de cache peuvent réussir dans certaines sections du calcul,
il reste encore beaucoup de données qui ne parviennent pas à atteindre des tailles compressées
compatibles avec le compactage; la taille moyenne compressée sur les SPEC 2017 [Cor17] pour
plusieurs compresseurs à la pointe de la technologie est toujours bien supérieure à 50% de la taille
non compressée, ce qui rend difficile la co-allocation efficace de blocs avec de telles limitations.

D’autres propositions suppriment ces limites, permettant aux blocs d’être compressés à
n’importe quelle taille [AW04a, CYD+10] — un concept que nous appellerons méthodes non
contraintes. Bien que ces méthodes permettent à la compression d’atteindre son plein poten-
tiel, elles augmentent considérablement le volume des métadonnées en raison du nombre de bits
nécessaires pour représenter la taille compressée. En outre, localiser les lignes dans le cache
devient non trivial: elles peuvent être trouvées n’importe où dans le tableau de données. Cela
entraîne l’ajout de quelques cycles supplémentaires au chemin d’accès.

Pour profiter des avantages des tailles non contraintes mais à une fraction de son coût
matériel et sans pénalité de latence, Pairwise Space Sharing (PSS) a été introduit. PSS est
une technique de compactage partiellement contrainte qui nécessite une volume de métadonnées
minimale, tout en fournissant des résultats équivalents. Avec PSS les blocs sont co-alloués dans
des paires de blocs (BP), de sorte que la somme des tailles compressées de la paire doit
tenir dans l’espace de données d’un bloc non compressé. De plus, contrairement aux approches
précédentes, PSS stocke implicitement les métadonnées et réduit la probabilité d’expansion des
données.

Le placement des blocs dans une entrée de données est simplifié avec PSS. Alors que les
représentations non contraintes utilisent des pointeurs ou des tailles de sous-blocs environnants
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pour localiser les sous-blocs dans les entrées de donées, PSS utilise les extrémités — MSB et
LSB — des BPs comme positions de placement fixes implicites. Ces marqueurs définissent le
début d’un sous-bloc — par exemple l’un des sous-blocs doit être stocké dans l’ordre inverse
(le MSB devient le LSB et vice-versa). Un autre avantage du placement des extrémités est que,
puisque les bits entre les sous-blocs sont inutilisés, le recompactage n’est pas nécessaire lorsque
la taille d’un bloc est modifiée mais tient toujours dans le BP.

Enfin, puisque les tailles et les emplacements des deux sous-blocs dans une paire sont connus,
un seul champ de taille par BP est nécessaire, et la taille de l’autre sous-bloc (e.g., celui non
inversé) est implicitement défini. Si seul le bloc non inversé est présent dans la paire, la taille
stockée représente l’espace disponible pour le sous-bloc inversé. Ces modifications permettent
de réduire le volume global des métadonnées, tout en améliorant la probabilité de co-allocations
réussies.
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Chapter 1

INTRODUCTION

Loosely speaking, a basic computer is composed of a microprocessor and a memory unit.
In addition, it communicates with the outer world via I/O devices such as main storage (sec-
ondary memory), keyboards, mouses, network adapters and monitors. In its normal behavior,
the computer processes input data with operations such as addition, comparison and division,
among others; however, the in-flight computation results can be quite sizeable to keep track of
in the slender microprocessor’s register set. Besides, although these results could be temporarily
stowed in the main storage along saved files, transferring data from and to it has an exceedingly
high cost. Because of that a smaller memory is used as an intermediate storage to read and
modify its contents (primary memory).

The next sections provide a brief overview of the memory system, and while in this study we
will focus on volatile (i.e., that needs power to maintain information) Random-Access Memory
(RAM), the concepts can be analogously applied to non-volatile memories.

1.1 Memories

The Dynamic RAM (DRAM) is a storage medium composed of DRAM cells disposed as a
rectangular array with rows and columns that acts as a buffer between CPU and the secondary
memory. Its cells usually consist of a capacitor to keep the data bit, and a transistor to regulate
access to the capacitor. Therefore, by definition their charge is constantly leaking over time, so
they must be refreshed periodically, and accesses discharge the capacitor, so reads must always
feed the values back to the cells [Dre07]. A DRAM access consists basically of three stages:
1) activation, where a row is opened for access; 2) restoration, which restores the accessed
cells’ values; and 3) precharge, which closes the row, preparing the memory for further accesses
[CKH+16].

Missing in these memories implies in having to access the main — slower — storage. This is
undesirable, so diverse techniques to improve the management of this limited space have been
proposed [ZPS+04]. Nonetheless, although faster than the secondary memories’, these memories’
access latencies are still unduly high for swift program execution. Besides memory technology
improvements, there have been multiple proposals to try to reduce this reliability. For example,
prefetching techniques try to overcome this issue by predicting which addresses are likely to be
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subsequently accessed, and thus try to fetch them in advance so that they are ready to be used
when needed [Jou90, SWAF09, Mic16a]. Other methods analyse the access pattern to exploit
physical capabilities [LKP+15, HPV+16], alter the scheduling management [USCM16], among
other approaches.

Unfortunately, even with these improvements the access latency is prohibitive for large mem-
ory sizes. As such, adding a hierarchy of progressively smaller memories with proportional la-
tencies and energy cost [NW15], also known as caches, has become standard for current systems
[CKD+10, HP12, LH11].

1.2 Caches

Part of the problem of using DRAMs is that their upkeep implies in greater latencies; thus,
when moving towards solving the latency issues, any extra delay must be either removed or
kept to a minimum. Because of that caches use Static RAM (SRAM) cells. These cells have an
increased manufacturing cost due to the use of more transistors, but manage to retain a steady
state even after accesses — and thus avoid wasting execution cycles refreshing.

Caches are tables composed of data indexed by tags [Smi82]. As such, they are composed of
sets (rows) and ways (columns). These tags are unique ids for the data location in the memory’s
address space, and are required because caches are significantly smaller than the address space,
thus multiple entries map into the same set. The compound of decisions regarding the cache line
size, associativity and total capacity have a direct impact on workloads’ performance [Ost10].

Figure 1.1 shows an example 4MB 16-way set-associative cache in a system with a physical
address space of 256TB (which uses 48-bit pointers) 1, and 64-byte cache lines and thus each line
(or block) is stored in a 64-byte data entry. This means that block addresses are apart in a 6-bit
granularity (block offset), and that a tag of 30 bits would be required to resolve its accesses (48
bit pointers minus 12 bits implicitly defined by the set a tag is stored minus 6 bits of the block
offset).

Although they represent a fraction of the memory contents, caches become feasible due to
the locality of memory references. It has been observed that memory locations have a high
likelihood of being accessed repeatedly (temporal locality), and that adjacent locations tend to
have a high access correlation (spatial locality). Therefore, within a specific time frame only a
small subset of the address space is used by a process (working set), and caches take advantage
of that to provide faster access in this prevalent situation.

Greater cache sizes allow system performance improvements. In our simulated configuration,
naively increasing the Last-Level Cache (LLC) size from 1MB to 2MB/4MB generates an In-
structions Per Cycle (IPC) enhancement of 5.0/13.4%, and a reduction of the LLC’s Misses Per

1. 256TB address spaces are quite common nowadays; however, there are proposals to increase it [Int17], which
would incur in a significant tag size increase
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16 Ways

4096 Sets

Tag Entry (30-bit tags) Data Entry (64 bytes)

Set

Figure 1.1 – A 4MB cache with 16 ways and cache line size of 64 bytes contains 4096 sets.

Kilo-Instruction (MPKI) of 12.2/32.0%; however, this amelioration is not free of charge, and im-
plies in slower access latency due to the more complex circuitry, reducing these improvements.
Moreover, increasing the cache size results in higher area and energy costs [ZIM+07]: caches
account for a large amount of energy dissipation in a chip [GH96, VKI+00, MKG98, Yel11]; so,
even though it is desirable to have greater cache sizes to achieve lower miss ratios [HSPE08],
having greater capacities incurs in higher energy consumption overheads. Nonetheless, they also
imply in energy savings, as not having them would entail more off-chip memory accesses, which
have a thousand-fold higher power consumption [NW15]; therefore, computer architects aim on
developing larger, yet energy-efficient, cache designs.

Current computer systems are designed with two or three cache levels, but there are some
designs that exploit a fourth cache level [HKO+14, Mär14, DKL+17]. Throughout this text we
will adopt the nomenclature that the closer to the processor, the higher is the cache level, yet
the lower is the cache number. That is, L1, the closest cache to the processor, is the highest level
cache.

1.2.1 Replacement Policies

As mentioned previously, both memories and caches are tables with limited storage capabil-
ities when compared to the address space they portray, and, since they cannot provide a perfect
one-to-one mapping of table entry and address, tag conflicts happen. Deciding when and which
entry must be replaced on a conflict is the role of their Replacement Policy.

Replacement policies try to predict which data will be the most useful in the future, and
which will not. Using this information they can decide which entries should be kept to minimize
the number of misses [Mic16b]. Sometimes, however, misses bring entries that are not likely
to be useful in the short term, and evicting another entry to make room for them would in
fact degrading performance (memory pollution); therefore, some policies include bypass policies,
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which allow them to bypass such allocations [JL19].
In order to yield a perfect prediction, one would have to carry access trace information

throughout program execution, which is infeasible due to its required infinite storage [JL16].
Therefore, simpler policies compel less resources by focusing on tracking specific workload char-
acteristics, such as usage recency [MGST70, JTSE10], usage frequency [CD73], and hybrids
[JTSE10]. Complex policies, on the other hand, juggle the trade-off between hardware budget
and precision, adding predictors based on PC [KTJ10, WJH+11], simulating optimal replace-
ment [JL16], and even implementing simple neural networks [JT17].

1.3 Handling the Hierarchy

Until now we have assumed that the system consists of a single core with full control of its
data. This happens because, in a way, all caches are private to that core, so all data changes are
caused and perceived by it; however, when systems have multiple cores, a new issue arises: if
there are several copies of a block at different private caches, changes to one of the copies must be
forwarded to the others, otherwise the computations may use stale, incorrect data [SHW11]. This
is known as the Cache Coherence problem, and many solutions have been proposed throughout
the years, either through hardware or software [MHS12].

Before diving into those solutions, let’s first step back and examine the effects of having mul-
tiple caches and working sets. Suppose we are dealing with a N-level cache hierarchy; If every
core had its own set of N-level private cache hierarchy, the overall area of the chip would become
humongous in server stations and supercomputers with their myriad of cores [TOP19], for ex-
ample. Shared caches have the advantage of reducing the memory space and coherence control.
Besides, they allow exploring the commonality of working sets to reduce data redundancy, and
improving usage efficiency, since if a core does not need to use many memory resources, others
can appropriate its share [TS07]. It is a common practice to make the first cache level private
to keep it at a low latency, have the intermediate cache levels be shared among some cores (e.g.,
per pairs or tetrads of cores), and the last level cache be shared amongst all cores.

Unfortunately, making all cache levels shared by all cores would incur a gargantuan wiring
mess, and in a adverse disturbance of the access latencies, so we are forced to use private caches
and use controllers to cope with their drawbacks. Some coherence controllers work by having
state machines that snoop on bus transactions, taking the appropriate action according to the
cache line’s state and protocol being used [PP84, SS86, GH09]. Coherence controllers can also
rely on the use of directories (distributed, centralized or in hierarchies) to keep track of the
blocks’ copies without the constant need to broadcast data, as it can easily saturate system
traffic [LLG+90, Ste90].

Cache coherence protocols generally consist of a subset of the following states: Modified,
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Shared, Invalid, Exclusive, Owned and Forward. A modified cache line contains the only up
to date copy of the data, and every other copy is stale. The shared state implies that several
unmodified copies of a data entry are distributed across different caches. A block in the invalid
state must be fetched from lower memory levels. An exclusive block is an unique identical copy
of data in lower levels. The owned state assigns a cache line to a cache. Lastly, a cache line in a
cache is attributed the forward state if it is one of the many unmodified copies of its data entry,
but its container cache has the responsibility of responding to all requests made to that given
line.

1.4 Improving Memories

Over the years several works have proposed ideas to improve memories. This includes in-
creasing capacity [QSP07, AW04a], reducing miss ratio [AP93, PHM15], lowering tag area re-
quirements [Sez94, WSY95], adding error checking [CH84, CCZ13], among others. In this section
we briefly describe cache and memory compression, which is the focus of this work. More in-
formation on this topic, and how it interacts with other ideas will be presented in the next
sections.

Memory compression can have multiple goals, but the general approach comprises compress-
ing and compacting data so that the benefits of larger memories are achieved without the main
drawbacks of physically increasing it. Howbeit, this upgrade is not free, and compression and
decompression steps must be added to the access process, which slightly increase energy and hit
latency.

On the one hand, in conventional caches the size of a physical entry in the data array (data
entry) generally matches the size of the cache line. In compressed caches, on the other hand,
multiple lines can be assigned to a single data entry [LHK00]. This allows effectively increasing
the cache size with little area overhead: instead of increasing the number of data entries, one
adds a compressor, a decompressor, and some circuits to handle the organization of compressed
blocks. Consequently, the compressor’s complexity becomes a crucial trade-off — compression
algorithms usually require bigger and more complex hardware as better compression factors are
achieved [PSM+12]. Furthermore, as more data fits into the memory, more tags are needed to
reference this data [AS14b]. If the number of entries is low the compression ratio becomes limited
by this number; but if it is too high area and energy are wasted. Finally, the decompression
latency critically affects memory latency, so it should be minimal [AA18].

Because of that, although, theoretically, cache compression can be applied to all levels, it
may be tricky to compress the caches closest to the core; since they are the most frequently
accessed, adding a decompression latency to this critical path could greatly degrade performance.
Moreover, some caches prioritize sending the critical word of requested blocks first; however,
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finding it is not trivial when the data is compressed. Therefore, decompression must happen
before it is sent. In spite of that, this cache level can be compressed to reduce cache miss rate
if the compression scheme used is simple enough to provide immediate decompression [PA05,
KAK06, TZ07]. Fortunately, there are some techniques that can be applied to reduce the average
time waiting for data to decompress [LHK99, LHK00, AW04a].

Whenever a compressed entry is overwritten there may be a data overflow, that is, the new
compressed size is bigger than the previous one. This is called fat write or data expansion, and
it requires special handling [LHK00]. If there is sufficient space left in the data entry, the data
is updated, along with the existing metadata information (such as compressed size); however,
if the entry does not have enough space, the co-allocated data must be moved or evicted to
generate area for the resized entry. Both move and eviction steps can be done off the critical
path, but they imply in extra energy consumption, as multiple evictions/movements may be
needed to make enough room. In addition, the co-allocated entries’ metadata must be read and
parsed to calculate the operations that must be done. Using fixed size segments may alleviate
the fat write problem, as the allocated space is always rounded up, so there may be space for
small expansions.

When applied to memory, compression further expands the set of challenges: while in caches
lines are located using tags, the tag overhead becomes unbearable for larger memories; thus,
in general, the main memory does not contain such structures. This complicates locating com-
pressed lines. Furthermore, the Operating System (OS) relies on the memory size information,
which, with compression, is no longer static. As the amount of memory provided to the OS is
bigger than the physical amount, it cannot know when the physical memory is exhausted; so,
while it may think there is still memory left to use, it may actually be running out [AF00].

Finally, one can also design a system where the whole memory hierarchy is compressed.
In such a system, having multiple compression methods (e.g., one for the cache hierarchy, and
another for the main memory), although compelling — one could choose faster schemes for caches
closer to the core, and effective schemes for memories farther away — may not be optimal. This
is the case because transitions between memory levels would require constant decompression and
compression; yet, if all levels used the same compressor, data could have been sent compressed
to save bandwidth. Therefore, deciding whether to use a single compression scheme for all levels
or not is of great significance.

Nonetheless, a fully-compressed memory hierarchy can greatly improve performance, and
energy and bandwidth consumption when compared to conventional memory hierarchies [HR05,
LHK00]. Having a higher effective capacity implies fewer accesses to lower memory levels, and
fewer cache misses and page faults; so the overall system performance is improved. Besides,
although there is more hardware and generally more static energy consumption, the overall
power requirements can be reduced due to the lower number of misses to the memories farther
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from the core, which would have spent more dynamic energy [NW15]. Moreover, the transfer
time can be decreased due to the fact that compressed data is being sent — i.e., more data
can be sent in the same time interval [CR95, STBD14]. Finally, the benefits of compressing the
whole system is proportional to the memory latencies; therefore, systems with high latencies
can achieve higher performance improvement due to the reduction of accesses to higher memory
levels.

1.5 Dissertation Structure

In this dissertation we analyze the strengths and weaknesses, point the key challenges, and
introduce some ideas to improve both the efficiency and efficacy of cache compression. These
are the main contributions of the work developed in this thesis:

— We present a thorough survey of compression, showing how proposals handle the multiple
problems that arise from having compressed systems.

— We scrutinize the dependency of cache compressors on the data type granularity of the
workloads. By achieving a better understanding of this relation we can detect design flaws
and propose ways to overcome them.

— We formally define a generic base-delta compressor encompassing any number of bases.
We also describe optimizations to its representation, which greatly increase its effective-
ness when compared to the naive approach.

— Leveraging on the knowledge established by the granularity exploration, and the opti-
mized generic base-delta, we propose multiple compressors. These attain high efficiency
at a low decompression cost.

— We boost the co-allocatability of cache lines through Pairwise Space Sharing. Pairwise
Space Sharing is an expansion to compaction algorithms which allows the benefits of
unconstrained compaction with minimal tag overhead and no extra latency.

Chapters 2 and 3 present an in-depth description of systems with hardware cache, link, and
memory compression, as well as the problems that must be managed when having a compressed
layout. The background-related chapters end with Chapter 4, which scrutinizes hardware data
compression algorithms from an evolutionary standpoint. Chapter 5 explores data similarity and
co-allocation probability to introduce Pairwise Space Sharing, a method to co-allocate blocks
that requires low metadata overhead and improves co-allocation efficiency. Chapter 6 scrutinizes
cache compressors, analysing their relationship with data types. Moreover, it introduces multiple
new compressors that build upon the acquired knowledge to achieve minimal decompression
latency and high compression efficiency. We conclude with a summary of this dissertation and
a few research directions for future work (Chapter 7). Chapters 2 and 4 have been accepted for
publication [CS21].
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We will use the term memory interchangeably for all cache levels and main memory, unless
otherwise stated. The terms cache line, line, and block will also be used interchangeably.
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Chapter 2

UNDERSTANDING COMPRESSED

CACHES

This chapter provides an overview of some cache compression schemes that have been pro-
posed over the years, and how they handle the multiple problems that arise when designing
systems with compressed caches. We hereby elucidate the problems and solutions in general
terms, and explain what are the typical strategies adopted to handle cache compression.

Previous works [MV15, SASW15] group and describe the hardware compression proposals
created over the years. They cover proposals on a high-level taxonomy perspective — compres-
sion algorithms, and compressed cache organization — and focus on describing each technique
isolatedly. This manuscript takes a different approach, dissecting these techniques into their un-
derlying solutions for each of the problems faced by compressed systems. We hereby elucidate
the problems and solutions in general terms, and explain what are the typical strategies adopted
to handle cache compression, referring to techniques as practical examples.

The following terms will be used throughout the manuscript: compression ratio is the ratio
between the compressed size and the cache line size (Equation 2.1) [Sal04]; and compaction
ratio — sometimes referred to in the literature as effective cache capacity — is the average
number of valid sub-blocks in a data entry. The former measures how efficient a compression
algorithm is, while the latter exposes the efficacy of the compression system (compressor +
organization).

CR = original block size

compressed block size
(2.1)

2.1 Motivations

Data compression is modern day’s alchemy. From circuits to web navigation, the goal of
turning a big data chunk into a smaller one goes far beyond increasing the density of informa-
tion; by storing more data in less space, one can potentially save area, energy, and bandwidth.
Increasing the effective memory capacity is one of the most recurrent goals in systems with com-
pressed caches. Capacity-focused compressed caches present the benefits of larger caches at a
lower cost than physically augmenting the memory size. On the one hand, a physically enlarged
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cache has larger silicon area, greater static power consumption, and slower accesses; on the other
hand, compression circuitry is only a fraction of a cache’s area [CYD+10, PSM+12, PS16].

Another common reason to apply compression is to reduce energy consumption: smaller
caches have smaller footprints, leading to lower leakage and driving energy utilization [VZA00,
YG02, KAM02, KPA04]. Furthermore, smaller data can be transferred using less energy [KL13].
Compression can also be used to improve bandwidth: smaller data transfers can be translated
into faster transfers, higher throughput, or even bus-width reduction [KAM02, HR05, PSK+13,
STBD14]. Another possible use of compression is to enhance tolerance for partially faulty en-
tries — that is, compressing data so that it fits in the non-faulty sub-entries of cache entries
[FSGAB+16].

Finally, compression can be used to reduce the storage overhead of other techniques for
memory enhancement. For instance, techniques to prevent, detect and correct errors in memory
units typically need to store specialized codes along the data [CH84]. These extra bits can incur
a high area penalty, specially if high efficacy is desired [CCZ13]. In compressed caches some of
the data space is freed, making room to partially or entirely fit these codes [JZZ+12, CCZ13,
PKL15, KSGE15, YJ18]. This can be leveraged to reduce the size of the extra storage, as well
as its access frequency.

2.2 Handling Data

Prior to selecting the compression algorithm — which will be discussed in Chapter 4 —
multiple decisions must be made regarding the data being compressed; questions such as "What
is the granularity of the compressor’s input?", "Must the decompressed line perfectly match the
original cache line?", and "What should be done in case the compressed size changes?" must be
answered first.

2.2.1 Input Granularity

In general compression, a data set’s potential to compress grows with its size. The larger the
input size, the more values are likely to repeat, generating more compression opportunities. While
compression typically does not restrict the input size, cache compression has a particularity: the
input size is well-defined as the size of a cache line. Yet, the complexity of a compressed cache’s
compressor and decompressor increase with the line size; thus, enlarging the line has a direct
negative impact in their latencies and areas.

It is possible, though, to simulate higher input sizes by changing the granularity at which the
cache compressors compare values. Instead of trying to find value similarities within isolated lines
— a concept called intra-line compression — one can find more compression opportunities
by comparing the contents of multiple lines (inter-line compression) [TKJL14, NW15, PS16,
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GNL20]. These granularities are not exclusive, so a compactor can use both the intra- and inter-
line approaches simultaneously, in a hybrid scheme [GNL20]. More information on how these
approaches work will be provided in Chapter 4.

2.2.2 Precision

Computing systems commonly require calculations to be deterministic. As a result, most
compression algorithms tackle compression as a precise problem, and compression must act
as an invertible function — a given line A must be uniquely compressed to line A′, and the
decompression of A′ must regenerate A precisely.

Howbeit, a recent field of study called approximate computing proposes to consciously
applying value approximation to speed calculations up, or reduce power consumption [Mit16].
This concept can be applied to compression under specific contexts and constraints. For exam-
ple, images are composed of pixels, and the Least-Significant Bits (LSB) of these pixels’s data
representation contain information that, if removed, will likely not affect much the image quality.
Compression could leverage this to remove such bits.

Compressed caches using approximation techniques typically use error/difference thresholds
to determine which values should be considered similar, and classify their degree of similarity.
Then, lines whose contents are considered similar are mapped to the same data entry (more
on that in Section 2.3). Since the hardware is unable to automatically distinguish whether it
can approximate contents, the programmer must inform which parts of the address space are
approximable. This means that these compressed cache layouts allow both precise and approxi-
mate blocks to co-exist, either by splitting the cache into different areas [MAMJ15], or by adding
metadata to the blocks to inform their approximation state [SMAJJ16].

2.2.3 Overwriting Data

Co-allocating blocks in a data entry is not a one-time problem that is solved after a line
has passed through the compressor and has been stored in the cache. Further updates to the
line can make its contents change, possibly requiring the line to be re-located. Three cases can
arise when data is overwritten: the contents of the (un)compressed line do not change; the new
compressed data is smaller than the previous contents (data contraction); or the new data is
compressed to a size larger than the previous one (data expansion or fat write).

The first case is trivial: nothing needs to be done, so the line can be kept in its original
location. Data expansions, on the other hand, are generally undesirable: an expanding block
may not fit in its current allocated space anymore, requiring special handling. Finally, data
contractions are somewhat easier to handle: one can either decide to keep the line in its current
location, filling the emptied space with padding bits; or handle it analogously to expansions.
Handling the resizing follows the compaction scheme’s replacement guidelines: one can either
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remove the overwritten line itself from its current location, re-applying the co-allocation process
(re-insertion); or move/evict other co-allocated lines in the data entry to make room for the
expansion to happen. This handling, although inconvenient, is rare, and can be done off the
critical path [AW04a, SSW16, PHC+15].

As a side note, compression schemes that enforce that all co-allocated blocks must fit in a
given size may require lines whose size changed to always re-locate if the size threshold is crossed,
even if there is space available for the block to fit in its current location [SSW16, SSW14].
For example, in Skewed Compressed Cache [SSW14] blocks are indexed as a hash function of
their address and compressibility; thus, if the compressibility of a block decreases 1, so does its
expected location.

2.3 Mapping Compressed Data

Data stored in a cache must be located in order to be accessed. To that end, conventional
cache designs contain both a tag-metadata storage, and the data storage itself [Smi82]. This
metadata storage encompasses information that is relevant to identify which memory data is
stored at a given place in the data storage. Typically, the mapping between these storages is
bijective; each cache line fits exactly in a data entry, which is associated with a unique tag
identifier, even if not valid. When data is compressed, however, this is not the case anymore,
and multiple cache lines can be stored in a data entry. As a result, the mapping between storages
must be modified.

The straightforward solution is to remove the injection property by increasing the number of
tags. This is the standard approach adopted by most proposals in the literature, being applied
by associating multiple tag entries to either a single (many-to-one) or multiple (many-to-many)
possible data entries. Examples of how state-of-the-art proposals generally approach such designs
are presented in the following sub-sections.

2.3.1 Many-to-One Mapping

Mapping multiple tags onto a single data entry is the simplest approach; thus, it is the go-
to strategy among many compressed cache layouts (e.g., SCMS [LHK99, LHK00] and YACC
[SSW16]). Although such techniques come in multiple flavors, each with its with minor nuances,
the general idea can be described as follows (see Figure 2.1): 1 each data entry is uniquely
coupled with a few fixed tag entries. 2 When a block’s data is inserted into a data entry, one of
its respective tags is used — its coherence bits are set (C bits), and the respective compression
metadata is stored (M bits) — and the block’s contents are copied over. 3 If another block is

1. When the compressibility of a block increases the extra space can be filled with padding bits to avoid moving
the block.
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assigned to this data entry, and is able to co-allocate with the existing block, another tag entry
is used, and the new block is stored alongside the previous one. This process is repeated until
this data entry has no spare tag entries, a point at which tags would need to be evicted following
the replacement policy’s guidelines (R bits).

Tag R C M Tag R C M

Data
Set 0

Set 1

Set 2

Set 3

Tag

Way N-1

Tag

Way 0

...
Set 0

Set 1

Set 2

Set 32

1

2

3

3

Figure 2.1 – A generic many-to-one
compressed-block mapping.

Tag A

Tag B

Tag C

Data

Figure 2.2 – A generic tag-data doubly linked
list. Each tag entry has extra metadata to in-
form which are the previous entry, next entry,
and corresponding data block. Each data entry
contains a pointer to the head of its correspond-
ing tag list.

The previously described design works well for compression in general; however, for the
specific case of inter-line granularity (see Section 2.2.1), one can opt not to compress data
entries, but to associate multiple tags with a specific data entry instead — that is, a variable
number of tags can map to a single data entry. This flexibility can be achieved by connecting
tag entries through a doubly linked list, and mapping each list to a single data entry [TKJL14,
MAMJ15, GNL20]. Eviction of a data block requires that each tag entry contains a pointer to
the previous and next tags, as well as a pointer to the data entry it is associated with. Finally,
since the storages must be effectively fully decoupled, each data entry must hold a pointer to its
respective tag list’s head. The general design is shown in Figure 2.2.

To avoid having to perform full storage scans, these techniques typically employ hash tables,
which allow quickly locating blocks based on their contents; if two blocks exhibit similar values,
they should be mapped to the same data entry. On lookups and writes this map value is gen-
erated, and the cache is searched for matches, first in the tag array, and then in the map tag
array (hash value), to find the corresponding data block position. Special care must be taken on
replacements, as the removal of a data block implies on the removal of several tag entries. As a
result, previous to removing an entry to insert a new one, the cache can be searched for similar
values: on matches it is simply appended to the match’s linked list; otherwise, all tag entries
referencing the to-be-evicted data block must be properly invalidated.
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2.3.2 Many-to-Many Mapping

When there is an M to N relationship between the tag and data storages to accommodate
for compression, the cache design becomes slightly more complex; yet, the tag and data entries
have more flexibility, allowing for better placement decisions. Compressed caches that decouple
tag and data are typically subject to at least one level of indirection, and the ideas usually derive
from similar schemes conceived for conventional caches, such as the Indirect-Index Cache (IIC)
[HR00] and the Decoupled Sectored Cache [Sez94]. The main difference between decoupling in
uncompressed and compressed caches is the granularity: since compressed blocks can fit in spaces
smaller than the size of data entries, such entries can be partitioned into multiple small segments
[AW04a, HR05, SW13, AS14b, PHC+15] (more on segments in Section 2.3.4).

For instance, in the Decoupled Variable-Segment Cache (DVSC) [AW04a] the data entries
are divided into eight-bit segments, and despite the fact that each set contains four data entries,
the tags assume a 8-way set-associative configuration — i.e., there can be at most eight blocks
simultaneously present in a set. Each tag is modified to contain the compression status and
a counter of the number of segments used by the data it refers to. On compression, a block
is rounded up to a number of segments, and inserted in the set in contiguous address order,
that is, at the segment after the last used one — a block’s segments can then span over two
physical data entries. Due to the compelled contiguity, a block update may require segments to
be re-compacted if the new size is different from the old.

2.3.3 Reducing Tag Overhead

Increasing the number of tags has an exceedingly high cost: the tag storage overhead is
increased manyfold. Besides, the usefulness of the extra tags is directly proportional to the
workload’s compressibility; thus, some approaches group multiple tags into a single tag entry,
notably reducing the number of tag bits [ATGK07, SW13, SSW14, SSW16]. This can generally
be achieved through the exploitation of two remarks: neighbor values tend to exhibit approximate
similarity, and workloads tend to manifest high spatial locality [SW13, SSW14, SSW16].

The former remark implies that the contents of neighbor blocks are approximately equal.
This can happen, for example, in neighbor pixels of images, which likely contain similar values;
and when safeguarding from worst case scenarios — e.g., using data structures bigger than the
average value [MAMJ15]. Besides, applications tend to display a high frequency of zeros [ES05],
as it is regularly used to nullify pointers and initialize data. Finally, the second remark states
that neighbor blocks are usually brought in to the cache within a small time interval. This means
that neighboring blocks are usually located in the cache simultaneously, and their compressibility
will likely be similar [SW13]

Therefore, adjacent blocks can be grouped into bigger blocks, called superblocks (SBs) —
blocks that share a single common tag to reduce tag overhead (Figure 2.3) — in a concept
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derived from sector caches [Oln85]. This can be done because the individual tags of neighbor
blocks differ by very few bits, so the common bits can be shared under a common tag field.
Under this configuration, blocks within a superblock have minimal tag-storage cost, needing a
couple of extra bits to inform per-block metadata (coherence state, replacement policy, etc.),
and possibly some bits to store their tag offsets. This allows significantly reducing the inherent
metadata overhead required to track multiple compressed blocks.

000110110010 C C C CSB Tag

00011011001000 00011011001001 00011011001010 00011011001011CTags C C C

Figure 2.3 – Tag bits can be deduplicated if the tag field is reduced to accommodate only the
Most-Significant Bits (MSB) of the original tags. Since in this example there are four blocks per
superblock, and the tag offset is only two-bits long, the differing tag bits can be stored implicitly
though the order of the coherence fields.

There is a major drawback of using superblocks, however: the number of co-allocation oppor-
tunities is drastically reduced. While previously any blocks could co-allocate, within a superblock
only neighbor blocks can co-allocate. At a high level, superblocks are applying a base-delta com-
pression algorithm (see Chapter 4) to tags; therefore, this concept can be expanded by changing
the compressor being used [NW15] to find a good trade-off between size reduction and co-
allocation opportunities. Alternatively, the maximum number of tags in a superblock does not
necessarily need to match the amount of bits in the tag offset (number of neighbours) [YLK+04].
This allows sacrificing tag-size reduction and tag-locating complexity to achieve a similar com-
promise by explicitly storing the tag offset bits of each tag.

Making tags smaller reduces the burden of augmenting the tag array; yet, this overhead still
exists. To effectively remove this extra compression cost, some techniques propose storing tags
in the data entry [NW15, HAB+19]. For instance, Touché [HAB+19] stores the extra metadata
in the data entry itself. When entries contain compressed data the tag array is populated with
many short signatures (e.g., one 30-bit tag is replaced by 3 9-bit signatures, each referring to a
different co-allocated block), instead of storing conventional tags. Since this process effectively
reduces the tag size, it increases the number of tag conflicts, which generates false positives when
performing lookups; thus, a copy of each original tag must be stored and accessed within the
data itself in order to confirm matches. This reduces the available space to store the compressed
data, and increases the average hit latency, but removes the need to increase the tag array’s size.

35



Part, Chapter 2 – Understanding Compressed Caches

2.3.4 Finding Segments

Most of these techniques make data smaller with the purpose of fitting more lines into the
data entries. This means that, besides the conventional tag-data mapping, they must supply a
way to locate the lines at a smaller granularity — i.e., they must inform not only which data
entry(ies) contains the data, but also where within such entry(ies) the line has been allocated.
The simplest way to determine where a block is placed is to have a strictly constrained number
of placement possibilities and enforcing a contiguous storage — the block’s contents must not be
spread over the data entry. Then, a compressed block’s location can be dictated by its compressed
size or other location metadata [LHK99, SSW14, SSW16]. Figure 2.4 displays placement under
different constraint and contiguity configurations.

0 128 256 384

A BC

Constrained + Contiguous

Constrained + Not Contiguous

A B C

Unconstrained + Contiguous

0 128 256 384

B CA

A BC

Unconstrained + Not Contiguous

Figure 2.4 – Placement of compressed block C in a cache entry containing compressed blocks A
and B, under different configurations. Stripes are wasted space.

Although the constrained and contiguous approach greatly cuts metadata overhead, it re-
stricts the co-allocation opportunities, since limited placement locations translates to limited
size choices (e.g., 8, 16, 32 and 64 bytes). Blocks that are able to compress to sizes smaller than
the possible sizes will waste the remaining space with padding bits; furthermore, requiring blocks
to be stored contiguously means that if an overwrite to a block happens, and their compressed
size changes, blocks may need to be rearranged — a process called recompaction.

To make the most out of compression, compressed systems must explicitly keep track of the
compressed block’s location. This can be achieved through the addition of a field containing the
integral (i.e., unconstrained) size [AW04a, CYD+10] — e.g., in a cache with 64-byte cache
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lines this adds up to 7 bits per tag — or pointers to indicate where the block is placed. Pointers
can either associate the segments to their tag [SW13, GNL20], or the tag to its segments [HR05,
GNL20]. Additionally, the use of pointers allows relaxing the contiguous property: multiple
pointers can be added to specify the location of the dispersed segments of the compressed
blocks, removing the need to recompact data [HR05, SW13]. Figure 2.5 shows the organization
of the Decoupled Compressed Cache (DCC) [SW13], which is an example of how pointers can
be used to map segments to tags.
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Figure 2.5 – Locating segments in DCC. The tag in set 3, way 1 contains a single valid compressed
block at sub-block 0 (its respective coherence state is valid, and compression bit is set). The
back pointer (BP) array contains 3 entries related to this sub-block: 0, 1 and 5. The tag ID of
each of these BP entries is set to 1 to match the way at which its respective sub-block can be
found, and the block number is set to the number of the sub-block. The corresponding data
entries are highlighted with matching colors.

2.3.5 Specialized Caches

Many authors suggest adding extra smaller caches to store compressed or complement data.
These special caches build upon different concepts and characteristics of compressed data; there-
fore, they are usually orthogonal approaches, and can be simultaneously applied to further en-
hance the system. The most common idea behind these specialized caches is to provide smaller
data representation for frequent values: as shown by Zhang et al. [ZYG00], these values account
for a significant percentage of accesses, while occurring in nearly half of the different memory
locations, and generating a large proportion of caches’ misses. In particular, zero values present
high predominance over other values [KGJ98, ES05].
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In a frequent-value-based specialized cache some values are defined as frequent (e.g., by static
or dynamic profiling) [ZYG00, DPS09]. Lines containing these values can then substitute their
occurrences by their respective indices in the frequent-value reference table. In such a system
a block’s location depends on its contents; thus, special care must be taken to keep coherence,
and accesses must perform simultaneous lookups on both conventional and specialized caches.

As in the compression algorithms themselves, one can change the granularity at which fre-
quent values are dealt with. For instance, one can explore the lower variance of MSBs to reduce
the width of a data entry. The main cache becomes then a storage of the LSB of cache lines, and
each entry is paired with a compressed (e.g., frequent value or sign extension) representation of
its MSB. The specialized cache can either store the MSB of all lines in the main cache — e.g.,
as in the Frequent Value Cache (FVC) [YG02] — in which case compression is used to avoid
accessing the secondary storage; or part of the lines — e.g., as in the residue cache [KLKH11] —
in which case hits to partial lines need to request the missing data from the lower cache levels.

2.3.6 Other Designs

The proposals presented so far consider the use of caches with a somewhat conventional tag
and data array design. Compression is not limited to this layout, though — other cache designs
which significantly differ on the way data is found and accessed have been proposed over the
years [QL12, NW15, JWN10, TGS18], and can be adapted for compression support.

For instance, alloy caches [QL12] have been designed for DRAM caches. They embed the
tag information along its data counterpart to make accesses concise (tag and data are accessed
simultaneously, in a Tag and Data (TAD) entry). This idea is expanded upon to accommodate
compression in Dynamic-Indexing Cache Compression (DICE) [YNQ17], where each TAD entry
supports a variable number of lines: as long as there is space available, blocks can co-allocate.
The number of tags is informed by the addition of a bit to each tag informing whether there is
a next tag, or if the data portion starts. A similar approach fixes the number of tags at two per
compressed TAD to simplify indexing [AA18].

Most of the organization schemes described earlier focus on improving cache performance
for single stream applications. Although they can be used in multi-core scenarios, it is not part
of the method’s design. The Manycore-Oriented Compressed Cache (MORC) [NW15], however,
focuses on multi-core architectures, by improving throughput. In MORC sets are substituted by
logs, forming a log-based cache: data is appended to entries based on data commonality patterns,
not data address. Writing data in MORC is as simple as adding to the end of the active log
and invalidating the old version, if it exists. This means that locating data is not trivial, and
requires the use of some level of indirection.

Some local memories do not need to store tags — the scratchpads [JWN10]. Scratchpads are
an alternative to conventional caches, mainly used in embedded systems. Contrary to transparent
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caches — whose address space is a subset of the main storage’s — scratchpads use a different
address space; thus, any requests to a given address belonging to the scratchpad space are
guaranteed to hit. Data moved from the main storage to the scratchpads is stored as independent
temporary copies, which can — but does not need to — be written back when evicted.

This tag-less kind of cache can be used to reduce the tag footprint of compressed caches.
For example, Zippads [TS19] applies compression to a software-managed object-oriented cache
hierarchy based on Hotpads [TGS18]. In Zippads the data array is composed of objects, not
lines; as a result, deduplication can be done between the same fields within objects, which yields
better results than blindly comparing lines in object-oriented applications. New objects are
always appended at the end of the data array; and, if a data expansion happens, the old entry
becomes a forwarding pointer to the newly appended object. When a pad is filled, a process
similar to garbage collection is triggered to free unused objects and recompact data.

2.4 Compression Usefulness

Compression has an inherent drawback: it adds a decompression step to cache hits that
contain compressed data. Since one of the goals of increasing the effective cache capacity is to
reduce the average access time, speedups are generally achieved when the total miss latency
reduction overcompensates the hit latency increase. Consequently, compression can be a burden
if an increase in cache capacity is not the workload’s primary need. For instance, compression
is a waste of energy and a performance limiter whenever: a block is compressed, but does not
manage to co-allocate with any other blocks; the extra access latency due to decompression
surpasses the latency of a miss; a block co-allocates, but is never re-referenced before eviction.

Since the impact of the decompression latency is proportionally smaller on higher-latency
caches, compression is typically proposed for the LLC; nonetheless, some proposals tackle com-
pression on caches closer to the core too [YZG00, TZ07]. It is also worth noticing that com-
pression can be co-applied with other miss ratio reduction techniques such as prefetching and
optimized replacement policies [AW07, PHM15] to further enhance the system’s performance
(more on that in Section 2.5).

2.4.1 Adaptive Compression

A simple approach to reduce the likelihood of having compressed blocks stored without
companions is to apply a threshold to the compressed size, such that a block is only stored in
compressed format if it is reduced to at most a certain number of bits [LHK99]. This is implicitly
used by superblock-based compaction schemes with fixed size sub-blocks — such as Skewed
Compressed Cache (SCC) [SSW14] and Yet Another Compressed Cache (YACC) [SSW16] —
since they enforce that compressed blocks must fit in either 16 or 32 bytes.
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Preemptively deciding whether compression is useful based on a fixed — i.e., static — factor
can be quite limiting considering that workloads tend to exhibit dynamic behavior. Besides, it
limits compression: a block that has been compressed to a size A > 50% would still be able to
co-allocate with a block whose compressed size is B ≤ 100 − A%; therefore, some techniques
try to minimize this overhead by adaptively enabling and disabling compression, or switching
between compressors based on the overall compressibility of the workload and the effects of
compression on performance [ADS15, PS16, ALSW18]. Others focus on determining how much
of the storage should be dedicated to compressed data [TG05, TFR+01].

Enabling and disabling compression can be done indirectly: the Indirect Index Cache with
Compression (IIC-C) [HR05], for example, modifies its replacement policy based on the obser-
vation that the fewer misses there are, the lower is the usefulness of compression. In IIC-C the
need to move blocks between the different priority queues of its specialized replacement policy
is proportional to the number of misses; thus, blocks are only compressed when they move. In
any case, the majority of the adaptive compressed systems take an active role on compression
control. For instance, one can use a counter to track whether compression is being helpful by
training it positively on avoided or avoidable misses — accesses to blocks that would only be
present in the cache due to the existence of compressible entries — and training it negatively on
penalized hits — accesses that would be hits regardless of the use of compression [AW04a]. Since
the usefulness of compression is workload-dependent, a fine-grained approach (e.g., a counter
per core) can improve enablement-prediction accuracy [XL11].

Notwithstanding the potential benefits, switching between enabling or disabling compression
may introduce overhead. For example, when turning a compressed cache into an uncompressed
one, there may be not enough space for all currently allocated blocks; in this case, some of them
will need to be evicted. For this reason, Xie et al. [XL11] propose using a Decision Switching
Filter (DSF) with three parameters. One of the parameters controls the lowest access time im-
provement that would make it worthwhile switching compression state. The second parameter
is the minimum access time difference needed to make switching beneficial. Finally, the previous
parameters establish a range of access times in which it is uncertain whether switching is ad-
vantageous. The third parameter decides how long the system should stay in this intermediate
state before a decision to switch the compression activation state is taken.

2.4.2 Avoiding Frequent Decompressions

When a compressed block is read too frequently, the benefits of avoiding accesses to the lower-
level memory may be subdued by the accumulated decompression latency. This drawback can be
lessened by preemptively decompressing such blocks, so that future reads skip the decompression
step. By definition, this is done to a certain extent by the caches in between the core and the
compressed memory [HR05]. Anyhow, one can add a decompression buffer to the compressed
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cache itself, which must be kept coherent with the cache [LHK00, TFR+01]. The coherence
handling can be avoided by expanding the block in the cache itself [PBL+17]; however, this has
the downside of reducing the effective cache capacity due to extra evictions. Deciding which
blocks to decompress follows guidelines similar to conventional replacement policies — e.g.,
access frequency or recency [LHK00] — possibly incorporating the compressed size into this
selection process [PBL+17].

2.5 Interactions and Summary

There are multiple components and policies in a cache, each of which is designed under
specific assumptions. Frequently, one of these assumptions is that each single line occupies a
whole data entry; however, with cache compression, this is not the case any longer. In this
section we list some of the side effects and interactions that have been observed in compressed
caches, and how some proposals modify such policies and components to attain a cohesive design.
Finally, we conclude this section with a summary of the compressed-layout literature listed in
this paper.

2.5.1 Interaction with Indexing Policies

Changes to the cache design to accommodate compression do not need to be a complete
makeover; some techniques simply change the way blocks are indexed to take advantage of the
characteristics of compression. For example, under traditional (uncompressed) indexing adjacent
lines map to adjacent sets. This means that compressed caches co-allocate lines that are spatially
distant from each other when using this scheme. As mentioned previously, spatially close lines
present similar compressibility, and are more likely to be used within the same timeframe; thus,
compressed systems that modify indexing to maximize co-allocation can improve performance
and bandwidth consumption [KPM15, YNQ17].

For example, Young et al. [YNQ17] suggest using traditional indexing when data is not com-
pressible, and a special spatial indexing otherwise (Bandwidth-Aware Indexing (BAI)). Cache
lines under BAI are either on the same set or the neighboring set as they would be under tra-
ditional indexing, so that consecutive cache lines map to the same set, instead of several blocks
apart. This allows successive data to be compressed together in the same set; therefore, accesses
to a compressed line can provide multiple spatially neighboring lines, while still keeping some
similarity with the traditional approach. Since this scheme relies on the compressibility of the
data set, special care must be taken to determine when to prioritize each indexing policy.

The indexing policy’s hashing functions can also be modified to better support compres-
sion. For instance, cache skewing [Sez93] applies a different hash per way. This may hinder
co-allocation, since lines that co-allocate well may be placed apart from each other. A com-
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pressed cache that uses skewing — e.g., SCC [SSW14] — can cope with that issue by mapping
blocks based on a function of the way, address, and their compression factors. This reduces the
number of conflict misses without changing the cache’s associativity.

2.5.2 Interaction with Replacement Policies

Although conventional replacement policies can be used with most of the compression tech-
niques previously described, compression and replacement policies can interact negatively [BLN+13,
PHC+15, GAS16, PBL+17, PS18]. For example, assuming the use of a LRU replacement pol-
icy, when a MRU cache line is co-allocated with the LRU block, either the MRU line will be
co-evicted, or the policy must be given flexibility to search for another less controversial entry.
In addition, inserting a block may require the eviction of multiple lines due to the removal of a
shared tag, or evictions not freeing enough data-entry space for the new block. This means that
a compression-aware policy might result in a more efficient cache space utilization. For example,
a compressed data’s size is important to determine how many other blocks can be co-allocated
with it; therefore, a replacement policy that takes the co-allocatability of a block into account
could improve the effective compression ratio. Nonetheless, co-allocatability should not be con-
sidered the paramount factor; otherwise, a small cache line with low temporal locality would
occupy space indefinitely [BLN+13].

Multiple compression-aware replacement policies (e.g., ECM [BLN+13] CAMP [PHC+15]
and HoPE [PBL+17]) derive from Re-Reference Interval Prediction (RRIP) [JTSE10], a simple
— yet efficient — replacement policy. RRIP assigns a value to each entry, indicating its distance
from being re-referenced. If this value is 0, it’s likely to be re-referenced in the near future,
otherwise its next reference is distant. On hits the value is reset to 0, and on misses all values
are incremented until a victim (block with the highest possible value) is found. RRIP can become
size aware by, for instance, assigning different initial values for newly inserted entries based on
their compressed sizes. For example, Effective Cache Maximizer (ECM) [BLN+13] was proposed
for segment-based compressed layouts. It decides the size thresholds to assign different values
dynamically, based on the physical memory usage ratio and the average segment usage per set.
When choosing from the pool of eviction candidates, ECM uses the size information to select
the entry that frees the most data space.

Panda et al. [PS18] notice that more than 55% of compressed and uncompressed blocks are
used only once before being evicted; therefore, it would not be beneficial to waste tag storage
with these blocks. To deal with this situation, they propose the Synergistic cache layout for
Reuse and Compression (SRC), which applies the principle of the reuse cache [AInVnL13] to
caches using superblock compression, such as YACC [SSW16] and SCC [SSW14]. SRC expands
superblocks with a "first use" field to defer data allocation. Whenever an access to an invalid
block whose superblock was already present happens, instead of allocating the data, the bit is
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set. This way, an effective write of the data contents only happens when blocks are reused.
Alternatively, one can take an opportunistic approach and not include replacement data for

the co-allocated lines. For instance, the Base-Victim cache [GAS16] logically divides cache entries
into a Baseline and a Victim Cache, associating two tags per physical data entry. Whenever a
Baseline entry is evicted, a special step is added to the eviction: if the evicted entry can co-
allocate with another Baseline block, then it is saved as a clean entry in that Baseline block’s
respective Victim area; therefore, future read references can still be served by this cache level.
As the Victim Cache consists of clean lines, evicting them is free of data traffic. The replacement
policy only keeps track of the main line (Baseline Cache) in every entry; therefore, by design,
the Base-Victim cache cannot have a miss rate higher than an uncompressed cache. Read and
write hits in the Baseline cache are trivial, and write hits to the Victim Cache cannot happen
due to the enforced inclusive property. When a read hit happens in the Victim Cache, the block
is promoted to the Baseline in a fashion similar to a regular miss, with the advantage of not
needing to access the lower level memory.

2.5.3 Interactions with Prefetching

Other works address the interactions with prefetching [AW07, ATGK07, PSK+13, AS14b].
Prefetching and compression can have an interesting synergy: bad prefetches can bring blocks
that end up polluting the cache; however, in a compressed cache these blocks may co-allocate
with useful blocks, reducing the drawbacks of those bad prefetches. In addition, good prefetches
may take further advantage of the increase in the cache’s effective capacity.

For instance, Prefetched Blocks Compaction (PBC) [KPM15] explores the similarity of
prefetched lines to co-allocate them through inter-line compression and maximize the use of
the effective cache capacity. It splits the cache into two different-sized caches: a compacted and
a conventional part. To avoid recompactions and data expansions, the compacted cache only
stores prefetched (non-dirty) entries; therefore, the block must be moved to the conventional
cache when a writeback happens from a higher cache. Blocks are also moved when there are no
available entries in the compactable cache. To control underutilization when not many prefetches
are generated, or the dataset is not sufficiently compactable, PBC can change the size of the
compactable cache dynamically.

2.5.4 Interactions with Security

Besides the direct drawback on the hit latency, compressed systems can be hazardous at
a security level: the compressibility of data leaks information that can be explored to retrieve
the data itself [Kel02]. The key idea is that an S-bits data block whose compressed size is S′

bits reduces the exploration space of attacks, since only a subset of the possible 2S values can
compress to S′ through a given compression algorithm.
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In the context of hardware data compression, Tsai et al. [TSFS20] have applied this exploit
to BDI [PSM+12]. Assuming that an attacker controls the contents of a line, except for the x-bit
secret it wants to unveil, their proposal combines brute force with exploration space reduction.
An attacking line is generated such that it is only compressible if the secret’s b−d most significant
bits — where b and d are the base and delta sizes, respectively — match the respective bits in
the base being forced. All possible variations of the b − d bits are tested until compression is
successful — i.e., such b−d bits of the secret become known. Then, the exploration space can be
halved, and d is reduced to d′ to discover the next b− d

2 − d′ bits. This process is repeated until
all bits are found. Although conceived for BDI, this concept can be applied to any dictionary-
based compressor by selectively filling the dictionary and identifying which pattern matches the
secret. While this paper did not show the possibility of a realistic attack on a compressed cache,
it pointed out that compressed caches can leak information to an attacker.

2.5.5 Summary

Table 2.1 presents a summary of multiple state-of-the-art cache compaction methods. Gran-
ularity expresses whether deduplication occurs between values in a line, or between lines. The
Expansion field informs the action adopted when a compressed block goes through a fat write.
Mapping is the mapping between the tag and data storages. Segment contains the size of the
smallest possible sub-division of a data entry, in bits. Tag Optimization informs if the tag repre-
sentation is somehow optimized. Finally, the Details field adds some extra relevant information
regarding the proposal.
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Technique Granularity Expansion Mapping Segment Tag Opti-
mization

Details

Base-Victim [GAS16] Intra Evict
Victim

M:1 32 - Logical
division of

lines.
Victim line
is stored
clean.

Bunker Cache [SMAJJ16] Inter Not
applicable

M:1 512 Address
aliasing

Not precise.
Multiple
addresses

are
remapped
to a single

one.
CC [YZG00] Intra Re-insert M:1 256 - Increases

line length
to store

compression
metadata.

DCC [SW13] Intra Make room M:N 128 Superblock Each
segment has
a pointer to

its tag.
DICE [YNQ17] Intra Make room M:M 32 a Shared Tag

bit
Non-

contiguous
segments. Is
an Alloy
Cache
[QL12].

Dedup [TKJL14] Inter Re-insertion M:1 512 - Doubly
linked list.

Doppelgänger [MAMJ15] Inter Re-insertion M:1 512 - Not precise.
Doubly

linked list.
Extra cache.

DVSC [AW04a] Intra Make room
+ Recom-
paction

M:N 8 - Adaptive.

FCMS [YLK+04] Intra Not
informed

M:1 64 Superblock Has a small
decompres-

sion
buffer.

IIC-C [HR05] Intra Make room M:N 256 b - Non-
contiguous
segments.
Adaptive.

MORC [NW15] Intra,Inter Re-insertion M:N N/A Tag com-
pression,

Tags in data
entry

Log-based
storage.

O2W [AA18] Intra Make room 2:2 16 - Two fixed
line

locations. Is
an Alloy
Cache
[QL12].

Pair-Matching [CYD+10] Intra Make room M:1 256 - -
SC2 [AS14b] Intra Make room M:N 8 - -
SCC [SSW14] Intra Re-insertion M:1 128 Superblock Uses skewed

indexing.
SCMS [LHK00] Intra Make room M:1 256 c - Has a small

decompres-
sion

buffer.
Thesaurus [GNL20] Intra,Inter Re-insertion

+ Recom-
paction

M:N 64 d - Doubly
linked list.
Extra cache.

YACC [SSW16] Intra Make room M:1 128 Superblock -

a. Not informed. Inferred from the compression-metadata field size.
b. In a 128-byte line configuration.
c. The maximum compressed size is equal to the minimum compressed size.
d. The minimum number of segments is two.

Table 2.1 – Summary of cache compaction layouts.
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Chapter 3

ORGANIZATION OF COMPRESSED

MEMORIES

Compression is not an idea exclusive to caches. It can be further applied to memories, and
the links in between memory levels. In this chapter we provide an overview of the link and
memory compression techniques that have been proposed over the years, as well as the problems
and solutions faced when designing such systems. We conclude with a section discussing what
are the challenges faced when all these techniques are combined to form a compressed memory
hierarchy.

3.1 Memory Compression

The cost of DRAMs is exceedingly high compared to alternatives such as disk or flash memory
[BH09], and designers of servers and high-end computers have to find the best compromise to
come up with a cost-effective system. This is a situation in which compression can be helpful;
it can increase DRAM’s effective capacity at a fraction of the costs. Although still rare, an
increasing number of companies have been adopting memory compression [TSW+01, QT17,
AB19].

Nonetheless, compressing the memory has extra challenges, when compared to cache com-
pression. For example, page allocation is typically handled by the OS, which uses a fixed memory
capacity to infer where to put data, and which pages should be swapped [SGGS98, BL17]. When
compression is being used, the conventional notion of fixed spaces to allocate data is broken,
and page allocation must take into account how much free space exists, and how much would
be generated with a page’s eviction [AF00].

Another challenge occurs in systems where the cache tags are derived from physical addresses.
Although straightforward in conventional caches, this approach needs to be adapted when the
memory is compressed. This is the case because a compressed line’s address typically does not
correspond to the location it has been physically allocated to; therefore, a mapping mechanism
must be added in such systems [PSK+13, ZLC+15]. Therefore, when implementing a compressed
memory, the OS, the Translation Look-aside Buffers (TLBs) and memory controllers should be
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aware of the compression, and possibly even take an active role on it [FHW99, AF00, RKP01,
PSK+13, ZLC+15].

Although all the techniques presented in this section are applied to DRAM, there are works
developed for Phase-Change Memories (PCM) hybrid memories and other multi-level Non-
Volatile Memorys (NVMs) [DZC+13, BLNK14, PM17]. They use algorithms derived from the
ones presented in Chapter 4 to compress and decompress stored data. We do not address these
methods, as they are typically used as solutions to help make these technologies viable (e.g.,
reducing the number of writes in PCM), and not as a direct system performance improve-
ment. Finally, compression can also be applied through software [RKP01, TG05, IBM], aided by
the compiler [LHK00], or to the Graphics Processing Unit (GPU) [CSO+19, SSK12, ALSW18,
VPJ+15, PBV+16].

3.1.1 Mapping

Memories contain pages, which contain lines. In conventional caches each line has a fixed
offset within the page, which makes locating them trivial and does not require metadata; how-
ever, in compressed memories the line’s compressibility accumulate, and determining where a
line is located relies on the accumulated compressibility state of its surrounding lines. To sim-
plify location hardware, the line’s compressibilities are typically limited (e.g.,, lines can only
be compressed to four different possible sizes) [ES05, CEA18]. Analogously, this size-variability
problem and solution applies to pages. An alternative solution is to add explicit pointers to the
data [PSK+13].

Bandwidth-focused memory compression proposals, on the other hand, have simpler map-
ping. Their goal is to provide more data with a single access, so they typically map a few
neighbour lines to a fixed data entry, based on the compressibility of each line. For example,
assuming that the maximum compressed throughput is of four neighbours, a bandwidth-focused
memory compressor could map lines as in Figure 3.1. In this case, block B is found in A’s data
entry if compressed, and in its original location if uncompressed.

The extra metadata required by these solutions must be stored somewhere, and will occupy
a large amount of space. For example, even if every 512-bit line requires only a single extra
metadata bit, the total metadata overhead for a 4-GB memory is 8MB. Because of this, it is a
standard approach to store such metadata in the memory itself.

This has a major drawback: now every memory access must perform two accesses - one to
retrieve the metadata, and other for the access itself. This is a severe penalty, and most likely
would render compression disadvantageous. A solution adopted to cope with this is to add a
metadata cache [PSK+13, ZLC+15]. This cache has a significantly lower access latency than
the memory itself, and relieves part of this double-access pressure. As in regular caches, miss-
mitigation schemes, such as prefetching [ZLC+15], can be used to improve performance. Finally,
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A B C D

C DA B

A B C D

C DA B

C DA B

Uncompressed

4:1

2:1

Invalid

Invalid Invalid

Invalid Invalid

Invalid

Invalid

Figure 3.1 – Possible block locations for adjacent blocks A, B, C and D given different compres-
sion factors.

predictive methods can be added to access the data entry speculatively [PSK+13, ZLC+15,
YKQ19].

3.1.2 OS support

The OS relies on the knowledge of the memory size for its memory allocation routines. In a
system with a compressed memory focused on increasing its effective capacity, the available size
becomes variable; yet higher than what is physically supported. This is a complicated situation:
if the OS is not made aware of this possible size increase, compression is wasted; however, if
it believes it has more memory than compression is currently being able to provide (e.g., the
workload’s compressibility is sub-optimal), the OS may overcommit, and request more memory
than available.

One possible solution to avoid overcommitting is to make the threshold at which a kernel
triggers page swaps listen to controller-raised interrupts/flags [AF00, ZLC+15], instead of defin-
ing it statically. Overcommitting is not the sole OS-related issue; some pages may contain shared
information regarding compressed pages, or how to perform high-priority operations (e.g., page
fault handling), and compressing them may generate recursive errors. A compressed memory
must be able to handle these special cases to avoid incoherent or faulty behavior [PSK+13]. A
simple solution would be to disable compression for such pages.

Finally, the OS can take an active role on compression. This includes, for example, com-
pressing data coming from disk, or actively keeping track of pages and their sizes to reduce the
probability of swaps [FHPR01].
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3.1.3 DRAM-based Proposals

In this sub-section we will briefly describe how some of the previous work use the previously
described solutions to generate a compressed memory system. A summary of these proposals is
given in Table 3.1.

SCMS

One of the earliest memory compression proposals, Selective Compressed Memory System
(SCMS) [LHK00], takes a fairly restrictive approach to minimize the negative effects of variable-
sized pages. It allows two page sizes: small, in which all lines are compressed to half their size,
and large (uncompressed). Moreover, pages cannot cross the normal page boundaries; therefore,
small pages must be allocated in pairs. This minimizes the compression-related upkeep and eases
locating pages, at a high negative impact on the system’s compressibility.

Memory Expansion Technology (MXT)

IBM’s MXT [TFR+01, TSW+01, FR01, FHPR01, BFR01, AFS+01] combines several ap-
proaches to create a compressed main memory that doubles the main memory’s effective size at
a low cost. It uses a Sector Translation Table (STT), which is an array of attributes for each
compressed cache line, and a sectored memory, that is, memory is divided into 256-byte chunks.
The sectors are referenced and used by storing a linked list of unused sector addresses, which
is stored in the free sectors. As the nodes are used the space they were using can be used for
data storage, therefore requiring no additional storage. If the compressed data is smaller than
the STT’s entry size, it can be stored in it, preserving sector entries. If not, one to four sectors
are used, and pointers are stored in the STT. As there may be internal fragmentation within a
compressed page, 1KB blocks can share a page if there is enough space, but only two at a time.

Because the cache is composed of relatively long cache lines (1KB), accesses are lengthy.
In order to minimize stalls, the cache controller logically allows two cache lines to coexist in a
physical line, allowing data to be written and read simultaneously. Besides, it divides the cache
lines into 4 segments, so that only modified segments must be invalidated on eviction. This,
however, can still generate a high memory traffic on read misses and evictions. MXT avoids
overcommitting memory by listening to a memory-almost-full interrupt, zero-filling freed pages.
Finally, in case a fast peak of memory utilization happens, a stalling process is created to hinder
the other processes from overcommitting before the required swaps happen.

Robust

The robust main-memory compression scheme [ES05] tries to make the most of compression
opportunities by increasing the flexibility of compressed lines and pages. In order to reduce the
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complexity of recompaction, pages are divided into S sub-pages, each containing L lines. Both
lines, sub-pages and pages can have multiple possible sizes. These sizes are cached along the
TLB. The sub-divisions slightly lengthen the address translation logic. Furthermore, overflows
and underflows must be handled in multiple granularities.

Zero Compression

As mentioned previously, zero blocks are frequent in the memory, so having a specific method
to compress them in the main memory would be effective to reduce page faults and increase
system performance. This is proposed by Dusser et. al [DS11] with their Decoupled Zero-
Compressed (DZC) memory. The DZC memory is based on the Decoupled Sectored Cache
[Sez94], treating pages as sets of sectors, and the Zero Content (ZC) Cache [DPS09]. It virtu-
ally splits the memory in two spaces: the uncompressed memory space (UP) and compressed
memory space (CP), while using a compression controller to translate the UP addresses into CP
addresses. Furthermore, it divides the memory in equal sized regions, called C-Spaces, each able
to hold 64 to 512 pages.

Each page entry in the C-Space contains a null bit and a way-pointer for every memory
block. Whenever a page is allocated in the C-Space, each memory block is checked, so that if it
contains a null block, the corresponding entry’s null bit is set, and there is no need to physically
store the block. Otherwise, for non-null blocks, a way-pointer is stored, containing the allocated
UP address of the page within the possible line position in the C-Space. Therefore, writes are
trivial, except for the case where a null block is replaced by a non-null block. To deal with this
case, each C-Space contains a set of validity bits to inform which entries are taken, so whenever
this occurs the valid bits of possible lines are scanned to find a suitable position, and, if there
is no free line, the whole physical page is moved to another available C-Space. If there is no
available free space, an eviction process starts.

For easier management, the DZC memory stores redundant information, the number of free
lines per set of lines, and the minimum of the free lines counters on each C-Space. Besides, as UP
to CP address translation is required on every access, the authors propose using a translation
cache (UCT) within the memory compression controller. By doing so, read accesses to null blocks
can be served by the UCT, removing the need to access the slower memory chip. They also stated
that there are more null blocks at the end of the pages than at the beginning, therefore they
apply an exclusive-or to calculate set index and randomize distribution of null blocks across the
sets.

LCP

Pekhimenko et al. [PSK+13] propose Linearly Compressed Pages (LCP), a memory compres-
sor that enforces that every cache line within a given page fits in the same maximum compressed
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size. LCP uses a small selection of possible maximum sizes to take the variability of the work-
loads’ compressibility into account. Since often not all lines would be able to abide to this
restriction, lines that compressed to sizes bigger than the page’s are stored uncompressed in an
exception area. A third area of the page is reserved for the page’s lines’ metadata, which stores
information regarding the compressibility of a line, and, in the uncompressed case, where the
line is located within the exception area.

It uses a metadata cache, and on misses to this cache lines are speculatively assumed to be
compressed. To deal with systems using physically-tagged caches, the blocks’ tags are extended
with their offset within their corresponding page.Finally, the page table is adapted for compres-
sion with extra bits to inform the compressibility of pages and its adopted maximum line size,
as well as bits to allow page addresses to be non-aligned with the virtual page’s size.

Buri

Caches and TLBs are managed through an intermediate compression-enabled address space.
The memory is divided into 16-MB chunks, each of which consisting of 1KB-blocks of data, as
well as a linked list to locate free blocks. It uses a metadata cache. Pages have variable size, akin
to LCP.

The OS is made aware of the physical space consumption through either an interrupt sent
from the memory controller when a given threshold is reached, or by sporadically reading from a
hardware flag that informs when memory is almost fully exhausted. The OS avoids overcomitting
memory by preemptively performing page swaps in these situations.

MBZip

Kanakagiri et al. [KPM17] propose MBZip, which applies base-delta compression to multiple
cache lines to avoid re-storing a base entry in order to compress multiple blocks into single entries.
They suggest using different versions for the cache (MBZip-C) and main memory (MBZip-M).
While the first adaptively uses conventional and SB tags to uniquely store data, MBZip-M is a
bandwidth-focused memory compression scheme that duplicates blocks across multiple locations.
As every block is also stored in its original location (i.e., using conventional address computation
logic), it keeps a 1 to 1 mapping of column addresses between conventional and the proposed
memory pages, removing the need for special OS support. It uses metadata caches.

Figure 3.2 shows an example of data compressed using MBZip-M. Blocks b0, b1, b3, b4 and
b5 can be co-compressed, and block b2 is compressible, but does not use the same encoding
or base as the others. The valid bits of each entry are set accordingly, and data is duplicated
between columns. If, for example, b5 is modified and cannot be compressed anymore, its valid
bit in the metadata from columns b0, b1, b3, and b4 are invalidated, and the data is stored
uncompressed in column c5.
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Figure 3.2 – Example of data compression using MBZip-M. Blocks b0 through b5 are compress-
ible, but b2 uses a different base. The valid bits of each entry are set accordingly, and data is
duplicated between columns.

Compresso

Expanding on the idea of extra accesses, Choukse et. al [CEA18] study the access increase
due to metadata accesses, data expansions, and compressed entries that are stored across cache
line boundaries. They propose Compresso, a series of optimizations to reduce data movement
and access of capacity-focused memory compression layouts, while keeping the OS oblivious of
compression.

In their system, compressed cache line sizes are made alignment-friendly, saturating counters
are added to allow page overflow prediction (predicted are provided the maximum size), and
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pages can be expanded by small chunks in case of insufficient space. They also keep track of
the page sizes, and repack them when evicted from the metadata cache, if the advantages of
doing so are relevant. This is needed due to the page overflow prediction mechanism, which may
undermine compression potential in case of false positives.

Compresso manages to be transparent to the OS by applying the concept of balooning
[Wal02], so that if the Operating System is unwittingly running out of memory, the Compresso
driver will inflate and the OS will free its unused pages.

Attaché

Compression metadata requires a significant space, and even if it was cached in a metadata
cache, this metadata would need to be stored and accessed, and thus extra memory accesses
still need to occur on cache misses. In order to reduce this access overhead, Hong et. al propose
Attaché [HNA+18], which stores the metadata in its respective block. By leveraging sub-ranked
memory they manage to increase bandwidth without increasing latency.

Attaché is bandwidth-focused, so blocks always have a simple mapping, similar to an un-
compressed memory. Consequently, OS support is not needed, since there is no special handling
due to data expansion. The framework is composed of the Blended Metadata Engine (BLEM)
and the Compression Predictor Unit (COPR).

BLEM transfers metadata to the block by making sure compressed blocks fit in a sub-rank,
while reserving some of its space to prepend a Compression ID (CID) to inform the entry is
compressed. If not compressed, however, both sub-ranks are used, and no CID nor compression
bit is added. To avoid false positives, when the first X bits of an uncompressed entry match
the compression ID, the X+1th bit, called Exclusive ID (XID), is set, and its original value is
stored in a Replacement Area. An extra access is needed only in this low-probability case (A
scrambling-descrambling mechanism guarantees data distribution uniformity).

In order not to reduce bandwidth, only one sub-rank is accessed when compressed, but both
are needed for an uncompressed entry; therefore, COPR is used to avoid doubling cycles in the
second case. It uses workload, per-page, and per-line granularity saturating counters, achieving
88% accuracy, on average.

Practical and Transparent Memory Compression

Developed concurrently with Attaché, Practical and Transparent Memory Compression (PTMC)
[YKQ18, YKQ19] focuses on using location prediction and inline metadata to improve band-
width while still using commodity memory modules and little to no OS support and metadata
access overhead. PTMC, instead of keeping a per-block marker (CID), reserves 4 bytes per SB,
and keeps a table for the unlikely case of uncompressed lines that conflict with the marker value.
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Each block is either stored in its original location, or in one of its adjacent blocks. Figure
3.1 shows the possible block mappings for 4 consecutive blocks. Since the blocks have different
possible locations based on their compressibility, a prediction mechanism, the Line Location
Predictor (LLP), is used to determine where the block is likely located based on a cache of their
previously known compressibility, with an accuracy of 98% at a tiny extra cost.

Inserting the blocks in their adjacent blocks, however, generates extra accesses due to data
expansions and new co-allocations: if either a cache line does not co-allocate anymore, or starts
being co-allocatable, it must be stored in a different location, and the previous one must be
invalidated to avert using stall data when the LLP mispredicts. To further ease handling such
events block writebacks are ganged with their adjacent blocks (i.e., the whole SB is evicted at
once), even if they are not marked for eviction, based on the assumption that they are likely old
and would be soon evicted too, which may increase bandwidth consumption if the block was
still needed, or it was clean.

To avoid having a huge impact when compression is not beneficial, they add a dynamic
compression enabler, based on the number of extra evictions and invalidations caused by useless
prefetches of co-compressible blocks, and accesses avoided due to useful ones.

3.2 Link Compression

The techniques discussed so far focus on increasing cache or memory capacity, reduce miss
rates, and consequently lower bandwidth usage; however, compression techniques can also be
applied to directly improve effective bandwidth, reduce transfers’ power requirements, or narrow
the width of buses. Such techniques are called link compression (or bus compression), and they
work by reducing the amount of bits to be sent between memory levels. Notice that although
the techniques presented here focus on data-bus transfers, similar ideas can be applied to both
the address and instruction buses too [FP91, STD94, BDMM+98, XWL02]. A depiction of how
some of these methods work will be given in the following paragraphs, and more details on
specific energy-focused algorithms can be found in Mittal et al.’s survey [MN19]. By the end of
this section a summary of link-compression algorithms is presented (Table 3.2).

A simple approach to reduce transfer size is to apply Significance-Width Compression (SWC):
inform the number of relevant bits (e.g., LSB) along with the relevant data bits themselves in
order to take advantage of transfers of small values [TSS08]. It does not have high extra-hardware
requirements; however, it highly relies on small-value locality. Ignoring LSB can also be used
to save power in computations, reducing system dynamic power consumption by avoiding doing
operations on insignificant bytes [CGS00].

Citron et al. [CR95] propose Bus-Expander, a component that compresses and decompresses
data words between the ends of the buses (Figure 3.3). It works based on the principle of
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Technique Line Mapping Page Size Metadata
Optimization

OS/Memory
Controller
Support

SCMS [LHK00] A compression bit
per pair of lines

2 compressed or 1
uncompressed

- Not informed

MXT [TSW+01] [1-4]:1 (Up to 64:1
for zero-filled

pages)

Single - Controller sends
interrupt → swap
pages, zero-fill free
pages, stalling

processes
Robust [ES05] L lines per

sub-page, S
sub-pages per page

Multiple Cache (line,
sub-page and

page)

One pool of free
pages per page size

DZC [DS11] M:N Single Cache Not informed
LCP [PSK+13] N:1 (N depends on

page size) +
pointers for

uncompressed lines

Multiple Cache (line) that
predicts

compressed on
misses

Page-compression-
disable bit,

scratchpad for
page overflows

MemZip [STBD14] 1:1 Single Cache (line) Last DRAM row
per page is

re-mapped to an
"overflow" page

Buri [ZLC+15] Same as LCP Multiple Cache (line) with
prefetching,

adapted scheduling
policy

Controller sends
interrupt/raises
flag → OS swaps

pages
MBZip [KPM17] [1-6]:1 Single Cache (line and

page)
Not required

Compresso [CEA18] 4 possible line sizes Multiple Cache Not required (Uses
virtual memory’s

ballooning)
Attaché [HNA+18] 1:1, 2:1 Single In-data metadata,

location predictor
(line and page)

Not required

PTMC [YKQ19] [1,2,4]:1 Single In-data metadata,
location predictor

(line)

Not required

Table 3.1 – Summary of the DRAM compression techniques presented in this section. Line
Mapping shows how lines are located within a page. The Page Size field informs the possible
page sizes. Metadata contains where compression metadata is placed. OS/Memory Controller
Support include the required modifications to support compression.

temporal locality by using a lookup table (LUT) (dictionary), and adding a compression bit to
inform that only the low order bits of the uncompressed word are being sent. For every data
transfer, the LUT is checked to see if there is an entry that is equal to the high order bits of
the data. If it happens to be the case, its position is sent along with the low order bits, and the
success bit is set; otherwise, the data must be transferred along multiple cycles. Although more
than one cycle may be needed during transfer, this method allows a bus to be logically widened
without significant performance loss on the average case. Their work is based on [FP91], which
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uses a register file to compresses addresses, and can be applied to multi-core systems [KI03].

Dictionary

(De)Compressor

Uncompressed Memory Level

Dictionary

(De)Compressor

Uncompressed Memory Level

Figure 3.3 – Dictionary-based compression applied to link compression. The dictionaries of both
sides of the bus contain the same entries at the same positions.

A similar approach is adopted by Yang et al. [YGZ04], where the whole word or bytes are
stored in a table that keeps the most frequent values, and only the index bit (one-hot-code) is
sent over the bus to save dynamic energy from bit flipping. This means that the table can have
at most b entries, where b is the number of wires in the bus. They also propose extra techniques
to reduce bit flipping, such as XOR-ing values from sequential different value transfers, and not
allowing values that have low hamming distance from their one hot encoding to be stored in
the table. Since multiple data types can be transferred, one can keep a different table per type
to reduce negative interaction [ALYK12]. Partial dictionary matches can also be performed on
the tables by embedding extra pattern information within the method’s metadata [SAYN09].
Finally, Burtscher’s FPC (BFPC) [BR10] mixes these approaches by matching the MSB of the
table and sending the number of differing LSB. To reduces metadata overhead, instead of sending
index bits, they predict which table entry to use.

Link compression schemes can also take advantage of coherence information. For instance,
analogously to Bus-Expander, CAche-Based Link Encoder (CABLE) [NFW18] uses entire mem-
ories as LUTs: coherence bits determine which entries are present in both ends of the link and
can be used to encode duplicated data. Since a memory-sized dictionary would greatly increase
pointer overhead, they selectively pick a few entries from the memory that are likely to contain
similar values to the line being transferred, in order to populate the dictionary.

One could also effectively store data in memories in compressed format, but not co-allocate
them, in order to reduce the bandwidth usage. This can be done in memories whose accesses
happen in small bursts: the less bursts need to be issued to fetch the whole data, the faster
requests are serviced. Consequently, while in capacity-focused compression metadata is added
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to locate blocks in the compressed memory, in bandwidth-focused compression its main purpose
is to inform how many bursts are needed. This approach has been applied to both GPU [SSK12,
VPJ+15] and CPU [STBD14] memories. In order not to waste the storage capacity saved by the
compressed data, this idea can be combined with other techniques that demand extra storage
overhead to reduce the negative impact of their footprint [STBD14]. For example, besides the
data, each compressed cache line can contain metadata informing the compression algorithm
used, Error-Correcting Code (ECC) bits, or Data Bus Inversion (DBI) [SB95] information.

Transferring compressed data has a higher per-bit entropy; furthermore, since values are
compressed to different sizes, they lose their alignment, increasing the number of bit toggles
(a bit switching from 0 to 1, or vice-versa). Toggling bit values has a direct impact on the
energy spent on transfers; therefore, one could use metrics such as compression ratio, number
of bit toggles, and bandwidth utilization to decide when to enable and disable link compression
[PBV+16].

Technique Algorithm Focus
BFPC [AGN+15] Prediction + Dictionary + XOR T
Bus-Expander [CR95] Dictionary B
CABLE [NFW18] Memory-sized Dictionary T
Frequent Value Encoding [YGZ04] Dictionary + XOR E
Memory Compression [SSK12, STBD14, VPJ+15, QT17] Compression scheme T
SWC [TSS08] Significance Width B
TUBE [SAYN09] Partial dictionary E
VALVE [SAYN09] Partial dictionary E

Table 3.2 – Summary of the link compression techniques presented in this section. Algorithm
is the data compression method used. The Focus field informs if the compression is focused on
reducing energy/bit flipping (E), increasing throughput (T), or reducing bus width (B).

3.3 Memory-Hierarchy Compression

So far we have discussed techniques that isolatedly handle cache, and memory compression;
however, these ideas can be applied simultaneously to create a fully compressed memory hierar-
chy. This allows greater performance improvement, energy savings or throughput increase than
the isolated approaches. Such advantages can be of great significance to facilitate scaling of cur-
rent chip multi-processors [RKB+09]. Although we will focus on the CPU’s memory hierarchy,
further expanding this concept to include device memories (e.g., GPU) could also be beneficial.

There are, however, further challenges that must be tackled in a fully compressed memory
hierarchy. For instance, each memory level has its own size and latency; thus, the impact of
the decompression step is different on each level. Ideally, low-latency compressors would be the
optimal choice on all memory levels; however, since there is correlation between compression
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algorithm efficiency and latency, this would lead to compression opportunities being lost on
memory levels at which higher decompression latencies are tolerated. One might be tempted to
use a distinct per-level-cycle-efficient compressor, but this would mean that data being trans-
ferred from one level to another would not be fully compatible any longer.

Analogously, the granularity of each level’s compressor’s input data may generate a compat-
ibility issue: one could envision a compression algorithm that works at a word granularity in the
first-level cache, another that works at a cache-line granularity in the other cache levels, and one
that compresses whole pages at the main-memory level. Moreover, besides the aforementioned
effects on the compressor’s latency and complexity (see Chapter 4), the input granularity further
correlates with bus traffic and cache pollution: larger blocks bring more unrequested data to the
caches, and increase bus traffic — in a manner akin to prefetching.

When connected memories have entirely compatible compressors, compressed data can be
sent without the need to decompress, and received without the need to re-compress. Unfortu-
nately, when the compatibility is reduced, extra decompression and compression steps must be
taken to translate the transferred data. Furthermore, even if compressors are compatible, there
must be a way to decompress data coming from direct memory accesses or bypassing responses.

Regarding compressed data being sent, the transfers could focus on bandwidth reduction, in
which case only the requested data is sent; or compressed responses can include companion lines.
In the latter case, compression would behave as a prefetcher; and, as such, would be subject
to the advantages and disadvantages of prefetching. Decisions such as which lines to send, and
when to send them become essential not to pollute the receiving cache. It is important to notice
that while link compression applies compression to the data transfer, a compressed memory
hierarchy transfers data that is already in compressed format from one compressed memory
level to another. In addition, although link compression techniques can be used orthogonally,
their usefulness is partly lessened because the compression opportunities are reduced due to the
increased data entropy.

To summarize, some of the individual disadvantages of compression at each level are com-
bined, and others are no longer applicable. Furthermore, new interactions apply, and a fully
compressed memory hierarchy must be able to handle them seamlessly. Few works have studied
memory-hierarchy compression, and they typically only compress the LLC, and main memory,
transferring compressed data in between them [LHK00, HR05, DS11].

For instance, Hallnor et al. [HR05] make IIC-C [HR05] and MXT [TSW+01] compatible by
having the same compression algorithm on both compressed levels, and matching the size of
the cache line with the memory block’s. Dusser et al. [DS11] integrated both the DZC memory
[DS11] and the ZC Cache [DPS09] to create a zero-compressed memory hierarchy. Whenever a
read request for a null block arrives from the LLC, the memory provides the demanded entry
along with the information of all null blocks in the block’s page, since it is lightweight (e.g., 128
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bits can represent all the null block info of a 8KB page). This zero block prefetching reduces
miss ratio and avoids future memory traffic.
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Chapter 4

COMPRESSION ALGORITHMS

Cache compression schemes are typically simplified versions of conventional data compres-
sion algorithms. This is due to hardware complexity constraints, and the need for speed: since
decompression is done on the critical execution path, it must be fast enough not to severely de-
grade the average hit latency [FRT96, PSM+12, SASW15]; therefore, cache compressors usually
try to find a suitable trade-off between compression efficiency and decompression latency.

Another key difference between hardware and data compressors is the input size: hardware
compression algorithms are typically applied at a cache line granularity — e.g., all compression
information is acquired from a chunk of 64 bytes [CYD+10, AW04b, PSM+12] — while conven-
tional algorithms do not abide to this restriction; thus, the latter are able to achieve much better
compression ratios due to higher ratio between deduplication opportunities and input size.

In this chapter we describe the evolution of hardware data compression, as well as what is
the goal of each kind of solution. The algorithms depicted here generate better results for integer
datasets, as they are usually designed for that reason, but compression can also be applied to
code [EEF+97, BFG+03, SM08] and floating point data [LI06, BR10, ADS15]. We have opted
not to enter into detail on these non-integer-based compression methods to focus on general
data compression proposals.

4.1 Dictionary-Based Compression

In 1977, Lempel and Ziv proposed LZ77 [ZL77], a dictionary based coder that replaces
repeated occurrences of data by length-distance tuples. It works by parsing the data in a sliding
window, storing, for each entry, the relative distance from the current input to its longest last
seen copy, its size, and the next unmatched value — which we will represent by the tuple
(distance,length,value). It is clear that the compression efficiency depends on the width of the
distance and length fields, as well as the input size.

For example, given the 8-bit data 101100112, when parsing from left to right, LZ77 would
compress the first couple of bits — 12 and 02 — as unseen bits (0,0,12), (0,0,02), since they
hadn’t been seen beforehand. However, when the third bit is parsed, the dictionary of known
values will have already been populated with an occurrence of 12, from the first bit’s compression
(i.e., a distance of two bits). This is a dictionary match, so the comparison is extended to the
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fourth bit — i.e., the value 112 is searched for in the dictionary. Since it does not exist, the
length of the match is 1, and these two bits are compressed as the tuple (2,1,12). Then, the fifth
and sixth bits are compressed analogously, as (3,1,02). Finally, the two last bits are parsed as
a repeated occurrence starting at the third bit. In this simple example compression is actually
disadvantageous, since the data input is too small for the algorithm’s asymptotic efficiency; but,
as the input size increases, better compression ratios are noticeable.

Based on the original algorithm, many variations have been proposed, such as adding a
flag bit to indicate if a compressed tuples contains a pointer (i.e., length 6= 0) or unmatched
values (LZSS) [SS82]; using backward dictionary pointers (LZ78 ) [ZL78]; pre-initializing the
dictionary (LZW ) [Wel84]; and performing parallel comparisons [FRT96, TSW+01], which can
then be implemented in hardware to be used in systems with compressed memories [CPR03,
HR05, TSS08]. In particular, when porting this compression algorithm to be used in caches, its
compressibility must be sacrificed to attain viable decompression latency and area overheads.

A hardware Lempel-Ziv compressor starts parsing input at a tiny granularity — e.g., byte
[TSW+01] — but, as long as there are dictionary matches, the granularity grows. Although
using this variable-sized input allows reaching high compression ratios, the execution speed
is quite low, since the algorithm’s parallel-processing capabilities are limited by the design’s
budget. This, combined with the need to keep decompression latency low, has led proposals
to concede compressibility in order to attain better decompression latencies. A straightforward
way to simplify compression is to limit the granularity of the input: cache lines are then parsed
in fixed-size chunks, and each chunk is individually compared against the dictionary entries to
generate its respective compressed representation. In general, the dictionary entry’s size matches
the chunk size, but that is not always the case [TS19].

For instance, the top values of Figure 4.1 (in blue) represent how a hardware implementation
of Lempel-Ziv whose window size can grow in multiples of bytes (i.e., the chunk size is dynamic)
parses an example input. The first chunks are small — e.g., 0x03 and 0x2B — as they are bytes
that have not been seen previously, so their distance and length fields are 0. Later chunks can
be larger, and inform where the repeating bytes are located (e.g., the 3-byte value 0x032B00 in
0x032B0002 is repeated four bytes before, generating the tuple (4, 3, 0x91 )). In statically sized
chunks the position of the repeating bytes can be extracted using a pointer. For example, when
using 2-byte chunks (bottom values of Figure 4.1, in pink), value 0x032B is seen first at the first
chunk, so its second occurrence, at the third chunk, can be represented by the index 0 (tuple
(1, 0)).

With the use of fixed-size chunks the tuple representation needs to change. First, the length
field is fixed at the chunk size; thus, it is no longer required. Second, the value field is only
needed when there is no dictionary match, and the distance field is not used unless there is a
match; thus, both fields become conditionally optional, relying on the value of a new field —
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Figure 4.1 – Comparison of the generated tuples when using a Lempel-Ziv compressor and a
compressor with a fixed granularity of 16 bits. Parsing is done from left to right.

the pattern field — which indicates if there is a match or not. Finally, the distance field can be
renamed as the pointer field, since it contains the index of the dictionary entry to which the
chunk refers. To summarize, the tuple becomes (pattern,pointer) for matches and (pattern,value)
for non-matches. Figure 4.1 depicts how the tuple generation would differ when changing from
a Lempel-Ziv compressor to a fixed-chunk-based compressor.

4.1.1 Adding Patterns

This change in granularity introduces an issue: in Lempel-Ziv the dictionary entries are
compared seeking perfect matches, so even a single differing bit would make the matching fail.
At a byte granularity this is a fair compromise; but, when the chunk size is larger, duplicating
a whole chunk due to a couple of non-matching bits can severely restrain compressibility. This
issue can be diminished by relaxing constraints to perform partial matching. Partial matching
adds new patterns, which accept a few differing bits at predefined positions, duplicating only
these said bits — i.e., the tuple for matches becomes (pattern,pointer,differingBits). The number
of bits is determined by the pattern granularity, and will be assumed to be 8 throughout this
chapter, although other values can be used [WKS99, BBMM02].

For instance, assume that the symbol X means that the byte at that position of the chunk
does not need to match the dictionary entry, and that M represents a match at that position.
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Figure 4.2 – Comparison of the generated tuples when using a compressor supporting only full 2-
byte matches (patterns MM and XX), and a compressor with partial 2-byte matching (patterns
MM, XX, and MX). Dictionary entries are not allocated for MM instances.

Then, a compressor that uses a 32-bit dictionary, and only allows perfect matches supports just
the patterns MMMM and XXXX. One could, however, have different combinations of M and X
bytes to perform partial matching and increase the likelihood of compression. In the previous
example, the chunk 0x0091 would not be compressible, since it had not been previously seen;
and thus it generates the tuple (XX, 0x0091 ) under perfect-matching-only compression. When
partial matching is supported — say, adding MX to the pattern list — that chunk would be
compressible to (MX, 1, 0x91 ) — i.e., its last byte is different from the dictionary’s entry at
index 1, but the first byte matches (Figure 4.2).

With more patterns, the pattern field expands, incurring a larger per-chunk overhead. An
alternative to cope with this extra cost is to use variable-length encoding to prioritize generating
smaller pattern codes [KGJ96, NFBJ99, NFJB01, AYK01, CYD+10, NW15]. For example, X-
Match and its derivations [KGJ96, NFBJ99, NFJB01, AYK01] predefine a set of patterns, based
on the workloads’ characteristics, using Huffman code [H+52] for the patterns’ encodings. Since
they also apply Phased-In Binary Codes (PBC) [Sal07] to the pointers, the dictionary entries
are manipulated so that entries whose index generate smaller PBCs are more likely to occur. An
analogous idea can be applied to reduce the pointer field size [KGJ96]. These solutions, however,
make the compressor more complex, resulting in higher latencies.
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It is worth noticing that not all possible patterns are useful; for example, a partial match
on the most-significant bytes of a chunk (e.g., patterns MMMX, MMXX, and MXXX) is sig-
nificantly more likely to happen than other partial-matching patterns (Figure 4.3). Besides,
when parsing a chunk, each dictionary entry is checked against the chunk using each of these
patterns; thus, the hardware cost and complexity is higher, the bigger is the number of pat-
terns. Consequently, it is desirable to limit the number of patterns to generate a cost-effective
hardware implementation. This set of patterns is usually defined statically at design time, but
compressors can also have a profiling stage to detect and select good workload-specific patterns
[KGJ96, GHZ18].
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Figure 4.3 – Success rate of each of the possible patterns generated by the symbols M and X, at
a 4-byte-chunk granularity, in a system with a compressed L3 cache. Results are shown for the
SPEC 2017 benchmarks. Notice that most of the patterns are subsets of other patterns; thus,
the success rate of such superset patterns is effectively higher than the values shown — e.g., the
effective success rate of MMMX is equal to the sum of the success rates of patterns MMMX and
MMMM.

4.1.2 Adding Symbols

So far we have discussed comparing chunks strictly against dictionary entries; yet, there are
patterns that are expected to be seen frequently and do not rely on the dictionary. For example,
bytes containing only-zeros or only-ones are common, mainly among the most-significant bits
[KGJ98, ES05, DPS09, TSS08]. Therefore, other symbols — such as a zeros byte (Z); a ones byte
(F ); a byte that is the sign extension of the bit that precedes it (S); or a byte that is repeated
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throughout the whole chunk (R) — could be added to generate patterns with lower metadata
footprint. This happens because a value that is implicitly defined by the use of a pattern code,
does not need to use a dictionary-entry pointer. Furthermore, the first occurrence of a value
does not necessarily imply in a full chunk duplication anymore (Figure 4.4).

Partial Match (MM, XX, MX, XM)

Partial Match (MM, XX, ZX, FX)

0x032B0001032B0091032B0091FF51FFDC

(X
X

,0
x
0

3
2

B
)

(Z
X

,0
x
0

1
)

(M
M

,0
)

(M
M

,0
)

(Z
X

,0
x
9

1
)

(M
M

,2
)

(F
X

,0
x
5

1
)

(F
X

,0
x
D

C
)

(X
X

,0
x
0

3
2

B
)

(X
X

,0
x
0

0
0

1
)

(M
M

,0
)

(M
M

,0
)

(M
X

,1
,0

x
9

1
)

(M
M

,2
)

(X
X

,0
x
FF

5
1

)

(M
X

,3
,0

x
D

C
)

Figure 4.4 – Comparison of the tuples generated when using partial matching with symbols M
and X (above, in blue), and partial matching with symbols M, X, Z and F (below, in pink).
Each compressor has four patterns. Dictionary entries are not allocated for MM instances.

The symbols and patterns used in Frequent Pattern Compression (FPC) [AW04b], and Cache
Packer (C-Pack) [CYD+10] are shown in Tables 4.1, and 4.2, respectively. Code indicates the
code generated if the respective Pattern is found. Data Size is the block’s size, in bits, after
compression (without metadata). The last column presents the generated compressed output.
The size of the position index is directly proportional to the logarithm of the dictionary size,
i.e., if the dictionary has 16 entries, the position index is 4 bits long.

4.1.3 Adjusting the Dictionary Size

As stated previously, a compressor’s complexity is proportional to the number of patterns and
dictionary entries; therefore, one could reduce the number of entries a chunk must be compared
against to reduce its intricacy. For instance, Diff1 [BBMM02] selects the first word of a line as
the sole dictionary entry, and calculates a single minimum delta d such that the 32− d MSB of
the dictionary entry matches all words’ respective bits. Then, all other values are stored as d-bit
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Code Pattern Data Size Output
(Code)Data

000 ZZZZ (xN) 3 (0002)N
001 SSSsx 4 (0012)x
010 SSSX 8 (0102)X
011 SSXX 16 (0112)XX

100 ZZXX 16 (1002)XX

101 SXSX 16 (1012)XX

110 RRRR 8 (1102)R
111 XXXX 32 (1112)XXXX

Table 4.1 – Pattern encoding for FPC. N is
the number of consecutive zeroes, going up to
8. The lowercase variants of S and X indicate
a 4-bit pattern match, instead of 8-bit.

Code Pattern Data Size Output
(Code)Data

00 ZZZZ 0 (002)
01 XXXX 32 (012)XXXX

10 MMMM 0 (102)p
1100 MMXX 16 (11002)pXX

1101 ZZZX 8 (11012)X
1110 MMMX 8 (11102)pX

Table 4.2 – Pattern encoding for C-Pack. p is
the index of the position of the match.

differences relative to that dictionary entry. Since not all words will differ by the same number
of bits, many difference bits will be duplicated; therefore, variants of this technique — Diff2
and Diff3 — assign a delta dw to each word w to exchange metadata overhead for difference
deduplication.

If both techniques are combined (limiting both the number of patterns and dictionary entries
to a minimum), the compressor’s complexity can be reduced to the point of attaining negligible
decompression latencies. This approach is taken by the Base-Delta-Immediate (BDI) compressor
[PSM+12], which enforces that the dictionary contains exactly one entry — the first chunk in
the cache line — while only allowing two patterns — a match except last d bits, and an all-zeros
value except last d bits. Since d is defined at design, the position of every chunk’s data is fixed;
therefore, the compressor becomes as simple as an adder tree, and a single-cycle decompression
latency is achievable.

Although defining statically which chunk will be the dictionary significantly reduces hard-
ware complexity, it also severely restrains compressibility. A solution that can achieve a good
trade-off between reducing complexity and keeping a similar compression ratio is to reduce the
dictionary size, yet make it dynamic. This is the case of Diff2 [BBMM02] and Frequent Pat-
tern Compression with limited Dictionary support (FPC-D) [AA18], which limit comparison of
a chunk, respectively, to its former or two previous chunks. This restrictive design works well
due to the the spatial value locality of data: nearby chunks are likely to contain similar values
[AS14a]. FPC-D also increases the number of symbols and embed the match location in the
pattern code to increase efficacy and reduce the increase in complexity, respectively (Table 4.3).

4.1.4 Multiple Dictionaries

Sometimes data can repeat in patterns larger than the dictionary entry’s size. This means
that the dictionary is not able to capture the granularity of the data, and will likely not be able to
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Code Pattern Data Size Output
(Code)Data

0000 ZZZZ 0 (00002)
0001 FFFF 0 (00012)
0010 MMMM (Prev.) 0 (00102)
0011 MMMM (Pen.) 0 (00112)
0100 ZZZX 8 (01002)X
0101 XZZZ 8 (01012)X
0110 RRRR 8 (01102)R
0111 MMMX (Prev.) 8 (01112)X
1000 MMMX (Pen.) 8 (10002)X
1001 ZZXX 16 (10012)XX

1010 ZXZX 16 (10102)XX

1011 FFXX 16 (10112)XX

1100 XXZZ 16 (11002)XX

1101 MMXX (Prev.) 16 (11012)XX

1110 MMXX (Pen.) 16 (11102)XX

1111 XXXX 32 (11112)XXXX

Table 4.3 – Pattern encoding for FPC-D. (Prev.) and (Pen.) indicate if it was a match with the
previous or the penultimate dictionary entry, respectively (i.e., there is no need to store a match
pointer).

match (i.e., generate more no-match patterns). Furthermore, smaller dictionaries parse the input
in smaller chunks, which generate proportionally more metadata overhead than larger chunks.
One could reduce this metadata overhead by simultaneously using multiple dictionaries, each
with its own size (Figure 4.5). The compression efficiency is improved under this configuration,
at the cost of a higher algorithmic complexity.

A variant of this idea is explored by Large-Block Encoding (LBE) [NW15], which has four
dictionary entry sizes: 32, 64, 128 and 256 bits, covering the patterns shown in Table 4.4.
To reduce the dictionary-related area, the entries of the larger dictionaries are represented as
pointers to the smallest dictionary, adding an extra level of indirection to the decompression
step. In the previous example, the 16-bit dictionary entry 0x0001 would be physically stored as
two 4-bit pointers (to 8-bit dictionary’s 0x00, and 0x01, respectively). Furthermore, to decrease
(de)compression complexity and reduce the number of entries per dictionary, entries for the
Y -bit dictionary are only added at Y -bit boundaries. That is, the entries 0x0102, 0x0300, and
0x0400 would not be generated, and the space required to store the maximum number of 16-bit
dictionary entries needed would be halved, removing one bit from their pointer representation.

4.1.5 Sharing Dictionaries

So far the dictionary-based compressors presented apply compression to lines individually;
however, just as values can be deduplicated within a line, different lines can contain similar
values, so there is a potential advantage in sharing their dictionaries [NW15, PS16, ZJCP18,
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Figure 4.5 – Comparison of the tuples generated when using a single 2-byte dictionary (above,
in blue), and three dictionaries (1, 2, and 4-byte) (below, in pink). The subscript of the index
indicates which dictionary it refers to.

NFW18]. Whenever a dictionary is shared among multiple lines, the compressor’s efficiency can
be increased (more dictionary entries can be deduplicated). In addition, since the dictionaries
are spanning multiple lines, they can be enlarged to contain more entries. This increases the
probability of successfully compressing individual lines, at the cost of slightly larger dictionary
pointers.

Compressors that share dictionary entries, however, increase the compressed cache’s man-
agement complexity. In general, shared dictionaries are mostly static: updates should happen
infrequently — e.g., when the current dictionary does not abide to the workload’s characteris-
tics [AS14b] — since any modification to a dictionary entry may cause the update or eviction of
multiple cache lines. This drawback can also be lessened by controlling the amount of lines that
can share a dictionary — e.g., a shared dictionary per data entry [PS16]. In this case, writes and
overwrites, besides loading and comparing dictionary entries, also require the identification of
the prospective dictionary; furthermore, accesses to a line are tightly coupled with other lines,
which may increase the average hit latency, raise energy consumption, and overload read and
write buffers.
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Code Pattern Data Size Output
(Code)Data

00 XXXX 32 (002)XXXX

01 MMMM 0 (012)p32
100 ZZXX 16 (1002)XX

1010 ZZZZ 0 (10102)
1011 ZZZX 8 (10112)X
1100 8·M 64 (11002)p64
1101 8·Z 0 (11012)
11100 16·M 128 (111002)p128
11101 16·Z 0 (111012)
11110 32·M 256 (111102)p256
11111 32·Z 0 (111112)

Table 4.4 – Pattern encoding for LBE. pd is the index of the position of the match for the
dictionary whose entries’ size is d.

Shared dictionaries are generally used by profile-driven compressors [YZG00, BBMM02,
AS14b]. These compressors fully separate the dictionary from the cache; the dictionary is stored
in a global static table, and encompasses the majority of values expected to be seen on cache
lines. To do so the compressor passes through a brief sampling stage, where the workloads’
data is parsed to create a probabilistic model based on the frequency of values. This model
then populates the table — which is frozen after sampling — and blocks are compressed by
comparing the chunk’s values to the table’s entries. Since the pointers become larger due to
the bigger dictionary, one can apply variable-length prefix coding methods — such as Huffman
coding [H+52] — to reduce the metadata overhead of the most frequent values. Figure 4.6
exemplifies the difference between local dictionaries, 2-line dictionary sharing, and global static
dictionaries.

In order to find the n most frequent values, Yang et al. [YZG00], for example, propose having
a Content-Addressable Memory (CAM) [SGSB99] table with 2 · n entries, each consisting of a
value and a counter. During the sampling phase the counters are updated for each repeated
value, and if the counter saturates, its respective value is swapped with the next entry. If the
value was not present in the table, one of the entries with the lowest counter is replaced by it.
At the end of this stage, the n first entries are used in the encoding. This allows a hardware-
efficient way to achieve approximate sorting. In case the compression ratio becomes low, another
sampling stage can be started concurrently using a second decompressor; therefore, data inside
the cache may have two encodings. Nonetheless, re-sampling does not need to be frequent, due
to the little variation in value locality over time — even in case multiple applications are being
simultaneously executed; thus, it could be software-managed to reduce compression latency
[AS14b].
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B': (MM,0)          (XX,0x0002) (MM,0)         (MM,2)
     (MM,0)          (MM,2)          (XX,0xFF79) (XX, 0xFF04)
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Figure 4.6 – Example of full match (MM and XX) compression using: 1) local dynamic dictio-
naries (top A’B’ pair, in red); 2) shared local dynamic dictionaries (middle, blue); and 3) shared
global static dictionaries (bottom, pink). The global dictionary was populated arbitrarily, sim-
ulating a previous sampling stage.

4.2 Other Techniques

Dictionary compression methods achieve a certain degree of compression, and are usually
effective given their processing speeds; yet, they are not the only compression methods that exist
— data compression has been a field of research for long [JTP21]. Compression can be as simple
as bitwise opperations [YGZ04, AGN+15, KSCE16], or as complex as using mathematical trans-
formations [JTP21]. Furthermore, a single technique does not necessarily achieve the minimum
entropy on all workloads; thus, multiple layers of compression can be applied simultaneously to
increase coverage. Needless to say, re-compressing the compressed data comes at a very high
latency cost.

An example of multi-layer compression is Bit-Plane Compression (BPC) [KSCE16], which
combines delta and pattern compression through sequential bitwise transformations to further
increase the compression ratio. In BPC compression passes through 4 stages in order to achieve
higher compression: Delta-BitPlane (DBP) transformation, which stores the first chunk as a base,
and then calculates deltas between consecutive chunks (unlike BDI, which uses the difference
between word and bases); bit plane rotation, which reassembles (isolates) the DBP bits based
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on their position within the delta; then a XOR is applied between consecutive bit-planes; and
lastly the bit-planes are scanned for pattern matching.

4.3 Multi-Compressors

Each compressor has its own merits and capabilities; thus, they can be combined to im-
prove their individual shortcomings. These are multi-compressors — compressors composed
of multiple sub-compressors — as depicted in Figure 4.7. Examples of multi-compressors in
the literature include BDI [PSM+12], Hybrid Compression (HyComp) [ADS15], and Dictionary
Sharing (DISH) [PS16].

Multi-compressors need extra bits to identify which of their sub-compressors is associated
with some compressed data. These bits can be stored in either the tag or data entry. The former
configuration requires a slight expansion of the tag array, but can be beneficial when performing
sequential accesses, since decoding which compressor will decompress the data can be done in
parallel with the tag and coherence checks. On the other hand, if the encoding metadata is stored
in the data itself, or if the data access happens in parallel with the tag access, this decoding
adds 1-2 cycles to the decompression step, which correspond to the time to decode and select
the sub-compressor.

Line

Compressed Line

Multi-Compressor

Sub-Compressor 1
...

Selector (Fastest decompression or smallest size)

Sub-Compressor 0 Sub-Compressor 2 Sub-Compressor N

Figure 4.7 – Example of a multi-compressor consisting of N+1 sub-compressors.

4.4 Latency Trade-Offs

Caches typically display low hit latencies, and decompression adds to it; thus, the higher
the decompression latency, the harder it is for the system to cope with it. The speed of a
compression algorithm is highly correlated with its parallelizability; therefore, the higher the
amount of chunks on which a given chunk’s value can depend on, the higher is the ripple effect,
and the costlier it is to parallelize its operations.

For instance, in C-Pack [CYD+10] a chunk can be represented as a reference to any of the
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previously seen chunks (dictionary entries); in FPC-D [AA18] a chunk can reference one of the
two most-recently seen chunks; and in base-delta compressors [PSM+12] any chunk can only re-
fer to a single, statically determined (i.e., the first), chunk of the line. The complexities of these
algorithms are reflected in their speeds: by having the highest number of deduplication oppor-
tunities, C-Pack achieves high compressibility, yet its hardware is harder to parallelize; FPC-D
exchanges some opportunities to simplify its implementation and increase its parallelizability;
finally, a base-delta compressor’s circuit can be as simple and fast as an adder tree.

4.5 Summary

Table 4.5 presents a summary of the state-of-the-art compression algorithms. All values
assume a 64-byte cache line configuration, for uniformity. The latencies shown here are merely
suggestive under the assumption of a worst case scenario, that the input data is available in
its entirety when compression starts (e.g., no delays due to bus width not matching line size),
and the use of single data rate. Also, compressors are typically parallelizable, so the level of
parallelization claimed in their original proposal is shown as a multiplier on the latency. In real
implementations the levels of parallelization are possibly different, since they depend on the area
budget, clock frequency of the (de)compression units, among other design decisions. Moreover,
the latencies stated in bytes per cycle do not take into account the cycles needed to perform
other pipeline operations on the compressed data, such as packing and shifting.

For multi-compressors, the values shown are for their respective sub-compressors. In general,
it should be assumed that the average compression latency of a multi-compressor matches the
latency of its slowest sub-compressor. In practice, some optimizations can be applied to stop
execution early — e.g. if a sub-compressor that achieves the smallest possible size among the
remaining sub-compressors is successful, the others can be halted. Finally, the decompression
latency of multi-compressors only take into account the time to decompress the data of the
sub-compressors. In reality, 1 or 2 extra cycles may be required to decode which sub-compressor
to use.
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Technique Dictionary
Size

Entry Size
(bits)

Num.
Patterns

Com-
pression

Decom-
pression

BDI [PSM+12] 0, 1, 2, 2, 2,
2, 2, 2

64, 64, 64,
64, 64, 32,
32, 16

1, 1, 2, 2, 2,
2, 2, 2

8, 8, 8, 8, 8,
4, 4, 2

bytes/cycle

8 · 8, 8 · 8,
8 · 8, 8 · 8,
8 · 8, 16 · 4,
16 · 4, 32 · 2
bytes/cycle

BPC [KSCE16] 1 32 5 7 cycles 7 cycles
COCO [TS19] At least

128 a
Variable b Up to 264 8

bytes/cycle
8

bytes/cycle
C-Pack [CYD+10] 16 32 6 2 · 4

bytes/cycle
2 · 4

bytes/cycle
DFPC [GHZ18] 0 32 4 (+ 4

dynamic)
16 · 4

bytes/cycle
16 · 4

bytes/cycle
Diff1/2/3 [BBMM02] 1/1/8 32 32 16 · 4

bytes/cycle
16 · 4

bytes/cycle
DISH [PS16] 4, 8 (shared) 32 1 4, 4

bytes/cycle
16 · 4, 16 · 4
bytes/cycle

FPC [AW04b] 0 32 8 3 cycles 5 cycles
FPC-D [AA18] 2 32 16 4 · 4

bytes/cycle
8 · 4

bytes/cycle
Huffman [AS14b] 512/1024

(single/multi-
core)

(shared)

32 2 6 cycles 14 cycles

LBE [NW15] 128 (shared) 32 5, 3, 3, 3 4, 8, 16, 32
bytes/cycle

4, 8, 16, 32
bytes/cycle

Lempel-Ziv [FRT96, TSW+01] 4 · 16 32 2 4 · 1
byte/cycle

4 · 2
bytes/cycle

X-Match,X-RL [KGJ96] 16 32 10–16 c 4
bytes/cycle

4
bytes/cycle

a. Assuming the use of a 8KB dictionary, and a maximum object size of 64B.
b. COCO works on objects, not basic data types.
c. Depends on the probabilities of the patterns in the set that generates the Huffman codes.

Table 4.5 – Summary of data cache compressors.
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Chapter 5

EFFICIENTLY DEALING WITH

COMPRESSED BLOCKS

Cache compressors work as black boxes: data enters in uncompressed format, it is processed,
and the compressed data is output. However, compression by itself is not enough to improve
either system performance, or cache capacity; a compaction scheme (or cache organization, or
compactor) must be used to determine what to do with the compressed data. That is, com-
paction schemes expand the capabilities of conventional tag-data mapping methods to account
for compressed blocks and their ability to share data entries.

Consequently, besides deciding on which data entry a block should be allocated, compactors
have extra responsibilities (as described in detail in Chapter 2): to co-allocate blocks based
on their compressed size; to determine whether the level of compression achieved by a given
compressed block is satisfactory, or if the compression results should be discarded, and the
block should be stored in uncompressed format; and to determine where a block should be
placed within a data entry.

The main reason compression results would be discarded is that the probability of co-
allocation follows a Gaussian function centered around 50% of the cache line’s size: a block
that has been compressed to 99% of the cache line’s size can only co-allocate with blocks that
have been compressed to 1% of their original size, but a block that has been compressed to
90% of its size can co-allocate with the whole range of sizes from 1 to 10%. If a line has low
probability to co-allocate, it has a high chance to be stored alone, and the extra decompression
step required to read it would be detrimental to the system’s performance.

Another reason to dispose of compressed lines is a restriction on the metadata budget. The
size of a block must be available, either explicitly stored or obtainable through some processing.
Therefore, some metadata bits must be added with the relevant size information — the size
field. If there are no limits on the size field representation, blocks can be compressed to any
size [AW04a, CYD+10, SW13] — we will refer to this concept as unconstrained methods.
Although not imposing restrictions on the size allows compression to reach its full potential,
these methods significantly increase the metadata overhead due to the number of bits needed
to represent the compressed size. Besides, locating cache lines becomes non-trivial: lines can be
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placed anywhere in the data entry. This results in a few more cycles being added to the access
path to find the exact block location.

To cope with those drawbacks, some compaction techniques limit compression to fixed sizes
(e.g., 25% and 50% of the line size) [SSW14, SSW16]. These constrained methods have low
metadata overhead, at the cost of limiting co-allocation opportunities. This is due to the fact
that although cache compressors may successfully compress some workload regions, there is still
plenty of data that fails to attain favorable compressed sizes for compaction. For instance, The
average compressed line size in SPEC 2017 for multiple state-of-the-art compressors [PSM+12,
KSCE16, CYD+10, AW04b, AA18, AS14b, KGJ96], is still far above 50% of the cache line size,
making it hard to effectively co-allocate blocks with the limitations of these overly restrictive
techniques (Figure 5.1).
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Figure 5.1 – Average compression ratio of SPEC 2017 workloads for multiple state-of-the-art
cache compression methods applied to the LLC.

To achieve the best trade-off between limiting the number of possible sizes and having an
unconstrained representation, we have come up with Pairwise Space Sharing (PSS). PSS
stores sizes in a partially-constrained fashion: blocks are grouped in pairs, and although each pair
must fit in a fixed-size entry, restrictions on the sizes of the blocks within a pair are lessened.
Furthermore, PSS can be applied in conjunction with most state-of-the-art cache compaction
proposals. This means that PSS makes the most out of co-allocation opportunities, and requires
far fewer metadata bits than conventional unconstrained methods. Moreover, due to the design
decision of coupling blocks in pairs, line location within a data entry is made trivial, and no
extra cycles are required. The following sections describe how it operates in details, and the
compaction improvements that can be achieved with it.
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5.1 Pairwise Space Sharing

5.1.1 Block placement

One of the main issues of unconstrained cache compaction techniques solved by PSS is block
placement within a data entry. In compressed caches, blocks are assigned to the next available
location, if any; however, since each block can be compressed to any size, this location can
be anywhere in the data entry. As a result, unconstrained methods typically use pointers or
surrounding sub-blocks’ sizes to inform where a block has been placed [AW04a, SW13, HR04];
therefore, under this configuration, locating any compressed block is not trivial, and likely in-
creases the access latency in a realistic compressed cache layout. Pairwise Space Sharing solves
the placement issue by splitting the data entry into multiple constrained segments, and then
applying an unconstrained layer on each.

The idea is that smaller constrained entries restrict placement possibility. For example, a
512-bit data entry can be divided into four 128-bit segments. Each segment can then co-allocate
blocks without constraints, as long as they fit in its 16-byte space, as depicted in Figure 5.2. If a
rule is applied so that a given block B can only be assigned to segment S, then 3

4 of the placement
locations are removed from the possibilities. Nonetheless, this restriction is not enough to satisfy
latency requirements, because B can still be stored anywhere within its segment, for a wide range
of placement possibilities.

0511 383 255 127

255 128

BC AUnused

Data Entry

Segment 1

Figure 5.2 – A data entry can be split into multiple segments whose size is fixed. Then, within
each segment, block co-allocation can be done in either a constrained or unconstrained fashion.
In this example segment 1 is using unconstrained co-allocation, and each of the blocks it contains
is compressed to a different size.

There are, however, two special cases that deserve distinct attention: when the number of
blocks allowed per segment are 1 and 2. When only one block can be allocated per segment,
there are two possibilities: either it is an uncompressed cache (the segment size is 64 bytes); or
it is the general case of a constrained method — the segment size is smaller than 64 bytes, and
compressed blocks must fit in fixed-sized entries.

The other case, when there are up to two blocks per segment, has a peculiarity that can be
exploited to greatly simplify locating blocks. Within a constrained entry, no matter its size, there
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are two invariable locations: its leftmost bit, and its rightmost bit (i.e., the extremities). These
can be used as markers that define the beginning of a sub-block, with one of the sub-blocks
being stored in reverse order (the MSB becomes the LSB and vice-versa) (Figure 5.3a). Another
advantage of these fixed extreme locations is that, since the bits in between the sub-blocks are
unused, data contractions and expansions that still fit in the pair do not need recompaction. We
will refer to segments that contain up to two blocks as a block pair (BP).

EF Unused

063 2048

0 14

(a) Block placement in an entry containing a single
BP. E is stored conventionally, and F is stored with
its bits reversed.

Q
063 2032 31

S R
45 42

Unused

BP 0BP 1

(b) A data entry with two segments supports up to
four sub-blocks — there are two BPs. R and S are
paired up in a BP 1, and Q is in BP 0. Q’s companion
is not present. Q and S are stored reversed.

Figure 5.3 – Overview of block pair sub-block placement. Each sub-block is stored relative to
an extremity of its block pair.

5.1.2 Size Representation

The size information of each block is an inherent metadata overhead — it is need to deter-
mine whether a block can co-allocate with others, so it must be available either explicitly or
implicitly. As discussed previously, compactors represent sizes either in constrained or uncon-
strained format. Having unconstrained sizes means that the compressed size is represented in
full 1, so compression can be used to its maximum, and possibly no data space will be wasted
[AW04a, CYD+10, SW13]. On the other hand, constrained sizes (e.g., half or quarter a cache-
line size) require less metadata bits at a small compression efficiency penalty: only a couple of
compressed sizes are representable, so the compressed data must be padded to fit in one of those
possible sizes [SSW14, SSW16].

PSS, however, changes the size of the constrained section from a data entry’s size to smaller
containers (the block pairs). As a matter of fact, the size of a block pair is fixed, but dependent
of the compression factor (CF), as shown in Equation 5.1; thus, as opposed to prior proposals
[CYD+10], this idea can be applied to a compressed cache that allows more than two compressed
blocks per data entry. For instance, in YACC [SSW16] a superblock’s compression factor defines
the minimum size to which a sub-block must be compressed in order to be able to co-allocate: a
quarter of the data entry for a compression factor of 4, and half a data entry for a compression

1. There is a small caveat for unconstrained compression: since the benefits of representing sizes in bits is
minimal compared to bytes, these methods typically employ a byte-granularity representation to avoid the cost
of those extra 3-bits.
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factor of 2. With PSS this limitation is lessened, and the pair’s size must fit in a half or a whole
data entry instead, respectively.

BPSizeCF = 2 · cacheLineSize

CF
(5.1)

Under this configuration, no further modifications are required, and sub-blocks are paired
like in the PSS-less YACC: if the compression factor is 2, there is only one block pair, and any of
its four sub-blocks can be paired in it; and if the compression factor is 4, there are at most two
BP, and each sub-block has a determined position in the data block — sub-block 0 can only be
paired with 1, and sub-block 2 only with 3. Considering that converting between compression
factors would increase the placement complexity — due to the fact that one compression factor
allows any sub-blocks to be paired up, and the other imposes strict positioning — our design
enforces that a superblock must commit to a compression factor until all its sub-blocks are
evicted. Figure 5.3b shows an example of a data entry containing more than one block pair.

Optimizing The Size

From Equation 5.1, and assuming a cache line of 64B, a superblock with a compression factor
of 2 contains a single BP, whose size field is naively represented as 2 · 6 bits; and a superblock
with a compression factor of 4 shelters two BPs (4 ·5 bits). Since the size field must have enough
space for the worst-case scenario, 20 bits would be need to be reserved per data entry. Under
this scenario any size is valid, from zero bytes to the number of bytes of an uncompressed cache
line.

However, the probability distribution of compressed sizes follow a non-uniform cumulative
distribution function: barely compressing a block is significantly more frequent than compressing
it to a tiny size (Figure 5.1). This means that the likelihood of co-allocating a block is inversely
proportional to its compressed size; thus, a block that has been compressed to a large size will
likely not co-allocate, imposing an unnecessary decompression latency fee on hits. This remark
is particularly distinguishable for compaction methods that use a superblock tag representation,
since neighbor blocks tend to present similar compressibilities [PSM+12, SW17]. Consequently,
the neighbors of a block whose size is exceedingly large will probably have similar sizes, which
means they would not be able to co-allocate.

Hence, seeing that having large compressed blocks is likely not beneficial, one can impose
an upper (maxSizeCF ) and lower (minSizeCF = BPSizeCF − maxSizeCF ) limits on the
compression size to reduce the number of bits needed to represent a valid size (Equation 5.2
if 2 · maxSizeCF 6= BPSizeCF ; 0 otherwise). Consequently, all sizes are stored as a number
relative to the lower limit on the compression size. In the previous example, if the maximum
compressed size allowed is 62.5% of the uncompressed line (maxSize2 = 40B, minSize2 = 24B,
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maxSize4 = 20B, and minSize4 = 12B), the number of bits needed per size entry changes to
sizeBits2 = 4, and sizeBits4 = 3. Therefore, for instance, an absolute size of 30B would be
stored as a relative size of 6B (01102).

sizeBitsCF = log2 (2 ·maxSizeCF −BPSizeCF ) (5.2)

Another optimization can be done to reduce the number of size field entries. Since both the
segment’s size and location are known, only one of the sub-blocks’ sizes needs to be stored in the
tags, in the pair’s respective size field entry, and the other (e.g., the non-reversed sub-block’s)
is implicitly defined as its complement. If only the non-reversed block is present in the pair, the
stored size represents the available space for the reversed sub-block.

Total Overhead

A compactor using Pairwise Space Sharing needs — besides the usual tag, replacement
state and coherence fields — to dispose, per data entry, of log2 (maxCF ) bits to inform the
number of block pairs in the data entry (substitutes the conventional compressibility state);
and log2 (maxCF

2 ) size field entries to bear the size of the smallest possible block pair entry
(sizeBitsmaxCF ). For instance, the case of PSS where the maximum compressed size allowed is
50% is equivalent to constrained methods allowing two possible sizes — 25% and 50% — such
as YACC [SSW16] and SCC [SSW14]: BPSize2 = 32B, BPSize4 = 16B, maxSize2 = 32B,
maxSize4 = 16B, and sizeBits2 = sizeBits4 = 0 bits.

5.2 Methodology

Our simulations have been performed using gem5 [BBB+11], a software capable of performing
the required steps for instruction emulation, at the cost of higher simulation times than other
popular yet less accurate simulators [CHE11, SK13]. Compression-related statistics are averaged
across all (de)compression occurrences. Compaction-related statistics are calculated by averaging
snapshots of the contents of the cache, which are taken every 100 thousand simulation ticks.

To test the behaviour of the analysed techniques we took multiple checkpoints per bench-
mark of the Standard Performance Evaluation Corporation (SPEC) 2017 benchmark suite using
SimPoints [SPHC02]. The average of each benchmark’s statistics has been calculated with the
arithmetic mean of its checkpoints, and the total geometric mean of the benchmarks was nor-
malized to a non-compressed baseline system. Benchmarks whose number of MPKI was lower
than 1 were discarded from the analysis, since these barely benefit from having larger caches —
in these cases, a compressed cache would not be useful.

Although appropriate for studying compression techniques, Sardashti and Wood claim that
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using conventional SimPoints does not fully represent the compression properties of real work-
loads [SW17]. They propose using toolsets to study memory and cache data on real machines.
These toolsets work by periodically stopping a workload to take snapshots and analyze the
memory contents, and forcing TLB flushes and finding the address that causes the next TLB
miss in the cache. They also notice that compression ratio significantly varies over time. To
conform to this scenario we execute workloads for long periods of time to get more accurate
results; therefore, after a warm-up of 100M instructions, the workloads are executed for 200M
instructions.

The baseline model performs out-of-order (OOO) execution, and is detailed in Table 5.1. All
compression and compaction algorithms are applied to the L3 on top of this common configu-
ration.

Processor 1 core, OOO, 8-issue
Cache line size 64B

L1 I/D 32KB, 4-ways, 4 cycles, LRU
L2 256KB, 8-ways, 12 cycles, RRIP

Shared L3 1, 8-ways, 34 cycles, RRIP
MSHRs and write buffers 64

DRAM DDR4 2400MHz 17-17-17, tRFC=350ns, 4GB
Architecture ARM 64 bits

Clock 4GHz
Image Ubuntu Trusty, Little Endian

Table 5.1 – Baseline system configuration.

5.2.1 Results

As mentioned previously, the compressibility of neighbor blocks tends to be similar, due to
the fact that they usually present similar data contents. Consequently, when using block pairs,
the companion of a block that compresses to a size greater than 50% of the block pair’s size has a
high likelihood of compressing to a size greater than 50% too; and the probability of being able
to co-allocate them is lessened. Thus, modifying the restrictions to discard less compressions
may actually be detrimental to the system’s performance.

We have conducted an analysis of the proportion of blocks that were able to co-allocate with
another block at the moment it was compressed to determine the optimal number of bits to
be used in the size field. As it can be seen in Figure 5.4a, the lowest ratio of unsuccessful co-
allocations is achieved when block sizes are within the absolute range [37.5%: 62.5%] of the block
pair’s size. This behavior is reflected in compaction ratio improvements: Figure 5.4b measures
by how much the compaction ratio is improved when compared to the respective baseline PSS
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with a maximum compressed size of 50%.
Finally, Figure 5.5 shows the difference in compaction ratio when using multiple state-of-the-

art compressors while coupling YACC [SSW16] with PSS using a range of [37.5%: 62.5%]. All
configurations using PSS outdo their non-PSS counterpart. Note that although Pairwise Space
Sharing has only been applied to a superblock-based compaction layout, it can be applied to
non-superblock-based layouts too. This is due to the fact that it decides where and how blocks
are allocated in a data entry, not which blocks.
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5.2.2 Effects of a Single Size per Pair

As discussed earlier, one possible optimization is to represent only one of the pair’s sub-
block’s sizes. This halves the number of bits needed for the size representation; however, it has a
drawback in case of a data expansion of a block whose size is stored: since the exact compressed
size of the non-reversed block is not known, its data must be read and compressed again to find
out whether an eviction will be needed.

Nonetheless, this event is rare, occurs out of the critical path, and the re-compression step
can be removed by adding a delimiter bit to the end of the non-reversed block’s compressed
data. To quantify this side effect, we have simulated a worst-case scenario where the latency of
a read was added to every block overwrite. The differences in IPC and compaction ratio were
far below 1%.

5.2.3 Comparison with Pair-Matching

Chen et al. introduced an idea with concepts similar to Pairwise Space Sharing, called pair-
matching [CYD+10]. Although both techniques group blocks in pairs, there are multiple ad-
vantages of using PSS over pair-matching. For starters, PSS cleverly positions blocks at the
extremities of the block pair, making locating blocks trivial. This also simplifies data expansion
and contraction, since the unused bits are always located in between the blocks, so there is never
a need to re-locate/re-compact data within a block pair.

Pair-matching pairs blocks such that the average of their compressed sizes must fit in half a
cache line. As depicted in Figure 5.4a, this is sub-optimal, and is improved by PSS’s probabilistic
analysis of co-allocation. Moreover, this analysis, along with the removal of the partially redun-
dant companion’s size information, allows to greatly decrease metadata overhead: the number
of bits needed to portray the compressibility state and size is reduced from 1 + 2 · 7 = 15 to
1+1 ·4 = 5, and from 2∗(1+2 ·7) = 30 to 2+2 ·3 = 8, for systems with a maximum compression
factor of, respectively, 2 and 4.
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Chapter 6

GRANULARITY EXPLORATION

As seen in Chapter 2, cache compressors typically rely heavily on the temporal and spatial
localities of data: they expect that values will be seen more than once, either with a few differing
bits, or as perfect duplicates. Consequently, there is a predominance of dictionary-based pattern
compressors — these use the first occurrence of values to populate a dictionary of reference
values. When parsing cache lines, values are first compared against the dictionary entries using
predefined patterns to check if they can be deduplicated by storing the parsed value as a full or
partial reference to an entry (value deduplication) [KGJ96, CYD+10, AA18]. This means that
the first occurrence of most values will not only be incompressible, but will also require more
bits to be represented in compressed format due to encoding overhead.

To reach the full potential of value deduplication, workloads must restrain to merely using a
single fixed basic data type — 8, 16, 32 or 64 bits. This is unlikely to happen; lines are composed
of data structures and arrays, each of which can contain any composition of these data types,
so multiple data types are expected to be found. Pattern-based compressors cope with that
by tweaking their patterns to simulate an underlying assumption of smaller data types. For
example, the pattern MMMX — where M is a byte match, and X is a byte mismatch, in a
notation akin to previous work [CYD+10, AA18] — does not match the least-significant byte,
matching only the three most-significant bytes of 32-bit values. To capture similar behavior for
16-bit data types, while still assuming that workloads consist mostly of 32-bit data types, the
pattern MXMX can be added; this pattern does not match the least-significant byte of two
consecutive 16-bit values, deduplicating the MSB of each.

This idea could be expanded to cover all possible combinations of basic data types; however,
the more patterns are added, the more complex and slow becomes the compressor. The number
of permutations becomes even more prohibitive with the rising use of 64-bit values. Usually,
patterns are selected based on the observation that some bits will consistently have more matches
than others; notably, that the MSBs of chunks tend to vary less than their LSB counterpart.
Hence, compressors tend to focus on patterns that match the MSB and copy the LSB (e.g.,
MMMX, and MMXX) [CYD+10, PSM+12, AA18].

Nonetheless, even when the data type of values matches the expectation, similar values
do not necessarily generate similar patterns. For instance, the values 0x00000000FFFFFFFF
and 0x0000000100000000 differ by a single unit, yet only their 31 most-significant bits match.
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Compressors would typically not cover the pattern "33 non-matching bits followed by 31 match-
ing bits", so this seemingly simple deduplication would generate a XXXXXXXX pattern. Even
though there was room to remove duped bits, the compressor’s limited number of patterns
blocked it from happening, and in fact the extra metadata added to inform the pattern wors-
ened the value’s representation.

It is clear that there is a correlation between number of patterns, compressibility and de-
compression latency; having more patterns increases the compression effectiveness, but also
complicates compression hardware, slowing the decompression down. This is seen in Figure 6.1,
which shows the average compression ratio of multiple state-of-the-art compressors [PSM+12,
KSCE16, CYD+10, AW04b, AA18, AS14b, KGJ96] for the SPEC 2017 benchmarks [Cor17].
BDI [PSM+12], for example, provides a single cycle decompression, which was made possible
by only allowing two patterns. Because of that its compression ratio is as high as 86.3%. Other
proposals with more patterns, such as C-Pack [CYD+10], and FPC-D [AA18], reach lower ratios,
but their decompression processing speed can be as slow as a word per cycle.
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Figure 6.1 – Average compression ratio of SPEC 2017 workloads for multiple state-of-the-art
cache compression methods applied to the last-level cache (L3). The lower, the better.

In the next sections we analyze how dictionary-based pattern compression works to try to
better understand and ease the problems of pattern matching. This exploration allows us to
propose a compressor that loosens the ties between compressibility and decompression latency
to achieve low compression ratios and low decompression latency.

6.1 Divide and Conquer

As pointed out in the introduction, the selection of a single data type as the representative of
a workload plays a big role on the ability to compress lines. This is the case because compressors
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divide cache lines into parsing chunks and try to capture any regularity between them (Figure
6.2). The chunk size is directly associated to which data types, and how well it can expect to
compress; while small chunks cannot capture correlation of bigger data types, big chunks are
harder to compress, since their data has higher entropy. As a compromise between both large
and small types, cache compressors typically use 32-bit chunks [SASW15].
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Figure 6.2 – Cache lines are divided into chunks. N chunks can be parsed per cycle (level of
parallelization). The level of parallelization of the compression and decompression steps do not
need to match.

In general, it has been observed that the contents of the MSB portion of a value present
less variability than its LSB counterpart, and thus compressors tend to compress the former
better [CYD+10, PSM+12, PS16]. Therefore, it might be advantageous to further divide chunks
into different portions, which are compressed differently. The intuition is that the probability of
seeing equal values is proportional to the chunk size ( 1

chunkSize
), so the probability of referring

to previous dictionary entries is higher, increasing compression efficiency. Moreover, since each
portion is still expected to represent the same respective bits of the chunk, the overall assumption
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of the workload’s representative data type is kept.
We hereby propose the concept of Region-Chunk compression. A compressor under

Region-Chunk compression further divides chunks into equally-sized regions, each of which is
compressed independently (Figure 6.3). A region is then a smaller portion of the chunk which
exposes the correlation between different chunks at a finer granularity. We will refer to compres-
sors that divide cache lines into w-bit chunks, each with x-bit regions as a RxCw compressor.
It is worth noticing that conventional compression fits the case where the chunk size matches the
region size; therefore, it is a subset of Region-Chunk compression — i.e., each chunk contains a
single region, and thus uses a single compressor.

Compressor of Region 1

Compressor of Region 0

Line Compressed Line

Figure 6.3 – Region-Chunk compression, with two regions per chunk. Each blue-pink pair in
the original line corresponds to an original line’s chunk. Compressing and decompressing re-
gions works by using only the regions of interest of the cache line as input to their respective
compressors.

The main advantage of adding sub-divisions is that the chunk size still matches the over-
all workload’s expected predominant data type, yet occurrences of equal or smaller data types
are compressed more efficiently — the finer granularity at which dictionaries are built reduces
duplication. Furthermore, the number of patterns covered is implicitly increased, since the com-
bination of the patterns of each region’s compressors generate a larger spectrum. For example,
for 64-bit chunks the pattern MMMMMXMM would usually not be part of the selected pat-
terns; however, it would be assured as a possible combination of the four regions in a R16C64

compressor that contains the patterns MM and MX (MM + MM + MX + MM).
Another advantage of refining the granularity is that each region’s compressor can be mod-

ified to cover its necessities. For instance, by expecting that MSB regions have less variability
than LSB regions, it would be reasonable to reduce the maximum number of different dictionary
entries allowed or the number of patterns covered, which in turn would reduce the number of
metadata bits needed. Another way to tailor these compressors would be to modify the pat-
terns themselves — e.g., by increasing or decreasing the number of non-matching bits one could
increase the likelihood of deduplicating entries, or reduce the size of the compressed data, re-
spectively.
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Listing 6.1 – An example of a structure containing mixed types.
struct {

int value ;
short d e s c r i p t o r s [ 2 ] ;

} St ructure ;

For instance, Table 6.1 shows how a conventional (32-bit chunks, 32-bit regions) generic
dictionary-based pattern compressor would parse an example 64-byte cache line which represents
a vector of the mixed data structure described in Listing 6.1. Table 6.2 depicts how it would
be done with a generic dictionary-based pattern compressor parsing lines as 32-bit chunks and
16-bit regions (R16C32).

Knowing that each region has less variability — and thus is likely to require less dictionary
entries — allows for a reduction of the number of available dictionary entries, generating a direct
cut on the size of the pointer fields. Besides, although the number of patterns is kept the same
— and therefore the number of pattern bits is doubled — the finer granularity of the patterns
results in deduplication within the original X bits. Other configurations could be used as well:
in Table 6.3, even though the chunk size does not match any of the types in the structure, a
R8C64 can still exploit the predominant characteristics of each region.

6.1.1 Applying Region-Chunk to state-of-the-art compressors

Figure 6.4 shows the average compression ratio achieved by multiple state-of-the-art com-
pressors when using the Region-Chunk concept at a 32-bit region granularity. Each chunk is
split into two regions, and each region is parsed by its respective region’s compressor. Some
of the compressors benefit from the use of the Region-Chunk concept. The benefits are more
noticeable when coupling it with Pairwise Space Sharing: as it can be seen in Figure 6.5, all com-
pressors except X-Match [KGJ96] improved their average compression ratio. Therefore, further
dividing chunks into regions is a concept that is beneficial to dictionary-based cache compressors
in general. Furthermore, this experiment did not take into account the fact that making lines
smaller decreases the required compressor complexity, so it is conceivable that some of these
compressors may even achieve a reduction of their decompression latency.

Notice that both figures do not present the results of using the Region-Chunk concept with
BDI. This is due to the fact that base-delta compressors have fixed sizes, formulated for a
specific cache line size configuration. Since R32C64 divides the cache line into two, BDI becomes
not applicable as proposed. Nonetheless, alternatives will be presented shortly.
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chunk B3 B2 B1 B0 Pattern Pointer X bits
0 0x00 0x00 0x00 0x00 XXXX - 0x00000000
1 0xAC 0x00 0xAC 0x01 XXXX - 0xAC00AC01
2 0x00 0x00 0x00 0x01 MMMX 00002 0x01
3 0xAC 0x02 0xAC 0x03 MXMX 00012 0x02,0x03
4 0x00 0x00 0x00 0x02 MMMX 00002 0x02
5 0xAC 0x04 0xAC 0x05 MXMX 00012 0x04,0x05
6 0x00 0x00 0x00 0x03 MMMX 00002 0x03
7 0xAC 0x06 0xAC 0x07 MXMX 00012 0x06,0x07
8 0x00 0x00 0x00 0x04 MMMX 00002 0x04
9 0xAC 0x08 0xAC 0x09 MXMX 00012 0x08,0x09
10 0x00 0x00 0x00 0x05 MMMX 00002 0x05
11 0xAC 0x0A 0xAC 0x0B MXMX 00012 0x0A,0x0B
12 0x00 0x00 0x00 0x06 MMMX 00002 0x06
13 0xAC 0x0C 0xAC 0x0D MXMX 00012 0x0C,0x0D
14 0x00 0x00 0x00 0x07 MMMX 00002 0x07
15 0xAC 0x0E 0xAC 0x0F MXMX 00012 0x0E,0x0F

Table 6.1 – Simple example of conventional compression using a generic dictionary-based pattern
compressor with up to sixteen dictionary entries and four possible patterns: MMMM, MMMX,
MXMX, and XXXX, where M is a byte match, and X is a byte mismatch. The total compressed
size is (numChunks · encodingSize) + (numPointers ∗ pointerSize) + totalXBitsSize = (16 ·
2) + (14 · 4) + (2 · 32 + 21 · 8) = 320 bits.

6.2 Latency of a Region-Chunk Compressor

As depicted in Figure 6.3, regions are just re-ordered smaller portions of a cache line; thus,
compressing each region is analogous to compressing the whole line — i.e., any existing compres-
sor can be used. The input of each region’s compressor is directly wired to its respective fixed
portions in the original cache line. This means that the compression and decompression latency
of a compressor using the Region-Chunk concept is equal to the compression and decompression
latency of its slowest region compressor.

As mentioned previously, base-delta compressors [PSM+12] achieve minimal decompression
latency because they allow a strictly limited number of patterns; yet, with the use of Region-
Chunk compression, the patterns covered by the compressor becomes a compound of the patterns
covered in each region, at no extra latency cost. These two concepts can be combined to create
a compressor with low compression ratio and low decompression latency.

We hereby propose that each region’s compressor encompasses multiple simpler sub-compressors
based on the base-delta compression technique (multi-compressors — Figure 6.6). Consequently,
adding the decompression latency of base-delta compressors to the calculation, a multi-compressor
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chunk R1 R0 Pattern1 Pointer1 X1
bits

Pattern0 Pointer0 X0
bits

0 0x0000 0x0000 XXXX - 0x0000 XXXX - 0x0000
1 0xAC00 0xAC01 XXXX - 0xAC00 XXXX - 0xAC01
2 0x0000 0x0001 MMMM 002 - MMMX 0002 0x1
3 0xAC02 0xAC03 MMMX 012 0x2 MMMX 0012 0x3
4 0x0000 0x0002 MMMM 002 - MMMX 0002 0x2
5 0xAC04 0xAC05 MMMX 012 0x4 MMMX 0012 0x5
6 0x0000 0x0003 MMMM 002 - MMMX 0002 0x3
7 0xAC06 0xAC07 MMMX 012 0x6 MMMX 0012 0x7
8 0x0000 0x0004 MMMM 002 - MMMX 0002 0x4
9 0xAC08 0xAC09 MMMX 012 0x8 MMMX 0012 0x9
10 0x0000 0x0005 MMMM 002 - MMMX 0002 0x5
11 0xAC0A 0xAC0B MMMX 012 0xA MMMX 0012 0xB
12 0x0000 0x0006 MMMM 002 - MMMX 0002 0x6
13 0xAC0C 0xAC0D MMMX 012 0xC MMMX 0012 0xD
14 0x0000 0x0007 MMMM 002 - MMMX 0002 0x7
15 0xAC0E 0xAC0F MMMX 012 0xE MMMX 0012 0xF

Table 6.2 – Simple example with two regions using a generic R16C32 dictionary-based pattern
compressor with four patterns: MMMM, MMMX, MMXX, and XXXX, where M is a 4-bit
match, and X is a 4-bit mismatch. Each region has its own compressor: The MSB region supports
up to 4 dictionary entries, and the LSB supports 8. The total compressed size is (16 · 2 + 14 ·
2 + (2 · 16 + 7 · 4)) + (16 · 2 + 14 · 3 + (2 · 16 + 14 · 4)) = 282 bits.

chunk R7 R6 R5 R4 R3 R2 R1 R0

0 0x00 0x00 0x00 0x00 0xAC 0x00 0xAC 0x01
1 0x00 0x00 0x00 0x01 0xAC 0x02 0xAC 0x03
2 0x00 0x00 0x00 0x02 0xAC 0x04 0xAC 0x05
3 0x00 0x00 0x00 0x03 0xAC 0x06 0xAC 0x07
4 0x00 0x00 0x00 0x04 0xAC 0x08 0xAC 0x09
5 0x00 0x00 0x00 0x05 0xAC 0x0A 0xAC 0x0B
6 0x00 0x00 0x00 0x06 0xAC 0x0C 0xAC 0x0D
7 0x00 0x00 0x00 0x07 0xAC 0x0E 0xAC 0x0F

Table 6.3 – Example cache line, divided into 64-bit chunks and 8-bit regions (R8C64).

of base-delta compressors generates an extra data access latency of 1 cycle and 3 cycles, when
storing encoding in the tags and data arrays, respectively. In the context of Region-Chunk com-
pression, it is preferred to store the encoding bits of multi-compressors in the tags only when
the region size is close to the chunk size compression.
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Figure 6.4 – The R32C64 concept was applied to multiple state-of-the-art proposals, so that there
are two compressors per chunk. Some of them benefit from Region-Chunk compression.

6.2.1 Generalizing Base-Delta Compressors

BDI [PSM+12] is a a multi-compressor composed of multiple base-delta compressors, ex-
changing compression efficiency for decompression speed. Each base-delta compressor’s com-
pressed data contains three fields: a base, which is the first unique non-zero chunk seen when
parsing a line; an array of deltas, which represent the value difference between a given chunk
and a base; and a bitmask that associates a base to each delta. This last field is needed because,
besides the explicitly stored base, BDI has an implicit second base, the zero value. This way,
when the value zero is used as the base for a delta, a special index is used in the bitmask field,
yet the zero-base itself is not stored.

We have previously examined the efficacy of state-of-the-art compressors in Chapter 5, and
it is clear that BDI presents a poor average compression ratio (Figure 5.1. One of the main
reasons for this outcome is its highly restrictive number of bases: for example, in SPEC 2017 the
average percentage of cache lines that are compressible with each of BDI’s sub-compressors —
Zeros, Repeated Values, B8∆4, B8∆2, B8∆1, B4∆2, B4∆1, B2∆1 — is, respectively, 11.3%,
12.7%, 15.0%, 17.1%, 42%, 14.6%, 19.3%, 15.1% (Figure 6.7). This means that most of the cache
lines being compressed would have needed more than the available pair of bases. We herewith
generalize the concept of a base-delta compressor to extend its support to any number of bases:
a base-delta compressor that parses cache lines in chunks of w bits to store up to x implicit and
y explicit w-bit bases, and whose deltas have z bits is represented as CwIxEyDz.
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Figure 6.5 – The R32C64 concept was applied to multiple state-of-the-art proposals, coupled
with Pairwise Space Sharing. Most of them benefit from Region-Chunk compression.

6.2.2 Optimizing Base-Delta Compressors

In compression, every bit matters; saving bits becomes even more important at smaller chunk
sizes, since the amount of metadata is increased; therefore, before defining the ideal set of base-
delta compressors to be used with Region-Chunk, we review CwIxEyDz compressors to maximize
their efficiency while still keeping their single-cycle decompression latency.

Ideally, base-delta compressors should select their bases based on the range of values in the
cache line: the selection should minimize the number of bases required to compress a line. In
practice, Pekhimenko et aĺ. show that arbitrarily picking the first occurrence of a new value only
marginally degrades performance, while reducing both hardware complexity and compression
latency [PSM+12]. Consequently, assuming that there is a uniform distribution of values, we
can expand on this idea to affirm that the probability of being able to compress subsequent
values after the base is set is the same, regardless of the LSB of such base. This can be leveraged
to reduce the number of bits needed to represent the bases; if the base’s z least-significant bits
are always fixed at a value — e.g., zero — they can be known implicitly, and only its MSB need
to be explicitly stored in the base’s field. The mapping on the top of Figure 6.8 depicts this idea.

For instance, assume that a C32I1E1D8 compressor is used to parse the 64-bit cache line
0x0123456701234568. In its non-optimized version, the first 32-bit value (0x01234567 ) would
be stored as the base 0x01234567 with a delta of 0x00, and the second value would be stored
as the delta 0x01 and a reference to the previous base. Elseways, when the base optimization is
applied, the first value would be stored as 0x012345 with a delta of 0x67, and the second value
would be stored as the delta 0x68. In the latter version, the deltas are relative to the base’s
implicit extended value, 0x01234500. Although not formally defined, this idea can be seen in the
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Compressor of Region R

Sub-Compressor 1 ...

Line of Region R

Compressed Line of Region R

Selector (Smallest size)

Sub-Compressor 0 Sub-Compressor 2 Sub-Compressor N

Figure 6.6 – A multi-compressor consisting of N+1 sub-compressors, which compresses the con-
tents of region R.

literature in DISH’s Scheme-II [PS16] — it is a C28I0E4D4 compressor.

Conceptually, this optimization narrows the gap between base-delta compressors and regular
pattern compressors; a CwIxEyDz compressor behaves akin to a dictionary-based pattern com-
pressor with 2 patterns: the uncompressed pattern and the pattern that matches all bits from
the MSB up to, but not including, the z delta bits. Basically, the difference between these com-
pressors is that the number of times that each pattern can occur in a CwIxEyDz compressor is
fixed. For example, when compressing a 64B cache line, a C32I1E2D8 compressor allows precisely
two occurrences of the pattern XXXX, and fourteen occurrences of the pattern MMMX.

Another minor optimization can be done regarding the bitmask/pointer field of dictionary-
based pattern compressors in general. Their dictionaries are populated on the fly, and they start
in either an empty state, or pre-populated with fixed values (the implicit bases). This means
that the initial chunks being parsed will only reference the initial dictionary entries; thus, some
bits can be cut off from the initial bitmasks. For example, a CwI1E3Dz compressor will always
initialize the dictionary with the implicit value. When parsing the cache line, the first chunk can
refer to two possible values — the implicit base, or a new base — which only requires 1 bitmask
bit. The second chunk must assume the worst case scenario, in which the first chunk did not
use the implicit base; therefore, it can refer to three possible values — the implicit base, the
base added by the first chunk, and a new base — which starts requiring two bits. This process
is repeated until the maximum number of dictionary entries is reached, which defines an upper
limit for the number of bits. The number of bits required to represent the index of the Nth chunk
is generalized by Equation 6.1.

numBitmaskBitsN = log2(numImplicitV alues + min(N, numExplicitV alues)) (6.1)
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0x01230000 0x4567Base Delta

0x01004500 0x2367Base Delta

Value 0x01234567

MMXX:

MXMX:

Figure 6.8 – Mapping deltas to different positions of the values. M is a base byte, and X is a
delta byte. When using mapping MMXX (top), the deltas are calculated relative to the last two
bytes of the values. When using mapping MXMX (bottom), deltas are relative to the first and
third least-significant bytes.

Neither of these optimizations increase hardware complexity, because they are defined on
compressor conception — for example, the number of bitmask bits that each chunk needs is
predefined with respect to the number of implicit and explicit bases the compressor has. Unless
stated otherwise, it should be assumed that CwIxEyDz compressors default to using both these
optimizations.

6.2.3 Dissociating Base Size from Parsing Type

As mentioned before, there are multiple basic types, and even if workloads have a single
predominant type, it is likely that other types are also present, in smaller portions. Therefore,
some lines could benefit from base-delta compressors that cover these corner cases. Base-delta
compressors, however, assume that there will be byte matches in the most-significant bits of the
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chunk, and that the deltas are relative to the least-significant bits, which means that a given
base size does not process well data types smaller than it.

Similarly to regular pattern compressors, CwIxEyDz can use other patterns to loosen the
relationship between the size of a base and its ability to parse data types — i.e., instead of
assuming that the deltas are the least-significant bits of the base, they can be remapped to
the least-significant bits of the desired type. For example, the default C32IxEyD16 compressor is
designed to target 32-bit data types, using patterns XXXX and MMXX. To cover 16-bit data
types, one could substitute the MMXX pattern by the MXMX pattern, as presented in the
bottom mapping of Figure 6.8. Unless specified otherwise, it is assumed that the delta bytes of
CwIxEyDz compressors are taken from the chunks’ least-significant bits.

6.3 Stride Compressor

Sometimes, the deltas in a base-delta compressor present a certain characteristic that can be
described by a mathematical equation. When this happens, the deltas can be compressed into a
smaller representation, by providing only the variables of the equation. A common occurrence
of this class of base-delta compressors is the arithmetic sequence — deltas differing by a fixed
value (a stride).

To improve compression in these cases, we propose the Stride Compressor. Instead of
storing every delta entry as in base-delta compressors, the Stride Compressor stores a single
base-delta pair, where the base is the first term in the sequence, and the delta is the common
difference between terms. For example, in the sequence of 16-bit values 0xF511, 0xF514, 0xF517,
0xF51A, 0xF51D, 0xF520, 0xF523, and 0xF526, the deltas differ by 3 units, thus the Stride
Compressor compresses the sequence as the base 0xF511, and the stride 0xF503. Decompression
is trivial — any chunk C is given by Cn = base + (n − 1) · delta — requiring no more than a
single cycle.

6.4 Selecting Sub-Compressors

A RxCw is composed of w

x
region compressors. These region compressors can be instances of

any compressor (e.g., C-Pack [CYD+10] or FPC-D [AA18]); however, to leverage on the speed
of the CwIxEyDz compressors, we propose a set of multi-compressors (SubRxCw) specialized
for fast decompression. The process used to select which sub-compressors worked best for each
SubRxCw is described here. These configurations are defined once, at design time (i.e., no
runtime overhead). Each SubRxCw has S = 2k − 1 sub-compressors — one encoding must be
reserved to indicate that all sub-compressors failed, and data is in uncompressed format.

In order to select which sub-compressors worked best for each SubRxCw configuration, we
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defined a "best compression ratio" (BCR) configuration that would determine the upper limit of
the compressibility of each workload. Ideally, each BCR SubRxCw configuration should contain
all possible values for y and z in CwIxEyDz; however, the exploration space would become unrea-
sonably large, so a few constraints were established to reduce redundancy: 0 ≡ (x + y) mod 2,
and x|x ∈ {0,

w

2 ,
w

4 ,
w

8 }. Finally, whenever the BCR did not have enough sub-compressors to
fill S under these constraints, a few fill sub-compressors that did not abide by these rules were
added. The following values were used to fill the implicit bases, in this order: 0, -1, 1, 2, 8.
These have been chosen due to their higher frequency in workloads [KGJ98]. For instance, if a
compressor uses two implicit bases, then the values 0 and -1 are selected.

After each SubRxCw’s BCR configuration is determined, the sub-compressors were individu-
ally removed with respect to their redundancy — "Does a configuration with fewer explicit bases
or smaller deltas compress as well as it?" — and usefulness — "Does a configuration with more
explicit bases or bigger deltas cover more cases at a low extra compressed size cost?". If the IPC,
compression or compaction ratio were significantly changed after a removal, the sub-compressor
would be reinstated, and the process would be repeated with another sub-compressor. Table 6.4
contains the final configuration for each of the SubRxCw compressors. On average, each BCR
baseline’s average compressed size differs from the final configurations’ by 3 bits. It is important
to notice that configurations and results for the compressors based on 8 and 16-bit chunks may
not be representative of the adopted workloads’ most frequent data types, and thus are possibly
sub-optimal.

6.5 Results

This section contains an analysis of the efficiency and effectiveness of the Region-Chunk
concept, as well as the proposed multi-compressors that make use of this concept. We do not
show results for RxC16 and RxC8 since these chunk sizes are not representative of the adopted
workload’s most frequent data types. When suitable the compressors are compared against
the best performing state-of-the-art compressor, FPC-D; however, the 2-cycle decompression
latency adopted in FPC-D’s original proposal is utterly unrealistic, given that it has to handle
back propagation of patterns, besides having a significantly higher number of patterns when
compared to base-delta compressors. As a result, we assume it requires 4 cycles to decompress.
The methodology to generate the results in this chapter was the same as the one used in Chapter
5 (see Section 5.2).

6.5.1 Base-Delta Optimizations

Figure 6.9 shows a comparison of the compaction ratio of R16C64 using the regular base-
delta compression, the base-delta compressor with delta bits represented implicitly, and the
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Compressor Sub-Compressors
SubR8C8 Stride (8-bits delta), C8I0E2D0, C8I0E8D0
SubR8C16 Stride (8-bits delta), C8I1E0D0, C8I1E0D6, C8I1E1D0, C8I2E2D0, C8I3E1D0,

C8I1E3D0, C8I0E4D0, C8I0E4D4, C8I5E3D0, C8I4E4D0, C8I1E7D4,
C8I0E8D0, C8I5E11D0, C8I2E14D0

SubR16C16 C16I1E0D0, C16I1E0D8, C16I1E1D0, C16I1E1D8, C16I2E0D0, C16I3E1D0,
C16I2E2D0, C16I1E3D0, C16I1E3D4, C16I0E4D0, C16I4E4D0, C16I3E5D0,

C16I2E6D0, C16I1E7D0, C16I0E8D0
SubR8C32 Stride (8-bits delta), C8I1E0D0, C8I0E1D0, C8I0E1D5, C8I1E1D0, C8I2E0D0,

C8I0E2D0, C8I2E2D0, C8I1E3D0, C8I0E4D0, C8I5E3D0, C8I4E4D0,
C8I3E5D0, C8I2E6D0, C8I1E7D0

SubR16C32 C16I1E0D0, C16I1E0D8, C16I1E1D0, C16I0E2D0, C16I0E2D8, C16I3E1D0,
C16I2E2D0, C16I2E2D8, C16I1E3D0, C16I0E4D0, C16I0E4D8, C16I3E5D0,

C16I3E5D8, C16I2E6D0, C16I1E7D0
SubR32C32 C32I1E0D16 (BDBD), C32I1E1D8, C32I1E1D16, C32I2E2D0, C32I2E2D8,

C32I1E3D0, C32I1E3D8, C32I0E4D0, C32I0E4D8, C32I4E4D0, C32I3E5D0,
C32I3E5D8, C32I2E6D0, C32I1E7D0, C32I0E8D0

SubR8C64 Stride (8-bits delta), C8I0E1D0, C8I1E1D0, C8I2E0D0, C8I2E2D0, C8I1E3D0,
C8I5E3D0

SubR16C64 Stride (16-bits delta), C16I1E0D0, C16I0E1D0, C16I0E1D8, C16I1E1D0,
C16I1E1D8, C16I0E2D0, C16I0E2D8, C16I3E1D0, C16I2E2D0, C16I2E2D8,

C16I1E3D0, C16I0E4D0, C16I4E4D0, C16I3E5D0
SubR32C64 Stride (32-bits delta), C32I1E0D0, C32I0E1D0, C32I1E1D0, C32I1E1D8,

C32I1E1D16, C32I3E1D0, C32I2E2D0, C32I2E2D8, C32I1E3D0, C32I1E3D8,
C32I1E3D16, C32I4E4D0, C32I3E5D0, C32I3E5D8

SubR64C64 Stride (64-bits delta), C64I1E0D0, C64I1E0D32, C64I1E0D32 (BBDDBBDD),
C64I1E0D32 (BDBDBDBD), C64I0E1D0, C64I1E1D0, C64I1E1D8,
C64I1E1D16, C64I2E2D0, C64I2E2D8, C64I2E2D16, C64I2E2D16

(BBBDBBBD), C64I1E3D0, C64I1E3D8

Table 6.4 – List of sub-compressors used in the best configuration for each of the RxCw com-
pressors. For example, R16C64 is composed of four instances of SubR16C64, one per region.

fully optimized base-delta compressor (implicit deltas + bitmask optimization). These results
confirm the hypothesis: these optimizations increase the efficiency and efficacy of the base-delta
compressors, for all workloads.

6.5.2 The RxCw Compressors

When using Region-Chunk, the bigger the chunk size, the more data types are covered by
the compressor; and the smaller the region size, the higher the chance to deduplicate bases.
However, the more regions exist, the more metadata is added. Figure 6.10 shows the average
compression and compaction ratios for each of the RxC64 and RxC32 compressors proposed,
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Figure 6.9 – Comparison of R16C64 using different levels of optimization.

as well as a SubR32C64 without the Region-Chunk concept. Overall, a region size of 16 bits
generates a positive trade-off between data duplication and metadata increase.

The proposed RxCw compressors perform comparably to state-of-the-art compressors. In
addition, the results for SubR32C64 show that the main improvements of RxCw are due to the
region abstraction, not the new selection of base-delta compressors. Finally, FPC-D improved
its average compression ratio by 2% — BPC, C-Pack, FPC, Huffman and X-RL, although not
depicted, have improvents in the range of 1-8%. This means that further dividing chunks into
regions is beneficial to dictionary-based cache compressors in general.

6.5.3 Single-Cycle Decompression

So far all experiments have assumed that the regions’ encodings are stored in the data entry;
thus, each compressor’s decompression latency is 3 cycles. However, if the encodings are stored
in the tag entry — as in BDI — part of the decompression process can be done in parallel with
the data access, reducing the effective decompression latency to 1 cycle. Furthermore, when bits
are removed from the data entry, some sub-compressors — notably the ones whose compressed
size is close or equal to half the entry’s size — co-allocate better.

Figures 6.11a and 6.11b present, respectively, the IPC and compaction ratio when storing
the encoding in the tag and in the data entry, as well as a comparison against BDI, FPC-D and
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Figure 6.10 – Comparison of the RY CX compressors.

a twice larger uncompressed cache. To reduce visual pollution, and since the best results are
achieved with the RxC64 compressors, results are only shown for these configurations.

Storing encoding in the tags, although beneficial, can introduce a high area overhead for
configurations with multiple regions; therefore, we recommend using this latency improvement
in configurations with up to two regions. In any case, one can achieve similar compaction ratio
improvements by removing a single delta bit from a few key sub-compressors. For example,
turning C64I1E0D32 into C64I1E0D31 makes enough room to fit its compressed data and the
compressor identification metadata in half a data entry.

6.5.4 Compressor Area overhead

Multiple multi-compressor configurations are listed in Table 6.4, each of which containing a
certain number of CwIxEyDz base-delta compressors. The circuit of any individual CwIxEyDz is
analogous to any base-delta sub-compressor of BDI — CwIxEyDz is a generalization of base-delta
compressors. We have synthesized SubR32C64 using Qflow [Edw19] (Region-Chunk concept not
applied), and the generated circuit has twice BDI’s area.

100



6.5. Results

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

502.gcc

503.bwaves

505.m
cf

507.cactuBSSN

510.parest

519.lbm

520.om
netpp

521.wrf

523.xalancbm
k

526.blender

527.cam
4

541.leela

549.fotonik3d

554.rom
s

Mean

IPC Speedup (%)

R8C64+PSS
R8C64Fast+PSS

R16C64+PSS
R16C64Fast+PSS

R32C64+PSS
R32C64Fast+PSS

R64C64+PSS
R64C64Fast+PSS

FPCD+PSS
R32C64(FPCD)+PSS

BDI+PSS
2MB

(a) IPC speedup, normalized to uncompressed baseline.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

502.gcc

503.bwaves

505.m
cf

507.cactuBSSN

510.parest

519.lbm

520.om
netpp

521.wrf

523.xalancbm
k

526.blender

527.cam
4

541.leela

549.fotonik3d

554.rom
s

Mean

Compaction Ratio (L3)

R8C64+PSS
R8C64Fast+PSS

R16C64+PSS
R16C64Fast+PSS

R32C64+PSS
R32C64Fast+PSS

R64C64+PSS
R64C64Fast+PSS

FPCD+PSS
R32C64(FPCD)+PSS

BDI+PSS

(b) Compaction ratio.

Figure 6.11 – Comparison of the RxC64 compressors regarding storing the encoding in the tag
entry versus in the data entry.

Region-Chunk compression is a conceptual change that merely divides the input among
its multiple region compressors. This means that the area of any compressor using the Region-
Chunk concept is approximately equal to the sum of the areas of its region compressors. However,
region compressors using the Region-Chunk concept are simpler than their non-Region-Chunk
counterpart. This is the case because Region-Chunk naturally parallelizes compression and de-
compression by splitting the input line among its region compressors; therefore, the region
compressors themselves can reduce or remove their level of parallelization. For example, C-Pack
parses two chunks in parallel per cycle. The same level of parallelization can be achieved with a
Region-Chunk compressor using two instances of C-Pack, where each instance parses one chunk
per cycle.

In the specific case of base-delta compressors, they achieve 1-cycle latencies by processing
all chunks of the line simultaneously. Therefore, instead of a base-delta compressor that parses
64-byte lines using sixteen 32-bit adders operating on two 32-bit values, one can use the Region-
Chunk concept to split the input into two 32-byte lines, each parsed by its own region compressor.
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Each region compressor would then be composed of sixteen 16-bit adders operating on two 16-
bit values. This means that a R32C64 encompassing two instances of SubR32C64 has 2.5x BDI’s
area, instead of 4x.
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Chapter 7

CONCLUSION

The memory hierarchy provides a great speedup when compared to direct accesses to the
primary or secondary storage; nonetheless, the many memory layers added increase the total
system’s cost, energy consumption, and bandwidth requirements. In addition to these drawbacks,
each level of the hierarchy is limited by its capacity, and the delays of trying to locate missing
lines accumulate throughout the levels, adding to the final access latency.

Multiple fields of research address the pitfalls of memory hierarchies, and how to reduce
their negative impact. One of these fields is cache and memory compression, which works by
detecting duplicated values to reduce the size of stored data. Although compressed memories
are able to reduce some of the drawbacks described, they also have their own set of positive and
negative aspects. In any case, the benefits of compressed memories, and the increasingly high
cost of larger memories have resulted in the slow emergence of a few commercial applications
over the last decades.

In Chapter 2 we have thoroughly detailed the challenges of compressed cache designs, and
presented the strategies adopted by the literature to tackle these issues. We show that the design
of a compressed cache relies on a compound of decisions. The foremost decision is the goal of
the compressed system: to increase effective capacity, decrease energy consumption, improve
bandwidth, or to reduce the overhead of orthogonal techniques. Although results may overlap
among different goals, each of these impacts the system differently, and the rest of the decisions
must reflect on this on the objective adopted here.

Then the compression algorithm is selected, as well as the compound of compaction decisions
to accommodate the compressed lines, given the system’s goal. This means that the cache layout
itself must change: for instance, in capacity-focused designs there must be a way to map more
blocks into physical data entries. In this case, a solution could be to add more tag entries,
but this would imply in a large overhead. Alternative representations have smaller costs, but
typically imply sacrificing mapping freedom or compressibility.

Another important consideration is that the compressor should not affect the area budget or
the access latency significantly; thus, they need to find a reasonable trade-off between compres-
sion efficiency, circuit complexity and decompression speed. Typically, compression algorithms
tend to aim for low complexity, moderate compressibility, and some degree of parallelization.
Nonetheless, compression can still be a burden for some workloads, even when the decompression
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latency is low; therefore, it is essential to provide means to reduce its negative impact. Solutions
usually include caching uncompressed data to avoid performing decompressions on the critical
path, and dynamically determining if compression should be enabled or disabled, a decision
based on the usefulness of compression given the execution characteristics of workloads.

Chapter 3 continues the scrutinization of hardware compression techniques with the chal-
lenges added when applying compression to memory and the links between memory levels. When
the level being compressed is the memory, the compression algorithms remain valid; however, a
few assumptions need to change regarding the layout, and extra challenges arise. The Operating
System is agnostic to the cache hierarchy, but relies on the memory size information to deter-
mine how pages are managed. In addition, while conventional caches use tags to locate lines,
memories typically do not have such structures; therefore, finding compressed blocks and pages
requires special handling.

Ultimately, compression is not restrained to be used in a single memory level. Furthermore,
even if only a single level is compressed, the moment at which compression and decompression are
applied is not enforced to be on the exact time of physical access. Finally, even if no memory level
is compressed, compression can still be applied to improve bandwidth or energy consumption.
These situations can occur by transferring compressed data between memory levels, and common
approaches taken by the literature to handle these so-called link and hierarchy compression
methods are also described.

In Chapter 6 we explore the granularity of cache compressors, aiming to increase their effi-
ciency. The goal of the exploration was to better isolate and compress cache lines, and to lower
the impact of the workloads’ primary data types. This is achieved by the Region-Chunk concept,
which further divides cache lines into regions to increase the likelihood of deduplicating data.

The Region-Chunk concept can be applied to any cache compressor; however, it is highly
advantageous for base-delta compressors, since they have a limited pattern selection. For this
reason we formally define optimizations to base-delta compressors, and select and group these
optimized compressors into multi-compressors specialized for Region-Chunk compression. These
proposed configurations perform comparably to compressors of higher complexity in terms of
both compression efficiency and efficacy, while still keeping the low decompression latency of
base-delta compressors.

To take advantage of these improvements in compressibility, in Chapter 5 we propose Pairwise
Space Sharing. PSS modifies the size field representation to allow more co-allocations to happen
at a lower cost than previous proposals. It co-allocates lines in pairs, so that it can use implicit
information to reduce compression-size metadata overhead, increase the number of co-allocation
opportunities, and remove the need to re-compact due to small changes in the compressed data’s
size. Combined, these ideas maximize the compression potential of base-delta compressors; caches
using the proposed compressors achieve an average effective capacity of 1.43x, greatly improving
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from BDI’s 1.18x. Finally, these proposals are concepts; thus they can be applied to most of
the existing compressors. When applying both Region-Chunk compression and PSS to the best
performing state-of-the-art compressor examined, FPC-D, its compaction factor improved from
1.39x to 1.42x.

7.1 Future Work

This work scrutinizes base-delta compressors to make them efficient for workloads consisting
mostly of a single data type. Although out of the scope of this thesis, it would be interesting
to analyse which combination of the CwIxEyDz sub-compressors generates a hybrid that covers
any generic workload. This could be further expanded by dynamically choosing (e.g., via set
dueling) which compressors should be used based on the workload’s behavior.

As stated previously, different data regions respond differently to compression. The results
presented in this paper use compressor configurations where all regions in a chunk use the
same set of sub-compressors; yet, tailoring sub-compressors based on the regions they belong
to could be beneficial. For example, given that MSB tend to have lower variability, the regions
that encapsulate such bits could use sub-compressors with fewer bases or smaller deltas. On the
other hand, since LSB-related regions likely have higher entropy, they could benefit more from
using sub-compressors with more bases or greater deltas.

Analogously, the base-delta compressor can be further generalized by keeping the number of
deltas fixed, but reducing it so that it no longer matches the number of chunks. This compressor,
besides having the conventional bitmask field to associate a base to each chunk, adds a new
bitmask field to inform to which delta a chunk is associated. Studying which configurations of
number of bases and number of deltas are sufficient to compress cache lines may allow further
improving compression efficiency.

BPC [KSCE16] is a technique that further enhances the compressibility of base-delta com-
pressors by adding bitwise operations to reduce entropy. As such, it can be applied on top of the
new multi-base compressors whose delta size is not 0. This would increase their decompression
latency, but their efficiency would also be increased.

The stride compressor presented here was fairly simple. Stride schemes have been explored
for decades, and some of the proposed ideas can be adapted to upgrade this compressor. Further-
more, stride is just one of the common mathematical relationships between values in a cache line,
and further equations could be explored. For example, workloads may exhibit multiple strides
relative to different values; thus, the stride compressor’s could be increased by using more bases
and deltas. In addition, one can add a bitmask to inform to which chunks a stride should be
applied.

Finally, the addition of regions makes single-cycle-decompression compressors reach compet-
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itive levels; therefore, caches closer to the core can perceive less the impact of the decompression
step, and a fully-compressed memory hierarchy becomes more feasible.

7.2 Final Remarks

Compressed systems have advanced throughout the years, requiring lower metadata over-
head, and decompression cycles than earlier approaches; however, despite all the advancements,
their average improvement of the effective capacity, in general, is still fairly low when compared
to their theoretical upper limit. The typical hardware data-compression algorithm is a simpli-
fication of dictionary-based data-compression algorithms; yet, software data-compression is a
matured topic that can be looked upon to further improve hardware proposals.

Finally, compression has the ability to enhance levels in the memory hierarchy, and its po-
tential further increases when multiple levels are compressed. A completely compressed memory
hierarchy is the holy grail of hardware compression. A slim selection of previous works partially
tackle the idea of a completely compressed memory hierarchy; however, many challenges still
remain for its adoption by industry. Different levels do not abide by the same restraints — e.g.,
the impact of the decompression latency varies between levels — so when designing such systems
it is important to be flexible enough to attain a good per-level trade-off between compressibil-
ity and speed, while still maintaining some kind of compressor compatibility between different
memory levels.
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Titre : Vers la Vompression à Tous les Niveaux de la Hiérarchie de la Mémoire
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Résumé : Les techniques de compression ma-
térielle sont généralement des simplifications des
méthodes de compression logicielle. Elles doivent,
toutefois, se conformer aux contraintes de surface,
de puissance et de latence. Cette étude dévoile
les défis de l’adoption de la compression dans la
conception de la mémoire. Le but de l’analyse n’est
pas de résumer les propositions, mais de mettre en
évidence les solutions qu’ils emploient pour relever
ces défis. Une description détaillée des principales
caractéristiques de plusieurs méthodes est four-
nie, ainsi que des critères qui peuvent être utilisés
comme base pour l’évaluation de ces systèmes.

Généralement, ces schémas ne sont pas trés
efficaces, et les schémas qui compressent bien dé-
compressent lentement. Ce travail explore leur gra-
nularité pour redéfinir leurs perspectives et amé-
liorer leur efficacité, à travers un concept appelé
compression Region-Chunk. Son objectif est d’ob-
tenir un haut (bon) taux de compression et une la-

tence de décompression rapide. L’observation clé
est qu’en subdivisant davantage les blocs de don-
nées compressés, on peut réduire la duplication
des données. Ce concept peut être appliqué à
plusieurs compresseurs précédemment proposés,
entraînant une réduction de leur taille moyenne
compressée. En particulier, un compresseur à dé-
compression à cycle unique est boosté pour at-
teindre un niveau de compressibilité compétitif par
rapport aux propositions de pointe.

Enfin, pour augmenter la probabilité de co-
allouer avec succès des lignes compressées, Pair-
wise Space Sharing (PSS) est proposé. PSS peut
être appliqué orthogonalement aux méthodes de
compactage sans pénalité de latence supplémen-
taire, et avec une surcharge de métadonnées ren-
table. Le système proposé (Region-Chunk + PSS)
améliore encore la capacité normalisé moyenne du
cache de 2,7% (moyenne géométrique), tout en of-
frant une courte latence de décompression.

Title: Towards Compression At All Levels In The Memory Hierarchy

Keywords: Cache, Memory, Hardware Compression

Abstract: Hardware compression techniques are
typically simplifications of software compression
methods. They must, however, comply with area,
power and latency constraints. This study unveils
the challenges of adopting compression in mem-
ory design. The goal of this analysis is not to sum-
marize proposals, but to put in evidence the solu-
tions they employ to handle those challenges. An
in-depth description of the main characteristics of
multiple methods is provided, as well as criteria
that can be used as a basis for the assessment
of such schemes.

Typically, these schemes are not very effi-
cient, and those that do compress well decompress
slowly. This work explores their granularity to rede-
fine their perspectives and improve their efficiency,
through a concept called Region-Chunk compres-
sion. Its goal is to achieve low (good) compression

ratio and fast decompression latency. The key ob-
servation is that by further sub-dividing the chunks
of data being compressed one can reduce data du-
plication. This concept can be applied to several
previously proposed compressors, resulting in a re-
duction of their average compressed size. In par-
ticular, a single-cycle-decompression compressor
is boosted to reach a compressibility level compet-
itive to state-of-the-art proposals.

Finally, to increase the probability of suc-
cessfully co-allocating compressed lines, Pairwise
Space Sharing (PSS) is proposed. PSS can be ap-
plied orthogonally to compaction methods at no ex-
tra latency penalty, and with a cost-effective meta-
data overhead. The proposed system (Region-
Chunk+PSS) further enhances the normalized av-
erage cache capacity by 2.7% (geometric mean),
while featuring short decompression latency.
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