
HAL Id: hal-03461189
https://hal.inria.fr/hal-03461189

Submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Learning for Web Crawling
Konstantin Avrachenkov, Vivek Borkar, Kishor Patil

To cite this version:
Konstantin Avrachenkov, Vivek Borkar, Kishor Patil. Deep Reinforcement Learning for Web Crawling.
ICC 2021 - 7th Indian Control Conference, Dec 2021, Mumbai, India. �hal-03461189�

https://hal.inria.fr/hal-03461189
https://hal.archives-ouvertes.fr

Deep Reinforcement Learning for Web Crawling
Konstantin Avrachenkov

Inria Sophia Antipolis,
Valbonne, 06902, France

k.avrachenkov@inria.fr

Vivek Borkar
Indian Institute of Technology Bombay,

Mumbai, 400076, India
borkar.vs@gmail.com

Kishor Patil
Inria Sophia Antipolis,

Valbonne, 06902, France
kishor88k@gmail.com

Abstract—A search engine uses a web crawler to crawl the
pages from the world wide web (WWW) and aims to maintain
its local cache as fresh as possible. Unfortunately, the rates
at which different pages change in WWW are highly non-
uniform and also, unknown in many real-life scenarios. In
addition, the finite available bandwidth and possible server
restrictions on crawling frequency make it very difficult for the
crawler to find the optimal scheduling policy that maximises
the freshness of the local cache. We model this problem in
a multi-armed restless bandits framework, where each arm
represents a web page or an aggregate of statistically identical
web pages. The objective is to find the scheduling policy that
gives the exact indices of the pages to be crawled at a particular
instance. We provide an online learning scheme using deep
reinforcement learning (DRL) framework which learns the
unknown page change dynamics on the fly along with the
optimal crawling policy. Finally, we run numerical simulations
to compare our approach with state-of-the-art algorithms such
as static optimisation and Thompson sampling. We observe
better performance for DRL.

Index Terms—Reinforcement Learning, Adaptive Web
Crawling, Thompson Sampling, Multi-armed Restless Bandits.

I. INTRODUCTION

A web crawler is used by search engines to access various
web pages at certain frequencies, and depending on whether
a page has changed or not, the indexing is updated in
its local cache. The success of a search engine typically
depends on the freshness of this update. Thus, the objective
of the crawler is to find the optimal scheduling policy
that maximises the freshness of the local cache. There are
two major challenges in this process - i) actual change
rates of pages are unknown to the crawler, ii) the crawl
frequency is limited due to finite available bandwidth and
possible server restrictions. One approach to obtain the near-
optimal scheduling policy is to estimate actual page change
rates using any of the methods provided in [6], [12], [24].
Then, these estimators can be combined with the static
optimisation problem as in [8] to find the optimal crawling
rates for a given page while accounting for the bandwidth
constraint mentioned above. However, a major drawback for
this approach is that it is an offline method, i.e., one cannot
update the policy on the fly. This opens up the need for
solving the on-line dynamic optimal control problem.

Some recent works [4], [18] address the same problem
using a multi-armed restless bandit framework. In particular,
the authors first show that the problem is Whittle indexable

and then provide the exact expression for Whittle indices.
These indices are then used to schedule the pages for
updates, i.e., the pages having higher indices get the priority
for updating over those with lower indices. It is important
to note that the derivation of this priority-index type policy
needs to know the exact dynamics of the page change rate
process. In the absence of such knowledge, one can learn
the Whittle indices using the Q-learning algorithm given in
[5]. However, the major concern for Q-learning is that it
faces a state-space explosion problem and thus, may not be
able to update Q-value properly for larger state spaces. This
will result in a poor estimation of Whittle indices. For other
control-theoretic approaches to web crawling, we refer to
[3], [16], [22].

In this paper, we consider the same problem within
the restless bandit framework and propose deep learning
approach for obtaining the optimal crawling policy. In
particular, we use an artificial neural network to approximate
the Q-value function and use it to select the page/group
of pages to update at a particular time instance. Moreover,
we account for the fact that the freshness of every page
(or a group of pages) is not equally important to the users.
For example, news pages change with very high frequency
compared to other pages such as institutional or personal
websites. We adjust the reward structure such that our
scheduling policy accounts for how often a page changes
and how important the pages are. Finally, we also provide
two baseline algorithms including static optimisation (SO)
and Thompson sampling (TS) and evaluate the performance
of our algorithm against them.

Most of the literature in web crawling typically assumes
that the page change process is Poisson point process [8]–
[11]. Unlike these works, our algorithm does not require any
assumption on the crawling as well as page change process.
In fact, it does not even need to know the exact dynamics
of the page change process.

The rest of this paper is organised as follows. The next
section provides the mathematical model explaining the un-
derlying Markov decision process (MDP) setup. In Section
III, we discuss the deep reinforcement learning approach
to solve the control problem. Then we discuss a couple of
baseline algorithms in Section IV and present the evaluation
of the performance of our algorithm against them in Section
V. Finally, we conclude in Section VI with pointers to some
future directions.

II. MATHEMATICAL MODEL

In this section, we provide the mathematical formulation
for our problem. We assume that each page in the local
cache has its update/change rate. The crawler needs to fetch
these pages from a global directory with a certain crawling
frequency so that the freshness of the local repository is
optimised. Ideally, the crawler would like to access all the
pages at once whenever it is scheduled to visit the global
directory. However, this is often impossible due to limited
available bandwidth and politeness constraint that amounts
to a limitation on crawling frequency from the remote server.
Thus the crawler can only update a few pages at a given time
instance, which leads to the need for optimal scheduling.

The number of pages present in the local cache of the
search engine typically varies from a few hundred to several
thousand millions. In most real-life situations, it is very
difficult, if not impossible, to track the crawling process of
each page separately. One possible solution that we discuss
in this paper is to group the pages having similar behaviour.
This further helps to categorise the pages according to their
importance and their change frequency. We then model the
underlying problem as multi-armed restless bandits where
each group represents an arm of the bandit. At each time
instance, one group is selected from which we select a single
page for crawling. Note that the number of pages in the
group can be different, however, we assume that all pages
inside any given group are indistinguishable. For simplicity,
we chose one page at a time to crawl using a round-robin
scheme from the selected group.

The dynamics of each group are governed by a Markov
Decision process (MDP). The details are as follows.

State space1: The state of kth arm (group) is represented by
(Xk(t), Yk(t)) where Xk(t) ∈ N = 1, 2, 3, . . . is the number
of time slots since it was last chosen and Yk(t) = 1 if the
page to be selected from group k has been updated in the
last visit, zero otherwise. Then Z(t) =

(
Xk(t), Yk(t)

)K
k=1

denotes the state of the bandit process where K is the
number of arms. For simplicity, we assume that Xk(t)
takes value in X k which is finite or countable. For future
reference, let Nk be the total number of pages in group k.
Actions: Each arm has a binary action process {0, 1}
depending on whether it is selected or not.

Ak(t) :=

{
1, if arm k is chosen at time t
0, otherwise.

From the chosen group, we then select one page according
to the round-robin scheme. Thus, a joint control action
A(t) =

(
Ak(t)

)K
k=1

denotes the decision made by the
bandit at time t. Since we can only choose one arm at

1We note that in this model we need to work with partially observed
states. Specifically, variable Yk becomes observable only after selecting arm
k. However, this is not a problem since we can view the partial observations
as a restriction on the neural network.

each time, A(t) must have only one nonzero component,
or equivalently,

K∑
k=1

Ak(t) ≤ 1, for t = 0, 1, 2, . . . (1)

The extension to the more general case of selecting K > 1
arms at a time is rather straightforward, for example see [4],
[5].
Rewards: The reward at each stage depends on two factors:
i) the group from which a page is selected for crawling and,
ii) the indicator whether the selected page from the group
has been changed or not since it was last crawled.

Let µk represents the ‘importance’ of the group k. The
importance of page is related to how often it is changing
and the impact of its freshness on overall system. Recall
that at each time instance we select one page from a chosen
arm in round-robin fashion. Let us define a pointer Dk(t)
which returns the id of the page to be selected at time t
from group k. We now define the indicator Ijk(t) as below,

Ijk(t) = 1{j=Dk(t)} 1{δj(t)=1} (2)

Here, the indicator function 1{·} evaluates to 1 if its argu-
ment is true and to 0 if this is not the case. Furthermore,
δj(t) is the indicator whether page j has been modified or
not at time t since it was last crawled. In simple terms,
Ijk(t) is 1 if the selected page j from group k was modified
since it was last crawled. We now define the state and action
dependent one-slot net rewards for group k as,

Rk(Zk(t), Ak(t)) = µk Ak(t)

Nk∑
j=1

Ijk(t) for µk > 0. (3)

State Dynamics: The state of an arm evolves as follows
with probability 1,

Xk(t+ 1) :=

{
0, if Ak(t) = 1
Xk(t) + 1, if Ak(t) = 0.

(4)

and

Yk(t+ 1) :=

{
1{δDk(t)(t)=1}, if Ak(t) = 1

Yk(t), if Ak(t) = 0.
(5)

Objective: For infinite horizon optimisation problem, our
objective is to find a long-run discounted-optimal policy
which maximises the following objective function with
respect to the policy π,

Eπ
[∞∑
t=0

N∑
k=1

γtRk(Zπk (t), Aπk (t))

]
(6)

subject to,

N∑
k=1

Ak(t) = 1, for t = 0, 1, 2, . . . (7)

Here γ ∈ (0, 1) is the discount factor. The above constraint
ensures that no more than one group (arm) is active at

each time instance. Furthermore, only a single page is
selected from the chosen group. This problem is in general
computationally intractable [19].

III. DEEP REINFORCEMENT LEARNING

The Q-Learning [25] algorithm works well when the
environment is small, simple and the function Q(s, a) can be
represented using a table or a matrix of values. The problem
becomes quickly intractable as the size of the state and/or
the action spaces increase. This is often referred to as the
state-space explosion problem in Markov decision processes.
One possible solution is to use deep neural networks to
approximate the Q-function, replacing the need for a table
to store the Q-values. The resulting algorithm is known as
Deep Q-Networks (DQN) [17] reinforcement learning. The
main challenge lies in designing the deep neural network
which can approximate the Q-function appropriately.

We now present the details of the neural network that we
use in this paper. The input is nothing but the state of the
system that consists of two separate vectors X(t) and Y (t),
• Elapsed time since last crawled for each group X(t) =(

Xk(t)
)K
k=1

.
• Indicator if the page selected for crawling from a

particular group was up-to-date or not during the last
crawl Y (t) =

(
Yk(t)

)K
k=1

.
The output of the neural network is the set of K real

values which is equal to the number of arms (groups).
We select the arm with the highest value. As discussed
in the earlier section, once the arm (group) is chosen, we
select the page to crawl from that group sequentially. To
balance exploration-exploitation trade-off, we use epsilon-
greedy scheme.

We use the full gradient DQN (FG-DQN) algorithm
explained in [7]. We make a slight modification in FG-DQN
in order to adapt it to our problem setup. In particular, we do
not fetch samples from replay memory by fixing the current
state-action pair, whereby we avoid the computational effort
of using special experience replay used in [7]. We now
explain the motivation behind this. The input to the neural
network is the state of the system which has twice the
number of elements as the total number of arms. While
running the simulations, we observed that it was difficult to
get multiple samples from replay memory by fixing state-
action pair at each time. This is because we have to find out
the samples matching all the elements of state and action.
We mostly observed only one sample from replay memory.
Therefore we decided to avoid using the special experience
replay. However, we still use a batch of random samples
to update the parameters of the neural network as in the
original FG-DQN. The pseudo-code for the DRL algorithm
is explained in Algorithm 1. See Appendix for more details.

IV. BASELINE ALGORITHMS

A naive algorithm is to select an arm uniformly at random.
We will observe in the numerical section that such an
approach can be quite wasteful even for a small number

Algorithm 1: DRL - Web crawling
Input: replay memory D of size M , minibatch size
B, number of Iterations T , discount factor γ and,
exploration probability ε.

Initialise the weights θ randomly for the Q-Network.
Initialise pointers Mk to zero so that they denote

first page of each group.
Receive initial observation s1 = {X0, Y0}.
for n = 1 to T do

Generate a uniform random variable Un with
support [0,1]

end
if Un < ε (here, Uni[0,1] is uniform random) then

Select the arm Un at random.
else

Un = ArgmaxuQ(Zn, u; θ)
end
Select the page in the corresponding group and fetch

it.
If the pointer denotes the last page of the group then

reset Mk to 0 otherwise increase Mk by 1 to
denote next page in the group.

Observe the reward Rn and obtain next state Zn+1.
Store the tuple (Zn, Un, Rn, Zn+1) in D.
Sample random minibatch of B tuples from D.
Compute gradients and using [7, Eq.(19)] without

considering an experience replay.
update parameters θ.

of arms and can fail completely for complex problems. For
a fair comparison, we provide two different baseline algo-
rithms which efficiently balance the exploration-exploitation
trade-off.

A. Thompson Sampling (TS)

TS [23] was originally introduced for clinical trials in
1933 to allocate experimental effort in two-armed bandit
problems and was later adapted widely for many applica-
tions, e.g., [1], [13], [14]. We adopt here a similar approach
by considering Bernoulli bandits. Moreover, we work with
Beta distributions because of their conjugacy properties. In
particular, we start with parameters (αk = 1, βk = 1)
for all arms and then update these parameters using the
Bayesian update rule i.e., αk or βk increases by one with
each observed success or failure, respectively. Note that only
the parameters of the selected arm are updated. At each time
instance, random samples are generated from these Beta
distributions and the arm corresponding to the maximum
value of this sample is selected. We get a reward equal to
the importance of the arm only if the selected page has been
changed since its last visit. For pseudo-code, we refer to [2,
Algorithm 2].

B. Static Optimisation (SO)

The goal of the server is to maximise the average fresh-
ness given by,

E

[
1

T

T∑
t=1

K∑
k=1

µk1{Fresh(k,t)}

]
where T is the time horizon and Fresh(k, t) is the event that
page k is fresh at time t. For large T , Azar et al. [8] showed
that the above objective function corresponds to following:

F (p) =
∑
k

µk pk
pk + ∆k −∆k pk

. (8)

Here ∆k is the probability that page k is changed in a
given time unit, independently of other pages and time steps.
The update policy is denoted by a distribution {pi}ki=1 over
pages. We assume that only one page will be crawled at a
time and obtain the optimal policy (p∗i) using [8, Algorithm
1]. Note that, the problem set-up assumes that the server has
full knowledge of the actual change rate process of all the
pages.

To implement the static optimisation policy, we first
obtain the optimal probability distribution assuming the full
knowledge of change rate probabilities of each page. Then
we consider the multi-arm bandit framework where we
select an arm according to this distribution at each time
instance. The reward structure is the same as in the above
cases.

V. NUMERICAL EXAMPLES

In this section, we present numerical simulations to
compare the performance of our approach to baseline al-
gorithms. For simplicity, we assume that all the pages can
be grouped into four different categories as described below.
The percentage next to the category represents the fraction
of volume each group occupies from the local cache.

1) Small, expensive and frequently changing (5%)
2) Large, inexpensive and infrequently changing (80%)
3) Moderately large, expensive and infrequently changing

(10%)
4) Small, inexpensive and frequently changing (5%)
Let λi, i ∈ {1, 2, 3, 4} represents the actual rates at which

each page changes in group i and let Ni be the number of
pages in group i. Note that these rate should satisfy [2]
following condition,

∑4
i=1Ni λi ≤ 1

We start with a simple case, i.e., assuming one page
per group. Thus each arm in the bandit framework rep-
resents a single page. The change rates are fixed at
[0.6, 0.08, 0.01, 0.3]. Note that these rates are only used
to generate an observation if a particular page has been
changed in the particular time slot or not. As a result, the
system can only detect the change in the page if any, but
has no knowledge of how many times a page has been
updated in a given time slot. We further make the natural
assumption that each page has different importance µk and
set µ = [5, 0.2, 1, 0.5].

0 2000 4000 6000 8000

Itr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

R
ew

ar
d

s

Uniform

TS

DRL

SO

Fig. 1. Running Average: Single page in each group

We use a neural network with two hidden layers. The
number of neurons for the hidden layers are 4000, and 8
respectively. For non-linearity, we use ReLU activation after
each hidden layer. we use the on-policy version with the
popular ‘ε-greedy’ scheme which picks the current guess
for the optimal choice with probability 1 - ε and chooses a
control uniformly with probability ε. We start with ε = 0.7
and slowly decrease it with the iteration to ε = 0.1. The
discount factor for the MDP is set to γ = 0.95.

At each iteration, we save the immediate reward and then
calculate the running average. We run the experiment for
10 runs and plot the average in Fig. 1. The shaded region
denotes the 95% confidence interval for the averaged reward.
It is easy to verify from the Fig. that Thompson sampling,
DRL and static optimisation (SO) outperform the uniform
policy. Furthermore, the average reward for DRL and SO is
higher than that of TS. We also observe that the variance
for DRL is higher initially but is reduced with number of
iterations.

In case of SO, the optimal probability distribution is
[0.942, 0.055, 0.003, 0.]. We select one arm according to this
distribution at each time. Since this is a threshold policy, it
may happen that some pages have zero probability of being
selected. For example, in this example, page 4 is never
crawled. This is unfavourable in many real-life scenarios
and is another limitation of SO policy in addition to the
need of knowing λs beforehand. On the other hand, TS is
an online learning scheme that starts with an equal chance
of selecting an arm and then improves the parameter of
each page depending on the success or failure of detecting
the page change. It balances the exploration-exploitation
trade-off efficiently. Intuitively, the page with the highest
number of changes will be selected most often given all
else equal. However, if this page is selected too often then
the system will fail to detect the changes and thus decreases
the probability of being chosen. In the long run, TS will try

0 2500 5000 7500 10000 12500 15000 17500

Itr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

R
ew

ar
d

s

Uniform

TS

DRL

SO

Fig. 2. Running Average: Multiple pages in each group

to learn the actual change rate of the pages.
We now move on to a more general case. In practice, sev-

eral web pages having the same properties can be grouped
such as news pages, educational websites etc. Note that
one can use different features to group the pages. The
only assumption we make in the group setting is that the
pages inside the groups are indistinguishable and behaves
similarly. Next, we identify each arm of the bandit with one
group. When an arm is selected at a particular time, we crawl
the pages inside the group sequentially. More precisely, we
maintain a pointer Mk for each group. When group k is
selected, we crawl the page denoted by pointer Mk and
increase it by 1. Thus, the next page gets crawled when
the same group is selected next time. For the non-selected
group, Mk remains the same. Lastly, if all the pages are
crawled in the group, the pointer is set to 0 to denote the
first page in the group.

For this simulations, we fix the number of pages per group
as [5, 80, 10, 5] so that the total number of pages in local
cache of the server is 100. We choose the change rates to
be λ = [0.1, 0.002, 0.005, 0.05]. This is done to suit to four
groups mentioned earlier i.e., λ1 > λ4 >> λ3 > λ2. Note
that one can make different groups according to need of the
application and set λ′is accordingly.

We use the same neural network and the discount factor is
again set to 0.95. Fig. 2 depicts the running average for each
algorithm. We observe similar behaviour as in the previous
experiment.

We further observe from Fig. 1 and Fig. 2 that DRL may
take some time to learn the optimal policy. This may be due
to two reasons. First, training the parameters of the neural
network used to approximate Q-value may take several
iterations. Second, the running average penalises initial
reward heavily and thus affecting the overall trajectory. To
observe latter behaviour closely, we plot the moving average
over a window of 200 iterations for both examples in Fig. 3

0 2000 4000 6000 8000

Itr

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

R
ew

ar
d

s

Uniform

TS

DRL

SO

Fig. 3. Moving Average: Single page in each group

0 2000 4000 6000 8000 10000 12000 14000

Itr

0.0

0.5

1.0

1.5

2.0

2.5
A

ve
ra

ge
R

ew
ar

d
s

Uniform

TS

DRL

SO

Fig. 4. Moving Average: Multiple pages in each group

and Fig. 4. The performance behaviour is still the same, but
with high fluctuations across all policies. We confirm from
these figures that DRL indeed will show better performance
over TS in 500 iterations instead of 3000 iterations observed
in running average plots. Since TS is still very quick, one
general recommendation is to use TS for the initial few
iterations and then switch to DRL.

We end our discussion by pointing out major benefits of
DRL over SO. The SO may have slightly better performance
than DRL, but it may be unfavourable from practical point
of view. This is because SO is a threshold type policy, i.e.,
it selects an arm with probability distribution which may
contain several zeros. Thus, some groups are never crawled,
which means that all the pages in those group will not be
visited ever. Such behaviour will then allow exposure to only

selective groups forming bubbles, see [20], [21]. Another
major drawback for SO is that it requires full knowledge
of λs and has a strong assumption that crawling process
is a Poisson point process. Our approach does not suffer
from any of these problems and has no assumption on the
crawling process.

VI. CONCLUSION

We have introduced deep reinforcement learning for adap-
tive web crawling, in particular, the use of DQN for multi-
arm restless bandits. We observe better performance of DRL
than baseline algorithms in numerical examples. For a future
direction, it will be interesting to compare the performance
of the above algorithms on real data sets.

VII. ACKNOWLEDGEMENT

The work of VSB was supported in part by an S. S.
Bhatnagar Fellowship from the Council of Scientific and
Industrial Research, Government of India. The work of KP
and KA is partly supported by Projet PIA - ANSWER -
FSN2 (P159564-2661789\DOS0060094) and the project of
Inria - Nokia Bell Labs “Distributed Learning and Control
for Network Analysis”. This work is also partly supported by
the project IFC/DST-Inria-2016-01/448 “Machine Learning
for Network Analytics”.

APPENDIX

Full Gradient DQN (FG-DQN):
FG-DQN is a modification of DQN proposed in [7] which
provides better theoretical guarantees over traditional DQN
or Double DQN. In particular, it uses artificial neural
network to approximate the Q-function and update the
parameter θ of this neural network with following update
scheme,

θn+1 = θn − a(n)×(
(r(Zn, Un) + γmax

v
Q(Zn+1, v; θn)−Q(Zn, Un; θn))×

(γ∇θQ(Zn+1, vn; θn)−∇θQ(Zn, Un; θn)) + ξn+1

)
(9)

Here, (Zn, Un) is the state action pair at time n and r(·)
represents the immediate reward for current state-action pair.
γ is the discount factor and ξn+1 is extraneous i.i.d. noise
componentwise distributed independently and uniformly on
[−1, 1]. The overline stands for a modified form of expe-
rience replay which comprises of averaging at time n over
past traces sampled from (Zk, Uk, Zk+1), k ≤ n, for which
Zk = Zn, Uk = Un.

The important thing here is to note that the sequence {θn}
generated by FG-DQN (9) is a stochastic (sub-)gradient
scheme for the true Bellman error given by,

Ē(θ) = E

[(
r(Zn, Un) + γ

∑
y
p(y|Zn, Un)×

max
v

Q(y, v; θn)−Q(Zn, Un; θ)

)2]
REFERENCES

[1] Agrawal, S. and Goyal, N., 2013. Thompson sampling for contextual
bandits with linear payoffs. ICML 2013, 127-135.

[2] Andrews, M., Borst, S., Lee, J., Martin-Lopez, E. and Palyutina, K.,
2020. Tracking the State of Large Dynamic Networks via Reinforce-
ment Learning. IEEE INFOCOM 2020, 416-425.

[3] Avrachenkov, K., Dudin, A., Klimenok, V., Nain, P. and Semenova,
O., 2011. Optimal threshold control by the robots of web search
engines with obsolescence of documents. Computer Networks, 55(8),
1880-1893.

[4] Avrachenkov, K.E. and Borkar, V.S., 2016. Whittle index policy for
crawling ephemeral content. IEEE TCNS, 5(1), 446-455.

[5] Avrachenkov, K., and Borkar, V.S., 2020. Whittle index based Q-
learning for restless bandits with average reward. arXiv:2004.14427.

[6] Avrachenkov, K., Patil, K. and Thoppe, G., 2020. Change rate
estimation and optimal freshness in web page crawling. ValueTools
2020.

[7] Avrachenkov K.E., Borkar V.S., Dolhare H.P., Patil K., 2021. Full
gradient DQN reinforcement learning: A provably convergent scheme.
In: Piunovskiy A., Zhang Y. (eds) Modern Trends in Controlled
Stochastic Processes, 192-220. Springer.

[8] Azar, Y., Horvitz, E., Lubetzky, E., Peres, Y. and Shahaf, D., 2018.
Tractable near-optimal policies for crawling. PNAS, 115(32), 8099-
8103.

[9] Brewington, B.E. and Cybenko, G., 2000. How dynamic is the web?
Computer Networks, 33(1-6), 257–276.

[10] Brewington, B.E. and Cybenko, G., 2000. Keeping up with the
changing web. Computer, 33(5), 52–58.

[11] Cho, J. and Garcia-Molina, H. 2000. The evolution of the web and
implications for an incremental crawler. VLDB 2000, 1–18.

[12] Cho, J. and Garcia-Molina, H., 2003. Estimating frequency of change.
ACM TOIT, 3(3), 256-290.

[13] Hill, D.N., Nassif, H., Liu, Y., Iyer, A. and Vishwanathan, S.V.N.,
2017. An efficient bandit algorithm for realtime multivariate opti-
mization. ACM SIGKDD, 1813-1821.

[14] Kawale, J., Bui, H.H., Kveton, B., Tran-Thanh, L. and Chawla, S.,
2015. Efficient Thompson sampling for online matrix-factorization
recommendation. NIPS 2015, 1297-1305.

[15] Lin, L.J., 1993. Scaling up reinforcement learning for robot control.
ICML 1993.

[16] Liu, Z. and Nain, P., 2006. Optimization issues in Web search
Engines. Handbook of Optimization in Telecommunications, 981-
1015. Springer.

[17] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.,
Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Os-
trovski, G. and Petersen, S., 2016. Human-level control through deep
reinforcement learning. Nature, 518(7540), 529-533.

[18] Nino-Mora, J., 2014. A dynamic page-refresh index policy for web
crawlers. ASMTA 2014, 46-60.

[19] Papadimitriou, C.H. and Tsitsiklis, J.N., 1999. The complexity of
optimal queuing network control. MOR, 24(2), 293-305.

[20] Pariser, E., 2011. The filter bubble: What the Internet is hiding from
you. Penguin.

[21] Resnick, P., Garrett, R.K., Kriplean, T., Munson, S.A. and Stroud,
N.J., 2013. Bursting your (filter) bubble: strategies for promoting
diverse exposure. CSCW 2013, 95-100.

[22] Talim, J., Liu, Z., Nain, P. and Coffman Jr, E.G., 2001. Controlling
the robots of Web search engines. ACM Sigmetrics 2001, 236-244.

[23] Thompson, W.R., 1933. On the likelihood that one unknown prob-
ability exceeds another in view of the evidence of two samples.
Biometrika, 25(3/4), 285-294.

[24] Upadhyay, U., Busa-Fekete, R., Kotlowski, W., Pal, D. and Szorenyi,
B., 2020. Learning to crawl. AAAI 2020, 6046-6053.

[25] Watkins, C.J. and Dayan, P., 1992. Q-learning. Machine Learning,
8(3-4), 279-292.

