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ABSTRACT

This thesis investigates mathematical optimization models with a bilevel structure and their
application to price-based Demand Response in smart grids.

The increasing penetration of renewable power generation has put power systems under higher
tension. The stochastic and distributed nature of wind and solar generation increases the
need for adjustment of the conventional production to the net demand, which corresponds
to the demand minus the renewable generation.

Demand Response as a means to this adjustment of demand and supply is receiving growing
attention. Instead of achieving the adjustment thanks to generation units, it consists in
leveraging the flexibility of a part of the demand, thus changing the aggregated demand
curve in time.

The first part of this thesis focuses on a Time-and-Level-of-Use Demand Response system
based on a price of energy that depends on the time of consumption, but also on a capacity
that is self-determined by each user of the program. This capacity is booked by the user for a
specific time frame, and determines a limit for energy consumption. Several key properties of
the pricing system are studied, focusing on the perspective of the supplier setting the pricing
components. The supplier anticipates the decision of the customers to the prices they set, the
sequential decision created by this situation is modelled as a Stackelberg or Leader-Follower
game formulated as a bilevel optimization problem.

Bilevel optimization problems embed the optimality condition of other optimization prob-
lems in their constraints. Their range of applications includes optimization for engineering,
economics, power systems, or security games. The inherent computational difficulty of bilevel
problems has motivated the development of customized algorithms for their resolution.

In the second part of the contributions, a variant of the bilevel optimization problem is
developed, where the upper level protects its feasibility against deviations of the lower-level
solution from optimality. More specifically, this near-optimal robust model maintains the
upper-level feasibility for any lower-level solution that is feasible and almost optimal for
the lower-level. This model introduces a robustness notion that is specific to multilevel
optimization. We derive a single-level closed-form reformulation when the lower level is a
convex optimization problem and an extended formulation when it is linear. The near-optimal
robust bilevel problem is a generalization of the optimistic bilevel problem and is in general
harder to solve. Nonetheless, we obtain complexity results for the near-optimal robust bilevel
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problem, showing it belongs to the same complexity class as the optimistic problem under
mild assumptions. Finally, we design exact and heuristic solution methods that significantly
improve the solution time of the extended formulation.
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RÉSUMÉ

La thèse porte sur les modèles d’optimisation mathématique biniveau et leurs applications à
la réponse de la demande dans les réseaux électriques.

L’augmentation de la production d’énergie renouvelable et l’apparition de nouveaux acteurs
ont complexifié les opérations et décisions dans les réseaux électriques. La nature aléatoire et
distribuée de la génération solaire et éolienne entraîne un besoin d’ajustement de la produc-
tion conventionnelle à la demande nette, correspondant à la demande après prise en compte
de la production renouvelable.

La réponse de la demande est une des solutions utilisées pour faire face à ces nouveaux
besoins des réseaux électriques. Au lieu d’étudier l’adaptation de la production à la charge,
son principe est d’exploiter la flexibilité d’une partie de la consommation, ajustant ainsi la
courbe de demande au cours du temps.

Dans la première partie de cette thèse, nous étudions un système de réponse de la demande par
prix dynamique, TLOU. Dans ce système, un usager réserve une capacité pour une période
donnée, et paie un prix dépendant du dépassement de sa capacité par la consommation sur
la période donnée. Nous étudions les propriétés de ce système de tarification, en particulier
du point de vue du fournisseur déterminant les paramètres de prix. L’interaction entre le
fournisseur et les usagers est modélisée comme un jeu de Stackelberg ou meneur-suiveur qui
est résolu par une approche d’optimisation mathématique biniveau.

Les problèmes d’optimisation biniveau sont caractérisés par un problème d’optimisation im-
briqué dans les contraintes d’un autre problème d’optimisation. Leurs champs d’applications
incluent les problèmes de conception en ingénierie, les modèles économiques, les réseaux
électriques ou encore la sûreté des systèmes.

Dans la deuxième partie de la thèse, une formulation du problème biniveau est proposée
dans laquelle le deuxième niveau n’est plus nécessairement résolu exactement, mais peut
dévier de son optimum d’une quantité limitée. Nous développons une formulation biniveau
robuste à la quasi-optimalité (NORBiP) dans laquelle le premier niveau s’assure de trouver
une solution dont la faisabilité est garantie pour l’ensemble des solutions quasi optimales du
deuxième niveau. Ce modèle introduit une notion de robustesse spécifique à l’optimisation
multiniveau. Une reformulation à un seul niveau est développée dans le cas où le deuxième
niveau est un problème d’optimisation convexe, basée sur la dualisation des contraintes de ro-
bustesse. Dans le cas où le deuxième niveau est un problème linéaire, une formulation étendue
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linéarisée est proposée. Bien que cette formulation robuste soit plus difficile à résoudre que
le problème biniveau classique, nous établissons des résultats sur sa complexité, démontrant
que le problème robuste à la quasi-optimalité appartient à la même classe de complexité que
le problème optimiste équivalent sous certaines hypothèses. Enfin, des algorithmes exacts et
heuristiques sont proposés pour accélérer la résolution de problèmes biniveaux robustes à la
quasi-optimalité dans le cas linéaire.
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CHAPTER 1 INTRODUCTION

This thesis tackles some forms of bilevel optimization problems and applications to pricing
mechanisms for demand response in power grids. This chapter introduces the context of
power grids motivating the work and foundational concepts in mathematical optimization
and hierarchical games.

1.1 Context

In the past decades, power grids across the world have evolved to become complex systems in
which multiple actors act simultaneously. Their purpose, that is, instantaneously and reliably
bringing power to multiple users of various needs, is almost taken for granted. Nonetheless,
current trends such as the growing electrification of transport have been broadening the areas
of societies relying on their operations. At the same time, the growth of renewable energy
sources has changed the nature of supply. Wind generation and solar panels are now playing
a major role in the energy mix of several major power systems. These technologies are char-
acterized by low operating CO2 emissions, but also by the uncertainty on their production,
even on a range of a few hours. Unlike thermal power plants, they also come in smaller scales
and can therefore represent an affordable investment at the level of households or micro-grids.
These private investments have been accelerated by government incentives across the globe.
Such equipment, often combined with an energy storage capacity transform the household
from a simple consumer of electric energy to a prosumer. Prosumers are economic entities
that are partly power consumer, partly power producer, sometimes simultaneously [1, 2].
These actors with dual roles create the needs for market mechanisms of greater complexity
than the former paradigm separating entities in terms of supply and demand.

These trends can become opportunities to reduce the carbon footprint of power systems by
making electricity production less carbon-intensive. However, they also increase the com-
plexity of power grid operations, both through the uncertainty on the production and the
distributed and fragmented nature of power generators.

Economic and organizational approaches have received growing attention to face these chal-
lenges to complement technical solutions such as storage. Aggregators, in particular, are a
new type of actor playing the role of buffers between the grid operator and consumers or pro-
sumers. By regrouping multiple consumers, they can also mutualize investment and install
a higher storage capacity and generation.



2

1.2 Hierarchical games and bilevel optimization

Models from mathematical optimization and game theory can be used in order to understand
and predict the decision-making process of economic agents. Game theory focuses on eco-
nomic problems where multiple agents make inter-dependent decisions. Hierarchical games
in particular are decision-making processes in which each agent observes the decisions of
agents deciding before them and anticipate the decisions of agents deciding after them. They
offer a rich toolset for the new forms of economic interactions of power grids. Hierarchical
games where players are divided into two sets are referred to as Stackelberg or leader-follower
games from the seminal work [3]. Fig. 1.1 illustrates the structure and differences between
Stackelberg and Nash games, in which no player may observe the decisions of the others
before making their own.

Follower

Leader

Player 1 Player 2

Mutual
anticipation

Stackelberg Nash

Reaction Anticipation

Figure 1.1 Structure of Stackelberg and Nash games

Mathematical optimization, also referred to as mathematical programming, is a domain of
applied mathematics, focused on finding the solution of highest quality to a problem depend-
ing on decision variables. We define a solution as an assignment of values to the decision
variables of the problem and the quality of a solution is assessed based on an objective
function.

In a more formal notation, an optimization problem can be stated as:

min
x∈X

F (x) (1.1a)

s.t. Gi(x) ∈ Si ∀i ∈ [[m]] (1.1b)

where:
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• [[m]] ≡ {1, 2, . . . ,m}

• x is the collection of decisions of the problem, which take values in the domain X ;

• F : X 7→ R is the objective function, which is used to compare different decisions. The
value of F (x) is referred to as the objective value. Since the problem is formulated as
a minimization problem, a lower objective value is preferred;

• Each of the m constraints is composed of a mapping Gi : X 7→ Ai and a set Si ⊆ Ai.

X is typically considered to be a compact set, and in many cases a compact subset of Rn,
although optimization over other objects can be of interest, such as functions [4,5], matrices,
graphs, sets [6], geometrical shapes [7] or text strings [8].

Completely generic optimization problems represented by functions and sets without any
structure are seldom studied. Instead, investigations on theoretical properties and solution
methods have focused on specific forms of optimization problems i.e. problems with particular
forms of F , G, Si and X . Some examples of specific optimization problems are Linear
Problems (LP), Mixed-Integer Linear Problems (MILP), Constraint Integer Programming
(CIP) [9] or unconstrained non-linear problems. When the objective function does not depend
on the decision variables, any solution is acceptable and the problem is typically referred to
as a feasibility problem.

Although we often consider the optimization problem as solved by a person or an economic
entity, we can also view some systems in physics and engineering as optimization problems
solved by reaching an equilibrium:

“Nature optimizes. Physical systems tend to a state of minimum energy.” [10]

A distinction is often made between exact, approximation and heuristic methods. Exact
methods seek both a solution and a guarantee that this solution is optimal. Approxima-
tion methods provide by design a worst-case guarantee on the quality of the solution which
typically comes as a worst-case ratio between the objective value of a solution found by the
method and the optimal objective value. Heuristic methods focus on searching for a good
solution without any guarantee on its quality compared to the optimum and are computa-
tionally less demanding than exact methods. Most of the thesis focuses on exact methods
for the problems considered. Some heuristics are also developed in Chapter 8.

Mathematical optimization formulations typically represent a single decision-making process
and are thus not suited to represent hierarchical games. Optimization problems with two
decision-makers taking successive actions are referred to as bilevel optimization problems and
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will be the main focus of this thesis. Keeping a notation similar to Problem (1.1), the bilevel
problem is expressed as:

“min
x∈X

” F (x, v) (1.2a)

s.t. Gk(x, v) ∈ Sk ∀k ∈ [[mu]] (1.2b)

where v solves: min
y∈Y
{f(x, y) s.t. gi(x, y) ∈ si ∀i ∈ [[ml]]}. (1.2c)

Quotes were added to the minimization operator “minx∈X ” because this formulation of the
bilevel problem presents an ambiguity and is not well-posed. Indeed, there may exist multiple
lower-level solutions v which are feasible and yield an optimal value. In such a setting with
multiple lower-level optimal solutions, it is not clear which one would be chosen. Solutions
approaches to alleviate this ambiguity are developed in Section 2.2.

The problem solved by Eq. (1.2c) is called the lower-level problem, it depends on the upper-
level variable x, and reacts to it by choosing a solution v that minimizes its own objective
value subject to its own constraint set. The upper-level decision-maker must make a decision
x which is feasible for them while anticipating the reaction of the lower level. By formulating
economic settings as bilevel optimization problems, the modeller can capture rich interactions
between the first and second agent and represent the interest and constraints of both.

1.3 Research objectives and outline

The objectives of the thesis are two-fold. First, we want to design demand response programs
adapted to the current smart grid context, capturing interactions between the entity setting
prices and the entity receiving them in a leader-follower setting formulated as a bilevel op-
timization problem. The second objective is to extend and adapt the framework of bilevel
optimization to these pricing problems, and in particular to deal with the uncertainty of
the upper-level decision-maker when anticipating the lower-level reaction. For this second
objective, we study a new robust framework based on bilevel optimization where the lower
level is assumed to make decisions that may fail to reach optimality.
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CHAPTER 2 LITERATURE REVIEW

This chapter offers an overview of the recent research on topics connected to the thesis. Sec-
tion 2.1 highlights recent models for demand response applied to power grids. Section 2.2
lays out the mathematical formulations, solution methods, and results leveraged in the liter-
ature to handle bilevel optimization problems. Finally, Section 2.3 provides the reader with
research on Nash and Stackelberg games integrating a form of uncertainty.

2.1 Demand response in power grids

Demand Response (DR) regroups different programs allowing the power grid operator to
leverage the consumption flexibility of customers. The final aim for the supplier is to create an
additional control lever when optimizing power grid operations [11], increasing or decreasing
the flexible consumption at a given time to adapt to the current net consumption level.
Typical examples of actions performed through DR include:

• Valley filling: increasing the consumption at a time point where it is expected to be
low (off-peak);

• Peak shaving: decreasing the consumption at a time point where it is expected to be
high (on-peak);

• Load shifting: displacing some energy-consuming activities in time, from an on-peak
to an off-peak period.

DR programs have been classified based on the way agents responsible for the consumption
are influenced as either price-based or incentive-based programs [12,13]. Price-based DR pro-
grams use the price as the sole mechanism to request and encourage customers to adapt their
consumption. Incentive-based DR programs include other technical and economic levers and
distinguish between classical programs, where the supplier has partial control of a flexible
consumption unit, and market-based programs, where the supplier taps into different pools
of flexibility. The DR program studied in this thesis is based on dynamic prices as price-
based programs but includes a capacity picked by the user to encourage self-limiting their
consumption.

In [14], the barriers to and enablers for the successful implementation of Demand Response
are reviewed, along the technological, societal, and economic axes. Barriers notably include
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heavy communication and computation requirements for users, privacy, and data security
concerns when sensitive information has to be collected, stored, and exchanged, and be-
havioural barriers with the potential non-rationality of users. These barriers have been
major considerations when designing the DR program presented here. In [15], comparisons
of DR mechanisms on different aspects are provided. Price-based programs and especially
real-time pricing are considered the most promising as they require less involvement of the
supplier in the customer consumption and do not limit the level of consumption.

The development of DR broadens the scope of the task given to the operator handling the
network: not only must they ensure the balance of supply and demand, but also decide which
levers to use to change the demand. Finding the best way to utilize flexible resources has
given birth to aggregators, which are middle-entities between the grid and final consumers [16].
Aggregators are of particular interest to draw upon the DR potential of smaller electricity
customers, such as residential customers who represent a large part of the total energy con-
sumption but do not have the technical capacity to operate complex energy management
systems. Moreover, DR programs with great numbers of households would lead to scalability
issues, with the supplier handling and anticipating reactions from numerous entities. Ag-
gregating the consumption of individual customers allows for simplified management of the
grid, with fewer entities (the aggregators), each setting DR programs for their residential or
commercial end-users. In incentive-based DR programs based on mean-field games [17, 18],
the supplier takes control of a large number of consumption units with similar underlying
dynamics, such as water heaters or air conditioning systems. The mean-field control ensures
an ability to leverage consumption time flexibility, while respecting comfort and technical
constraints. Incentive-based programs based on economic programs rather than direct load
control are investigated in [19, 20]. In these programs, the supplier offers cost reductions
for users consuming below their estimated baseline when they are required to do so. Two
critical components to the design of these programs are on one hand the estimation of the
baseline that can be subject to gaming from users [19], and on the other hand the estimation
of responsiveness to changes in the level of incentive [21].

The work in [22,23] focuses on the response of microgrids that are small networks integrating
multiple consuming units (households or commercial users), with local renewable production,
storage, and an energy management system. The considered microgrids integrate the con-
sumption patterns of residential, commercial, and industrial users with distributed generation
sources, both from wind and solar systems. In both models, the uncertain power generation
from wind and solar systems is modelled using continuous probability distributions, which are



7

sampled using e.g. a Monte-Carlo approach. In [24], a real-time pricing mechanism is consid-
ered for Demand Response between a supplier and microgrids integrating storage and dealing
with consumption uncertainty. The resulting bilevel optimization problem is solved using a
heuristic particle swarm algorithm with an exact branch-and-bound method for the lower
level. In [25, 26], residential DR programs are developed based on varying quality of service
or reliability. The reliability menus are designed by the supplier and then self-determined by
consumers depending on their reliability requirements at different time frames.

Time-and-Level-of-Use (TLOU) pricing policies have been studied as extensions of the Time-
of-Use (TOU) pricing scheme. They allow the supplier to set prices not only as a function of
time but also of the power or energy consumption itself. The price of energy is often defined
as a step-wise constant function of time and consumption. In [27–29], the optimization
of consumption of smart homes, and smart buildings aggregating multiple users is studied
under a TLOU pricing. The prices as a function of time and level are known in advance
and considered fixed. In [30], TLOU prices are applied to a manufacturing use case. The
industrial unit owns a storage system and on-site stochastic renewable energy sources and
co-optimizes its consumption, internal energy management, and demand to the grid.

The framework presented in [31] defines a two-stage DR program combining incentive-based
elements with time-dependent electricity pricing. The bilevel formulation of the problem
maximizes the supplier’s profit while maintaining the profit and comfort of each user. A
mixed-integer non-linear bilevel model is presented for TOU pricing in [32]. A custom solution
method is developed, leveraging the fact that the feasible domains of the two levels are
independent. In [33–35], TOU prices are optimized by a power supplier facing independent
users, each minimizing both their total cost and an inconvenience function, defined as a
required shifting of loads in their schedule.

2.2 Stackelberg games and bilevel optimization

Stackelberg or Leader-Follower games are a type of non-cooperative game, first introduced
in [3] for a market with multiple firms, including a player making the first decision often
referred to as the leader, and at least one player which observes the decision of the leader
and can take it into account before solving their own optimization problem. The leader’s
objective and potentially constraints depends on the decision of the follower, which they need
to anticipate.
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Bilevel optimization studies mathematical optimization problems where the optimality of
other optimization problems are embedded in the constraints. Its first definition is given
in [36]. Bilevel optimization is the way of formulating Stackelberg games in a mathematical
optimization formalism, even though it is not the only area it has been applied to. Instead of
representing a second player, the lower level can model a system optimizing itself or reaching
an equilibrium, with practical applications in chemical engineering [37–39], design of indus-
trial processes [40] or mechanical systems [41–43].

We provide below results on the complexity classes of different bilevel problems. Complexity
classes are defined for decision problems that only admit a boolean answer. They are typ-
ically extended to optimization problems by formulating the decision problem of finding a
solution that is feasible and attains a given bound on the objective value. Two complexity
classes commonly used to classify decision problems arising from optimization are P and
NP . Decision problems belonging to P can be answered in polynomial time, while for a
problem belonging to NP , a positive answer can be verified in polynomial time given a
certificate. Typical examples of optimization problems for which the corresponding decision
versions are in P and NP are the linear and mixed-integer linear optimization problems
respectively. Given a complexity class X, a problem L is X-hard if it at least as hard as all
problems from X i.e. all problems from X can be reduced to L in polynomial time. Fur-
thermore, L is X-complete if it is X-hard and belongs to X. The linear bilevel problem,
for which the objective and constraint functions are linear, is strongly NP-hard; a reduction
to a pure binary linear problem in [44] shows that the corresponding decision problem is
NP-complete. If the lower-level problem contains variables that must take integer values
or more generally if it cannot be solved in polynomial time, other complexity classes of the
polynomial hierarchy [45] are needed to characterize the complexity of the bilevel problem.
It is shown in [46] that the bilevel problem where the lower level itself is NP-complete is in
ΣP

2 , meaning it can be solved in non-deterministic polynomial time if equipped with an oracle
solving problems in NP in constant time. The paper also generalizes this result to multilevel
problems, where a number of players (potentially greater than 2) make decisions sequentially,
with linear objective functions and linear constraints. In such a setting with n + 1 players,
the resulting multilevel problem belongs to ΣP

n , or to ΣP
n+1 if the lower-level itself is not in P ,

with integrality constraints for instance. One main takeaway from these complexity results is
that a polynomial-time solution to bilevel problems should not be expected unless P = NP ,
which is considered unlikely in the complexity theory community.
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We highlighted the ill-posedness of the initial formulation of the bilevel Problem Eq. (1.2), due
the possible non-uniqueness of the lower-level optimal solution. Several approaches have been
developed to alleviate this amiguity that is often described as “an unpleasant situation” [47].
The most common, referred to as the optimistic approach, consists in assuming the lower level
chooses the optimal solution which is most favourable to the upper level. In this setting, the
upper level can assign values to the lower-level variables as long as these values are an optimal
solution for the lower level problem, resulting in the following modification of Problem (1.2):

min
x∈X ,v∈Y

F (x, v) (2.1a)

s.t. Gk(x, v) ∈ Sk ∀k ∈ [[mu]] (2.1b)

v ∈ argmin
y∈Y

{f(x, y) s.t. gi(x, y) ∈ si ∀i ∈ [[ml]]}. (2.1c)

Even though the optimistic approach may appear as a strong assumption, it is often reason-
able in the context of Stackelberg games. Indeed, the leader acting as the upper level can
break the tie in favour of their preferred option by offering an arbitrarily small incentive to
the follower acting as the lower level.

For some problems, anticipating a cooperative reaction of the lower level remains unrealistic.
If the lower level may choose among multiple solutions, the upper level can assume any of
these solutions could be selected, including the worst one, which is the motivation for the
pessimistic approach. The pessimistic bilevel model is commonly formulated as:

min
x∈X

max
v∈Y (x)

F (x, v) (2.2)

where: Y (x) = argmin
y∈Y

{f(x, y) s.t. gi(x, y) ∈ si ∀i ∈ [[ml]]}

X = {x ∈ X , Gk(x) ∈ Sk∀k ∈ [[mu]]}.

By selecting the lower-level response v through a “max” operator, the pessimistic model
assumes the response that is worst with respect to the upper-level objective. This model re-
quires all upper-level constraints to be independent of the lower-level variables, and therefore
captured in the upper-level feasible set x ∈ X. Such requirement is not suitable for many
models of interest, where the upper-level feasibility is also determined by lower-level deci-
sions. This motivated a more general constraint-based pessimistic bilevel model as defined
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in [48], presented here with the notation of Problem (1.2):

min
x

F (x) (2.3)

s.t. Gk(x, v) ∈ Sk ∀v ∈ Y (x) ∀k ∈ [[mu]]

x ∈ X

where: Y (x) = argmin
y∈Y

{f(x, y) s.t. gi(x, y) ∈ si ∀i ∈ [[ml]]}.

The universal quantifier ∀v ∈ Y (x) requires feasibility of the upper-level constraint for all
possible optimal responses of the lower-level. Changing the universal quantifier ∀v ∈ Y (x) for
an existential one ∃ turns the problem into the optimistic formulation [48]. This formulation
is a generalization of the objective-based min-max pessimistic Problem (2.2), which can be
expressed in the form of Problem (2.3) using an epigraph formulation:

min
x,τ

τ

s.t. τ ≥ F (x, v) ∀v ∈ Y (x)

x ∈ X = {x ∈ X , Gk(x) ∈ Sk∀k ∈ [[mu]]}

where: Y (x) = argmin
y∈Y

{f(x, y) s.t. gi(x, y) ∈ si ∀i ∈ [[ml]]}.

Two alternative models are developed in [49]; the rewarding solution is obtained when the
upper-level decision is made in a pessimistic fashion and the selected lower-level decision is
best with respect to the upper-level problem. The deceiving solution is obtained when the
upper-level decision is based on an optimistic assumption and the selected lower-level decision
is worst with respect to the upper-level objective. In [50], a single-leader multi-follower
Stackelberg game is developed, where the followers play a Nash game among themselves. A
semi-optimistic case is developed, where the chosen Nash equilibrium is not optimistic nor
pessimistic but determined by specific properties of the lower-level Nash game.

2.2.1 Single-level reformulations

Bilevel problems are often reformulated in a single level that is then solved using existing
methods. Three single-level reformulations are presented in [47, Chapter 3]. When the lower
level is a convex optimization problem for any fixed upper-level decision x and when Slater’s
constraint qualifications hold, its Karush-Kuhn-Tucker (KKT) conditions are necessary and
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sufficient for optimality. Let the lower level be written as:

min
y∈Y

f(x, y) (2.4a)

s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]] (2.4b)

where Y is a convex set and f(x, ·) and gi(x, ·) are convex functions. The feasible set of the
lower level function-based constraints is given by:

Y (x) = {y | g(x, y) ≤ 0}.

A solution ŷ is optimal for the lower-level problem iff:

0 ∈ ∂yf(x, ŷ) +NY (x)∩Y(ŷ) (2.5)

where ∂yf(x, ŷ) denotes the subdifferential of f with respect to y evaluated at (x, ŷ) and
+ denotes the Minkowski sum of the two sets. If f is continuously differentiable, the sub-
differential is a singleton {∇yf(x, ŷ)}. NY (x)∩Y(ŷ) is the normal cone of Y (x) ∩ Y at ŷ.
The Primal KKT transformation consists in replacing Problem (2.4) with Eq. (2.5) in the
bilevel problem, resulting in a single-level optimization problem with equilibrium constraints
(MPEC) [51,52], which still requires specialized solution approaches. When Y = Rnl , with nl

the dimension of the lower-level decision space, i.e. all constraints on the lower-level decision
are contained in the functions gi, and if Slater’s regularity conditions hold, the expression of
the KKT conditions can be simplified to:

0 ∈ ∂yf(x, y) +

ml∑
i=1

λi∂ygi(x, y) (2.6a)

gi(x, y) ≤ 0 ∀i ∈ [[ml]] (2.6b)

λi ≥ 0 ∀i ∈ [[ml]] (2.6c)

λigi(x, y) = 0 ∀i ∈ [[ml]] (2.6d)

with λi the dual variable associated with constraint i. Constraints (2.6b-2.6d) are often
formulated using the complementarity notation:

0 ≤ λi⊥ − gi(x, y) ≥ 0.

This approach is referred to as the classical KKT transformation [47]. The single-level refor-
mulation using Eq. (2.6) as necessary and sufficient conditions for lower-level optimality is



12

an optimization problem with complementarity constraints. Slater’s constraint qualifications
require the lower-level problem to be strictly feasible for any feasible x:

∃y, g(x, y) < 0.

In [53], examples are developed, where Slater’s constraint qualifications are not respected.
Computing local solutions to bilevel optimization problems is a particularly challenging task;
in [54], the authors highlight that Problem (2.6) explicitly including the dual variables has
local minimizers which do not correspond to local solutions to the original bilevel problem.

The last approach commonly used does not require convexity of the lower-level problem. We
can thus use the more general notation of Problem (1.2), based on the value function of the
lower-level defined as:

ϕ(x) = min
y
{f(x, y) s.t. gi(x, y) ∈ si ∀i ∈ [[ml]]}.

The lower-level problem can be replaced by a condition on the value function:

v ∈ Y

f(x, v) ≤ ϕ(x) (2.7)

gi(x, v) ∈ si ∀i ∈ [[ml]].

At optimality, Constraint (2.7) is tight. The key difficulty of the value function reformulation
is that ϕ(x) is non-smooth, non-convex, and potentially hard to compute since evaluating it at
any point requires solving the lower-level problem. A value-function approach is used in [55]
to tackle mixed-integer bilevel problems. The properties of the KKT and value function
reformulations and in particular partial calmness at local solutions are studied in [56, 57].
In [58], the value function of a bilevel problem with a mixed-integer lower level is reformulated
as a subproblem for which the feasible set is independent of the upper-level variables. The
single-level reformulation results in a MILP with a large number of constraints added on the
fly during a branch-and-cut procedure.
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2.2.2 Solution approaches for particular bilevel problems

A special case of particular interest is the linear bilevel problem, which we write as:

min
x,v
⟨cx, x⟩+ ⟨cy, v⟩

s.t. Gx+Hv ≤ q

v ∈ argmin
y
{⟨d, y⟩ s.t. Ax+By ≤ b}

x ≥ 0

resulting in the following KKT reformulation:

min
x,v,λ
⟨cx, x⟩+ ⟨cy, v⟩ (2.8a)

s.t. Gx+Hv ≤ q (2.8b)

Ax+By ≤ b (2.8c)

BTλ+ d = 0 (2.8d)

0 ≤ λi⊥ (bi − (Ax)i − (Bv)i) ≥ 0 ∀i ∈ [[ml]] (2.8e)

x ≥ 0, v ≥ 0, λ ≥ 0 (2.8f)

Problem (2.8) is linear, except for the complementarity Constraints (2.8e). These complemen-
tarity constraints alone make the feasible region of the single-level formulation non-convex
and even disjoint, as illustrated in [59, Example 2]. A common reformulation of Constraint
(2.8e) uses so-called “big-M” constraints:

λ ≥ 0

Ax−Bv ≤ b

λi ≤MDzi

bi − (Ax)i − (Bv)i ≤MP (1− zi)

z ∈ {0, 1}ml .

The binary variables zi introduced are equal to 1 if the primal constraint is active and
0 otherwise. An advantage of this approach is that the non-linearities are removed and
replaced with binary variables. The complete single-level reformulation becomes a Mixed-
Integer Linear Problem (MILP) well-suited to general-purpose solvers computing the global
optimum. The choice of primal and dual bounds MP MD is often made through trial and
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error and can lead to the optimal solution being cut off, even when the bound constraint is
not tight [60]. Finding suitable big-M bounds is itself an NP-hard problem, as shown in [61].
An alternative solution is to relax the equality of the complementarity into an inequality:

λ ≥ 0 (2.9a)

b− Ax−Bv ≥ 0 (2.9b)

λi(bi − (Ax)i − (Bv)i) ≤ ϵ ∀i ∈ [[ml]] (2.9c)

as proposed in [62] and studied numerically in [63]. This results in a non-linear problem with
non-convex bilinear constraints. This problem is often solved either with local methods or
using relaxations and spatial branching. MINLPs are tackled in a similar fashion in [64],
first transforming integrality constraints into complementarity constraints and then relaxing
these similarly to (2.9). In [65], a similar approach penalizes a duality gap to converge to
feasible solutions for bilevel problems.

Instead of using non-linear solvers to relax the problem or artificial bounds on the primal and
dual variables, a solution method consists of branching on the complementarity constraint
directly. MILP solvers allow this branching scheme on the complementarity constraint di-
rectly using Special Ordered Sets of type 1 (SOS1). These constraints initially defined in [66]
are implemented in most Constraint Programming and MILP solvers and express the con-
straint that, for a set of variables, at most one can take a non-zero value. Using SOS1
constraints allows practitioners to avoid managing a branching tree that can be algorithmi-
cally challenging while ensuring the correctness of a model without big-M bounds. Recent
computational investigations in [67] suggest that the SOS1 approach can even be preferred
over big-M constraints when combined with inequalities strengthening the formulation.

When the lower-level problem is not convex, the KKT equation system cannot be used to
fully describe necessary and sufficient optimality conditions. The simplest bilevel optimiza-
tion problem with such structure is the mixed-integer bilevel linear problem (MIBLP), which
is ΣP

2 -hard [46]. General-purpose exact solvers for MIBLP have been developed and described
in [68, 69], [70], [71, 72], and [73], based on custom branching and cutting rules in a branch-
and-cut algorithm starting from the relaxation of the lower-level optimality condition, also
called High Point Relaxation.

In [74], MIBLPs are considered, where the lower-level problem is purely binary. The authors
define a notion of k-optimality for a lower-level solution that is at least as good as any
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feasible lower-level solution within a Hamming distance of k. This defines a relaxation of the
bilevel problem, where the lower level can be solved to k-optimality. This relaxation defines
a hierarchy of bounds converging to the bilevel-optimal solution

2.3 Hierarchical games under uncertainty

In this section, we review some models developed to capture uncertainty in optimization
problems and games. Lots of decision-making problems deal with uncertain parameters, a
common metaphor considers “nature” as a decision-maker choosing the uncertain parameter
against the optimizer [75].

In stochastic optimization, the source of uncertainty is represented by random variables with
a probability distribution over the possible outcomes. Typical examples include the mini-
mization of the expected value of a function F (x, ξ) over all possible outcomes of the random
variable ξ, or a constraint on the total variance of a function g(x, ξ), which is often used as a
measure for the risk of a decision. The work in Chapter 5 is based on a stochastic approach,
with a bilevel model where the upper and lower level both know the probability distribution
of uncertain energy consumption, but with neither of the agents knowing the outcome at the
time of their decision.

In some cases, the probability distribution of the uncertain parameter is unknown or makes
the stochastic formulation of the optimization problem computationally intractable. In such
a case, only the set of possible values of the uncertain parameter would be known. The
robust optimization approach consists of finding a solution to the problem assuming any
potential outcome of the uncertain parameter can be realized, including the “worst” one. If
the worst-case is determined with respect to the objective, the resulting problem is formulated
as:

min
x∈X

max
ξ∈Ξ

F (x, ξ)

with Ξ the set of values that may be taken by the uncertain parameter. When the uncertainty
affects the feasibility of the optimization problem, a constraint-based formulation is preferred:

min
x∈X

F (x)

s.t. Gi(x, ξ) ∈ Si ∀ξ ∈ Ξ ∀i ∈ [[m]]



16

The model with uncertainty on the objective can be transformed into an equivalent model
with uncertainty on the constraints with an epigraph form [76]:

min
x∈X ,τ

τ

s.t. τ ≥ F (x, ξ) ∀ξ ∈ Ξ.

The near-optimal robust model presented in Chapter 6 applies concepts of robust optimiza-
tion to a generalized pessimistic bilevel model similar to the model introduced in [48]. A
variant of robust optimization we will consider focuses on robust optimization under decision-
dependent uncertainty [77], under which the uncertain set Ξ(x) depends on the decision x.
Problems with such constraints have also been coined as generalized semi-infinite optimiza-
tion problems [78].

In [79], the authors consider a bilevel problem and relax the assumption of pure rationality
of the lower level, considering instead that the lower level may optimize their problem to
near-optimality using an algorithm from a predetermined set. Another form of incomplete
rationality of the lower level is considered in [80]. The authors develop a bilevel model
where the lower level optimizes an objective function that is opposite to the upper-level
objective function while preserving a certain quality on their own objective. A parameter α

controls this tradeoff between the lower-level objective and the minimization of the upper-level
objective. The pessimistic linear bilevel problem and the min-max linear model are special
cases of the proposed formulation. They also generalize the pessimistic-optimistic bilevel
model defined in [81] using this α-pessimistic approach. This approach is comparable to the
objective-based model of the near-optimal robustness developed in Chapter 6. In [82], Linear
Complementarity Problems (LCPs) are studied under uncertainty in a robust framework.
They highlight that strict complementarity cannot be guaranteed for all realizations of the
uncertain parameter and instead minimize the relative complementarity gap.

Bilevel models with uncertainty on some parameters of the lower level have been investigated
in a stochastic optimization framework in [83, 84] and [85, 86]. The right-hand side of the
lower level is stochastic for the upper level, but revealed before the upper level decides,
such that the lower-level problem is a parameterized deterministic problem. This form of
uncertainty, affecting the upper level only, is similar to the robustness approach developed
in Chapter 6. In [87], a formulation is defined to unify multilevel and multi-stage stochastic
optimization through the use of risk functions capturing a part of the objective function
that is unknown at a given stage, either because of a random parameter or of the decision
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of another player. In [88], the optimistic and pessimistic versions of a stochastic bilevel
optimization problem are investigated with linear objective and constraints. The authors
derive a MILP providing a lower bound on the optimistic version and another providing
an upper bound on the pessimistic version, both based on decision rules. Finally, in [89],
a stochastic approach is designed to alleviate the ambiguity of the lower-level response in
Multi-Leader-Follower Games. Instead of relying on the optimistic assumption considered
naive in the case of multiple leaders or the pessimistic assumption perceived as excessively
risk-averse, the authors define a belief measure for each leader, associating an upper-level
solution to a probability measure on the potential lower-level response.
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CHAPTER 3 THESIS ORGANIZATION

The work presented in this thesis is structured around two aspects. The first one is the
development of a bilevel framework for the optimal price-setting of a Time-and-Level-of-Use
program. The second component is the development of the concept of near-optimal robust-
ness for bilevel problems.

In the context of setting prices in a Demand Response program, using a bilevel approach
allows the energy supplier to anticipate a reaction of the users to the pricing decision. Mod-
elling the supplier decision as a Stackelberg game formulated using bilevel optimization relies
on the assumption that the user, acting as a lower level, is a strategic player. This implies
that they make decisions based on their own objective, which in that case corresponds to
minimizing their expected cost as presented in Chapter 4, which was published in the IEEE
Transactions on Smart Grids [90]. In Chapter 5, we formulate a multi-user TLOU pricing
problem where each user’s consumption follows a mixed continuous-discrete probability dis-
tribution. We construct several variants of the multi-user pricing problem, each associated
with different ways to group the users into clusters.

Bilevel optimization raises the problem of lower-level ambiguity; when the set of optimal so-
lutions for the lower-level problem is not reduced to a singleton, it is unclear which solution
would be chosen. In a pricing context such as the TLOU application, if a user is given a set
of options with the same cost, they may pick any of these optimal choices, or make a decision
based on other secondary objectives. The optimistic assumption is the most commonly-made
choice and works well when all optimal solutions are equivalent for the lower level. However,
the TLOU program developed in this thesis has a particular solution which is not to book
any capacity, corresponding to the flat TOU pricing. All other things equal, a user could
be expected to prefer TOU which offers less variability, while the optimistic model implies
that the user is accepting any solution resulting in the optimal objective value. The net gain
necessary to make the user change their decision is an assumption of the problem and can
be interpreted as a “conservativeness” of the user. They would be assumed not to choose a
“better” solution over the baseline if it does not result in a net improvement of their objective,
thus modifying the central assumption of bilevel optimization.

In the second part of the thesis, we explore bilevel optimization where the lower level may
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not be solved to perfect optimality but instead deviates by a limited tolerance. Instead of
assuming the lower-level to be a strategic and perfectly rational player, one can assume the
lower level makes decisions with so-called bounded rationality [91, 92], meaning the decision
may be sub-optimal, but with the objective not excessively deviating from the optimal ob-
jective value. It is a restriction of the optimistic bilevel problem and includes the pessimistic
bilevel problem as a special case. In Chapter 6, near-optimal robust bilevel optimization
is defined on generic bilevel problems and a duality-based solution method is defined when
convexity of the lower level holds. When the lower level is linear, an extended formulation of
the single-level problem can be derived, allowing for the use of MILP solvers. In Chapter 7,
we consider near-optimal robust versions of bilevel and multilevel optimization problems and
establish several results on the complexity of solving these variants compared to their non-
robust counterpart. Finally, Chapter 8 defines two groups of algorithms to solve near-optimal
robust linear bilevel problems, both based on the extended formulation proposed in Chap-
ter 6. One is an exact method exploiting the independence of near-optimality robustness of
each of the upper-level constraints, and the other is a group of heuristic methods computing
a bilevel-feasible, near-optimal robust solution by solving a smaller MILP problem.
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CHAPTER 4 ARTICLE 1: A BILEVEL APPROACH TO OPTIMAL
PRICE-SETTING OF TIME-AND-LEVEL-OF-USE TARIFFS

Authors: Mathieu Besançon, Miguel F. Anjos, Luce Brotcorne, Juan A. Gomez-Herrera,
published in [90]1.

Abstract

The Time-and-Level-of-Use (TLOU) system is a recently developed approach for electric
energy pricing, extending Time-of-Use with an energy capacity that customers can book in
advance for a given consumption time. We define a bilevel optimization model for determining
the pricing parameters of TLOU, maximizing the supplier revenue while anticipating an
optimal reaction of the customer. A solution approach is built, based on the discrete finite
set of optimality candidates of the lower-level customer problem.

4.1 Introduction

With the increasing proportion of solar and wind generation in the energy mix, power sys-
tems have to accommodate greater variability on the supply side, along with more complex
decisions on the demand side with generation and storage units down to the residential level.
Demand Response (DR) has been seen as one of the promising approaches to these challenges,
leveraging customers’ flexibility to provide services for better operation of power systems. DR
programs are often classified as incentive-based or price-based programs [12]. Different price-
based programs are compared in [93] from the perspective of a supplier designing the pricing
program, anticipating in a bilevel framework the reaction of a prosumer with storage and
shifting capacity.

A detailed review of the literature on bilevel optimization for price-based DR is available
in [94]. Incentive-based programs require more commitment from the demand side, thus are
often less suitable for targeting residential customers. Price-based DR requires less commit-
ment and constraints on the customer side, thus offering a greater flexibility, but does not
provide the supplier with strong guarantees on the actual or even expected demand. An ap-
proach taken in price-based DR is to offer varying reliability of electricity to customers [25],
leaving the supplier free to adapt the power effectively served to the customer. The insuf-

1©2020 IEEE. Reprinted, with permission, from [90]
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ficiency of short-term estimation methods was identified in a technical report [95] as as one
of the critical barriers to the effective implementation of DR. Even though Time-and-Level-
of-Use (TLOU) is more related to price-based DR, the self-determined capacity creates an
incentive for respecting the upper bound on the consumption on the part of the customer.
It was defined in [27] as an extension of the Time-of-Use (TOU) pricing scheme, targeting
specifically the issue with current large-scale DR programs identified in the FERC report [95].
Specifically, in the TLOU context, TOU is just a special setting with a null booked capacity.
The authors of [27] develop the optimal planning and operation of a smart building under
TLOU pricing. In this work, we propose a bilevel optimization model to assist in determining
the optimal TLOU pricing structure for a supplier.

The reaction of the customer to the proposed pricing is integrated in the supplier decision
problem, thus turning the customer-supplier interaction into a Stackelberg game solved as a
bilevel optimization problem. Using specific properties of the customer problem, the optimal
capacity decision can be reduced from a continuous set to a discrete finite number of choices
which can be computed independently of other decisions. Through this transformation, the
necessary and sufficient conditions for lower-level optimality are expressed as a set of linear
constraints. For each time frame and corresponding consumption distribution, the set of
optimal pricing options can be computed as solutions to the bilevel problem with fixed lower
level. These options can be computed in advance, and one can be selected by the supplier
ahead of the consumption time to create an incentive for the customer to book and consume
a given capacity.

The contributions of this letter are the following: developing further the conceptual basis of
the TLOU pricing and some of its key properties, building a bilevel model for the supplier’s
problem and a specialized solution method, and highlighting through numerical experiments
the ability of TLOU to create different incentives depending on the supplier’s needs.

This letter is structured as follows. Section 4.2 introduces the TLOU pricing, along with
the variant used in this work. In Section 4.3, the model of the supplier decision problem
is developed, and necessary optimality conditions are defined to design an efficient solution
method. Computational experiments are presented in Section 4.4 for a supplier offering prices
to incentivize the customer to follow a certain capacity profile across the day. Section 4.5
concludes the work.
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4.2 TLOU pricing

The TLOU policy extends TOU by allowing a customer to book an energy capacity that they
self-determine at each time frame depending on their planned requirements. Through this
mechanism, they provide the supplier with information on the energy they would possibly
consume. The capacity is the energy booked by the customer for a given time frame, following
the same terminology as the initial description of TLOU in [27]. As in TOU, the price of
energy depends on the time frame within the day, but also on the capacity booked by the
customer. TLOU is applied in a three-phase process:

1. The supplier sends the pricing information (K, πL(c), πH(c)) to the customer.

2. The customer books a capacity from the supplier for the time frame before a given
deadline.

3. After the time frame, the energy cost is computed depending on the energy consumed
xt and booked capacity ct:

• If xt ≤ ct, then the applied price of energy is πL(ct) and the energy cost is πL(ct)·xt.

• If xt > ct, then the applied price of energy is πH(ct) and the energy cost is
πH(ct) · xt.

The first step corresponds to the pricing decision of the supplier for a given time frame. They
then send the pricing to the customer, who takes in a second time their decision by booking
a capacity ct ≥ 0, minimizing their expected cost. The pricing system is described by three
elements: a booking fee K, a step-wise decreasing function πL(ct) representing the lower
energy price and a step-wise increasing function πH(ct) representing the higher energy price.
πL(ct) will refer to the function of the capacity and πL

j to the value of the lower price at step j.

An important feature of this DR program is the minimal information that must be exchanged
by the parties involved. Unlike DR programs which require users to provide their projected
needs or delegate the scheduling decisions to the supplier, TLOU only requires a capacity
from the user, with the option of falling back on TOU pricing by not booking a capacity for
any time frame.

We use the TLOU definition presented in [94]. Unlike the original convention of [27], the
totality of the energy consumed is paid at the lower tariff if it remains below the booked
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capacity, and at the higher tariff otherwise, as described in Eq. (4.1). In other words, if the
consumption over the time frame remains below the booked capacity, the effective energy
price is given by the lower tariff curve; if the consumption exceeds the booked capacity, the
energy price is given by the higher tariff. This asymmetry in the pricing system creates
a strong incentive to make the capacity act as an upper bound on the consumption, while
under-consumption is penalized by a soft term proportional with the deviation as highlighted
in Fig. 4.2. Customers are still able to consume above the capacity if necessary, and the
supplier is compensated for this deviation by the higher price that applies. The total cost for
the customer associated with a booked capacity c and a consumption Xt for a time frame t

is:

C(ct;Xt) =

K · ct + πL(ct) ·Xt, ifXt ≤ ct,

K · ct + πH(ct) ·Xt otherwise.
(4.1)

In the rest of this letter, the index of the considered time frame is dropped when not necessary
in an expression to keep the notation succinct.

Proposition 4.2.1. If a customer books a capacity c > 0 for a given time frame and assuming
K + πL(c) < πH(c), the lowest cost per kW · h is reached when the consumption is exactly
equal to the booked capacity.

Proof. If X ≤ c, the total cost is given by Kc+XπL(c), hence the relative cost per consumed
unit of energy is Kc

X
+πL(c), which is strictly decreasing with X. The discontinuity at X = c

is positive, since the relative total cost changes from Kc
X

+ πL(c) to Kc
X

+ πH(c). The relative
cost at X = c is K + πL(c), assuming K + πL(c) < πH(c), there is no decrease of the relative
cost below the point it reaches at c = X.

An example illustrating Proposition 4.2.1 is given Fig. 4.1 and Fig. 4.2.

One property of interest derived from Proposition 4.2.1 is that the customer does not have
any incentive to signal a capacity different from their consumption intent. This is in particu-
lar valuable for consuming units which are able to adjust their consumption through storage
or flexible loads.

Another property of the proposed pricing is that the customer does not need to explicitly
signal to the supplier that they do not wish to participate in TLOU at some given time frame.
A customer can opt-out of the program simply by booking a capacity c = 0, for which the
applied pricing matches TOU.
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Figure 4.1 Example of TLOU pricing

In a realistic setting, the supplier will have multiple, potentially heterogeneous customers.
The model presented here tackles the single-customer case, but also applies when the supplier
is able to offer different price settings specific to each individual customer.

4.3 Bilevel model for the supplier decision

In this section, we present a mathematical optimization problem modeling the supplier de-
cision when setting the parameters of the TLOU pricing. The sequential decision process,
with one agent reacting to the decision of the other and taking it into account when solving
their decision problem, is represented as a Stackelberg game, and can be modeled as a bilevel
optimization problem. In this bilevel formulation, the upper-level represents the energy sup-
plier deciding on the pricing components (K, πL, πH), while the lower-level represents the
customer’s response to the supplier’s decision, in terms of booking a capacity c.

We consider the consumption of the customer to be unknown to both the supplier and
themselves when taking both the pricing and the booking decision. Both players know the
probability distribution of this consumption ahead of time before making their decision. This
probability distribution is assumed to be discrete and its support Ω is a finite set, with each
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Figure 4.2 Relative cost of energy vs consumption for different capacities

element representing a consumption scenario ω ∈ Ω, with associated probability and value
pω, xω respectively. The probability distribution and its support likely depend on the time
frame considered t, we note it Ωt when the time frame is specified. The expected cost of the
customer, which is equivalent to the expected revenue of the supplier, is given as a function
of both capacity and pricing:

C(c,K, πL, πH) = K · c+
∑

ω∈Ω−(c)

xωpωπ
L(c)+

∑
ω∈Ω+(c)

xωpωπ
H(c), (4.2)

with any capacity booked defining a partition of the set of scenarios:

Ω−(c) = {ω ∈ Ω, xω ≤ c} & Ω+(c) = {ω ∈ Ω, xω > c}. (4.3)

[94, Proposition 3.1] defines the subset of capacities respecting the necessary optimality
conditions:

St = {0} ∪ CL ∪ Ωt (4.4)
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where the steps of the lower and higher price functions are given at different breakpoints:

{cL0 , cL1 , cL2 , ...} = CL & {πL
0 , π

L
1 , π

L
2 , ...} = πL

{cH0 , cH1 , cH2 , ...} = CH & {πH
0 , πH

1 , πH
2 , ...} = πH

The customer books the cost-minimizing capacity at each time frame, given the corresponding
probability distribution. With the finite set of optimal candidates St, this constraint can be
re-written as:

C(ct) ≤ C(c) ∀c ∈ St, (4.5)

which corresponds to finitely many linear constraints. If multiple values of c reach a mini-
mum cost, there is no unique choice the supplier can anticipate from the customer. In such
situation, the supplier cannot correctly foresee the decision of the customer. They would
want to ensure that the preferred solution of the customer is unique, by making one solution
strictly lower in cost than all other capacity candidates. We re-formulate this requirement
as the cost being lower than that of any other solution by at least a quantity δ > 0. This
quantity can be interpreted as the conservativeness of the customer (unwillingness to move to
an optimal solution up to a difference of δ). It is a parameter of the decision-making process
of the supplier, estimated a priori by the supplier based on its risk aversion and estimation
of customer reactivity. Given this conservativeness parameter, the lower-level optimality
conditions of a candidate k ∈ St for a time frame t become:

C(ctk, K, πL, πH) ≤ C(ctl, K, πL, πH)− δ ∀l ∈ St\{k}. (4.6)

Given that the special case c = 0 matches the TOU pricing, the net difference in expected cost
of δ is also ensuring that the effort of the customer committing to a capacity and engaging
in the program should not be expected by the supplier below a net gain of δ for the customer.

The space of price parameters can be further restricted to include regularity constraints
on the pricing curves, lower and upper bounds on the prices. All these constraints can be
expressed as linear inequalities, and are summarized with the notation:

(K, πL, πH) ∈ Φ (4.7)

For each capacity candidate k ∈ St\{0}, the supplier finds the optimal pricing parameters
such that the candidate is the optimal capacity to book for the customer, and is at least better
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than any other candidate by a difference of δ. The kth price-setting problem is expressed as:

max
K,πL,πH

C(ctk, K, πL, πH) (4.8a)

s.t. (K, πL, πH) ∈ Φ (4.8b)

C(ctk, K, πL, πH) ≤ C(clt, K, πL, πH)− δ ∀l ∈ St\k, (4.8c)

where C(ctk, K, πL, πH) is defined in Eq. (4.2). In [94], a multi-objective version of the same
model is developed, the second objective is experimentally found to be non-conflicting with
the revenue maximization.

Formulation (4.8) fully captures the bilevel nature of the problem through Constraint (4.8c),
which specifies that the specific k-th capacity candidate must be the optimal choice by at least
δ for the customer (lower level). Given the discrete nature of the lower-level decision (choosing
the lowest-cost capacity candidate among a discrete set), the Karush-Kuhn-Tucker primal-
dual optimality conditions could not be used. Constraint (4.8c) is used as an optimality
condition for the lower-level, leveraging the fact that the optimality candidates can all be
known prior to the optimization phase.

4.4 Computational experiments

In this section, we present the setup and results for experiments with a supplier setting a
TLOU pricing for 24 time frames, picking the pricing minimizing the deviation from the
hourly. The data used and further experimentation are presented in [94, Section IV].

Given the probability distribution of the consumption at each time frame, the supplier can
construct a TLOU price setting for each capacity candidate by solving Problem (4.8). Once
these hourly options have been computed, the supplier can choose to create an incentive for
the customer to follow a profile. To avoid unexpected deviations, the supplier can set the
prices, as to have a non-zero capacity as close as possible to the average consumption of each
time frame, as shown in Fig. 4.3. We use a δ = $0.005 and similar settings as [94, Section
IV] for other parameters (with a reference TOU price of $1.0).

Alternatively, a major objective of many DR programs is to smooth the demand curve by
peak shaving and valley filling. The sum of variations from one time frame to the next can



28

0 5 10 15 20
Hour

0

1

2

3

4

5

En
er

gy
 (k

W
h)

Booked capacity across a day

Average consumption
Booked capacity
min & max values
20th-80th percentile

Figure 4.3 Booked capacity profile and load distribution bounds

be minimized with the following linear optimization model:

min
v,z

|T |−1∑
t=1

vt (4.9a)

s.t. vt ≥
∑
k∈St

ckt z
k
t −

∑
k∈St

ckt+1z
k
t+1 ∀ t ∈ {1..|T | − 1} (4.9b)

vt ≥
∑
k∈St

ckt+1z
k
t+1 −

∑
k∈St

ckt z
k
t ∀ t ∈ {1..|T | − 1} (4.9c)∑

k∈St

zkt = 1 ∀t ∈ T (4.9d)

In this model, zkt = 1 is equivalent to the supplier choosing the kth candidate for the time
frame t. vt takes as value the absolute error between the capacity at t and t+1. The optimum
of this model corresponds to a constant booked capacity over all the time frames. A trade-off
can be set between this objective and the capacity averaged over each time frame:

|T |∑
t=1

∑
k∈St

ckt z
k
t / |T |. (4.10)
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Different solutions corresponding to various trade-off are obtained by solving Problem (4.11)
with a weight w varying as shown in Fig. 4.4. The weight parameter is the weight assigned
to the average booked capacity, while the weight of the sum of variations remains at 1.

min
v,z

|T |−1∑
t=1

vt + w

|T |∑
t=1

∑
k∈St

ckt z
k
t / |T | (4.11a)

s.t (4.9b - 4.9d) (4.11b)
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Figure 4.4 Booked capacity profile with the weighted bi-objective model

4.5 Conclusion

In this letter, we present a bilevel model for a supplier optimizing the TLOU pricing, se-
lecting for each capacity candidate the revenue-maximizing price setting. We illustrate the
application with a selection of capacities across the day to smooth the capacity curve or to
stay close to the average, and thus create an incentive for the customer to consume at this
level. Future research will consider a single setting for multiple customers and exploiting
continuous probability distributions of the consumption.
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CHAPTER 5 OPTIMAL MULTI-USER TIME-AND-LEVEL-OF-USE
PRICING

Abstract

Price-based Demand Response leverages the flexibility of users’ consumption to accommo-
date grid requirements and mitigate power generation uncertainty. The Time-and-Level-
of-Use (TLOU) pricing extends price-based Demand Response programs with a capacity
self-determined by users planning their consumption, providing the supplier with informa-
tion on the intended consumption. We focus on the optimal pricing of TLOU for a supplier
serving heterogeneous users, in the case where the forecast consumption follows a mixed
continuous-discrete distribution. We propose bilevel optimization models for the optimal
setting of TLOU parameters under different configurations. Under smoothness assumptions
of the probability distributions, these models can be simplified as mixed-integer linear opti-
mization problems. The impact of the number of users and configurations on the solution
time and attained revenue highlights the scalability of the proposed method.

5.1 Introduction

In modern power grids, distributed renewable generation is a growing source of uncertainty for
grid operators, because of power injections characterized by significant variability and limited
ability to control. This increased uncertainty may lead to greater difficulty for maintaining
the balance between supply and demand at any time, potentially putting the power grid at
risk. System operators have been leveraging several mechanisms to cope with these fluctua-
tions, with for instance load curtailment on the generation side or storage [96]. Demand-Side
Management (DSM) has focused on the operations of the demand side of the power sys-
tem [11], with several approaches including Demand Response (DR) to create and exploit
changes in time of power consumption.

DR programs have been developed to let the demand-side decision makers support grid op-
eration by creating value from their flexibility [12]. In incentive-based DR programs, changes
in the consumption are achieved either from direct activation and deactivation of consuming
devices controlled by the power supplier or through the lever of market mechanisms. Price-
based DR programs use variations of prices to encourage users to change their consumption
through time. These price variations can happen a few times during the day as in Time-of-
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Use (TOU), separate a full day from the normal operation in terms of price as in Extreme
Day Pricing, or happen on a quasi-continuous basis as in Real-Time Pricing. Price-based DR
requires less frequent communication between users and suppliers, and little to no specific
hardware [15]. In addition to their simplicity on the user side, these advantages increased
the potential of price-based DR for the residential market.

In [27], a Time-and-Level-of-Use (TLOU) pricing policy was introduced, allowing users to
determine and book in advance a consumption capacity for a time frame. In this policy, the
price of energy depends not only on the time of consumption, similarly to a Time-of-Use
(TOU) policy, but also on the capacity booked. In [90], a variant of the TLOU pricing is
defined; given an energy consumption Xt at a time frame t and a capacity ct booked by the
user, the total cost for the user under TLOU is computed as:

C(ct, K, πL, πH) = Kct +

Xtπ
L(ct) if Xt ≤ ct

Xtπ
H(ct) otherwise,

where (K, πL, πH) are the decisions of the supplier which define the TLOU setting. K is
a strictly positive booking fee which, for a booked capacity c, yields a booking cost Kc.
πL(·), πH(·) are piecewise constant, R+ → R+ functions, decreasing and increasing respec-
tively on predefined steps. They can equivalently be viewed as vectors of price steps with
decreasing, respectively increasing successive components. The capacity is an amount of en-
ergy that can be consumed in the time frame by the user while benefitting from the lower
price. However, the grid operator is concerned with power consumption more than energy,
and in particular with the maximum power usage. If the time frames are short enough and
assuming users do not use appliances consuming at high power for a short period, the energy
consumed during a time frame is an acceptable proxy for the maximum power usage in the
time frame.

In [90], a bilevel optimization model of the decision-making process of the supplier-user pair
is designed, introducing the position of the energy supplier setting the values of the pricing
components of TLOU, namely a lower and higher price curve, and a booking fee. Bilevel
optimization problems integrate the optimality of a second optimization problem in the con-
straints. They are often used to represent Stackelberg or Leader-Follower games, where one
player, the leader, makes a first decision, to which a second player, the follower, reacts by
solving their own optimization problem parameterized by the leader’s decision. We refer the
interested reader to [97, 98] for recent reviews on the methods and applications of bilevel
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optimization.

Representing the decision-making process of the two actors as a Stackelberg game integrates
the user as a strategic decision-maker with their own objective and set of constraints, avoid-
ing assumptions such as demand elasticity. The supplier, acting as the leader, anticipates
the optimal reaction of the user, acting as the follower, who then decides on a capacity to
book for a given time frame, taking into account the TLOU parameters set by the supplier.
Using bilevel optimization to build a mathematical formulation of the problem, the leader’s
and the followers’ problems correspond to the upper and lower level respectively.

In a realistic setting, the supplier offers a TLOU pricing to multiple users who can be dif-
ferent households, buildings or commercial users within a neighborhood or micro-grid. The
supplier can be an aggregator [16] setting the price for multiple users while buying electricity
from the wholesale market. For legal or practical reasons, the supplier may want to offer the
same price setting to all users at a given time. Indeed, offering different prices to different
entities opens a range of issues, including fairness and transparency of the price determina-
tion process. A looser restriction on the pricing decision may be to be able to offer a single
price setting for all users within a group of users. We consider three ways such groups are
determined, they may be based on predefined criteria, such as geographic location, they can
be a choice of the supplier (with an assignment of users to groups), or left to each user to
choose a given group and the corresponding TLOU setting and then a capacity given this
setting.

An assumption underlying the proposed model in [90] is that the probability distribution
of the consumption at a given time frame is discrete with finite support. Some devices,
however, such as electrical heating systems, consume energy in an intermittent fashion or in
a continuous range. The probability distribution of the aggregated household consumption
then follows a mixed continuous-discrete univariate probability distribution, i.e. a probabil-
ity distribution over the real numbers with a continuous density and including mass points
(singletons for which the probability measure is non-zero).

The contributions of this chapter are:

• Defining the TLOU pricing model with a consumption following a mixed continuous-
discrete probability distribution, and defining conditions under which the optimal can-
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didates of the lower level reduce are contained in a discrete finite set depending only
on the problem data;

• Formulating the decision problem of the supplier determining a single TLOU price
setting for multiple heterogeneous clients;

• Studying the impact of the clustering of clients in groups receiving a single TLOU price
setting, with cluster assignments determined either by the supplier, each user, or given
as fixed parameters.

This chapter is structured as follows. Section 5.2 provides the background on TLOU and
related work in pricing for Demand Response. Section 5.3 introduces the mixed continuous-
discrete probability distribution of the aggregated consumption and the expression of the user
cost for given upper- and lower-level decisions. Section 5.4 introduces the formulation of the
optimal price-setting problem with multiple users, each characterized by their consumption
distribution, resulting in non-tractable bilevel Mixed-Integer Non-Linear Problems. In Sec-
tion 5.5, these problems are reformulated as Mixed-Integer Linear Problems. In Section 5.6,
computational experiments on various implementations of the MILP models are carried out.
Section 5.7 concludes the chapter and lays out perspectives for future research.

5.2 Background on TLOU and related work

In this section, we provide the notation and previous work on TLOU DR programs and re-
lated research. TLOU was introduced under different angles in [27,29,99] which focus on the
perspective of a smart home agent optimizing its booked capacity, consumption, and storage
planning. The TLOU setting is considered fixed in advance. The studies show how a smart
building aggregating multiple users can reduce its operating costs while meeting the user’s
consumption preferences.

In [90], completed by [94], a price-setting model is built from the supplier perspective to
derive a set of TLOU pricing options, with each pricing maximizing the revenue for a given
potentially optimal capacity level. The model incorporates the optimal user reaction in a
bilevel formulation and anticipates a conservative behaviour of the user, who is assumed to
choose a capacity only if it yields an expected cost lower than all alternatives by at least a
difference of δ. The solution approach yields an optimal price setting for each capacity can-
didate which could be optimal for the lower level. The choice among these capacity profiles
is further investigated, with a second bi-objective linear optimization model picking a TLOU
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setting at each time frame of the day, choosing a trade-off between the sum of variations from
a time frame to the next (thus encouraging load shifting), and the average booked capacity.

Other approaches for the representation of user choices in the context of price-based DR
are followed in [33, 34, 100] and consider the user decision as a trade-off between cost min-
imization happening through load shifting and inconvenience minimization (or limitation).
The formulation of inconvenience depends on the nature of the electric load. A notion of
inconvenience based on a comfort temperature zone is considered in [100], since thermal ap-
pliances are considered as the flexible consumption unit. In [33,34], inconvenience is defined
in a more generally applicable fashion as the displacement of electric loads in their schedule.
In [101], competing retailers offer Time-of-Use prices to end-users, taking into consideration
consumption uncertainty and buying electricity from multiple markets. An incentive-based
DR program is proposed in [20], where power generators play a Cournot-Nash game. In [102],
the authors develop a behaviour model for users making a multistage decision under a peak-
time price-based DR program.

The TLOU DR program we focus on in this chapter is primarily price-based, but the depen-
dence of the price on the consumption creates an incentive for the user to remain below the
established capacity. In [93], multiple time-based DR programs are compared in a setting
where the prosumer operates renewable generation and energy storage. Similarly to our ap-
proach, a default option is always offered to the prosumer in addition to the tariff designed
by the supplier in order to ensure that the proposed pricing is at least as profitable for the
prosumer as the baseline. In [30], a robust optimization model is developed for a multistage
manufacturing unit for which electricity is priced in a TLOU scheme. The unit includes its
own energy storage system renewable energy sources and can co-optimize its consumption,
storage, and the price at which it buys electricity from the supplier from the time and level.

5.3 Single-user formulation with mixed continuous-discrete consumption distri-
bution

In this section, we develop the formulation of the expected total cost for a single user booking
a capacity in a TLOU program under a mixed continuous-discrete probability distribution of
the consumption. From this formulation, we determine the set of candidates to optimality i.e.
a set of capacity levels that contain the minimizer of the expected cost. This set of candidates
can then be used in the following section to derive tractable optimality conditions for the
user problem. For a non-empty interval X ⊆ R and a function f : X → R continuous almost
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everywhere on X, we will qualify a point c in the interior of X as a positive discontinuity iff:

• lim
x→c,x<c

f(x) and lim
x→c,x>c

f(x) both exist and are finite;

• lim
x→c,x<c

f(x) < lim
x→c,x>c

f(x).

A negative discontinuity is defined similarly.

Following the definition of the TLOU pricing from [90], the total expected cost at a time
frame t for a user u picking a capacity c is:

Cu(c,K, πL, πH) =Kc+

πL(c)P [Xt ≤ c]E [Xt|Xt ≤ c] +

πH(c)P [Xt > c]E [Xt|Xt > c]

where K is the booking fee, Xt is the random variable describing the consumption at time t

and πL(·), πH(·) are the lower and higher price curves respectively. They determine the price
of energy if the consumption is below, respectively above the capacity. The ordered steps of
the lower and higher price steps πL, πH respectively are denoted CL, CH respectively. Since
we focus on the expected cost for the user in this section, Cu(c,K, πL, πH) will be shortened
to Cu(c) when the pricing parameters are implied by the context. Since a single time frame is
considered in this chapter, the time index t will be dropped when it is implied by the context.

If the probability density function (pdf) fX is defined and has a support on x ∈ [0, x̄], with
x̄ the maximum consumption, the user cost Cu(c) can be computed as:

Cu(c) = Kc+

∫ c

0

πL(c)fX(x)xdx+

∫ x̄

c

πH(c)fX(x)xdx.

However, in the presence of mass points (positive discontinuities in the cumulative density
function), the density function must be expressed as a generalized function. We separate the
domain into segments where the probability density function is continuous, and mass points
with a positive probability between these segments. Let Xm

u = [x0, x1, ..., xn] be the mass
points of the consumption distribution Xu for user u, and define the following partition of
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the mass points created by a capacity c ≥ 0:

X−
u (c) = {xm ∈ Xm

u , xm ≤ c} = {x0, x1, x2...xB(c)}

X+
u (c) = {xm ∈ Xm

u , xm > c} = {xB(c)+1, xb+2...xn}

where: B(c) = |X−
u (c)|.

We consider without loss of generality that x0 ≡ 0. For a mixed continuous-discrete dis-
tribution containing mass points, the pdf can be integrated in the sense of Riemann in a
piecewise fashion between the mass points. The user cost at capacity c given the pricing
setting (K, πL, πH) is:

Cu(c,K, πL, πH) =Kc+

πL(c)

B(c)−1∑
i=0

(
xipi +

∫ xi+1

xi

fX(x)xdx

)
+

πL(c)pB(c)xB(c) + πL(c)

∫ c

xB(c)

fX(x)xdx+

πH(c)

∫ xB(c)+1

c

fX(x)xdx+

πH(c)
n−1∑

i=B(c)+1

(
xipi +

∫ xi+1

xi

fX(x)xdx

)
+

πH(c)xnpn + πH(c)

∫ x̄

xn

fX(x)xdx.

Considering that fX(·) is continuous everywhere, Cu(·, K, πL, πH) presents a discontinuity at
a point x only if:

• x ∈ CL: the point is a step change of the lower price curve πL(·)

• x ∈ CH : the point is a step change of the higher price curve πH(·)

• x ∈ Xm: the point is a mass point, given that B(c) increases by one on x.
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We introduce the following quantities:

E−
u (c) =

B(c)−1∑
i=0

(
xipi +

∫ xi+1

xi

fX(x)xdx

)
+

pB(c)xB(c) +

∫ c

xB(c)

fX(x)xdx

E+
u (c) =

∫ xB(c)+1

c

fX(x)xdx+

n−1∑
i=B(c)+1

(
xipi +

∫ xi+1

xi

fX(x)xdx

)
+

xnpn +

∫ x̄

xn

fX(x)xdx.

They correspond to the two components of the expected value of the consumption:

E−
u (c) = P [X ≤ c] · E[X|X ≤ c]

E+
u (c) = P [X > c] · E[X|X > c]

E[X] = E−
u (c) + E+

u (c).

The user cost Cu(c) computed at any c can be rewritten as:

Cu(c) = Kc+ πL(c) · E−
u (c) + πH(c) · E+

u (c).

Proposition 5.3.1. The set of optimality candidates for a given user u is included in:

Ĉ = {0} ∪Xm
u ∪ CL ∪ CH ∪ Scont

where

Scont =

{
c > 0 | fX(c) = K

(πH(c)− πL(c))c
and

dfX
dc

(c) ≤ −fX(c)

c

}
.

Proof. The expected cost is piecewise continuous, with discontinuities on the mass points Xm
u

and steps CL, CH of the price functions πL(·), πH(·). A necessary condition for a capacity to
be optimal in a continuous segment is a zero first derivative. Given that the point is assumed
to be in the interior of a continuous segment, the price curves both have derivative 0 and

∃ϵ, πL/H(c+ ϵ) = πL/H(c)
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for ϵ small enough. We can express the corresponding variation of the pricing components:

E−
u (c+ ϵ)− E−

u (c) =

∫ c+ϵ

xb

fX(x)xdx−
∫ c

xb

fX(x)xdx ⇔

E−
u (c+ ϵ)− E−

u (c) =

∫ c+ϵ

xb

fX(x)xdx+

∫ xb

c

fX(x)xdx ⇔

E−
u (c+ ϵ)− E−

u (c) =

∫ c+ϵ

c

fX(x)xdx

for the lower price component, and

E+
u (c+ ϵ)− E+

u (c) =

∫ xB(c)

c+ϵ

fX(x)xdx−
∫ xB(c)

c

fX(x)xdx ⇔

E+
u (c+ ϵ)− E+

u (c) =

∫ xB(c)

c

fX(x)xdx−
∫ c+ϵ

c

fX(x)xdx−
∫ xB(c)

c

fX(x)xdx ⇔

E+
u (c+ ϵ)− E+

u (c) = −
∫ c+ϵ

c

fX(x)xdx

for the higher price component. We can deduce the expression of the derivative of the cost:

∂C
∂c

(c,K, πL, πH) = K + πL(c)
∂E−

u

∂c
(c) + πH(c)

∂E+
u

∂c
(c)

= K + πL(c)fX(c)c− πH(c)fX(c)c.

Setting the derivative to 0 yields:

0 = K + cπL(c)fX(c)− cπH(c)fX(c) ⇔ fX(c) =
K

(πH(c)− πL(c))c

In addition to the first-order condition developed above, the necessary second-order condition
is that the second derivative must be positive or zero for local optimality:

∂2C
∂c2

(c) = (πL(c)− πH(c))

(
c
∂fX
∂c

(c) + fX(c)

)
≥ 0

⇔

(πH(c)− πL(c))

(
c
∂fX
∂c

(c) + fX(c)

)
≤ 0.

If πL(c) − πH(c) = 0, then all higher-order derivatives of Cu(·) are zero. This condition is
met only on the segment before the first steps of both the lower and higher prices. In this
segment, booking any capacity different from 0 is suboptimal, since it does not change the
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price of energy from the baseline while inducing some booking fee. We therefore exclude this
condition and focus on the second derivative when πL(c) < πH(c), which also implies c > 0:

c
dfX
dc

(c) + fX(c) ≤ 0 ⇔ dfX
dc

(c) ≤ −fX(c)

c
.

The second-order necessary conditions for a candidate capacity c to be a local optimum are
therefore: ∂Cu

∂c
(c) = 0

∂2Cu
∂2c

(c) ≥ 0
⇔

fX(c) =
K

c (πH(c)−πL(c))

dfX
dc

(c) ≤ −fX(c)
c

which correspond to the definition of Scont.

Proposition 5.3.1 defines two sets of candidate solutions for optimality. The candidates from
the first set are independent of the price settings and can be computed using only problem
data while the other candidates from Scont in the continuous segments of the cost functions
depend on the pricing decisions (K, πL, πH). However, under some assumptions on the den-
sity function, we can assume the necessary conditions for the existence of candidates in Scont

are never met. The first-order conditions require that fX(·) reaches the quantity K
c (πH(c)−πL(c))

for some c which corresponds to a high-density concentration. If the density remains below
this threshold, first-order optimality conditions are never met. The second-order optimality
conditions require a “sharp-enough” decrease of the density at a point where first-order opti-
mality conditions are satisfied, such that the derivative is below −fX(c)

c
. In the case where a

sharp-enough spike in the density meeting the optimality condition is observed, it can also
be viewed as a mass point and removed from the continuous segment.

In order to derive a tractable formulation of the pricing problem, we will rely in the rest of
this chapter on the assumption that the necessary optimality conditions are never met on
the continuous segments of the cost function, and that the optimum is located on one of the
discontinuities. We denote this restricted set of capacity candidates for user u as:

Su = {0} ∪ CL ∪ CH ∪Xm
u .

If a user books a given capacity c, the lower price is applied for a consumption below or equal
to c. Given a point x such that C(·, K, πL, πH) is discontinuous at x, booking a capacity
of x − ϵ or a capacity x + ϵ with ϵ > 0 arbitrarily small does not yield the same expected
cost. For any discontinuity, the left and right limits are both optimality candidates. The
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following proposition however establishes which of the two limits is potentially optimal for a
given discontinuity.

Proposition 5.3.2. For a capacity candidate k ∈ Su, the optimal capacity can only be the
left limit limc→ck,c<ck c if k ∈ CH , and always ck itself when k ∈ CL ∪Xm.

Proof. The pdf fX(·) is differentiable at any point x /∈ Xm
u . Given c and ϵ > 0 such that

c+ ϵ ∈ CL,

Xm
u ∩ [c, c+ ϵ] = ∅,

CH ∩ [c, c+ ϵ] = ∅,

then the following holds true:

E−(c+ ϵ)− E−(c) = E+(c)− E+(c+ ϵ) ≈ ϵ cfX(c)

πH(c+ ϵ) = πH(c)

πL(c+ ϵ) < πL(c)

C(c+ ϵ) = K (c+ ϵ) + πL(c+ ϵ)E−(c+ ϵ) + πH(c+ ϵ)E+(c+ ϵ)

C(c+ ϵ)− C(c) ≈ E−(c)
[
πL(c+ ϵ)− πL(c)

]
< 0.

Given that the discontinuity is negative, the optimality candidate is on the right-hand side
of the discontinuity. Similarly, given c and ϵ > 0 such that:

c+ ϵ ∈ CH ,

Xm
u ∩ [c, c+ ϵ] = ∅,

CL ∩ [c, c+ ϵ] = ∅,

then the following holds:

πH(c+ ϵ) > πH(c)

πL(c+ ϵ) = πL(c)

C(c+ ϵ) = K (c+ ϵ) + πL(c+ ϵ)E−(c+ ϵ) + πH(c+ ϵ)E+(c+ ϵ)

C(c+ ϵ)− C(c) ≈ E+(c)
[
πH(c+ ϵ)− πL(c)

]
> 0.

The discontinuity at c ∈ CH is positive, so the optimality candidate is the limit on the
left-hand side of the discontinuity.
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Lastly, on a mass point, a quantity is transferred from E+(c) to E−(c), while the lower and
higher prices remain constant. The discontinuity is therefore negative, and the optimality
candidate is on the right-hand side.

Based on Proposition 5.3.2, we consider the optimality candidates to be all the possible values
of:

cuk =

limc→c̄,c<c̄ c if c̄ ∈ CH

limc→c̄,c>c̄ ≡ c̄ if c̄ ∈ CL ∪Xm
u .

If
∃x0 ∈ CH ∩ (Xm

u ∪ CL), (5.1)

then one candidate belonging to CH is considered on the right side of x0 and a second
candidate is considered on the left side, corresponding to a point in CL ∪Xm

u .

5.4 Supplier problem formulation with multiple users

In this section, we formulate the bilevel problem of the supplier setting the TLOU param-
eters with multiple users booking a capacity minimizing their expected cost as developed
in Section 5.3. We establish three variants of the price-setting problem depending on the
way users are clustered. Similarly to [90], the supplier maximizes the total revenue which is
expressed as the sum of revenues from each user. Any user u involved in the TLOU program
will book a capacity cu > 0 at a time frame only if the resulting expected cost is better
than the baseline. This induces a net financial loss through the program from the supplier
perspective. The total revenue for the supplier is the sum of costs paid by users:∑

u∈U

Cu(c; πL, πH , K),

with U the set of NU users. If the supplier maximizes only their revenue, all users booking
a capacity of 0 results in an optimal solution for the supplier. In any other case, one user
u booking a positive capacity implies that their expected cost at this capacity is lower than
the baseline of capacity 0, since a reduction in expected cost for a user implies a reduction in
expected revenue. In order to smooth out the total demand curve or bring a certain guarantee
on the consumption, the supplier may want to create an incentive for users to book a non-zero
capacity, thus committing to consuming within a certain limit in the considered time frame.
In [90], the supplier constructs a set of options at each capacity level c ∈ Su, building for each
one a set of pricing parameters such that each combination of capacity and pricing is optimal.
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When serving multiple users, the supplier wants to influence the aggregated consumption of
all users. Thus, we add the following constraint at the upper level capturing the willingness
to bound the sum of capacities booked by all users:

c ≤
∑
u∈U

cu ≤ c̄.

Finally, the problem for each user is to minimize their expected cost with respect to the
capacity they book:

min
c≥0
Cu(c, πL, πH , K) ∀u ∈ U .

The supplier problem is expressed as follows:

max
K,πL,πH

∑
u∈U

Cu(cu, πL, πH , K) (5.2a)

s.t. cu ∈ argmin
c≥0

Cu(c, πL, πH , K) ∀u ∈ U (5.2b)

c ≤
∑
u∈U

cu ≤ c̄ (5.2c)

(K, πL, πH) ∈ Φ, (5.2d)

where Φ is a polytope restricting the possible set of values for (K, πL, πH) by defining lower
and upper bounds on the values of the price parameters and on the difference between suc-
cessive steps of πL and πH . This optimization model casts the TLOU pricing as a bilevel
problem, by making cu the optimal solution of the lower-level Problem (5.2b) for each user
u ∈ U .

On most power systems, users are not considered as a homogeneous group but are segmented
using various criteria, with different segments being presented with different offers. We
consider three variants of Problem (5.2). In the first variant, which we denote (Fixed-TLOU),
given NG groups, the user clustering is described as a set of boolean parameters:

pum =

1 if user u in group m,

0 otherwise
∀u ∈ U ,m ∈ {1..NG},

with all users assigned to exactly one of the NG disjoint sets, and the supplier choosing a
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price setting for each group m ∈ {1..NG}. The resulting model is:

(Fixed-TLOU) max
K,πL,πH

∑
u∈U

Cu(cu, πL
u , π

H
u , Ku) (5.3a)

s.t. cu ∈ argmin
c≥0

Cu(c, πL
u , π

H
u , Ku) ∀u ∈ U (5.3b)

πL
u =

NG∑
m=1

πL
mpum ∀u ∈ U (5.3c)

πH
u =

NG∑
m=1

πH
mpum ∀u ∈ U (5.3d)

Ku =

NG∑
m=1

Kmpum ∀u ∈ U (5.3e)

c ≤
∑
u∈U

cu ≤ c̄ (5.3f)

(Km, π
L
m, π

H
m) ∈ Φ ∀m ∈ {1..NG}. (5.3g)

There is one set of pricing decisions for each of the NG clusters, while the pricing assigned
to a user is a direct linear expression of these decisions.

In a second variant denoted (Supplier-TLOU), the decisions of the problem include the seg-
mentation and assignment of users in NG groups, with users in each of those groups being
offered different prices. It is equivalent to (Fixed-TLOU) with pum becoming a decision
variable for the assignment of user u to a group mu:

(Supplier-TLOU) max
K,πL,πH ,pum

∑
u∈U

Cu(cu, πL
u , π

H
u , Ku)

s.t. (5.3b)− (5.3g)

pum ∈ {0, 1},∑
m∈{1..NG}

pum = 1 ∀u ∈ U . (5.4)

Remark 5.4.1. (Supplier-TLOU) is a relaxation of (Fixed-TLOU).

Proof. Any solution feasible for (Fixed-TLOU) defines an assignment of users to clusters,
and is also feasible for (Supplier-TLOU), with an identical objective value.

In many configurations, the user will be able to pick the tariff group that best fits their needs,
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instead of being assigned based on fixed conditions or by the supplier. This corresponds to
a situation identical to (Supplier-TLOU), but where the group assignment has to be optimal
as a user choice. We denote this variant (Self-TLOU):

(Self-TLOU)

max
K,πL,πH

∑
u∈U

Cu(cu, πL
u , π

H
u , Ku)

s.t. (cu, pum) ∈ argmin
c≥0,pum∈{0,1}

{Cu(c, πL
u , π

H
u , Ku) s.t. (5.3c)− (5.3e), (5.4)} ∀u ∈ U

c ≤
∑
u∈U

cu ≤ c̄

(Km, π
L
m, π

H
m) ∈ Φ ∀m ∈ {1..NG}

Remark 5.4.2. (Supplier-TLOU) is a relaxation of (Self-TLOU).

Proof. (Self-TLOU) has the additional constraint that the cluster assigned to a user must be
optimal for the user, (Supplier-TLOU) is, therefore, a relaxation of (Self-TLOU).

5.5 Mixed-integer formulation

The price-setting problems as presented in Section 5.4 cannot be solved directly using branch-
and-bound based methods. More specifically, the lower-level optimality constraint (5.2b) in-
cludes an arg-min operator and is not in closed form. In this section, we reformulate the three
price-setting variants as MILPs. Under the regularity conditions of the continuous density
established in Section 5.3, the lower-level optimality candidates of each user are known in
advance and are independent of decision variables. These can be used to reformulate the
lower-level optimality as the lowest-cost choice in a discrete finite set.

(TLOU-Fixed) is parameterized by (c, c̄, δu,mu) and noted P(c, c̄, δu,mu). Its MILP formu-
lation (MFT) is:
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(MFT) max
z,K,πL,πH

∑
u∈U

Cu (5.5a)

s.t. zuk ⇒ Cu ≤ Cu(Cul, Ku, π
L
u , π

H
u )− δu ∀u ∈ U , ∀k, l ∈ Su, l ̸= k (5.5b)

zuk ⇒ Cu ≤ Cu(0)− δu ∀u ∈ U , ∀k ∈ Su (5.5c)

(5.3c)− (5.3e)

cu = ⟨zu, Cu⟩ ∀u ∈ U (5.5d)∑
j∈Su

zuj ≤ 1 ∀u ∈ U (5.5e)

c ≤
∑
u∈U

cu ≤ c (5.5f)

(K, πL, πH) ∈ Φ (5.5g)

zuj ∈ {0, 1} ∀u ∈ U , ∀k ∈ Su (5.5h)

where (5.5i)

Cu ≡ Cu(cu, πL
u , π

H
u , Ku).

Constraints (5.5b-5.5c) are indicator constraints expressing a logical implication, the notation
used is:

y ⇒ ⟨a, x⟩ ≤ b

requiring the linear constraint ⟨a, x⟩ ≤ b to be valid if the binary variable y is equal to
one. Constraints (5.5b-5.5c) capture the optimality conditions of the lower level: a capacity,
to be selected as a solution, must result in an expected cost lower than all other candidates Su.

Many modern MILP solvers support indicator constraints out-of-the-box. Alternatively,
those constraints can be reformulated using either Special Ordered Sets of type 1 (SOS1)
or big-M. A big-M reformulation is possible because the quantities implied are bounded:

⟨a, x⟩ ≤ b+M(1− y).

The user cost is always positive and never higher than the baseline cost Cu(0), this baseline
can be used as an upper bound on the expected revenue generated by each user. cu and Cu

are linear expressions rather than variables, reused in different constraints.

The second model of interest includes the optimal clustering by the supplier, with the number
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of groups NG as a parameter, introduced as (TLOU-Supplier) in the previous section. pum

is a variable in this model, which we formulate as follows:

(MSupT) max
z,K,πL,πH ,p

∑
u∈U

Cu (5.6a)

s.t. zuk ⇒ Cu ≤ Cu(0)− δu ∀u ∈ U ,∀k ∈ Su (5.6b)

zuk & pum ⇒ Cu ≤ Cu(Cul, Km, π
L
m, π

H
m)− δu ∀u,∀(k, l), l ̸= k (5.6c)

cu = ⟨zu, Cu⟩ ∀u ∈ U (5.6d)∑
k∈Su

zuk ≤ 1 ∀u ∈ U (5.6e)∑
m∈G

pum = 1 ∀u ∈ U (5.6f)

c ≤
∑
u∈U

cu ≤ c (5.6g)

(K, πL, πH) ∈ Φ (5.6h)

zuk, pum ∈ {0, 1} ∀u, k,m (5.6i)

Constraint (5.6c) is activated only if zuk = pum = 1, and expresses the lower-level optimal-
ity constraint: the cost for the user at the chosen candidate k must be lower than other
candidates l subject to the price of the same cluster m. Since most solvers require a single
binary variable for indicator constraints, additional binary variables encoding zuk & pum must
be added to the model.

Finally, we consider the pricing problem where the supplier creates a price setting for each
user group m ∈ NG, but each user is free to choose the group they belong to, as formulated
in (Self-TLOU). This setting corresponds to the situation where each user can pick their own
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group, formulated in the following MILP denoted (MSelfT).

(MSelfT) max
z,K,πL,πH

∑
u∈U

Cu (5.7a)

s.t. zmuk ⇒ Cu ≤ Cu(0)− δu ∀u ∈ U ,∀k ∈ Su,m ∈ G (5.7b)

zmuk ⇒ Cu ≤ Cu(Cul, Km, π
L
m, π

H
m)− δu ∀u, k, l,m; l ̸= k (5.7c)

cu =
∑
m∈G

⟨zmu , Cu⟩ ∀u ∈ U (5.7d)∑
k∈Su

zmuk ≤ 1 ∀u ∈ U (5.7e)

c ≤
∑
u∈U

cu ≤ c (5.7f)

(Km, π
L
m, π

H
m) ∈ Φ ∀m (5.7g)

zmuk ∈ {0, 1} ∀u, k,m (5.7h)

These three MILP formulations can be implemented and solved to proven global optimality
using off-the-shelf branch and cut software as carried out in the next section.

5.6 Computational experiments

In this section, we present the implementation and computational experiments on the three
models presented above. The original dataset [103] was collected from frequent consumption
measurements of a household for several years. We generate hourly distributions from the
experimental dataset by detecting mass points and using the residual consumption to esti-
mate the continuous distribution. User consumption distributions are generated by randomly
moving some probability masses and continuous observation points with a given budget. The
continuous distribution is obtained in two steps. First, a Gaussian mixture is fitted with one
initial Gaussian per data point, thus creating a Kernel Density Estimation of the distribution.
Second, this mixture is truncated above 0, to account for the non-negative nature of the con-
sumption. This data-generation process is implemented in Julia v1.4 [104], the construction
of the truncated Gaussian mixture using the Distributions.jl library [105]. The mean of the
continuous distribution and integrals over the different segments utilize the QuadGK.jl [106]
library based on the Gauss-Kronrod quadrature. The different MILP problems are imple-
mented using JuMP v0.21 [107, 108] with CPLEX v12.9 as the underlying MIP solver. We
use a Debian 4.19.67 machine with 64G in RAM capacity and 30 Intel Xeon 2GHz CPUs.
CPLEX is set on its single-threaded mode with default parameters.
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We investigate the evolution of the time taken to build and solve the instances, and the
number of feasible instances when both the number of clusters and the number of users vary.
A timeout limit is set at one hour. The lower-level optimality constraints are introduced either
in their big-M formulation (standard), as lazy constraints activated through a callback (lazy),
or using indicator constraints (indicator). The detailed runtimes for each variant, number
of users and clusters are presented in Fig. 5.1,Fig. 5.2, and Fig. 5.3, while the aggregated
performance profiles are highlighted in Fig. 5.4.

Figure 5.1 Computation time for predetermined clusters

Figure 5.2 Computation time for clusters decided by the supplier

Figure 5.3 Computation time for cluster decided by each user

A larger number of users not only makes the model computationally more challenging, but
also reduces the fraction of feasible problems for all configurations and solution methods.
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Figure 5.4 Performance profiles of each technique by variant

Indeed, even when the assignment of users to a cluster is done by the supplier, a valid solution
must include a capacity choice for each additional user, which is optimal for them while
accommodating the supplier constraints. We also observe that models with predetermined
clusters are solved in a shorter time across all methods, that can be explained by the reduced
number of variables and constraints, since the assignment is a parameter and does not need
to be encoded as a set of binary variables. The lazy constraint approach scales best as the
number of users increases but exhibits outliers for which the solving time is comparatively
higher, as in Fig. 5.2 where the indicator formulation solves the problems at 20 users in less
than 500 seconds, while the indicator approach takes up to 2500 seconds for 20 clusters. Since
all lazy constraints correspond to an upper bound on the user cost, higher computational
time may imply that the callback was called multiple times and added many constraints to
the model before convergence.

Tables 5.1-5.3 show the number of successfully optimized, infeasible, and timed-out instances
for different numbers of clusters, users, and for the three methods. The experiments are
run only for a number of users greater or equal to the number of clusters. The number
of timed out instances increases with both the number of users and clusters. The solving
time for the configuration where user groups are pre-assigned is much shorter at an equiv-
alent problem size than the configurations where the assignment is a user or supplier decision.
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Table 5.1 Feasible/Infeasible/Timed-out instances, predetermined case (MFT)

method standard indicator lazy
nclusters 2 5 10 20 2 5 10 20 2 5 10 20

nusers

5 10/0/0 10/0/0 - - 10/0/0 10/0/0 - - 10/0/0 10/0/0 - -
20 10/0/0 10/0/0 8/2/0 10/0/0 9/1/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0
50 9/1/0 10/0/0 10/0/0 9/1/0 9/1/0 7/3/0 10/0/0 10/0/0 10/0/0 9/1/0 9/1/0 9/1/0
75 9/1/0 10/0/0 9/1/0 7/3/0 9/1/0 10/0/0 9/1/0 8/2/0 9/1/0 10/0/0 6/4/0 9/1/0
100 9/1/0 10/0/0 6/4/0 8/2/0 10/0/0 9/1/0 7/3/0 8/2/0 8/2/0 10/0/0 10/0/0 9/1/0

Table 5.2 Feasible/Infeasible/Timed-out instances, supplier case (MSupT)

method standard indicator lazy
nclusters 2 5 10 20 2 5 10 20 2 5 10 20

nusers

5 3/2/0 5/0/0 - - 5/0/0 5/0/0 - - 5/0/0 5/0/0 - -
20 0/5/0 0/3/2 0/3/2 0/3/2 4/1/0 5/0/0 4/1/0 5/0/0 5/0/0 5/0/0 0/0/5 0/1/4
50 0/5/0 0/5/0 0/4/1 0/3/2 5/0/0 0/0/5 0/0/5 0/1/4 5/0/0 0/0/5 0/0/5 0/0/5
75 0/5/0 0/4/1 0/5/0 0/3/2 3/1/1 0/0/5 0/0/5 0/0/5 3/1/1 0/1/4 0/0/5 0/1/4
100 0/5/0 0/5/0 0/5/0 0/4/1 3/0/2 0/0/5 0/0/5 0/0/5 3/0/2 0/1/4 0/0/5 0/1/4

Table 5.3 Feasible/Infeasible/Timed-out instances, selfdetermined case (MSelfT)

method standard indicator lazy
nclusters 2 5 10 20 2 5 10 20 2 5 10 20

nusers

5 3/2/0 5/0/0 - - 5/0/0 5/0/0 - - 5/0/0 5/0/0 - -
20 0/5/0 2/3/0 2/3/0 0/4/1 4/1/0 5/0/0 4/1/0 5/0/0 5/0/0 5/0/0 5/0/0 4/1/0
50 0/5/0 0/5/0 1/4/0 1/3/1 5/0/0 5/0/0 5/0/0 1/1/3 5/0/0 5/0/0 4/0/1 3/0/2
75 0/5/0 1/4/0 0/5/0 0/5/0 4/1/0 5/0/0 5/0/0 0/0/5 4/1/0 4/1/0 3/0/2 0/1/4
100 0/5/0 0/5/0 0/5/0 0/5/0 5/0/0 0/0/5 0/0/5 0/0/5 5/0/0 3/1/1 0/0/5 0/1/4
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Figure 5.5 Supplier revenue per user

The evolution of the supplier revenue per user is reported in Fig. 5.5. In the self-determined
configuration, the supplier revenue decreases as the number of users or the number of clus-
ters increase. In the self-determined configuration, the average revenue decreases with the
number of clusters but does not evolve much with the number of users. The average revenue
increases with the number of clusters and increases with the number of users for two clusters.
We cannot draw any conclusion on the evolution of the revenue for greater numbers of clus-
ters and users for this configuration since all instances timed out or were found to be infeasible.

An observation that can be made for all three models is that the solution maintains a spar-
sity of capacities, in the sense that only a small part of users have a non-zero capacity, as
illustrated Fig. 5.6. Most solutions maintain a number of active users below 4, even in the
cases where Nu = 100.

We investigate the evolution of optimal user capacities with the upper and lower bounds with
a single TLOU pricing for five users. The results are depicted in Fig. 5.7 and also highlight
a sparsity of the solutions, with most users remaining at a zero capacity except for instances
where the interval between the lower and upper bounds is at its tightest, such as instances 9
and 14. Overall, the sum of capacities remains close to or equal to the lower bound.

In the last experiment, we investigate the effectiveness of symmetry-breaking techniques for
Problems (5.6) and (5.7). Symmetry-breaking is a technique developed for combinatorial
optimization and satisfiability problems in constraint programming, consisting in adding
constraints to a problem to remove redundant solutions [109–113], i.e. solutions implying an
identical objective value and feasibility. For Problems (5.6) and (5.7) in particular, permuting
the prices and user assignments of two different clusters results in the same objective function
and feasibility. Having such a symmetric structure of the problem implies that a branch-and-
bound algorithm will explore multiple nodes that are effectively equivalent. Imposing an
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Figure 5.6 Number of users with non-zero capacity in optimal solutions

ordering on the clusters breaks the symmetry by imposing exactly one of the symmetric
solutions. In a first symmetry-breaking formulation, we add a set of constraints to order
clusters by increasing booking fee K:

Km ≤ Km+1 ∀m ∈ {1 .. NG − 1}. (5.8)

Constraint (5.8) is added to the two models to compare the runtime for the different number
of users and clusters. Optimality of the lower level uses lazy constraints, which resulted in
the fastest resolution on average.

In a second attempt, we impose symmetry-breaking constraints on binary variables. More
specifically, for the supplier model, we add the constraint:∑

u∈U

pu,m ≤
∑
u∈U

pu,(m+1) ∀m ∈ {1...NG − 1} (5.9)
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Figure 5.7 Evolution of solutions with various total lower and upper bounds

which is added to Problem (5.6). For the self-determined model, we impose:∑
u∈U,k∈Su

z1uk ≥
∑

u∈U,k∈Su

zmuk ∀m ∈ G (5.10)

which is added to Problem (5.7).

The average runtimes are computed and reported Table 5.4 on the instances where both
models successfully terminated across a range of numbers of users and numbers of clusters.
We also report the number of successfully optimized instances for each setting. In Fig. 5.8,
we also report the runtime of the formulation without symmetry breaking (simple) and with
the various symmetry-breaking formulations (f9, f10, f11 for the corresponding constraints),
in the form of performance profiles.

Table 5.4 Runtime and solved instances for the symmetry-breaking constraints

Problem Method Runtime (s) # solved Constraint
Supplier Simple 387.3 27 (5.8)
Supplier Symmetry 353.8 26 (5.8)
Self-determined Simple 14.1 55 (5.8)
Self-determined Symmetry 354.5 26 (5.8)
Supplier Simple 420 27 (5.10)
Supplier Symmetry 307.7 27 (5.10)
Self-determined Simple 308.6 55 (5.9)
Self-determined Symmetry 271 53 (5.9)
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Figure 5.8 Performance profiles comparisons for symmetry-breaking constraints

For Constraint (5.8), the results highlight that the symmetry-breaking constraints increase
the computation time and reduce the number of solved instances for the instances with
self-determined capacity. Using an ANOVA model from the GLM.jl package [114], we can
determine that the increase in runtime is significant with a 95% confidence interval when
using the symmetry-breaking constraint on the self-determined model. The difference in
runtime for the supplier model is inconclusive under the same confidence interval. The av-
erage runtime for the model without the symmetry-breaking constraints appears as very low
for the self-determined model (14 seconds) because the model with symmetry-breaking fails
to solve most instances of significant size.

The addition of Constraints (5.10) and (5.9) improve their respective formulation and reduce
the average runtime by 112.3 and 37.6 seconds respectively. We must nonetheless note that
for the self-determined model, two instances were solved by the simple formulation but not
by the formulation with the symmetry-breaking constraints.

5.7 Conclusion

In this chapter, we defined the problem of optimal price-setting for TLOU tariffs in the
context of a supplier interacting with multiple users under a mixed continuous-discrete prob-
ability distribution of the consumption. The problem is formulated as a MINLP including
bilevel constraints and non-linear non-closed constraints from the integration of the probabil-
ity density function. Under regularity assumptions on the distribution, the discrete structure
can be exploited to linearize the problem, obtaining a MILP. Several variants were intro-
duced, with the user clusters as a fixed parameter, a decision of the supplier, or a decision
of each user. These three clustering variants allow the supplier to integrate TLOU in power
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markets with different economic constraints, such as uniform prices in geographic areas, or
by user category. Using a regularity assumption on the continuous part of the probability
distributions, one can reformulate the problems as single-level MILPs, which can be solved
to global optimality using standard solvers. Computational experiments highlight the practi-
cality of the method and superior efficiency of lazy constraints based on callbacks to express
lower-level optimality constraints.

Future research will consider the price-setting problem under uncertainty on the probability
distribution of the consumption itself and more complex user clustering structures.
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CHAPTER 6 ARTICLE 2: NEAR-OPTIMAL ROBUST BILEVEL
OPTIMIZATION

This chapter was submitted to Mathematical Programming in October 2020.

Authors: Mathieu Besançon, Miguel F. Anjos, Luce Brotcorne

Abstract

Bilevel optimization problems embed the optimality conditions of a subproblem into the
constraints of another optimization problem. We introduce the concept of near-optimality
robustness for bilevel problems, protecting the upper-level solution feasibility from limited
deviations at the lower level. General properties and necessary conditions for the existence of
solutions are derived for near-optimal robust versions of generic bilevel problems. A duality-
based solution method is defined when the lower level is convex, leveraging the methodology
from the robust and bilevel literature. Numerical results assess the efficiency of the proposed
algorithm and the impact of valid inequalities on the solution time.

6.1 Introduction

Bilevel optimization problems embed the optimality conditions of a subproblem into the
constraints of another one. They can model various decision-making problems such as Stack-
elberg or leader-follower games, market equilibria, or pricing and revenue management. A
review of methods and applications of bilevel problems is presented in [98]. In the classical
bilevel setting, when optimizing its objective function, the upper level anticipates an optimal
reaction of the lower level to its decisions. However, in many practical cases, the lower level
can make near-optimal decisions [48]. An important issue in this setting is the definition of
the robustness of the upper-level decisions with respect to near-optimal lower-level solutions.

In some engineering applications [37,40,41], the decision-maker optimizes an outcome over a
dynamical system (modelled as the lower level). For stable systems, the rate of change of the
state variables decreases as the system converges towards the minimum of a potential func-
tion. If the system is stopped before reaching the minimum, the designer of the system would
require that the upper-level constraints be feasible for near-optimal lower-level solutions.

The concept of bounded rationality initially proposed in [91], sometimes referred as ε-
rationality [92], defines an economic and behavioural interpretation of a decision-making
process where an agent aims to take any solution associated with a “satisfactory” objective
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value instead of the optimal one.

Protecting the upper level from a violation of its constraints by deviations of the lower level
is a form of robust optimization. Indeed, it corresponds to a protection of some constraints
against uncertain parameters of the problem. Therefore, we use the terms “near-optimality
robustness” and “near-optimal robust bilevel problem” or NORBiP in the rest of the paper.

The introduction of uncertainty and robustness in games has been approached from different
points of view in the literature. In [115], the authors prove the existence of robust coun-
terparts of Nash equilibria under standard assumptions for simultaneous games without the
knowledge of probability distributions associated with the uncertainty. In [116], the robust
version of a network congestion problem is developed. Users are assumed to make decisions
under bounded rationality, leading to a robust Wardrop equilibrium. Robust versions of
bilevel problems modelling specific Stackelberg games have been studied in [117, 118], using
robust formulations to protect the leader against non-rationality or partial rationality of the
follower. A stochastic version of the pessimistic bilevel problem is studied in [88], where the
realization of the random variable occurs after the upper level and before the lower level.
The authors then derive lower and upper bounds on the pessimistic and optimistic versions
of the stochastic bilevel problem as MILPs, leveraging an exact linearization by assuming the
upper-level variables are all binary. The models developed in [80] and [79] explore different
forms of bounded or partial rationality of the lower level, where the lower level either makes
a decision using a heuristic or approximation algorithm algorithm, or may deviate from its
optimal value in a way that penalizes the objective of the upper level.

Solving bilevel problems under limited deviations of the lower-level response was introduced
in [48] under the term “ε-approximation” of the pessimistic bilevel problem. The authors
focus on the independent case, i.e. cases where the lower-level feasible set is independent of
the upper-level decisions. Problems in such settings are shown to be simpler to handle than
the dependent case and can be solved in polynomial time when the lower-level problem is
linear under the optimistic and pessimistic assumptions. A custom algorithm is designed for
the independent case, solving a sequence of non-convex non-linear problems relying on global
optimization solvers.

We consider bilevel problems involving upper- and lower-level variables in the constraints and
objective functions at both levels, thus more general than the independent “ε-approximation”
from [48]. Unlike the independent case, the dependent bilevel problem is NP-hard even when
the constraints and objectives are linear. By defining the uncertainty in terms of a deviation
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from optimality of the lower level, our formulation offers a novel interpretation of robustness
for bilevel problems and Stackelberg games. In the case of a linear lower level, we derive
an exact MILP reformulation while not requiring the assumption of pure binary upper-level
variables.

The main contributions of the paper are:

1. The definition and formulation of the dependent near-optimal robust bilevel problem,
resulting in a generalized semi-infinite problem and its interpretation as a special case
of robust optimization applied to bilevel problems.

2. The study of duality-based reformulations of NORBiP where the lower-level problem
is convex conic or linear in Section 6.3, resulting in a finite-dimensional single-level
optimization problem.

3. An extended formulation for the linear-linear NORBiP in Section 6.4, linearizing the
bilinear constraints of the single-level model using disjunctive constraints.

4. A solution algorithm for the linear-linear NORBiP in Section 6.5 using the extended
formulation and its implementation with several variants.

The paper is organized as follows. In Section 6.2, we define the concepts of near-optimal set
and near-optimal robust bilevel problem. We study the near-optimal bilevel problems with
convex and linear lower-level problems in Section 6.3 and Section 6.4 respectively. In both
cases, the near-optimal robust bilevel problem can be reformulated as a single level. For a
linear lower level, an extended formulation can be derived from the single-level problem. A
solution algorithm is provided and computational experiments are conducted for the linear
case in Section 6.5, comparing the extended formulation to the compact one and studying the
impact of valid inequalities. Finally, in Section 6.6 we draw some conclusions and highlight
research perspectives on near-optimality robustness.

6.2 Near-optimal set and near-optimal robust bilevel problem

In this section, we first define the near-optimal set of the lower level and near-optimality
robustness for bilevel problems. Next, we illustrate the concepts on an example and highlight
several properties of general near-optimal robust bilevel problems before focusing on the
convex and linear cases in the following sections.
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The generic bilevel problem is classically defined as:

min
x

F (x, v) (6.1a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (6.1b)

x ∈ X (6.1c)

v ∈ argmin
y∈Y

{f(x, y) s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]]}. (6.1d)

The upper- and lower-level objective functions are noted F, f : X × Y 7→ R respectively.
Constraint (6.1b) and gi(x, y) ≤ 0∀i ∈ [[ml]] are the upper- and lower-level constraints
respectively. In this section, we assume that Y = Rnl in order that the lower-level feasible
set can be only determined by the gi functions. The optimal value function ϕ(x) is defined
as follows:

ϕ : Rnu → {−∞} ∪ R ∪ {+∞}

ϕ(x) = min
y
{f(x, y) s.t. g(x, y) ≤ 0}. (6.2)

To keep the notation succinct, the indices of the lower-level constraints gi are omitted when
not needed as in Constraint (6.2). Throughout the paper, it is assumed that the lower-level
problem is feasible and bounded for any given upper-level decision.

When, for a feasible upper-level decision, the solution to the lower-level problem is not
unique, the bilevel problem is not well defined and further assumptions are required [98].
In the optimistic case, we assume that the lower level selects the optimal solution favouring
the upper level and the optimal solution disfavouring them the most in the pessimistic case.
We refer the reader to [47, Chapter 1] for further details on these two approaches. The
near-optimal set of the lower level Z(x; δ) is defined for a given upper-level decision x and
tolerance δ as:

Z(x; δ) = {y | g(x, y) ≤ 0, f(x, y) ≤ ϕ(x) + δ}.

A Near-Optimal Robust Bilevel Problem, NORBiP, of parameter δ is defined as a bilevel
problem where the upper-level constraints are satisfied for any lower-level solution z in the
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near-optimal set Z(x; δ).

min
x,v

F (x, v) (6.3a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (6.3b)

f(x, v) ≤ ϕ(x) (6.3c)

g(x, v) ≤ 0 (6.3d)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (6.3e)

x ∈ X . (6.3f)

Each k constraint in (6.3b) is satisfied if the corresponding constraint set in (6.3e) holds
and is therefore redundant, since v ∈ Z(x; δ). However, we mention Constraint (6.3b) in
the formulation to highlight the structure of the initial bilevel problem in the near-optimal
robust formulation.

The special case Z(x; 0) is the set of optimal solutions to the original lower-level problem,
NORBiP with δ = 0 is therefore equivalent to the pessimistic bilevel problem as formulated
in [48]:

f(x, y) ≤ ϕ(x) ∀y ∈ Z(x; 0).

For δ < 0, Z(x; δ) is the empty set, in which case Problem (6.3) is equivalent to the original
optimistic bilevel problem while the set Z(x;∞) corresponds to the complete lower-level fea-
sible set, assuming the lower-level optimal solution is not unbounded for the given upper-level
decision x.

Unlike the constraint-based pessimistic bilevel problem presented in [48], the upper-level
objective F (x, v) depends on both the upper- and lower-level variables, but is only evaluated
with the optimistic lower-level variable v and not with a worst-case near-optimal solution.
This implies the upper level chooses the best optimistic decision which protects its feasibility
from near-optimal deviations. One implication for the modeller is that a near-optimal robust
problem can be constructed directly from a bilevel instance where the objective function often
depends on the variables of the two levels. Alternatively, the near-optimal robust formulation
can protect both the upper-level objective value and constraints from near-optimal deviations
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of the lower level using an epigraph formulation introducing an additional variable:

min
x,v,τ

τ (6.4a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (6.4b)

f(x, v) ≤ ϕ(x) (6.4c)

g(x, v) ≤ 0 (6.4d)

F (x, z) ≤ τ ∀z ∈ Z(x; δ) (6.4e)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]] (6.4f)

x ∈ X . (6.4g)

The two models define different levels of conservativeness and risk. Indeed:

opt(6.1a-6.1d) ≤ opt(6.3a-6.3f) ≤ opt(6.4a-6.4g),

where opt(P ) denotes the optimal value of problem P . Both near-optimal robust formula-
tions can be of interest to model decision-making applications. It can also be noted that
Problem 6.3 includes the special case of opposite objectives between the two levels, i.e. prob-
lems for which F (x, v) = −f(x, v). The two models offer different levels of conservativeness
and risk and can both be of interest when modelling decision-making applications.

Constraint (6.3e) is a generalized semi-infinite constraint, based on the terminology from
[78]. The dependence of the set of constraints Z(x; δ) on the decision variables leads to the
characterization of Problem (6.3) as a robust problem with decision-dependent uncertainty
[77]. Each constraint in the set (6.3e) can be replaced by the corresponding worst-case
second-level decision zk obtained as the solution of the adversarial problem, parameterized
by (x, v, δ):

zk ∈ argmax
y

Gk(x, y) (6.5a)

s.t. f(x, y) ≤ f(x, v) + δ (6.5b)

g(x, y) ≤ 0. (6.5c)
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Finally, the near-optimal robust bilevel optimization problem can be expressed as:

min
x,v

F (x, v) (6.6a)

s.t. f(x, v) ≤ ϕ(x) (6.6b)

g(x, v) ≤ 0 (6.6c)

0 ≥ max
y
{Gk(x, y) s.t. y ∈ Z(x; δ)} ∀k ∈ [[mu]] (6.6d)

x ∈ X . (6.6e)

In the robust optimization literature, models can present uncertainty on the constraints
and/or on the objective function [119]. In bilevel optimization, the first case corresponds
to NORBiP, where the impact of near-optimal lower-level solutions on the upper-level con-
straints is studied. The second case corresponds to the impact of near-optimal lower-level
decisions on the upper-level objective value.

We next prove that the model including uncertainty on the objective, named Objective-
Robust Near-Optimal Bilevel Problem (ORNOBiP), is a special case of NORBiP.

ORNOBiP is defined as:

min
x∈X

sup
z∈Z(x;δ)

F (x, z) (6.7a)

s.t. X = {x ∈ X , Gk(x) ≤ 0∀k ∈ [[mu]]} (6.7b)

and where: Z(x; δ) = {y s.t. g(x, y) ≤ 0, f(x, y) ≤ ϕ(x) + δ}.

In contrast to most objective-robust problem formulations, the uncertainty set Z depends on
the upper-level solution x, qualifying Problem (6.7) as a problem with decision-dependent
uncertainty.

Proposition 6.2.1. ORNOBiP is a special case of NORBiP.

Proof. The reduction of the objective-uncertain robust problem to a constraint-uncertain
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robust formulation is detailed in [76]. In particular, Problem (6.7) is equivalent to:

min
x,τ

τ

s.t. x ∈ X

τ ≥ F (x, z) ∀z ∈ Z(x, δ),

this formulation is a special case of NORBiP.

The pessimistic bilevel optimization problem defined in [120] is both a special case and a
relaxation of ORNOBiP. For δ = 0, the inner problem of ORNOBiP is equivalent to finding
the worst lower-level decision with respect to the upper-level objective amongst the lower-
level-optimal solutions. For any δ > 0, the inner problem can select the worst solutions with
respect to the upper-level objective that are not optimal for the lower level. The pessimistic
bilevel problem is therefore a relaxation of ORNOBiP.

We illustrate the concept of near-optimal set and near-optimal robust solution with the
following linear bilevel problem, represented in Fig. 6.1.

min
x,v

x (6.8)

s.t. x ≥ 0

v ≥ 1− x

10

v ∈ argmax
y
{y s.t. y ≤ 1 +

x

10
}.

The high-point relaxation of Problem (6.8), obtained by relaxing the optimality constraint
of the lower-level, while maintaining feasibility, is:

min
x,v

x

s.t. x ≥ 0

v ≥ 1− x

10

v ≤ 1 +
x

10
.

The shaded area in Fig. 6.1 represents the interior of the polytope, which is feasible for the
high-point relaxation. The induced set, resulting from the optimal lower-level reaction, is
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given by:
{(x, y) ∈ (R+,R) s.t. y = 1 +

x

10
}.

The unique optimal point is (x̂, ŷ) = (0, 1).

0.5 1 1.5 2

0.5

1

1.5 f(y) = -y
F(x,y) = x

E

Figure 6.1 Linear bilevel problem

Let us now consider a near-optimal tolerance of the follower with δ = 0.1. If the upper-level
decision is x̂, then the lower level can take any value between 1 − δ = 0.9 and 1. All these
values except 1 lead to an unsatisfied upper-level constraint problem. The problem can be
reformulated as:

min
x,v

x

s.t. x ≥ 0

v ≥ 1− x

10

v ∈ argmax
y
{y s.t. y ≤ 1 +

x

10
}

z ≥ 1− x

10
∀z s.t. {z ≤ 1 +

x

10
, z ≥ v − δ}.

Fig. 6.2 illustrates the near-optimal equivalent of the problem with an additional constraint
ensuring the satisfaction of the upper-level constraint for all near-optimal responses of the
lower level.

This additional constraint is represented by the dashed line. The optimal upper-level decision
is x = 0.5, for which the optimal lower-level reaction is y = 1+0.1 ·0.5 = 1.05. The boundary
of the near-optimal set is y = 1− 0.1 · 0.5 = 0.95.
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0.5

1

1.5 f(y) = -y
F(x,y) = x

E F

Figure 6.2 Linear bilevel problem with a near-optimality robustness constraint

In the rest of this section, we establish properties of the near-optimal set and near-optimal
robust bilevel problems. If the lower-level optimization problem is convex, then the near-
optimal set Z(x; θ) is convex as the intersection of two convex sets:

• {y | g(x, y) ≤ 0}

• {y | f(x, y) ≤ ϕ(x) + δ}.

In robust optimization, the characteristics of the uncertainty set sharply impact the difficulty
of solving the problem. The near-optimal set of the lower-level is not always bounded; this
can lead to infeasible or ill-defined near-optimal robust counterparts of bilevel problems. In
the next proposition, we define conditions under which the uncertainty set Z(x; δ) is bounded.

Proposition 6.2.2. For a given pair (x, δ), any of the following properties is sufficient for
Z(x; δ) to be a bounded set:

1. The lower-level feasible domain is bounded.

2. f(x, ·) is radially unbounded, i.e. ∥y∥ → ∞⇒ f(x, y)→∞.

3. f(x, ·) is radially bounded such that:

lim
r→+∞

f(x, rs) > f(x, v) + δ ∀s ∈ S,

with S the unit sphere in the space of lower-level variables.

Proof. The first case is trivially satisfied since Z(x; δ) is the intersection of sets including
the lower-level feasible set. If f(x, ·) is radially unbounded, for any finite δ > 0, there is a
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maximum radius around v beyond which any value of the objective function is greater than
f(x, v) + δ. The third case follows the same line of reasoning as the second, with a lower
bound in any direction ∥y∥ → ∞, such that this lower bound is above f(x, v) + δ.

The radius of robust feasibility is defined as the maximum “size” of the uncertain set [121,122],
such that the robust problem remains feasible. In the case of near-optimality robustness, the
radius can be interpreted as the maximum deviation of the lower-level objective from its
optimal value, such that the near-optimal robust bilevel problem remains feasible.

Definition 6.2.1. For a given optimization problem BiP , let NO(BiP ; δ) be the optimum
value of the near-optimal robust problem constructed from BiP with a tolerance δ. The radius
of near-optimal feasibility δ̂ is defined by:

δ̂ = argmax
δ

{δ s.t. NO(BiP ; δ) <∞}. (6.9)

It is interesting to note that the radius as defined in Definition 6.2.1 can be interpreted as a
maximum robustness budget in terms of the objective value of the lower level. It represents
the maximum level of tolerance of the lower level on its objective, such that the upper level
remains feasible.

Proposition 6.2.3. The standard optimistic bilevel problem BiP is a relaxation of the equiv-
alent near-optimal robust bilevel problem for any δ > 0.

Proof. By introducing additional variables zjk, j ∈ [[nl]], k ∈ [[mu]] in the optimistic bilevel
problem, we obtain:

min
x,v,z

F (x, v) (6.10)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]]

f(x, v) ≤ ϕ(x)

g(x, v) ≤ 0

x ∈ X , v ∈ Rnl , z ∈ Rnl×mu .

Problem (6.10) is equivalent to the optimistic bilevel problem with additional variables z that
are not used in the objective nor constraints. Furthermore, Problem (6.10) is a relaxation of
Problem (6.6), which has similar variables but additional constraints (6.6d). At each point
where the bilevel problem is feasible, either the objective value of the two problems are the
same or NORBiP is infeasible.
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Proposition 6.2.4. If the bilevel problem is feasible, then the adversarial problem (6.5) is
feasible.

Proof. If the bilevel problem is feasible, then the solution z = v is feasible for the primal
adversarial problem.

Proposition 6.2.5. If (x̂, ŷ) is a bilevel-feasible point, and Gk(x̂, ·) is Kk-Lipschitz contin-
uous for a given k ∈ [[mu]] such that:

Gk(x̂, ŷ) < 0,

then the constraint Gk(x̂, y) ≤ 0 is satisfied for all y ∈ F (k)
L such that:

F (k)
L (x̂, ŷ) = {y ∈ Rnl | ∥y − ŷ∥ ≤ |Gk(x̂, ŷ)|

Kk

}.

Proof. As Gk(x̂, ŷ) < 0, and Gk(x̂, ·) is continuous, there exists a ball Br(ŷ) in Rnl centered
on (ŷ) of radius r > 0, such that

G(x̂, y) ≤ 0 ∀y ∈ Br(ŷ).

Let us define:

r0 = argmax
r

r (6.11)

s.t. G(x̂, y) ≤ 0 ∀y ∈ Br(ŷ).

By continuity, Problem (6.11) always admits a feasible solution. If the feasible set is bounded,
there exists a point y0 on the boundary of the ball, such that Gk(x̂, y0) = 0. It follows from
Lipschitz continuity that:

|Gk(x̂, ŷ)−Gk(x̂, y0)| ≤ Kk∥y0 − ŷ∥
|Gk(x̂, ŷ)|

Kk

≤ ∥y0 − ŷ∥.

Gk(x̂, y) ≤ Gk(x̂, y0) ∀y ∈ Br0(ŷ), therefore all lower-level solutions in the set

F (k)
L (x̂, ŷ) = {y ∈ Rnl s.t. ∥y − ŷ∥ ≤ |Gk(x̂, ŷ)|

Kk

}

satisfy the k-th constraint.
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Corollary 6.2.1. Let (x̂, ŷ) be a bilevel-feasible solution of a near-optimal robust bilevel
problem of tolerance δ, and

FL(x̂, ŷ) =
mu⋂
k=1

F (k)
L (x̂, ŷ),

then Z(x; δ) ⊆ FL(x̂, ŷ) is a sufficient condition for the solution (x̂, ŷ) to be near-optimal
robust.

Proof. Any lower-level solution y ∈ FL(x̂, ŷ) satisfies all mu upper-level constraints, thus
Z(x; δ) ⊆ FL(x̂, ŷ) is a sufficient condition for the near-optimality robustness of (x̂, ŷ).

Corollary 6.2.2. Let (x̂, ŷ) be a bilevel-feasible solution of a near-optimal robust bilevel
problem of tolerance δ, R be the radius of the lower-level feasible set and Gk(x̂, ·) be Kk-
Lipschitz for a given k, then the k-th constraint is robust against near-optimal deviations
if:

|Gk(x̂, ŷ)| ≤ KkR.

Proof. The inequality can be deduced from the fact that ∥y − ŷ∥ ≤ R.

Corollary 6.2.2 can be used when the lower level feasible set is bounded to verify near-
optimality robustness of incumbent solutions.

6.3 Near-optimal robust bilevel problems with a convex lower level

In this section, we study near-optimal robust bilevel problems where the lower-level prob-
lem (6.1d) is a parametric convex optimization problem with both a differentiable objective
function and differentiable constraints. If Slater’s constraint qualifications hold, the KKT
conditions are necessary and sufficient for the optimality of the lower-level problem and
strong duality holds for the adversarial subproblems. These two properties are leveraged to
reformulate NORBiP as a single-level closed-form problem.

Given a bilevel solution (x, v), the adversarial problem associated with constraint k can be
formulated as:

max
y

Gk(x, y) (6.12a)

s.t. g(x, y) ≤ 0 (6.12b)

f(x, y) ≤ f(x, v) + δ. (6.12c)
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Even if the upper-level constraints are convex with respect to y, Problem (6.12) is in general
non-convex since the function to maximize is convex over a convex set. First-order optimal-
ity conditions may induce several non-optimal critical points and the definition of a solution
method needs to rely on global optimization techniques [123,124].

By assuming that the constraints of the upper-level problem Gk(x, y) can be decomposed
and that the projection onto the lower variable space is affine, the upper-level constraint can
be re-written as:

Gk(x, y) ≤ 0⇔ Gk(x) +HT
k y ≤ qk. (6.13)

The k-th adversarial problem is then expressed as:

max
y
⟨Hk, y⟩ (6.14a)

s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]] (αi) (6.14b)

f(x, y) ≤ f(x, v) + δ (β) (6.14c)

and is convex for a fixed pair (x, v). Satisfying the upper-level constraint in the worst-case
requires that the objective value of Problem (6.14) is lower than qk − Gk(x). We denote by
Ak and Dk the objective values of the adversarial problem (6.14) and its dual respectively.
Dk takes values in the extended real set to account for infeasible and unbounded cases.
Proposition 6.2.4 holds for Problem (6.14). The feasibility of the upper-level constraint with
the dual adversarial objective value as formulated in Constraint (6.15) is, by weak duality
of convex problems, a sufficient condition for the feasibility of a near-optimal solution. If
Slater’s constraint qualifications hold, it is also a necessary condition [125] by strong duality:

Ak ≤ Dk ≤ qk −Gk(x). (6.15)

The generic form for the single-level reformulation of the near-optimal robust problem can
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then be expressed as:

min
x,v,α,β

F (x, v) (6.16a)

s.t. G(x) +Hv ≤ q (6.16b)

f(x, v) ≤ ϕ(x) (6.16c)

g(x, v) ≤ 0 (6.16d)

Dk ≤ qk −Gk(x) ∀k ∈ [[mu]] (6.16e)

x ∈ X . (6.16f)

In order to write Problem (6.16) in a closed form, the lower-level problem (6.16c-6.16d) is
reduced to its KKT conditions:

∇vf(x, v)−
ml∑
i=1

λi∇vgi(x, v) = 0 (6.17a)

gi(x, v) ≤ 0 ∀i ∈ [[ml]] (6.17b)

λi ≥ 0 ∀i ∈ [[ml]] (6.17c)

λigi(x, v) = 0 ∀i ∈ [[ml]]. (6.17d)

Constraint (6.17d) derived from the KKT conditions cannot be tackled directly by non-linear
solvers [126]. Specific reformulations, such as relaxations of the equality Constraints (6.17d)
into inequalities or branching on combinations of variables (as developed in [62,64]) are often
used in practice.

In the rest of this section, we focus on bilevel problems such that the lower level is a conic
convex optimization problem. Unlike the convex version developed above, the dual of a conic
optimization problem can be written in closed form.

min
y
⟨d, y⟩ (6.18)

s.t. Ax+By = b

y ∈ K,

where ⟨·, ·⟩ is the inner product associated with the space of the lower-level variables and
K is a proper cone [125, Chapter 2]. This class of problems encompasses a broad class of
convex optimization problems of practical interest [127, Chapter 4], while the dual problem
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can be written in a closed-form if the dual cone is known, leading to a closed-form single-level
reformulation. The k−th adversarial problem is given by:

max
y,r
⟨Hk, y⟩ (6.19a)

s.t. By = b− Ax (6.19b)

⟨d, y⟩+ r = ⟨d, v⟩+ δ (6.19c)

y ∈ K (6.19d)

r ≥ 0, (6.19e)

with the introduction of a slack variable r. With the following change of variables:

ŷ =

[
y

r

]
B̂ =

[
B 0

]
d̂ =

[
d 1

]
Ĥk =

[
Hk

0

]
,

K̂ = {(y, r), y ∈ K, r ≥ 0},

K̂ is a cone as the Cartesian product of K and the nonnegative orthant. Problem (6.19) is
reformulated as:

max
ŷ
⟨Ĥk, ŷ⟩

s.t. (B̂ŷ)i = bi − (Ax)i ∀i ∈ [[ml]] (αi)

⟨d̂, ŷ⟩ = ⟨d, v⟩+ δ (β)

ŷ ∈ K̂,

which is a conic optimization problem, for which the dual problem is:

min
α,β,sk

⟨(b− Ax), α⟩+ (⟨d, v⟩+ δ)β (6.20a)

s.t. B̂Tα + βd̂+ s = Ĥk (6.20b)

s ∈ −K̂∗, (6.20c)

with K̂∗ the dual cone of K̂. In the worst case (maximum number of non-zero coefficients),
there are (ml · nu + nl) bilinear terms in mu non-linear non-convex constraints. This number
of bilinear terms can be reduced by introducing the following variables (p, o), along with the
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corresponding constraints:

min
α,β,s,p,o

⟨p, α⟩+ (o+ δ)β (6.21a)

s.t. p = b− Ax (6.21b)

o = ⟨d, v⟩ (6.21c)

B̂Tα + βd̂+ s = Ĥk (6.21d)

s ∈ −K̂∗. (6.21e)

The number of bilinear terms in the set of constraints is thus reduced from numl+nl to ml+1

terms in (6.21a). Problem (6.20) or equivalently Problem (6.21) have a convex feasible set
but a bilinear non-convex objective function. The KKT conditions of the follower problem
(6.18) are given for the primal-dual pair (y, λ):

By = b− Ax (6.22a)

y ∈ K (6.22b)

d−BTλ ∈ K∗ (6.22c)

⟨d−BTλ, y⟩ = 0. (6.22d)

The single-level problem is:

min
x,v,λ,α,β,s

F (x, v) (6.23a)

s.t. G(x) +Hv ≤ q (6.23b)

Ax+Bv = b (6.23c)

d−BTλ ∈ K∗ (6.23d)

⟨d−BTλ, v⟩ = 0 (6.23e)

⟨Ax− b, αk⟩+ βk (⟨v, d⟩+ δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (6.23f)

B̂Tαk + d̂βk + sk = Ĥk ∀k ∈ [[mu]] (6.23g)

x ∈ X , v ∈ K (6.23h)

sk ∈ −K̂∗ ∀k ∈ [[mu]]. (6.23i)

The Mangasarian-Fromovitz constraint qualification is violated at every feasible point of
Constraint (6.23e) [128]. In non-linear approaches to complementarity constraints [62, 126],
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parameterized successive relaxations of the complementarity constraints are used:

⟨d−BTλ, v⟩ ≤ ε (6.24a)

−⟨d−BTλ, v⟩ ≤ ε. (6.24b)

Constraints (6.23f) and (6.24) are both bilinear non-convex inequalities, the other ones added
by the near-optimal robust model are conic and linear constraints.

In conclusion, near-optimal robustness has only added a finite number of constraints of the
same nature (bilinear inequalities) to the reformulation proposed in [126]. Solution methods
used for bilevel problems with convex lower-level thus apply to their near-optimal robust
counterpart.

6.4 Linear near-optimal robust bilevel problem

In this section, we focus on near-optimal robust linear-linear bilevel problems. More pre-
cisely, the structure of the lower-level problem is exploited to derive an extended formulation
leading to an efficient solution algorithm. We consider that all vector spaces are subspaces
of Rn, with appropriate dimensions. The inner product of two vectors ⟨a, b⟩ is equivalently
written aT b.

The linear near-optimal robust bilevel problem is formulated as:

min
x,v

cTxx+ cTy v (6.25a)

s.t. Gx+Hv ≤ q (6.25b)

dTv ≤ ϕ(x) (6.25c)

Ax+Bv ≤ b (6.25d)

Gx+Hz ≤ q ∀z ∈ Z(x; δ) (6.25e)

v ∈ Rnl
+ (6.25f)

x ∈ X . (6.25g)

For a given pair (x, v), each semi-infinite robust constraint (6.25e) can be reformulated as
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the objective value of the following adversarial problem:

max
y

HT
k y (6.26a)

s.t. (By)i ≤ bi − (Ax)i ∀i ∈ [[ml]] (αi) (6.26b)

dTy ≤ dTv + δ (β) (6.26c)

y ∈ Rnl
+ . (6.26d)

Let (α, β) be the dual variables associated with each group of constraints (6.26b-6.26c). The
near-optimal robust version of Problem (6.25) is feasible only if the objective value of each
k-th adversarial subproblem (6.26) is lower than qk − (Gx)k. The dual of Problem (6.26) is
defined as:

min
α,β

αT (b− Ax) + β (dTv + δ) (6.27a)

s.t. BTα + βd ≥ Hk (6.27b)

α ∈ Rml
+ β ∈ R+. (6.27c)

Based on Problem (6.2.4) and weak duality results, the dual problem is either infeasible or
feasible and bounded. By strong duality, the objective value of the dual and primal problems
are equal. This value must be smaller than qk − (Gx)k to satisfy Constraint (6.25e). This
is equivalent to the existence of a feasible dual solution (α, β) certifying the feasibility of
(x, v) within the near-optimal set Z(x; δ). We obtain one pair of certificates (α, β) for each
upper-level constraint in [[mu]], resulting in the following problem:

min
x,v,α,β

cTxx+ cTy v (6.28a)

s.t. Gx+Hv ≤ q (6.28b)

dTv ≤ ϕ(x) (6.28c)

Ax+Bv ≤ b (6.28d)

αT
k (b− Ax) + βk (d

Tv + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (6.28e)

BTαk + βkd ≥ Hk ∀k ∈ [[mu]] (6.28f)

αk ∈ Rml
+ βk ∈ R+ ∀k ∈ [[mu]] (6.28g)

v ∈ Rnl
+ (6.28h)

x ∈ X . (6.28i)
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Lower-level optimality is guaranteed by the corresponding KKT conditions:

dj +
∑
i

Bijλi − σj = 0 ∀j ∈ [[nl]] (6.29a)

0 ≤ bi − (Ax)i − (Bv)i ⊥ λi ≥ 0 ∀i ∈ [[ml]] (6.29b)

0 ≤ vj ⊥ σj ≥ 0 ∀j ∈ [[nl]] (6.29c)

σ ≥ 0, λ ≥ 0 (6.29d)

where ⊥ defines a complementarity constraint. A common technique to linearize Constraints
(6.29b-6.29c) is the “big-M” reformulation, introducing auxiliary binary variables with primal
and dual upper bounds. The resulting formulation has a weak continuous relaxation. Fur-
thermore, the correct choice of bounds is itself an NP-hard problem [61], and the incorrect
choice of these bounds can lead to cutting valid and potentially optimal solutions [60]. Other
modelling and solution approaches, such as special ordered sets of type 1 (SOS1) or indicator
constraints avoid the need to specify such bounds in a branch-and-bound procedure.

The aggregated formulation of the linear near-optimal robust bilevel problem is:

min
x,v,λ,σ,α,β

cTxx+ cTy v (6.30a)

s.t. Gx+Hv ≤ q (6.30b)

Ax+Bv ≤ b (6.30c)

dj +
∑
i

λiBij − σj = 0 ∀j ∈ [[nl]] (6.30d)

0 ≤ λi⊥Aix+Biv − bi ≤ 0 ∀i ∈ [[ml]] (6.30e)

0 ≤ σj ⊥ vj ≥ 0 ∀j ∈ [[nl]] (6.30f)

x ∈ X (6.30g)

αk · (b− Ax) + βk(d
Tv + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]] (6.30h)

ml∑
i=1

Bijαki + βkdj ≥ Hkj ∀k ∈ [[mu]], ∀j ∈ [[nl]] (6.30i)

αk ∈ Rml
+ , βk ∈ R+ ∀k ∈ [[mu]]. (6.30j)

Problem (6.30) is a single-level problem and has a closed form. However, constraints (6.30h)
contain bilinear terms, which cannot be tackled as efficiently as convex constraints by branch-
and-cut based solvers. Therefore, we exploit the structure of the dual adversarial problem
and its relation to the primal lower level to design a new efficient reformulation and solution
algorithm.
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6.4.1 Extended formulation

The bilinear constraints (6.30h) involve products of variables from the upper and lower level
(x, v) as well as dual variables of each of the mu dual-adversarial problems. For fixed values
of (x, v), mu dual adversarial subproblems (6.27) are defined. The optimal value of each k-th
subproblem must be lower than qk−(Gx)k. The feasible region of each subproblem is defined
by (6.30h-6.30j) and is independent of (x, v). The objective functions are linear in (α, β). Fol-
lowing Proposition 6.2.4, Problem (6.27) is bounded. If, moreover, Problem (6.27) is feasible,
a vertex of the polytope (6.30h-6.30j) is an optimal solution. Following these observations,
Constraints (6.30h-6.30j) can be replaced by disjunctive constraints, such that for each k, at
least one extreme vertex of the k-th dual polyhedron is feasible. This reformulation of the
bilinear constraints has, to the best of our knowledge, never been developed in the literature.
We must highlight that disjunctive formulations are well established in the bilevel literature
to express the complementarity constraints from the lower-level KKT conditions [129–131].
However, the bilinear reformulation of near-optimality robustness constraints does not pos-
sess the same structure and thus cannot leverage similar techniques.

Let Vk be the number of vertices of the k-th subproblem and αl
k, β

l
k be the l-th vertex of the

k-th subproblem. Constraints (6.30h-6.30j) can be written as:

Vk∨
l=1

ml∑
i=1

αl
ki(b− Ax)i + βl

k · (dTv + δ) ≤ qk − (Gx)k ∀k ∈ [[mu]], (6.31)

where
∨N

i=1 Ci is the disjunction (logical “OR”) operator, expressing the constraint that at
least one of the constraints Ci must be satisfied. These disjunctions are equivalent to indica-
tor constraints [132].

This reformulation of bilinear constraints based on the polyhedral description of the (α, β)

feasible space is similar to the Benders decomposition [133]. Indeed in the near-optimal
robust extended formulation, at least one of the vertices must satisfy a constraint (a disjunc-
tion) while Benders decomposition consists in satisfying a set of constraints for all extreme
vertices and rays of the dual polyhedron (a constraint described with a universal quantifier).
Disjunctive constraints (6.31) are equivalent to the following formulation, using set cover and
SOS1 constraints:
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θlk ∈ {0, 1} ∀k, ∀l (6.32a)

ωl
k ≥ 0 ∀k, ∀l (6.32b)

(b− Ax)Tαl
k + βl

k(d
Tv + δ)− ωl

k ≤ qk − (Gx)k ∀k, ∀l (6.32c)
Vk∑
l=1

θlk ≥ 1 ∀k (6.32d)

SOS1(θlk, ω
l
k) ∀k, ∀l, (6.32e)

where SOS1(a, b) expresses a SOS1-type constraint between the variables a and b.

In conclusion, using disjunctive constraints over the extreme vertices of each dual polyhe-
dron and SOS1 constraints to linearize the complementarity constraints leads to an equivalent
reformulation of Problem (6.30). The finite solution property holds even though the bound-
edness of the dual feasible set is not required. This single-level extended reformulation can
be solved by any off-the-shelf MILP solver. Nevertheless, to decrease the computation time,
we design a specific algorithm based on necessary conditions for the existence of a solution.

First, we illustrate the extended formulation on the following example.

6.4.2 Bounded example

Consider the bilevel linear problem defined by the following data:

x ∈ R+, y ∈ R+,

G =

[
−1
1

]
H =

[
4

2

]
q =

[
11

13

]
cx =

[
1
]
cy =

[
−10

]
,

A =

[
−2
5

]
B =

[
−1
−4

]
b =

[
−5
30

]
d =

[
1
]
.

The optimal solution of the high-point relaxation (x, v) = (5, 4) is not bilevel-feasible. The
optimal value of the optimistic bilevel problem is reached at (x, v) = (1, 3). These two points
are respectively represented by the blue diamond and red cross in Fig. 6.3. The dotted
segments represent the upper-level constraints and the solid lines represent the lower-level
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constraints.
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Figure 6.3 Representation of the bilevel problem.
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Figure 6.4 Near-optimal robustness constraints.

The feasible space for (α, β) is given by:

− 1α11 − 4α12 + β1 ≥ 4

− 1α21 − 4α22 + β2 ≥ 2

αki ≥ 0, βk ≥ 0.

This feasible space can be described as a set of extreme points and rays. It consists in this
case of one extreme point (αki = 0, β1 = 4, β2 = 2) and 4 extreme rays. The (x, v) solution
needs to be valid for the corresponding near-optimality conditions:

β1 (v + δ) ≤ 11 + x

β2 (v + δ) ≤ 13− x.
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This results in two constraints in the (x, v) space, represented in Fig. 6.4 for δ = 0.5 and
δ = 1.0 in dotted blue and dashed orange respectively. The radius of near-optimal feasibility
δ̂ = 5 can be computed using the formulation provided in Definition 6.2.1, for which the
feasible domain at the upper-level is reduced to the point x = 5, for which v = 0, represented
as a green circle at (5, 0) in Fig. 6.4.

6.4.3 Solution algorithm

The solution procedure is defined as follows based on the structure of the extended formula-
tion. The main goal of the algorithm is to prove infeasibility early in the resolution process
and to solve the extended formulation only in the last step. Let P0(BiP ), P1(BiP ), feask,
Pno(BiP ; δ) be the high-point relaxation, optimistic bilevel problem, feasibility of the dual
adversarial problem and near-optimal robust problem respectively. Let Ck be the list of
extreme vertices of the k-th dual adversarial polyhedron.

Algorithm 6.1 Near-Optimal Robust Vertex Enumeration Procedure (NORVEP)
1: function near_optimal_bilevel(BiP, δ)
2: ⋄ Step 1: dual subproblems expansion & pre-solving
3: for k ∈ [[mu]] do
4: Solve dual adversarial problem
5: if feask = Infeasible then
6: Terminate: k-th dual adversarial infeasible
7: else
8: Ck ← (αl

k, β
l
k)l∈Vk

9: end if
10: end for
11: ⋄ Step 2: high-point relaxation P0(BiP )
12: if P0(BiP ) infeasible then
13: Terminate: high-point relaxation infeasible
14: end if
15: ⋄ Step 3: optimistic relaxation P1(BiP )
16: if P1(BiP ) infeasible then
17: Terminate: optimistic bilevel infeasible
18: end if
19: ⋄ Step 4: extended formulation Pno(BiP ; δ)
20: Solve extended formulation with vertex list (Ck)k∈[[mu]], return solution information
21: end function
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Each step consists in solving a problem that must be feasible for the feasibility of NORBiP to
hold. The algorithm terminates without proceeding to the subsequent steps if an infeasibility
is detected.

6.4.4 Valid inequalities

The extended formulation and Algorithm 6.1 can be directly applied. Nevertheless, we pro-
pose two groups of valid inequalities to tighten the formulation.

The first group of inequalities consists of the primal upper-level constraints:

(Gx)k + (Hv)k ≤ qk ∀z ∈ [[mu]].

These constraints are necessary for the optimistic formulation but not for the near-optimal
robust one since they are always redundant with and included in the near-optimal robust
constraints. However, their addition can strengthen the linear relaxation of the extended
formulation and lead to faster convergence.

The second group of inequalities is defined in [134] and based on strong duality of the lower
level. We only implement the valid inequalities for the root node, which are the primary
focus of [134]:

⟨λ, b⟩+ ⟨v, d⟩ ≤ ⟨A+, λ⟩, (6.33)

where A+
i is an upper bound on ⟨Ai, x⟩. The computation of each upper bound A+

i relies on
solving an auxiliary problem:

A+
i = max

x,v,λ
⟨Ai, x⟩ (6.34a)

s.t. Gx+Hv ≤ q (6.34b)

Ax+Bv ≤ b (6.34c)

d+BTλ ≥ 0 (6.34d)

x ∈ X , v ≥ 0, λ ≥ 0 (6.34e)

(x, v, λ) ∈ Υ, (6.34f)

where Υ is the set containing all valid inequalities (6.33).

The method proposed in [134] relies on solving each i-th auxiliary problem once and using the
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resulting bound A+. We define a new iterative procedure to improve the bounds computed
at the root node:

1. Solve Problem (6.34a) ∀i ∈ [[ml]] and obtain A+;

2. If ∃i, A+
i is unbounded, terminate;

3. Otherwise, add Constraint (6.33) to (6.34f) and go to step 1;

4. Stopping criterion: when an iteration does not improve any of the bounds, terminate
and return the last inequality with the sharpest bound.

This procedure allows tightening the bound as long as improvement can be made in one of
the A+

i . If the procedure terminates with one A+
i unbounded, the right-hand side of (6.33)

is +∞, the constraint is trivial and cannot be improved upon. Otherwise, each iteration
improves the bound until the convergence of A+.

6.5 Computational experiments

In this section, we demonstrate the applicability of our approach through numerical experi-
ments on instances of the linear-linear near-optimal robust bilevel problem. We first describe
the sets of test instances and the computational setup and then the experiments and their
results.

6.5.1 Instance sets

Two sets of data are considered. For the first one, a total number of 1000 small, 200 medium
and 100 large random instances are generated and characterized as follows:

(mu,ml, nl, nu) = (5, 5, 5, 5) (small)

(mu,ml, nl, nu) = (10, 10, 10, 10) (medium)

(mu,ml, nl, nu) = (20, 10, 20, 20) (large).

All matrices are randomly generated with each coefficient having a 0.6 probability of being
0 and uniformly distributed on [0, 1] otherwise. High-point feasibility and the vertex enu-
meration procedures are run after generating each tuple of random parameters to discard
infeasible instances. Collecting 1000 small instances required generating 10532 trials, the
200 medium-sized instances were obtained with 18040 trials and the 100 large instances after



82

90855 trials. A second dataset is created from the 50 MIPS/Random instances of the Bilevel
Problem library [135], where integrality constraints are dropped. All of these instances con-
tain 20 lower-level constraints and no upper-level constraints. For each of them, two new
instances are built by moving either the first 6 or the last 6 constraints from the lower to
the upper level, resulting in 100 instances. We will refer to the first set of instances as
the small/medium/large instances and the second as the MIPS instances. All instances are
available in [136] in JLD format, along with a reader to import them in Julia programs.

6.5.2 Computational setup

Algorithm 6.1 is implemented in Julia [137] using the JuMP v0.21 modelling framework
[107,108]; the MILP solver is SCIP 6.0 [138] with SoPlex 4.0 as the inner LP solver, both with
default solving parameters. SCIP handles indicator constraints in the form of linear inequality
constraints activated only if a binary variable is equal to one. Polyhedra.jl [139] is used to
model the dual subproblem polyhedra with CDDLib [140] as a solver running the double-
description algorithm, computing the list of extreme vertices and rays from the constraint-
based representation. The exact rational representation of numbers is used in CDDLib instead
of floating-point types to avoid rounding errors. Moreover, CDDLib fails to produce the list
of vertices for some instances when set in floating-point mode. All experiments are performed
on a consumer-end laptop with 15.5GB of RAM and an Intel i7 1.9GHz CPU running Ubuntu
18.04LTS.

6.5.3 Bilinear and extended formulation

To assess the efficiency of the extended formulation, we compare its solution time to that of
the non-extended formulation including bilinear constraints (6.25). The bilinear formulation
is implemented with SCIP using SoPlex as the linear optimization solver and Ipopt as the
non-linear solver. SCIP handles the bilinear terms through bound computations and spa-
tial branching. We test the two methods on 100 small instances. The bilinear version only
manages to solve the small random instances and runs out of time or memory for all other
instance sets. A time limit of 3600 seconds and a memory limit of 5000MB were fixed. The
distribution of runtimes is presented in Fig. 6.5.

The extended formulation dominates at almost any time the bilinear formulation that uses
spatial branching. The latter runs out of time or memory for most instances.
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Figure 6.5 Runtime of the two methods on 100 of the small instances

6.5.4 Robustness of optimistic solutions and influence of δ

We solve the MIPS instances to bilevel optimality and verify the near-optimal robustness of
the obtained solutions. We use various tolerance values:

δ = max(0.05, δr × opt(L))

with opt(L) the lower-level objective value at the found solution and

δr ∈ {0.01, 0.05, 0.1, 0.5, 3.0}.

Out of the 100 instances, 57 have canonical solutions that are not robust to even the smallest
near-optimal deviation 0.01opt(L). Twelve more instances that have a near-optimal robust
solution with the lowest tolerance are not near-optimal robust when the tolerance is increased
to 3opt(L). Out of the 57 instances that are not near-optimal robust with the lowest tolerance,
40 have exactly one upper-level constraint that is violated by near-optimal deviations of the
lower level and 17 that have more than one. Finally, we observe that the number of violated
constraints changes across the range of tolerance values for 31 out of 100 instances. For the
other 69 instances, the number of violated upper-level constraints remains identical for all
tolerance values.

Table 6.1 summarizes the number of infeasible instances for different values of δ. As δ

increases, so does the proportion of infeasible problems. This is due to the increase in the
left-hand side in constraints (6.31).

In Fig. 6.6, we present the runtime difference between the canonical bilevel problem and its
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Table 6.1 Number of infeasible problems for various tolerance levels δ

δ 0.01 0.1 0.2 1 3 5 7 10 12
Small (/1000) 366 423 466 595 658 670 672 674 676
Medium (/200) 78 88 95 118 122 123 123 123 123

near-optimal robust counterpart.

Figure 6.6 Runtime cost of adding near-optimality robustness constraints.

Scaling up the dimension of the tackled problems is limited not only due to high computation
time but also due to memory requirements since the formulation of the problem requires al-
locating binary variables and a disjunctive constraint over all vertices of the dual polyhedron
of each of the k ∈ [[mu]] subproblems.

These runtime profiles highlight the fact that near-optimality robustness implemented using
the extended formulation adds a significant runtime cost to the resolution of linear-linear
bilevel problems. Nonetheless, the study of near-optimal lower-level decisions on optimistic
solutions shows that these optimistic solutions are not robust, even for small tolerance values.
This time difference also motivates the design of Algorithm 6.1. Indeed, since the optimistic
bilevel problem is solved in a much shorter time, it is interesting to verify its feasibility before
solving the near-optimal robust version.
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6.5.5 Computational time of Algorithm 6.1

Statistics on the computation times of the two phases of Algorithm 6.1 for each instance size
are provided in Table 6.2 and Table 6.3.

Table 6.2 Runtime statistics for the vertex enumeration (s).

Size mean 10% quant. 50% quant. 90% quant.
Small 0.023 0.014 0.019 0.046

Medium 1.098 0.424 0.956 2.148
MIPS 21.061 0.231 3.545 65.004

Table 6.3 Runtime statistics for the optimization phase (s).

Instance type # optimized mean 10% quant. 50% quant. 90% quant.
Small 577 0.205 0.004 0.064 0.596

Medium 106 207.399 0.797 14.451 317.624
MIPS 70 909.302 57.592 344.202 2613.404

The solution time, corresponding to Steps 2-4 of Algorithm 6.1, is greater than the vertex
enumeration phase, corresponding to Step 1, but does not dominate it completely for any of
the problem sizes.

Figure 6.7 shows the distribution of the upper-level objective values across small and medium-
sized instances. The number of problems solved to optimality monotonically decreases when
δ increases (Table 6.1); greater δ values indeed make reduce the set of feasible solutions to
NORBiP. The optimal values only slightly increase with δ and the lower-level objective value
does not vary significantly with δ.

Even though more instances become infeasible as δ increases, the degradation of the objective
value is in general insignificant for the optimal near-optimal robust solution compared to the
optimistic solution.

6.5.6 Implementation of valid inequalities

In the last group of experiments, we implement and investigate the impact of the valid in-
equalities defined in Section 6.4.4.
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Figure 6.7 Violin plots of the upper objective value distributions versus δ.

On the 200 medium-sized instances, adding the valid inequality (6.33) is enough to prove
the infeasibility of 61 instances out of 68 that are infeasible but possess a feasible high-point
relaxation. On 100 large instances, adding the valid inequality proves the infeasibility of 29
out of 45 infeasible instances for which the high-point relaxation is feasible. For all medium
and large instances, a non-trivial valid inequality i.e. where all A+

i are finite was computed.

These results highlight the improvement of the model tightness with the addition of the
valid inequalities, compared to the high-point relaxation where primal and dual variables are
subject to distinct groups of constraints. These inequalities thus discard infeasible instances
without the need to solve the complete MILP reformulation. In Fig. 6.8, the distribution of
the number of iterations of the inequality-finding procedure is presented for the medium and
large instances. For the majority of instances of both sizes (about 80% and 60% of instances
for the medium and large instances), a single iteration is sufficient to find the best valid
inequality (6.33). The number of iteration, however, goes up to 40 and 50 for the medium
and large instances respectively (truncated on the graph for clarity).

In Fig. 6.9, we compare the total runtime for MIPS and medium instances under near-
optimality robustness constraints using δ = 0.1 with and without valid inequalities for all
instances solved to optimality. The runtime for instances with valid inequalities includes the
runtime of the inequality computation.

Valid inequalities do not improve the runtime for NORBiP in either group of instances. This
result is similar to the observations in [134] for instances of the canonical bilevel linear prob-
lem without near-optimality robustness.

We next study the inequalities based on the upper-level constraints on the small, medium
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Figure 6.8 Distribution of the number of iterations for the computation of valid inequalities.

and MIPS instances.

As shown in Fig. 6.10, the addition of primal upper-level constraints accelerates the resolution
of the MIPS and medium instances and dominates the standard extended formulation. For
the small instances, we observe smaller runtimes for the first instances solved. This can be
due to the upper-level constraints making the linear relaxation larger by adding constraints,
thus creating overhead for smaller problems. This overhead is compensated for instances
that are harder to optimize, i.e. that require more than 0.02 seconds to solve.

6.6 Conclusion

In this work, we introduce near-optimal robust bilevel optimization, a specific formulation
of the bilevel optimization problem where the upper-level constraints are protected from
deviations of the lower level from optimality. Near-optimality robustness challenges the as-
sumption that the lower-level problem is solved to optimality, resulting in a generalized, more
conservative formulation including the optimistic and pessimistic bilevel problems as special
cases. We formulate NORBiP in the dependent case, i.e. where the upper- and lower-level
constraints depend on both upper- and lower-level variables, thus offering a framework ap-
plicable to many bilevel problems of practical interest.

We derive a closed-form, single-level expression of NORBiP for convex lower-level problems,
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Figure 6.9 Runtime for MIPS and medium instances with and without valid inequalities.

Figure 6.10 Runtime for small, medium and MIPS instances with and without upper-level
constraints.

based on dual adversarial certificates to guarantee near-optimality robustness. In the linear
case, we derive an extended formulation that can be represented as a MILP with indicator
constraints. Numerical experiments highlight the efficiency of the extended method compared
to the compact bilinear formulation and the impact of some valid inequalities on both solution
time and tightness of the linear relaxation.
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CHAPTER 7 ARTICLE 3: COMPLEXITY OF NEAR-OPTIMAL ROBUST
VERSIONS OF MULTILEVEL OPTIMIZATION PROBLEMS

This chapter was submitted to Optimization Letters in October 2020.

Authors: Mathieu Besançon, Miguel F. Anjos, Luce Brotcorne

Abstract

Near-optimality robustness extends multilevel optimization with a limited deviation of a lower
level from its optimal solution, anticipated by higher levels. We analyze the complexity of
near-optimal robust multilevel problems, where near-optimal robustness is modelled through
additional adversarial decision-makers. Near-optimal robust versions of multilevel problems
are shown to remain in the same complexity class as the problem without near-optimality
robustness under general conditions.

Multilevel optimization is a class of mathematical optimization problems where other prob-
lems are embedded in the constraints. They are well suited to model sequential decision-
making processes, where a first decision-maker, the leader intrinsically integrates the reaction
of another decision-maker, the follower, into their decision-making problem.

In recent years, most of the research focuses on the study and design of efficient solution
methods for the case of two levels, namely bilevel problems [98], which fostered a growing
range of applications.

Near-optimal robustness, defined in [141], is an extension of bilevel optimization. In this
setting, the upper level anticipates limited deviations of the lower level from an optimal solu-
tion and aims at a solution that remains feasible for any feasible and near-optimal solution of
the lower level. This protection of the upper level against uncertain deviations of the lower-
level has led to the characterization of near-optimality robustness as a robust optimization
approach for bilevel optimization. The lower-level response corresponds to the uncertain
parameter and the maximum deviation of the objective value from an optimal solution to
the uncertainty budget. Because the set of near-optimal lower-level solutions potentially has
infinite cardinality and depends on the upper-level decision itself, near-optimality robustness
adds generalized semi-infinite constraints to the bilevel problem. The additional constraint
can also be viewed as a form of robustness under decision-dependent uncertainty.
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In this paper, we prove complexity results on multilevel problems to which near-optimality
robustness constraints are added under various forms. We show that under fairly general
conditions, the near-optimal robust version of a multilevel problem remains on the same
level of the polynomial hierarchy as the canonical problem. These results are non-trivial
assuming that the polynomial hierarchy does not collapse and open the possibility of solu-
tion algorithms for near-optimal robust multilevel problems as efficient as for their canonical
counterpart. Even though we focus on near-optimal robust multilevel problems, the com-
plexity results we establish hold for all multilevel problems that present the same hierarchical
structure, i.e. the same anticipation and parameterization between levels as the near-optimal
formulation with the adversarial problems, as defined in Section 7.2.

The rest of this paper is organized as follows. Section 7.1 introduces the notation and the
background on near-optimality robustness and existing complexity results in multilevel op-
timization. Section 7.2 presents complexity results for the near-optimal robust version of
bilevel problems, where the lower level belongs to P and NP . These results are extended in
Section 7.3 to multilevel optimization problems, focusing on integer multilevel linear prob-
lems with near-optimal deviations of the topmost intermediate level. Section 7.4 provides
complexity results for a generalized form of near-optimal robustness in integer multilevel
problems, where multiple decision-makers anticipate near-optimal reactions of a lower level.
Finally, we draw some conclusions in Section 7.5.

7.1 Background on near-optimality robustness and multilevel optimization

In this section, we introduce the notation and terminology for bilevel optimization and near-
optimality robustness, and highlight prior complexity results in multilevel optimization. Let
us define a bilevel problem as:

min
x

F (x, v) (7.1a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (7.1b)

x ∈ X (7.1c)

where v ∈ argmin
y∈Y

{f(x, y) s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]]}. (7.1d)

We denote by X and Y the domain of upper- and lower-level variables respectively. We use
the convenience notation [[n]] = {1, . . . , n} for a natural n.
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Problem (7.1) is ill-posed, since multiple solutions to the lower level may exist [142, Ch.
1]. Models often rely on additional assumptions to alleviate this ambiguity, the two most
common being the optimistic and pessimistic approaches. In the optimistic case (BiP), the
lower level selects an optimal decision that most favours the upper level. In this setting, the
lower-level decision can be taken by the upper level, as long as it is optimal for the lower-level
problem. The upper level can thus optimize over both x and v, leading to:

(BiP): min
x,v

F (x, v) (7.2a)

s.t. Gk(x, v) ≤ 0 ∀k ∈ [[mu]] (7.2b)

x ∈ X (7.2c)

v ∈ argmin
y∈Y

{f(x, y) s.t. gi(x, y) ≤ 0 ∀i ∈ [[ml]]}. (7.2d)

Constraint (7.2d) implies that v is feasible for the lower level and that f(x, v) is the optimal
value of the lower-level problem, parameterized by x.

The pessimistic approach assumes that the lower level chooses an optimal solution that is the
worst for the upper-level objective as in [98] or with respect to the upper-level constraints as
in [48].

The near-optimal robust version of (BiP) considers that the lower-level solution may not be
optimal but near-optimal with respect to the lower-level objective function. The tolerance for
near-optimality, denoted by δ is expressed as a maximum deviation of the objective value from
optimality. The problem solved at the upper level must integrate this deviation and protects
the feasibility of its constraints for any near-optimal lower-level decision. The problem is
formulated as:

(NORBiP): min
x,v

F (x, v) (7.3a)

s.t. (7.2b)− (7.2d) (7.3b)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]]

(7.3c)

where Z(x; δ) = {y ∈ Y | f(x, y) ≤ f(x, v) + δ, g(x, y) ≤ 0}. (7.3d)

Z(x; δ) denotes the near-optimal set, i.e. the set of near-optimal lower-level solutions, de-
pending on both the upper-level decision x and δ. (NORBiP) is a generalization of the
pessimistic bilevel problem since the latter is both a special case and a relaxation of (NOR-
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BiP) [141]. We refer to (BiP) as the canonical problem for (NORBiP) (or equivalently
Problem (7.4)) and (NORBiP) as the near-optimal robust version of (BiP). In the formu-
lation of (NORBiP), the upper-level objective depends on decision variables of both levels,
but is not protected against near-optimal deviations. A more conservative formulation also
protecting the objective by moving it to the constraints in an epigraph formulation [141] is
given by:

(NORBiP-Alt): min
x,v,τ

τ

s.t. (7.2b)− (7.2d)

Gk(x, z) ≤ 0 ∀z ∈ Z(x; δ) ∀k ∈ [[mu]]

F (x, z) ≤ τ ∀z ∈ Z(x; δ),

The optimal values of the three problems are ordered as:

opt(BiP) ≤ opt(NORBiP) ≤ opt(NORBiP-Alt).

We next provide a review of complexity results for bilevel and multilevel optimization prob-
lems. Bilevel problems are NP-hard in general, even when the objective functions and
constraints at both levels are linear [44]. When the lower-level problem is convex, a common
solution approach consists in replacing it with its KKT conditions [143,144], which are nec-
essary and sufficient if the problem satisfies certain constraint qualifications. This approach
results in a single optimization problem with complementarity constraints, of which the deci-
sion problem is NP-complete [145]. A specific form of the three-level problem is investigated
in [146], where only the objective value of the bottom-level problem appears in the objec-
tive functions of the first and second levels. If these conditions hold and all objectives and
constraints are linear, the problem can be reduced to a single level one with complementar-
ity constraints of polynomial size. This model is similar to the worst-case reformulation of
(NORBiP) presented in Section 7.2.

Pessimistic bilevel problems for which no upper-level constraint depends on lower-level vari-
ables are studied in [80]. The problem of finding an optimal solution to the pessimistic
case is shown to be NP-hard, even if a solution to the optimistic counterpart of the same
problem is provided. A variant is also defined, where the lower level may pick a subopti-
mal response only impacting the upper-level objective. This variant is comparable to the
Objective-Robust Near-Optimal Bilevel Problem defined in [141]. In [48], the independent
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case of the pessimistic bilevel problem is studied, corresponding to a special case of (NOR-
BiP) with δ = 0 and all lower-level constraints independent of the upper-level variables. It is
shown that the linear independent pessimistic bilevel problem, and consequently the linear
near-optimal robust bilevel problem, can be solved in polynomial time while it is strongly
NP-hard in the non-linear case.

When the lower-level problem cannot be solved in polynomial time, the bilevel problem is
in general ΣP

2 -hard. The notion of ΣP
2 -hardness and classes of the polynomial hierarchy are

recalled in Section 7.2. Despite this complexity result, new algorithms and corresponding im-
plementations have been developed to solve these problems and in particular, mixed-integer
linear bilevel problems [69,73,147]. Variants of the bilevel knapsack were investigated in [148],
and proven to be ΣP

2 -hard as the generic mixed-integer bilevel problem.

Multilevel optimization was initially investigated in [46] in the case of linear constraints and
objectives at all levels. In this setting, the problem is shown to be in ΣP

s , with s + 1 being
the number of levels. The linear bilevel problem corresponds to s = 1 and is in ΣP

1 ≡ NP .
If, on the contrary, at least the bottom-level problem involves integrality constraints (or
more generally belongs to NP but not P), the multilevel problem with s levels belongs
to ΣP

s . A model unifying multistage stochastic and multilevel problems is defined in [87],
based on a risk function capturing the component of the objective function which is unknown
to a decision-maker at their stage, either because of a stochastic component or of another
decision-maker that acts after the current one.

As highlighted in [87, 149], most results in the literature on complexity of multilevel opti-
mization use NP-hardness as the sole characterization. This only indicates that a given
problem is at least as hard as all problems in NP and that no polynomial-time solution
method should be expected unless NP = P .

We characterize near-optimal robust multilevel problems not only on the hardness or “lower
bound” on complexity, i.e. being at least as hard as all problems in a given class but through
their complexity “upper bound”, i.e. the class of the polynomial hierarchy they belong to.
The linear optimistic bilevel problem is for instance strongly NP-hard, but belongs to NP
and is therefore not ΣP

2 -hard.
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7.2 Complexity of near-optimal robust bilevel problems

We establish in this section complexity results for near-optimal robust bilevel problems for
which the lower level L is a single-level problem parameterized by the upper-level decision.
(NORBiP) can be reformulated by replacing each k-th semi-infinite Constraint (7.3c) with
the lower-level solution zk in Z(x; δ) that yields the highest value of Gk(x, zk):

min
x,v

F (x, v) (7.4a)

s.t. (7.2b)− (7.2d) (7.4b)

Gk(x, zk) ≤ 0 ∀k ∈ [[mu]] (7.4c)

zk ∈ argmax
y∈Y

{Gk(x, y) s.t. f(x, y) ≤ f(x, v) + δ, g(x, y) ≤ 0} ∀k ∈ [[mu]] (7.4d)

From a game-theoretical perspective, the near-optimal robust version of a bilevel problem can
be seen as a three-player hierarchical game. The upper level U and lower level L are identical
to the canonical bilevel problem. The third level is the adversarial problem A and selects the
worst near-optimal lower-level solution with respect to upper-level constraints, as represented
by the embedded maximization in Constraint (7.4d). If the upper-level problem has multiple
constraints, the adversarial problem can be decomposed into problems Ak, k ∈ [[mu]], where
mu is the number of upper-level constraints. The interaction among the three players is
depicted in Fig. 7.1. The blue dashed arcs represent a parameterization of the source vertex
by the decisions of the destination vertex, and the solid red arcs represent an anticipation of
the destination vertex decisions in the problem of the source vertex. This convention will be
used in all figures throughout the paper.

The adversarial problem can be split into mu adversarial problems as done in [141], each find-
ing the worst-case with respect to one of the upper-level constraints. The canonical problem
refers to the optimistic bilevel problem without near-optimal robustness constraints. We refer
to the variable v as the canonical lower-level decision.

The complexity classes of the polynomial hierarchy are only defined for decision problems.
We consider that an optimization problem belongs to a given class if that class contains the
decision problem of determining if there exists a feasible solution for which the objective
value at least as good as a given bound.

Definition 7.2.1. The decision problem associated with an optimization problem is in P∗ [H],
with H a set of real-valued functions on a vector space Y, iff:
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Figure 7.1 Near-optimal robust bilevel problem

1. it belongs to P;

2. for any h ∈ H, the problem with an additional linear constraint and an objective func-
tion set as h(·) is also in P.

A broad range of problems in P are also in P∗ [H] for certain sets of functions H (see Exam-
ple 7.2.1 for linear problems and linear functions and Example 7.2.2 for some combinatorial
problems in P). NP∗ [H] and ΣP∗

s [H] are defined in a similar way. We next consider two
examples illustrating these definitions.

Example 7.2.1. Denoting by HL the set of linear functions from the space of lower-level
variables to R, linear optimization problems are in P∗ [HL], since any given problem with an
additional linear constraint and a different linear objective function is also a linear optimiza-
tion problem.

Example 7.2.2. Denoting by HL the set of linear functions from the space of lower-level
variables to R, combinatorial optimization problems in P which can be formulated as linear
optimization problems with totally unimodular matrices are not in P∗ [HL] in general. Indeed,
adding a linear constraint may break the integrality of solutions of the linear relaxation of the
lower-level problem.

ΣP
s is the complexity class at the s-th level of the polynomial hierarchy [45, 46], defined

recursively as ΣP
0 = P , ΣP

1 = NP , and problems of the class ΣP
s , s > 1 being solvable in non-

deterministic polynomial time, provided an oracle for problems of class ΣP
s−1. In particular, a
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positive answer to a decision problem in NP can be verified, given a certificate, in polynomial
time. If the decision problem associated with an optimization problem is in NP , and given
a potential solution, the objective value of the solution can be compared to a given bound
and the feasibility can be verified in polynomial time. We reformulate these statements in
the following proposition:

Proposition 7.2.1. [46] An optimization problem is in ΣP
s+1 if verifying that a given solution

is feasible and attains a given bound can be done in polynomial time, when equipped with an
oracle solving problems in ΣP

s in a single step.

Proposition 7.2.1 is the main property of the classes of the polynomial hierarchy used to de-
termine the complexity of near-optimal robust bilevel problems in various settings throughout
this paper.

Lemma 7.2.1. Given a bilevel problem in the form of Problem (7.2), if the lower-level
problem is in P∗ [H], and

−Gk(x, ·) ∈ H ∀x,∀k ∈ [[mu]],

then the adversarial problem (7.4d) is in P.

Proof. The lower-level problem can equivalently be written in an epigraph form:

(v, w) ∈ argmin
y,u

u

s.t. f(x, y)− u ≤ 0

g(x, y) ≤ 0.

Given a solution of the lower-level problem (v, w) and an upper-level constraint Gk(x, y) ≤ 0,
the adversarial problem is defined by:

min
y,u
−G(x, y)

s.t. f(x, y)− u ≤ 0

g(x, y) ≤ 0

u ≤ w.

Compared to the lower-level problem, the adversarial problem contains an additional linear
constraint u ≤ w and an objective function updated to −G(x, ·).
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Theorem 7.2.1. Given a bilevel problem (P ), if there exists H such that the lower-level
problem is in NP∗ [H] and

−Gk(x, ·) ∈ H ∀x ∈ X ,∀k ∈ [[mu]],

then the near-optimal robust version of the bilevel problem is in ΣP
2 like the canonical bilevel

problem.

Proof. The proof relies on the ability to verify that a given solution (x, v) results in an
objective value at least as low as a bound Γ according to Proposition 7.2.1. This verification
can be carried out with the following steps:

1. Compute the upper-level objective value F (x, v) and verify that F (x, v) ≤ Γ;

2. Verify that upper-level constraints are satisfied;

3. Verify that lower-level constraints are satisfied;

4. Compute the optimum value L(x) of the lower-level problem parameterized by x and
check if:

f(x, v) ≤ min
y
L(x);

5. Compute the worst case:
Find

zk ∈ argmax
y∈Y

Ak(x, v) ∀k ∈ [[mu]];

where Ak(x, v) is the k-th adversarial problem parameterized by (x, v);

6. Verify near-optimal robustness: ∀k ∈ [[mu]], verify that the k-th upper-level constraint
is feasible for the worst-case zk.

Steps 1 and 2 can be carried out in polynomial time by assumption. Step 3 requires to check
the feasibility of a solution to a problem in NP . This can be done in polynomial time.
Step 4 consists in solving the lower-level problem, while Step 5 corresponds to solving mu

problems similar to the lower level, with the objective function modified and an additional
linear constraint ensuring near-optimality.

Theorem 7.2.2. Given a bilevel problem (P ), if the lower-level problem is convex and in
P∗ [H] with H a set of convex functions, and if the upper-level constraints are such that
−Gk(x, ·) ∈ H, then the near-optimal robust version of the bilevel problem is in NP. If the
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upper-level constraints are convex non-affine with respect to the lower-level constraints, the
near-optimal robust version is in general not in NP.

Proof. If the upper-level constraints are concave with respect to the lower-level variables, the
adversarial problem defined as:

max
y∈Y

Gk(x, y) (7.5a)

s.t. g(x, y) ≤ 0 (7.5b)

f(x, y) ≤ f(x, v) + δ (7.5c)

is convex. Furthermore, by definition of P∗ [H], the adversarial problem is in P .

Applying the same reasoning as in the proof of Theorem 7.2.1, Steps 1-3 are identical and
can be carried out in polynomial time. Step 4 can be performed in polynomial time since L
is in P . Step 5 is also performed in polynomial time since ∀k ∈ [[mu]], each k-th adversarial
problem (7.5) is a convex problem that can be solved in polynomial time since L is in P∗ [H].
Step 6 simply is a simple comparison of two quantities.

If the upper-level constraints are convex non-affine with respect to the lower-level variables,
Problem (7.5) maximizes a convex non-affine function over a convex set. Such a problem is
NP-hard in general. Therefore, the verification that a given solution is feasible and satisfies
a predefined bound on the objective value requires solving the mu NP-hard adversarial
problems. If L is in NP∗ [H], then these adversarial problems are in NP by Eq. (7.3), and
the near-optimal robust problem is in ΣP

2 according to Proposition 7.2.1.

7.3 Complexity of near-optimal robust mixed-integer multilevel problems

In this section, we study the complexity of a near-optimal robust version of mixed-integer
multilevel linear problems (MIMLP), where the lower level itself is a s-level problem and is
ΣP

s -hard. The canonical multilevel problem is, therefore, ΣP
s+1-hard [46]. For some instances

of mixed-integer bilevel, the optimal value can be approached arbitrarily but not reached
[150]. To avoid such pathological cases, we restrict our attention to multilevel problems
satisfying the criterion for mixed-integer bilevel problems from [69]:

Property 7.3.1. The continuous variables at any level s do not appear in the problems at
levels that are lower than s (the levels deciding after s).
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More specifically, we will focus on mixed-integer multilevel linear problems where the upper-
most lower level L1 may pick a solution deviating from the optimal value, while we ignore
deviations of the levels Li>1. This problem is noted (NOMIMLPs) and depicted in Fig. 7.1.

U

L1

L2 A

Figure 7.2 Near-optimality robustness for multilevel problems

The adversarial problem corresponds to a decision of the level L1 different from the canonical
decision. This decision induces a different reaction from the subsequent levels L2, L3. Since
the top-level constraints depend on the joint reaction of all following levels, we will note
zki = (zk1, zk2, zk3) the worst-case joint near-optimal solution of all lower levels with respect
to the top-level constraint k.

Theorem 7.3.1. If L1 is in ΣP∗
s [HL], the decision problem associated with (NOMIMLPs) is

in ΣP
s+1 as the canonical multilevel problem.

Proof. Given a solution to all levels (xU , v1, v2, ...vs) and a bound Γ, verifying that this
solution is (i) feasible, (ii) near-optimal robust of parameter δ, and (iii) has an objective
value at least as good as the bound Γ can be done through the following steps:

1. Compute the objective value and verify that it is lower than Γ;

2. Verify variable integrality;

3. Solve the problem L1, parameterized by xU , and verify that the solution (v1, v2, ...) is
optimal;

4. ∀k ∈ [[mu]], solve the k-th adversarial problem. Let zk = (zk1, zk2...zks) be the solution;
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5. ∀k ∈ [[mu]], verify that the k-th upper-level constraint is feasible for the adversarial
solution zk.

Steps 1, 2, and 5 can be performed in polynomial time. Step 3 requires solving a problem in
ΣP

s , while step 4 consists in solving mu problems in ΣP
s , since L1 is in ΣP∗

s [HL]. Checking
the validity of a solution thus requires solving problems in ΣP

s and is itself in ΣP
s+1, similarly

to the canonical problem.

7.4 Complexity of a generalized near-optimal robust multilevel problem

In this section, we study the complexity of a variant of the problem presented in Section 7.3
with s + 1 decision-makers at multiple top levels U1,U2, ...Us and a single bottom level L.
We denote by U1 the top-most level. We assume that the bottom-level entity may choose
a solution deviating from optimality. This requires that the entities at all Ui ∀i ∈ {1..s}
levels anticipate this deviation, thus solving a near-optimal robust problem to protect their
feasibility from it. The variant, coined (GNORMPs), is illustrated in Fig. 7.3. We assume
throughout this section that Property 7.3.1 holds in order to avoid the unreachability problem
previously mentioned. The decision variables of all upper levels are denoted by x(i), and the
objective functions by F(i)(x(1), x(2)...x(s)). The lower-level canonical decision is denoted v as
in previous sections.

If the lowest level L belongs to NP , Us belongs to ΣP
2 and the original problem is in ΣP

s+1.
In a more general multilevel case, if the lowest level L solves a problem in ΣP

r , Us solves a
problem in ΣP

r+1 and U1 in ΣP
r+s.

We note that for all fixed decisions x(i)∀i ∈ {1..s − 1}, Us is a near-optimal robust bilevel
problem. This differs from the model presented in Section 7.3 where, for a fixed upper-level
decision, the top-most lower level L1 is the same parameterized problem as in the canonical
setting. Furthermore, as all levels Ui anticipate deviations of the lower-level decision in the
near-optimal set, the worst case can be formulated with respect to the constraints of each of
these levels. In conclusion, distinct adversarial problems Ai ∀i ∈ {1..s} can be formulated.
Each upper level Ui integrates the reaction of the corresponding adversarial problem in its
near-optimality robustness constraint. This formulation of (GNORMPs) is depicted Fig. 7.4.

Theorem 7.4.1. Given a s + 1-level problem (GNORMPs), if the bottom-level problem pa-
rameterized by all upper-level decisions L(x(1), x(2)...x(s)) is in ΣP∗

r [HL], then (GNORMPs)
is in ΣP

r+s like the corresponding canonical bilevel problem.
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Figure 7.3 Generalized NOR multi-
level
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Figure 7.4 Decoupling of the two ad-
versarial problems

Proof. We denote by xU = (x(1), x(2), ...x(s)) and mUi
the number of constraints of problem Ui.

As for Theorem 7.2.1, this proof is based on the complexity of verifying that a given solution
(xU , v) is feasible and results in an objective value below a given bound. The verification
requires the following steps:

1. Compute the top-level objective value and assert that it is below the bound;

2. Verify feasibility of (xU , v) with respect to the constraints at all levels;

3. Verify optimality of v for L parameterized by xU ;

4. Verify optimality of x(i) for the near-optimal robust problem solved by the i-th level
Ui(x(1), x(2)...x(i−1); δ) parameterized by all the decisions at levels above and the near-
optimality tolerance δ;

5. Compute the near-optimal lower-level solution zk which is the worst-case with respect
to the k-th constraint of the top-most level ∀k ∈ [[mU1 ]];

6. Verify that each k ∈ [[mU1 ]] top-level constraint is satisfied with respect to the corre-
sponding worst-case solution zk.
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Steps 1-2 are performed in polynomial time. Step 3 requires solving Problem L(xU), belong-
ing to ΣP

r . Step 4 consists in solving a generalized near-optimal robust multilevel problem
GNORMPs−1 with one level less than the current problem. Step 5 requires the solution of
mU1 adversarial problems belonging to ΣP

r since L is in ΣP∗
r [HL]. Step 6 is an elementary

comparison of two quantities for each k ∈ [[mu]]. The step of highest complexity is Step 4. If
it requires to solve a problem in ΣP

r+s−1, then GNORMPs is in ΣP
r+s similarly to its canonical

problem.

Let us assume that Step 4 requires to solve a problem outside ΣP
r+s−1. Then GNORMPs−1

is not in ΣP
r+s−1 as the associated canonical problem, and that Step 4 requires to solve a

problem not in ΣP
r+s−2. By recurrence, GNORMP1 is not in ΣP

r+1. However, GNORMP1 is a
near-optimal robust bilevel problem where the lower level itself in ΣP

r ; this corresponds to the
setting of Section 7.3. This contradicts Theorem 7.3.1, GNORMPs−1 is therefore in ΣP

r+s−1.
Verifying the feasibility of a given solution to GNORMPs requires solving a problem at most
in ΣP

r+s−1. Based on Proposition 7.2.1, GNORMPs is in ΣP
r+s as its canonical multilevel

problem.

In conclusion, Theorem 7.4.1 shows that adding near-optimality robustness at an arbitrary
level of the multilevel problem does not increase its complexity in the polynomial hierarchy.
By combining this property with the possibility to add near-optimal deviation at an interme-
diate level as in Theorem 7.3.1, near-optimality robustness can be added at multiple levels
of a multilevel model without changing its complexity class in the polynomial hierarchy.

7.5 Conclusion

In this paper, we have shown that for many configurations of bilevel and multilevel opti-
mization problems, adding near-optimality robustness to the canonical problem does not
increase its complexity in the polynomial hierarchy. This result is obtained even though
near-optimality robustness constraints add another level to the multilevel problem, which
in general would change the complexity class. We defined the class ΣP∗

s [H] that is general
enough to capture many non-linear multilevel problems but avoids corner cases where the
modified objective or additional linear constraint makes the problem harder to solve.

Future work will consider specialized solution algorithms for some classes of near-optimal
robust bilevel and multilevel problems.
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CHAPTER 8 NEW ALGORITHMS FOR NEAR-OPTIMAL ROBUST
BILEVEL LINEAR OPTIMIZATION

8.1 Introduction

Chapter 6 introduces the near-optimal robust bilevel problem (NORBiP), defined as a bilevel
optimization problem where the upper level protects the feasibility of its constraints against
deviations of the lower level solution. In the linear case, an extended single-level closed-form
formulation is derived, leading to a problem with complementarity constraints and disjunctive
constraints:

min
x,v

cTxx+ cTy v (8.1a)

s.t. GT
k x+HT

k v ≤ qk ∀k ∈ [[mu]] (8.1b)

dj +
∑
i

λiBij − σj = 0 ∀j ∈ [[nl]] (8.1c)

0 ≤ λi⊥ bi − Aix−Biv ≥ 0 ∀i ∈ [[ml]] (8.1d)

0 ≤ σj ⊥ vj ≥ 0 ∀j ∈ [[nl]] (8.1e)
|Vk|∨
l=1

ml∑
i=1

αl
ki(b− Ax)i + βl

k (d
Tv + δ) ≤ qk −GT

k x ∀k ∈ [[mu]] (8.1f)

x ∈ X . (8.1g)

Constraint (8.1b) ensures upper-level feasibility, Constraints (8.1d-8.1e) capture the lower-
level primal feasibility and complementarity constraints between the primal and dual con-
straints and variables. They can be reformulated with SOS1 or indicator constraints in a
MILP modelling framework. Constraint (8.1f) is the disjunctive constraint of the extended
formulation, enforcing one vertex of the dual adversarial polyhedron to respect the upper-
level constraint with the specified level of near-optimality robustness, with Vk the list of
extreme vertices of the dual adversarial polyhedron for the k-th upper-level constraint. The
length of this list grows exponentially with the size of the lower-level problem (and hence of
its dual). In a MILP framework, it can be reformulated using auxiliary binary variables and
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indicator constraints:

|Vk|∑
l=1

wkl ≥ 1 ∀k ∈ [[mu]]

wkl = 1⇒ αl
ki(b− Ax)i + βl

k · (dTv + δ) ≤ qk −GT
k x ∀k ∈ [[mu]], ∀l ∈ [[|Vk|]]

wkl ∈ {0, 1} ∀k ∈ [[mu]], ∀l ∈ [[|Vk|]]

Computational experiments highlighted the difficulty of solving bilevel linear problems with
added near-optimal robust constraints to global optimality compared to their canonical coun-
terpart. In this chapter, we design new exact and heuristic solution methods for the linear
NORBiP and evaluate their efficiency on two sets of instances.

This chapter is organized as follows. Section 8.2 introduces two exact algorithms to solve the
extended reformulation of the linear NORBiP, while the algorithm presented in Section 8.3
is a heuristic method guaranteed to compute a near-optimal robust bilevel-feasible solution.
In Section 8.4, computational experiments and benchmarks are conducted, assessing the
effectiveness and efficiency of the various presented methods. Section 8.5 concludes the
chapter and highlights future work.

8.2 Exact lazy subproblem expansion

In this section, we present two novel methods for solving linear NORBiP instances. The
linear NORBiP requires each dual-adversarial problem to be feasible with an objective value
of less than qk −GT

k x. For S ⊆ [[mu]], we denote by the following problem as NORBiP(S):

min
x,v

cTxx+ cTy v

s.t. (8.1b)− (8.1e)

GT
k x+HT

k v ≤ qk ∀z ∈ Z(x; δ) ∀k ∈ S (8.2)

x ∈ X .

It can be noted that NORBiP(∅) does not have any near-optimality robustness constraint and
corresponds to the optimistic bilevel problem. NORBiP([[mu]]) is equivalent to NORBiP and
integrates all near-optimality robustness constraints. NORBiP(S) is trivially a relaxation of
NORBiP since only a subset of the robust constraints is applied.
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Furthermore, for a given primal solution (x, v), verifying its near-optimality robustness with
respect to the k− th upper-level constraint can be done with an auxiliary linear optimization
problem:

min
α,β

(b− Ax)Tα + (dTv + δ)β (8.3)

s.t. BTα + βd ≥ Hk

α ∈ Rml
+ β ∈ R+.

We consider a solution to the auxiliary problem as “robust” if the optimal value is below
qk−GT

k x, in which case the constraint is robust to near-optimal deviations of the lower level.
Algorithm 8.1 starts from S = ∅ and iteratively adds violated constraints from (8.2) that
ensure the near-optimality robustness of some upper-level constraints. We thus qualify it
as lazy in contrats to the complete formulation from Chapter 6 introducing all disjunctive
constraints upfront.

At any given iteration, the set S is the complement of S,

S ≡ [[mu]] \ S

and Sopt contains the set of upper-level constraint indices that are robust for a current iterate.
If S is empty, there is no upper-level constraint that is not either added (already in S) or
already optimal (in Sopt). Given that NORBiP is a relaxation of NORBiP, S = ∅ implies
that the optimum is reached.

At any given iterate of Algorithm 8.1, NORBiP(S), a MILP, is solved from scratch. Re-
solving the problem at each iterate can create a high overhead in the computing time.
Hence, we define a variant, Algorithm 8.2, that adds multiple violated near-optimality ro-
bustness constraints at each iteration, hence reducing the number of iterates compared to
Algorithm 8.1. It takes a single parameter, B, the maximum number of disjunctions added
at each iteration.

The Sopt and S sets are similar to Algorithm 8.1. I corresponds to the set of upper-level
constraint indices that are added in the current batch.



106

Algorithm 8.1 Lazy Subproblem Expansion
1: function LazySubProblemExpansion(G,H, q, cx, cy, A,B, b, d, δ)
2: NORBiP ← optimistic model with parameters G,H, q, cx, cy, A,B, b, d
3: if Optimistic infeasible then
4: Terminate with optimistic infeasible
5: end if
6: S ← [[mu]]
7: wk ← {} ∀k ∈ [[mu]]
8: while S not empty do ▷ subproblem exploration phase
9: Sopt ← ∅

10: (x̂, v̂)← current solution
11: Choose k ∈ S
12: Solve k − th dual subproblem (8.3) parameterized by (x̂, v̂)
13: if Solution is robust then
14: Sopt ← Sopt ∩ {k}
15: S ← S \ {k}
16: else ▷ subproblem expansion phase
17: Add new variables wkl ∈ {0, 1} ∀l ∈ 1 . . . |Vk| to NORBiP

18: Add constraint
∑|Vk|

l=1 wkl ≥ 1 to NORBiP
19: for l ∈ 1 . . . |Vk| do
20: (αl

k, β
l
k)← V l

k

21: Add indicator constraint to NORBiP :
22: wkl = 1⇒ (b− Ax)Tαl

k + (dTv + δ)βl
k ≤ qk −GT

k x
23: end for
24: end if
25: Solve current iterate NORBiP
26: if Infeasible then
27: Terminate with infeasible k−th subproblem
28: end if
29: S ← S ∩ Sopt
30: end while
31: return (x̂, v̂, w)
32: end function

8.3 Single-vertex heuristic

In this section, we present Algorithm 8.3, a heuristic algorithm to compute high-quality
bilevel-feasible and near-optimal robust solutions. It only requires optimizing a finite se-
quence of MILPs with the same variables as the canonical bilevel problem and few additional
linear constraints, instead of the disjunctive constraints with a number of terms equal to the
number of vertices of the dual adversarial polyhedron.

At any given iterate, C is the set of upper-level constraint indices that were already added to
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Algorithm 8.2 Lazy Batched Subproblem Expansion
1: function LazyBatched(G,H, q, cx, cy, A,B, b, d, δ,B)
2: NORBiP ← optimistic model with parameters (G,H, q, cx, cy, A,B, b, d)
3: if Optimisic infeasible then
4: Terminate with optimistic infeasible
5: end if
6: S ← [[mu]]
7: wk ← {}∀k ∈ [[mu]]
8: while S not empty do
9: I ← ∅

10: while |I| < B&S not empty do
11: Sopt ← ∅
12: (x̂, v̂)← optimal solution of NORBiP
13: Choose k ∈ S
14: Solve k-th dual subproblem parameterized by (x̂, v̂)
15: S ← S \ {k}
16: if Solution is robust then
17: Sopt ← Sopt ∩ {k}
18: else
19: I ← I ∪ {k}
20: Add new variables wkl ∈ {0, 1} ∀l ∈ 1 . . . |Vk| to NORBiP

21: Add constraint
∑|Vk|

l=1 wkl ≥ 1 to NORBiP
22: for l ∈ 1 . . . |Vk| do
23: (αl

k, β
l
k)← V l

k

24: Add indicator constraint to NORBiP :
25: wkl = 1⇒ (b− Ax)Tαl

k + (dTv + δ)βl
k ≤ qk −GT

k x
26: end for
27: end if
28: end while
29: Solve current iterate NORBiP
30: if Infeasible then
31: Terminate with infeasible subproblems I
32: end if
33: S ← S ∩ Sopt
34: end while
35: return (x̂, v̂, w)
36: end function

the model. New constraints are added in a batched fashion, with the batch size controlled
by the η parameter. Each k-th subproblem is added only once, by selecting a single vertex
(α, β) and using it to enforce the constraint

(b− Ax)Tα + (dTv + δ)β ≤ qk −GT
k x.
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Algorithm 8.3 Single-Vertex Heuristic
1: function SingleVertexHeuristic(G,H, q, cx, cy, A,B, b, d, δ, η)
2: P ← optimistic model with parameters (G,H, q, cx, cy, A,B, b, d)
3: if Optimistic infeasible then
4: Terminate with optimistic infeasible
5: end if
6: if ∃k, k-th dual adversarial is infeasible then
7: Terminate with k-th dual adversarial infeasible
8: end if
9: count← 1

10: C ← ∅
11: while count > 0 do ▷ Outer loop
12: k ← 1
13: count← 0
14: (x̂, v̂)← current solution of P
15: while count ≤ η and k ≤ mu do
16: (α, β)← solution to k-th dual adversarial (8.3) parameterized by (x̂, v̂)
17: if (b− Ax̂)Tα + (dT v̂ + δ)β > qk −GT

k x̂ then
18: C ← C ∪ {k}
19: Add constraint to P : (b− Ax)Tα + (dTv + δ)β ≤ qk −GT

k x
20: count← count + 1
21: while k ∈ C do
22: k ← k + 1
23: end while
24: end if
25: end while
26: Re-optimize P
27: if Current iterate infeasible then
28: Terminate with no found solution
29: end if
30: end while
31: return (x̂, v̂)
32: end function

Unlike the exact algorithms, Algorithm 8.3 initializes a MILP model and iteratively adds
linear constraints to it. This procedure therefore lends itself to warm starts.

Proposition 8.3.1. Algorithm 8.3 terminates in at most mu iterations of the outer loop
beginning Line 11 and solves optimization problems with the same variables as the canonical
optimization problem and at most mu linear constraints.

Proof. Algorithm 8.3 maintains a cache C of the subproblems that have been explored. For
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each subproblem, exactly one vertex is chosen, which minimizes

(b− Ax̂)Tα + (dT v̂ + δ)β

with (x̂, v̂) the current iterate. For a chosen x̂, the lower-level problem is feasible since v̂

is computed, so the dual problem cannot be unbounded. It cannot be infeasible since its
feasibility domain depends only on the problem data and is verified Line 6. Therefore, a
vertex (α, β)k is computed. If the objective is greater than qk−GT

k x̂, then the current iterate
is not near-optimal robust with respect to the k-th constraint, and the linear constraint:

(b− Ax)Tα + (dTv + δ)β ≤ qk −GT
k x

is added to the model. If no addition is made, the current iterate is near-optimal robust,
the count variable remains at 0, and the outer loop exits, with the function returning the
current iterate. Otherwise, the iterate was not near-optimal robust with respect to at least
one upper-level constraint, which is turned into a constraint and added to the cache. The
outer loop adds at least one constraint in a non-terminating iteration, therefore, mu iterations
suffice to add all constraints. Moreover, each subproblem adds exactly one linear constraint,
so at most mu linear constraints are added to the formulation of the canonical problem.

Algorithm 8.3 verifies near-optimality of the upper-level constraints in a lexicographic order,
with k going from 1 to mu. This order can lead to over-verifying the same subproblems an
excessive number of times. The procedure can be improved by randomizing the order of
verification of near-optimal constraints with a permutation of {1..mu}\C.

The η parameter controls the maximum number of linear constraints added for each outer
iteration. η = 1 implies that the algorithm reoptimizes the problem after adding a single
constraint, while η ≥ mu will add all the linear constraints that correspond to upper-level
constraints that are not near-robust at each iterate.

Finally, it can be noted that the single-vertex algorithm can be applied even when the number
of vertices in the dual-adversarial is infinite, i.e. when the lower-level problem is a convex
optimization problem. The only modification is the optimization of the dual adversarial
problem for fixed values of (x, v) at Line 16, where a convex optimization problem is solved
instead of a linear one.
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8.4 Computational experiments

In this section, we present the implementation of the algorithms from Section 8.2 and Sec-
tion 8.3 and computational experiments. The various algorithms are implemented in Julia
v1.5 [104] using JuMP as a modelling framework [107, 108]. The implementation of the de-
scribed algorithms is available and archived at [151]. SCIP v6.0 [138] is used as the MILP
solver with SoPlex as the underlying linear solver. All experiments are run on the same
hardware as Chapter 6. The time-out limit is set at two hours for all algorithms.

We generate instances from the 50 MIPS/RANDOM instances of the Bilevel Optimization
Problem Library [135]. Since the original problems do not have upper-level constraints, we
create new instances by using a third of the constraints at the upper level. In another group
of instances, we use two thirds of the constraints at the upper level. We will refer to the
first group of instances as MIPS instances and to the second group as alternative MIPS or
ALTMIPS. The problem dimensions for the two groups are detailed below:

(mu,ml, nl, nu) = (6, 14, 10, 5) (MIPS)

(mu,ml, nl, nu) = (14, 6, 10, 5) (ALTMIPS)

The instances are archived and available on [136] in the JLD format. A δ value of 0.1 is
applied. A comparison of runtimes between the exact method from Chapter 6 and the lazy
expansion algorithm is presented in Fig. 8.1.

Figure 8.1 Comparison of exact methods

The lazy algorithm successfully terminates for all instances on both sets while the extended
method results in a time-out for 38 instances of the ALTMIPS set and 45 instances of the
MIPS set. The profiles highlight the efficiency of the lazy method for all instances. In Fig. 8.2,
we compare the lazy simple and batched algorithm with various batch sizes.

The standard lazy algorithm slightly outperforms the batched versions for all batch sizes for
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Figure 8.2 Comparison of simple batched lazy algorithms

instances solved below 10 seconds. For instances that take longer to optimize, the difference
in runtime between the two methods is not significant enough on the set.

Runtime comparisons of the lazy algorithm and single-vertex heuristic are presented in
Fig. 8.3 on the merged ALT and MIPS instances. All heuristic methods terminate much
faster than the lazy exact method. Moreover, the heuristic always find a feasible solution for
all ALT and MIPS instances. The solution is found to be optimal for all MIPS instances and
all but two ALT instances, confirming that the solutions found by the heuristic are of high
quality.

The runtimes of the standard and randomized single-vertex heuristics have similar distribu-
tions and cannot lead to any conclusion on the superiority of one method over the other.

One conclusion from the experiments in Chapter 6 was that solving the extended formulation
for a near-optimal robust bilevel problem was much more computationally demanding than
solving the optimistic version. In Fig. 8.4, we compare the deterministic and randomized
single-vertex heuristics with the optimistic formulation.

The heuristic solves the MILP problem corresponding to the optimistic formulation and adds
linear constraints based on the solution of linear subproblems. The additional time solving
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Figure 8.3 Comparison of exact and heuristic methods

the linear subproblems and the multiple iterations can explain the greater runtime.

8.5 Conclusion

In this chapter, new exact and heuristic methods were developed to accelerate the resolution
of the extended formulation of the linear near-optimal robust bilevel optimization problem.
The first group of algorithms is built on the relaxation of near-optimality robustness for a
subset of the upper-level constraints, leading to an iterative procedure terminating on a near-
optimal robust point. The single-vertex heuristic algorithm provides a feasible point when
it terminates by solving a MILP with the same constraints as the canonical bilevel problem
and few additional linear constraints. As a heuristic method, it can also provide good initial
solutions to start branch-and-bound procedures.

Future research will consider the development of algorithms for other classes of near-optimal
robust bilevel problems, such as problems where the lower level includes integrality constraints
and where the lower level is convex and non-linear.
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Figure 8.4 Comparison of heuristic and optimistic formulation
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

This thesis defines new problems in bilevel optimization and pricing for demand response,
opening perspective for real-world applications in energy, improved modelling techniques and
solution methods.

9.1 Thesis summary

The first part of this thesis explores bilevel models for price-setting problems in a power
system where a supplier anticipates the decisions of users. In the context of power systems
subject to increased stress due to distributed renewable energy production, these novel mech-
anisms offer additional levers for flexibility to the supplier, while letting customers reduce
their cost through smart planning.

Using bilevel optimization, the logic of users is approached as a complete optimization prob-
lem and lets the supplier regard them as strategic players. Chapter 5 and Appendix A
highlight that the power supplier can accommodate various constraints by adjusting the
pricing components of TLOU, thus nudging flexible users into changing their consumption
patterns. The pricing problem also presents the noticeable property that the baseline with
a zero capacity can be perceived as safer and simpler, hence preferable, by users. This prop-
erty challenges the optimistic assumption commonly used to ensure well-defined solutions
in bilevel optimization. That challenge was overcome in our model by a concept of user
conservativeness which is not a purely computational artifact used to regularize the problem
but finds a natural economic interpretation of the user behaviour, or of its perception by the
supplier.

The second part of the thesis focuses on bilevel problems with near-optimality robustness con-
straints (NORBiP). Chapter 6 introduces the model, generalizing the concept of conservative-
ness with respect to user behaviour beyond the TLOU pricing application. The fundamental
concept of bilevel optimization is that a second optimization problem is solved to global op-
timality after the upper-level variables are fixed. NORBiP challenges this assumption and
anticipates potential deviations from optimality of this second level, resulting in a more con-
servative model protecting feasibility in more cases through the lenses of robust optimization.
The nature of the near-optimal set of the lower level integrates generalized semi-infinite con-
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straints in the formulation of NORBiP, corresponding to a robust optimization problem with
decision-dependent uncertainty. Focusing on the convex and linear cases, we exploit duality
of the adversarial problem to derive a closed-form, single-level reformulation containing the
same form of constraints as the single-level reformulation of the non-robust bilevel problem.
In Chapter 7, complexity results are obtained for the near-optimal robust version of some
multilevel problems. Under mild assumptions, near-optimality robustness does not change
the complexity class of a given multilevel problem in the polynomial hierarchy. Chapter 8
builds upon the extended formulation defined in Chapter 6 for the linear-linear NORBiP with
two groups of algorithms. The first group is composed of two exact algorithms expanding the
dual adversarial subproblems on the fly only for constraints that are not near-optimal robust
at a given iterate. The second group consists of two heuristics that compute a high-quality
bilevel-feasible near-optimal robust solution. These two groups of algorithms significantly
improve the solution time of NORBiP compared to the extended formulation.

9.2 Limitations

The TLOU framework provides power suppliers with an extension of price-based demand
response programs. The work presented in this thesis focuses on the optimal setting of the
pricing parameters which is only one of the aspects of the problem faced by the supplier.
The use of TLOU has more impact when integrated into a complete model of the supplier
decision with power purchase from a wholesale market and/or unit commitment constraints.

The proposed model relies on the consumption distribution in two ways:

• the distribution is assumed to be perfectly known by both the supplier and the user;

• the distribution is assumed to be fixed and independent from the decisions.

In a privacy-preserving environment, the supplier would not have access to the exact time-
dependent distribution but to a data-based estimate. Methods from the stochastic and robust
literature, such as distributionally robust optimization could provide a richer framework for
modelling the additional uncertainty. Changes in the distribution can occur with user deci-
sions, for example, if they operate a storage system.

For the multi-user TLOU formulation, numerical experiments highlighted that the pricing
problems become computationally challenging for approximately 100 users for all variants
with the current formulation. Even though such problem size is sufficient for a micro-grid or
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small neighbourhood, it implies that the formulation cannot be used for a supplier offering
TLOU prices to even medium-size urban areas.

Near-optimality robustness brings more flexibility to bilevel optimization by relaxing the
hypothesis of pure rationality of the lower level to bounded rationality. In the linear-linear
case, even though we proposed a MILP-based reformulation, its size grows exponentially with
the dimension and number of constraints of the lower-level problem. The exact algorithms
developed in Chapter 8 reduce the size of the MILPs effectively solved. Those nonetheless
remain of exponential size as a function of the lower-level problem size. The only method
resulting in a polynomial problem size is the single-vertex heuristic, for which no guarantee
on the quality of the solution could be provided despite its effectiveness in practice.

9.3 Future research

The bilevel formulation of TLOU offers a method for optimally choosing the pricing param-
eters to influence users. The next phase of the development of the pricing system would be
its integration within the broader problem faced by a power supplier or aggregator. Another
aspect to develop would be a more complete model of the user decision in the presence of
flexible loads and storage capacity. In their presence, the user decision does not consist only
in choosing a capacity to book but also scheduling flexible loads. The resulting two-stage
optimization problem of the user creates new modelling and computational challenges, since
the necessary optimality conditions leveraged in Chapter 4 and Chapter 5 do not apply with
more lower-level variables.

The multi-user TLOU problem from Chapter 5 becomes computationally challenging when
the number of users grows. Given the structure of the problem, decomposition techniques
could improve the tightness of the linear relaxation and accelerate the branch-and-bound
procedure. Another potential for acceleration could come from designing heuristics for rapidly
computing initial solutions and prune nodes of the branch-and-bound tree.

In Chapter 6, two groups of valid inequalities were studied for NORBiP. One group did not
improve the solution time for instances solved to optimality but helped to detect infeasible
instances at the root node without solving the bilevel problem. This group of inequalities
was initially defined for canonical bilevel problems and not specifically for their near-optimal
robust counterpart. Valid inequalities specifically exploiting the primal-dual nature of the
variables added by near-optimality robustness could strengthen the formulation and possibly
lead to a faster resolution.

The near-optimality robustness of each upper-level constraint is independent of the feasibility
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or robustness of the other upper-level constraints. This fact is leveraged in Chapter 8 to design
faster exact algorithms. This independence could also be exploited to derive less conservative
forms of robustness, such as Γ-robustness, in the context of lower-level near-optimality.

As a last direction for future research, one can note that the single-level reformulation of
NORBiP does not modify the structure of the KKT-based reformulation of the canonical
bilevel problem, but adds new variables and constraints to it. The development of solution
methods for NORBiP could therefore generalize to problems including two groups of vari-
ables, with each set of variables constrained in their own domain and linked only by a bilinear
inequality. The extended method proposed in Chapter 6 was shown to solve NORBiP in-
stances more effectively than the bilinear formulation relying on spatial branching despite
the exponential size and indicator constraints; it could therefore lead to novel approaches for
solving more generic linear-bilinear optimization problems.
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RÉSUMÉ ÉTENDU

La thèse porte sur les modèles d’optimisation mathématiques biniveaux et leurs applications
à la réponse de la demande dans les réseaux électriques intelligents.

L’augmentation de la production d’énergie renouvelable fluctuante et l’apparition de nou-
veaux acteurs ont complexifié les opérations et décisions dans les réseaux électriques. Ces
phénomènes, ainsi que l’amélioration des techniques de communication et la connexion mas-
sive d’appareils électriques, ont mené à l’émergence du paradigme des réseaux électriques
intelligents, dans lequel les flux d’information et d’énergie circulent de manière multidirec-
tionnelle entre plusieurs entités.

La réponse de la demande est une des solutions étudiées pour pallier à la part croissante de
production électrique fluctuante et distribuée de sources renouvelables. Au lieu d’adapter la
génération électrique à la demande par du stockage ou un ajustement des sources d’énergie
contrôlables, son principe est de modifier une part flexible de la consommation à travers des
mécanismes techniques ou économiques, lissant ainsi la courbe de demande au cours du temps.

Nous étudions un système de prix dynamique (TLOU) dans lequel un client réserve une
capacité pour une période donnée, et paie un prix différent en fonction du dépassement de la
capacité par sa consommation. Ce système offre un compromis entre les systèmes de réponse
de la demande utilisant les prix et ceux utilisant une incitation ou entente. Il combine une
simplicité pour l’usager et un gain d’information sur les intentions de consommation pour le
fournisseur.

La consommation électrique prédite pour une tranche horaire donnée est modélisée comme
une variable aléatoire dont la distribution est connue des deux partis. Nous étudions les
propriétés de TLOU, en particulier du point de vue du fournisseur qui décide des paramètres
du système de prix, et représentons l’interaction entre le fournisseur et les usagers par une
approche d’optimisation mathématique biniveau. Le fournisseur, agissant comme premier
niveau, définit les prix et anticipe une réaction de l’usager au deuxième niveau qui optimise
l’espérance de son coût en décidant d’une capacité.

Les problèmes d’optimisation biniveaux sont caractérisés par un problème d’optimisation
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imbriqué dans les contraintes d’un autre problème d’optimisation. Toute solution, pour
être réalisable pour le problème biniveau, doit être optimale pour le problème imbriqué au
deuxième niveau. Vérifier la faisabilité nécessite donc dans le cas général de résoudre à
l’optimalité un problème d’optimisation. Les méthodes exactes de résolution des problèmes
d’optimisation biniveaux exploitent dans de nombreux cas sur une reformulation en un prob-
lème mathématique à un seul niveau, en utilisant des conditions nécessaires et suffisantes
d’optimalité du deuxième niveau. Ces conditions peuvent être dérivées de la convexité du
problème du deuxième niveau ou de caractéristiques spécifiques au problème considéré. Ces
deux approches sont utilisées dans cette thèse, des conditions particulières d’optimalité étant
déterminées pour les problèmes de tarification et les conditions de Karush-Kuhn-Tucker étant
utilisées pour la résolution de problèmes biniveaux génériques dans la deuxième partie. Ces
conditions sont nécessaires et suffisantes dans le cas où le problème d’optimisation du deux-
ième niveau est convexe, c’est-à-dire qu’il présente une fonction objectif et un ensemble
réalisable convexes.

En utilisant la formulation mathématique du problème d’optimisation et certaines propriétés
de toute solution optimale, le problème est réduit à la résolution d’une suite de problèmes
d’optimisation linéaire dans le cas où le fournisseur offre des prix différents à chaque usager.
Une généralisation de la tarification TLOU optimale à plusieurs usagers est proposée avec un
même prix reçu par de multiples utilisateurs. Dans de nombreux cas, le fournisseur n’offre
pas un tarif différencié à chaque usager, mais définit des tarifs qui s’appliquent par groupe.

L’application à la détermination de prix a motivé le développement plus général de formula-
tions biniveaux où le deuxième niveau n’est plus nécessairement résolu exactement, mais peut
dévier de son optimum d’une quantité limitée. Dans ce cadre, le premier niveau anticipe non
seulement la réaction optimale du deuxième niveau, mais aussi les déviations potentielles. Il
cherche donc à protéger la faisabilité de ses contraintes, quelle que soit la déviation limitée
du deuxième niveau autour de sa solution optimale.

Nous développons une formulation biniveau robuste à la quasi-optimalité (NORBiP) dans
laquelle le premier niveau s’assure de trouver une solution dont la faisabilité est garantie pour
l’ensemble des solutions quasi optimales du deuxième niveau. Les solutions quasi optimales
sont définies comme les solutions réalisables pour le deuxième niveau et dont la valeur objectif
n’est pas supérieure à la valeur optimale de plus d’une tolérance prédéterminée. Ce modèle
généralise la formulation pessimiste de l’optimisation biniveau et introduit une notion de
robustesse spécifique à l’optimisation multiniveau. Une reformulation à un seul niveau est
développée dans le cas où le deuxième niveau est un problème d’optimisation convexe, basée
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sur la dualisation des contraintes de robustesse. Le problème résultant contient en particulier
des contraintes de complémentarité et contraintes bilinéaires. Dans le cas où le deuxième
niveau est un problème linéaire, nous développons une formulation étendue remplaçant des
contraintes non linéaires non convexes de la reformulation par une contrainte disjonctive
linéaire qui peut être traitée par les solveurs génériques pour problèmes d’optimisation linéaire
en variables mixtes. Des expériences numériques montrent également que la résolution de
cette formulation étendue avec disjonction domine la résolution par approche de branchement
spatiale de la formulation compacte utilisant un solveur global.

L’optimisation biniveau appartient à une classe de problèmes d’optimisation considérés comme
difficiles à résoudre, dans le sens où il n’existe à priori pas d’algorithme en temps polynomial
permettant leur résolution. Bien que la robustesse à la quasi-optimalité développée dans
cette thèse ajoute une difficulté supplémentaire au problème biniveau classique, des résul-
tats de complexité sont établis, démontrant qu’un problème biniveau ou plus généralement
multiniveau robuste à la quasi optimalité appartient sous certaines conditions relativement
générales à la même classe de complexité que le même problème sans contraintes de ro-
bustesse.

Dans le dernier chapitre de contributions, des algorithmes sont proposés pour accélérer la
résolution de problèmes biniveaux robustes à la quasi-optimalité dans le cas où le problème au
premier et deuxième niveau sont linéaires. Deux algorithmes exacts exploitent l’indépendance
de chaque contrainte du premier niveau, permettant d’éviter la résolution de la formulation
étendue avec une disjonction sur chacune de ces contraintes. Pour toute solution du premier
et deuxième niveau, un sous-problème dit “adverse” définit pour chaque contrainte du premier
niveau le pire cas quasi optimal pour cette contrainte. Ce problème adverse est un problème
d’optimisation linéaire similaire au problème du deuxième niveau initial et dont la résolution
vérifie qu’une solution est robuste. Si une solution n’est pas robuste, la contrainte disjonctive
de la résolution étendue correspondant à cette contrainte du premier niveau est ajoutée à la
formulation à la volée et le problème est résolu à nouveau.

Une méthode heuristique dite à sommet unique est également proposée pour la recherche
rapide d’une solution réalisable, optimale pour le deuxième niveau et robuste à la quasi-
optimalité. Au lieu d’ajouter des contraintes disjonctives comme dans les méthodes exactes
proposées ci-dessus, cette méthode résout la version optimiste non robuste du problème
biniveau, puis pour chaque sous-problème, vérifie la robustesse. Pour chaque sous-problème
indiquant une non-robustesse de la contrainte, une seule contrainte linéaire est ajoutée, corre-
spondant à un sommet du polyèdre dual au lieu d’une disjonction sur l’ensemble des sommets
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dans le cas de la méthode exacte. Cette méthode garantit la faisabilité et robustesse de la
solution, mais pas son optimalité.

Ces différents algorithmes sont comparés à la simple formulation étendue en termes de temps
de résolution et de qualité de la solution. Le temps de résolution est significativement ré-
duit par les méthodes exactes accélérées. L’heuristique proposée permet de réduire encore
le temps de calcul tout en obtenant des solutions de bonne qualité en termes de valeur objectif.

Les contributions de cette thèse sont donc d’une part le développement d’une approche
d’optimisation mathématique biniveau appliquée à un nouveau système de tarification dans
les réseaux électriques, et d’autre part le développement plus général d’une approche robuste
pour les problèmes d’optimisation biniveaux génériques. Pour ces deux parties, plusieurs
méthodes algorithmiques sont comparées durant la résolution, fournissant des indications
sur la structure des problèmes mixtes en nombres entiers résolus par algorithmes exacts de
branchement disponibles dans de multiples suites logicielles.

Les deux parties du travail présenté se concentrent principalement autour de la définition de
nouveaux problèmes d’optimisation biniveau. De futurs travaux peuvent s’inscrire en conti-
nuité en proposant des variantes des problèmes définis, des applications et développements
de nouvelles méthodes de résolution.

Plusieurs pistes de recherche permettent d’étendre les travaux sur le système de tarification
TLOU. Une première sera l’intégration de la tarification dans un modèle global de décision
d’un fournisseur ou agrégateur dans un réseau électrique, intégrant d’une part une représenta-
tion complète d’usagers potentiellement équipés d’une capacité de stockage et de production
d’énergie distribuée, et d’autre part les contraintes de génération d’électricité dans un prob-
lème de planification à moyen terme type unit commitment.

Le modèle d’optimisation biniveau robuste à la quasi-optimalité tel que développé dans
cette thèse se base sur le concept de robustesse sur les contraintes, une solution au prob-
lème d’optimisation est réalisable seulement si les contraintes sont valides pour toute valeur
du paramètre incertain dans l’ensemble des réalisations possibles, l’ensemble des solutions
quasi-optimales pour le deuxième niveau dans ce cas. De futurs travaux pourront étudier
d’autres formes de robustesse développées dans la littérature (Γ-robustesse) et les appliquer
à la robustesse à la quasi-optimalité qui est principalement caractérisée par son ensemble
d’incertitude.

Un autre axe de recherche présenté par la définition de ce modèle concerne le développement
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de méthodes de résolution pour d’autres classes de problèmes biniveaux. Les algorithmes
et formulations proposés dans ces travaux utilisent les propriétés spécifiques de linéarité
des contraintes et de l’objectif du problème du deuxième niveau, et des contraintes du pre-
mier niveau par rapport aux variables du deuxième niveau. Deux sous-classes de problèmes
d’optimisation biniveaux pourront en particulier bénéficier de méthodes de résolution pour
la formulation robuste à la quasi-optimalité, les problèmes où le deuxième niveau est un
problème linéaire à variables mixtes et les problèmes où le deuxième niveau est un problème
convexe, mais non linéaire. Dans le cas du problème de deuxième niveau à variables mixtes,
la reformulation utilisant la dualité du deuxième niveau ne s’applique plus, et un algorithme
de branchement spécifique devra être défini pour éliminer les solutions non robustes. Dans
le cas de problème de deuxième niveau convexe, mais non linéaire, la formulation étendue
résulterait en des contraintes basées sur des disjonctions sur une infinité de contraintes.
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APPENDIX A ARTICLE 4: A BILEVEL APPROACH TO OPTIMAL
PRICE-SETTING OF TIME-AND-LEVEL-OF-USE TARIFFS

This appendix was presented as extended abstract at, and included in the program of, the
13th EUROGEN conference on Evolutionary and Deterministic Computing for Industrial
Applications. It complements Chapter 4.

Authors: Mathieu Besançon, Miguel F. Anjos, Luce Brotcorne, Juan A. Gomez-Herrera

Summary

Time-and-Level-of-Use (TLOU) is a recently proposed pricing policy for energy, extending
Time-of-Use with the addition of a capacity that users can book for a given time frame,
reducing their expected energy cost if they respect this self-determined capacity limit. We
introduce a variant of the TLOU defined in the literature, aligned with the supplier interest to
prevent unplanned over-consumption. The optimal price-setting problem of TLOU is defined
as a bilevel, bi-objective problem anticipating user choices in the supplier decision. An
efficient resolution scheme is developed, based on the specific discrete structure of the lower-
level user problem. Computational experiments using consumption distributions estimated
from historical data illustrate the effectiveness of the proposed framework.

A.1 Introduction

The increasing penetration of wind and solar energy has marked the last decades, bringing
a decentralization and higher stochasticity of power generation, yielding new challenges for
the operation of electrical grids. Advances in communication technologies have enabled both
scheduling of smart appliances and seamless data collection and exchange between different
entities operating on power networks, from generators to end-consumers. Using such capa-
bilities, agents can make decisions based on probability distributions of different variables,
possibly conditioned on known external factors, such as the weather.

As a promising lead to tackle these challenges, Demand Response (DR) has attracted an
increasing interest in the past decades. Instead of compensating ever-increasing fluctuations
of renewable production with conventional power generation, this approach consists in lever-
aging the flexibility of some consuming units by reducing or shifting their load [12]. The
Time-and-Level-of-Use system presented in this paper is primarily a price-based Demand
Response program based on the classification found in the literature [12], although the self-
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determined consumption limit creates an incentive for respecting the commitment on the part
of the user. Its design makes opting out of the program a natural extension and thus requires
less coupling and interaction between users and suppliers to work. In a 2012 report, the US
Federal Energy Regulatory Commission identified the lack of short-term estimation methods
as one of the critical barriers to the effective implementation of Demand Response [95]. In a
related approach [19], an incentive-based Demand Response program is developed with users
signaling both a predicted consumption and a reduction capacity, with the supplier selecting
reductions randomly. Both the program developed by the authors [19] and the TLOU policy
require a signal sent from the user to the supplier.

Bilevel optimization has been used to model and tackle optimization problems in energy net-
works [47]. Applications on power systems and markets are also mentioned in several reviews
on bilevel optimization [152,153]. It allows decision-makers to encapsulate utility-generators,
user-utility interactions [154,155], or define robust formulations of unit commitment and opti-
mal power flow [156]. Some recent work focuses on bilevel optimization for demand-response
in the real-time market [157]. Multiple supplier settings are also considered, for instance
in the determination of Time-of-Use pricing policies [101], where competing retailers target
residential users.

The Time-and-Level-of-Use (TLOU) pricing scheme [27] was built as an extension of Time-
of-Use (TOU), targeting specifically the issue with current large-scale Demand-Response
programs identified in the FERC report [95]. The optimal planning and operation of a smart
building under this scheme was developed, taking the TLOU settings as input of the decision.
In this work, we consider the perspective of the supplier determining the optimal parameters
of TLOU.

We integrate the optimal user reaction in the supplier decision problem, thus modelling
the interaction as a Stackelberg game solved as a bilevel optimization problem. The specific
structure of the lower-level decision is leveraged to reduce the set of possibly optimal solutions
to a finite enumerable set. Through this reduction, the lower-level optimality conditions
are translated into a set of linear constraints. The set of optimal pricing configurations is
derived for different distributions corresponding to different time frames. These options can
be computed in advance and then one is chosen by the supplier ahead of the consumption
time to create an incentive to book and consume a given capacity. We show the effectiveness
of the method with discrete probability distributions computed from historical consumption
data.
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A.2 Time-and-Level-of-Use pricing

The TLOU policy was initially developed from the perspective of smart consumption units
[27] which can be a building, an apartment or a micro-grid monitoring its consumption
and equipped with programmable consuming devices. It is a pricing model for energy built
upon the Time-of-Use (TOU) implemented by several jurisdictions and for which the energy
price is fixed by intervals throughout the day. TLOU extends TOU by allowing users to
self-determine and book an energy capacity at each time frame depending on their planned
requirements; and by doing so, they provide the supplier with information on the intended
consumption. We will refer to the capacity as the amount of energy booked by the user for
a given time frame, following the same terminology as the reference implementation [27].
Energy prices still depend on the time frame within the day, but also on the capacity booked
by the user. This pricing scheme is applied in a three-phase process:

1. The supplier sends the pricing information to the user.

2. The user books a capacity from the supplier for the time frame before a given deadline.
If no capacity has been booked, the Time-of-Use pricing is used.

3. After the time frame, the energy cost is computed depending on the energy consumed
x and booked capacity c:

• If x ≤ c, then the applied price of energy is πL(c) and the energy cost is πL(c) · x.

• If x > c, then the applied price of energy is πH(c) and the energy cost is πH(c) ·x.

In the model considered in this paper, only the first two steps involve decisions from the
agents, making the decision process a Stackelberg game given the sequentiality of these
decisions. The price structure is composed of three elements: a booking fee K, a step-
wise decreasing function πL(c) representing the lower energy price and a step-wise increasing
function πH(c) representing the higher energy price. The steps of the lower and higher price
functions are given at different breakpoints:

{cL0 , cL1 , cL2 , ...} = CL & {πL
0 , π

L
1 , π

L
2 , ...} = πL

{cH0 , cH1 , cH2 , ...} = CH & {πH
0 , πH

1 , πH
2 , ...} = πH

πL(c) will refer to the function of the capacity and πL
j to the value of the lower price at step

j. In the initial version of the pricing [27], the energy consumed above the capacity is paid
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at the higher tariff while the rest is paid at the lower tariff.

Considering that most power systems try to prevent over-consumption and unplanned excess
consumption, we introduce a variant where the whole energy consumed is paid at the lower
tariff if it is less or equal to the capacity, and at the higher tariff otherwise, see Equation
(A.1). In other words, if the consumption over the time frame remains below the booked
capacity, the effective energy price is given by the lower tariff curve; if the consumption
exceeds the booked capacity, the energy price is given by the higher tariff. The total cost for
the user associated with a booked capacity c and a consumption Xt for a time frame t is:

C(ct;Xt) =

K · ct + πL(ct) ·Xt, ifXt ≤ ct,

K · ct + πH(ct) ·Xt otherwise.
(A.1)

The load distribution Xt is a random variable; both user and supplier make decisions on the
expected cost over the set of possible consumption levels Ω, given as:

C(ct) = EΩ [C(ct;xω)] (A.2)

where EΩ is the expected value over the support Ω of the probability distribution.

Furthermore, πL(c = 0) = πH(c = 0) = π0(t), with π0(t) the Time-of-Use price at the time
frame of interest t. This property allows users to opt-out of the program for some time frames
by simply not booking any capacity. TLOU is designed for the day-ahead market, where both
the pricing components and the capacity are chosen ahead of the consumption time [27]. It
can however be adjusted to other markets [158] or intra-day settings. The entity defining
the TLOU pricing can also extend the possible settings by decoupling the time spans for one
price setting choice from the time frames for capacity booking. For instance, a price setting
can be chosen by the utility for the week, while the booking of capacity occurs the day before
the consumption.

TLOU offers the user the possibility to reduce their cost of energy by load planning, and
offers the supplier the prospect of improved load forecasting, because under-consumption is
paid by the excess booking cost while over-consumption is paid by the difference between
higher and lower tariffs.

We illustrate this phenomenon with a supplier decision (K, πL, πH) on Figures A.1 and A.2
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using the relative cost:

x 7→ C(c;x)
x

(A.3)

for different values of c. For c > 0, the fixed cost K ·c makes low consumption levels expensive
per consumed unit, while the transition from lower to higher price makes over-consumption
more expensive than the baseline. In the example, c = 1.5 cannot be an optimal booked
capacity since it is always more expensive than the baseline for all possible consumption
levels. The cases c = 3.0 and c = 3.5 both have ranges of consumption for which this
choice is optimal for the user; these ranges always have the capacity as upper bound. The
difference in cost occurring at the transition from lower to higher price increases with the
booked capacity, illustrating the guarantee against over-consumption the supplier gains from
the capacity booked by the user. Regardless of the ability to shift consumption or irrational
decision-making, the commitment to a capacity creates a cost difference if the user is not
making an optimal decision, which compensates the supplier for these unexpected devia-
tions. This financial incentive against a consumption above the booked capacity creates a
guarantee of interest to the supplier and is cast as a second objective expressed in Section A.3.
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The supplier first builds their set of options based on prior consumption data. In the proposed
method, the prior discrete distribution used can be conditioned on some independent variables
if they are known and influence the consumption (e.g. forecast external temperature or day
of the week). They can then pick a pricing setting for a given day based on generation-side
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considerations and constraints, including the option to stay at a flat Time-of-Use tariff for
some or all time frames.

A.3 Bilevel model of the supplier problem

The supplier wishes to determine an optimal set of pricing options at any capacity level. In
the model developed in this section, we consider a discrete probability distribution with a
finite support, derive some properties of the cost structure which we then leverage to formu-
late the optimization problem in a tractable form.

At any capacity level, the decision process of the supplier involves two objectives, the expected
revenue from the tariff and the guarantee of an upper bound on the consumption. The
expected revenue is given by:

C(c) = K · c+
∑

ω∈Ω−(c)

xωpωπ
L(c) +

∑
ω∈Ω+(c)

xωpωπ
H(c) (A.4)

with any capacity booked defining a partition of the set of scenarios:

Ω−(c) = {ω ∈ Ω, xω ≤ c} (A.5)

Ω+(c) = {ω ∈ Ω, xω > c} (A.6)

The function C(c) is minimized by the user with respect to their decision c. It is non-linear,
non-smooth and discontinuous because of the partition of the scenarios by c and the transition
between steps of the pricing curves πL(c), πH(c). Both the user and supplier problems are
thus intractable with this initial formulation. Proposition A.3.1 shows that only a discrete
finite subset of capacity values are candidates to optimality for the user.

Proposition A.3.1. The optimal booked capacity for a user at a time frame t belongs to a
discrete and finite set of capacities St, defined as:

St = {0} ∪ CL ∪ Ωt (A.7)

with Ω the set of consumption scenarios.

Proof. The user objective function is the sum of the booking cost and the expected electricity
cost. The booking cost is linear in the booked capacity, with a positive slope equal to the
booking fee. The expected electricity cost is piecewise constant in the booked capacity, with
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discontinuities at steps of both of the price curves because of the πL and πH prices and at
possible load levels because of the transfer of a load from Ω+ to the Ω− set. This can be
highlighted using the indicator functions associated with each of the two sets:

1
−(ω, c) =

1, if xω ≤ c,

0 otherwise.
(A.8)

1
+(ω, c) = 1− 1

−(ω, c) (A.9)

The expression of the user expected cost becomes:

C(c) = K · c+
∑
ω∈Ω

xω · pω ·
(
πL(c) · 1−(ω, c) + πH(c) · 1+(ω, c)

)
(A.10)

The sum of the two terms is therefore piecewise linear with a positive slope. On any interval
between the discontinuity points, the optimal value lies on the lower bound, which can be
any point of CL, CH , Ω or 0.

Furthermore, let C(c) be the user cost for a booked capacity and c̄ such that c̄ ∈ CH and
c̄ /∈ {0} ∪ CL ∪ Ω. The higher tariff levels are monotonically increasing. Let ε > 0 be
sufficiently small such that:

πH(c̄− ε) = πn,

πH(c̄+ ε) = πn+1 > πn,

πL(c̄− ε) = πL(c̄+ ε) = πL
m,

∄xω, ω ∈Ω s.t. c̄− ε ≤ xω ≤ c̄+ ε.

The last condition guarantees there is no load value in the [c̄− ε, c̄+ ε] interval and can also
be expressed in terms of the two load sets split by the capacity:

Ω+(c̄− ε) = Ω+(c̄+ ε) and Ω−(c̄− ε) = Ω−(c̄+ ε).
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Then if such ε exists, we find that:

C(c̄− ε) = K · (c̄− ε) +
∑

ω∈Ω−(c̄)

πL
m · xω +

∑
x∈Ω+(c̄)

πH
n · xω,

C(c̄+ ε) = K · (c̄+ ε) +
∑

ω∈Ω−(c̄)

πL
m · xω +

∑
ω∈Ω+(c̄)

πH
n+1 · xω,

C(c̄+ ε)− C(c̄− ε) = 2εK +
∑

ω∈Ω+(c̄)

(πH
n+1 − πH

n ) · xω,

C(c̄+ ε)− C(c̄− ε) > 0.

The discontinuity on any x ∈ CH is therefore always positive and cannot be a candidate for
optimality. It follows that optimality candidates are restricted to the set S = {0}∪CL∪Ω.

Proposition A.3.1 means we can replace the continuous decision set of capacities with a dis-
crete set that can be enumerated.

The guarantee of an upper bound on the consumption G corresponds to the incentive given
to the user against consuming above the considered capacity. It is the second objective, given
by the difference in cost at the capacity, which is the immediate difference in total cost at
the transition from lower to higher tariff:

G(c, πL, πH) = ct ·
(
πH(c)− πL(c)

)
. (A.11)

The supplier needs to include the user behavior and optimal reaction in their decision-making
process, which can be done by a bilevel constraint:

ct ∈ argmin
c
C(c). (A.12)

The user thus books the least-cost option at each time frame, given the corresponding prob-
ability distribution. Given the finite set of optimal candidates St defined in A.3.1, this
constraint can be re-written as:

ct ≤ c ∀c ∈ St. (A.13)

If multiple choices of c yield the minimum cost, the choice of the user is not well-defined. The
supplier would want to ensure the uniqueness of the preferred solution by making it lower than
the expected cost of any other capacity candidate by a fixed quantity δ > 0. This quantity
can be interpreted as the conservativeness of the user (unwillingness to move to an optimal
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solution up to a difference of δ). It is a parameter of the decision-making process, estimated
by the supplier. The lower-level optimality constraint is then for a preferred candidate k:

C(ctk, K, πL, πH) ≤ C(ctl, K, πL, πH) + δ ∀l ∈ St\k. (A.14)

A.3.1 Additional contractual constraints

In order to obtain regular price steps, the contract between supplier and consumer can include
further constraints on the space of pricing parameters. We include three types of constraints:
lower and upper bounds on the booking fee K, minimum and maximum increase at each step
of the higher price and minimum and maximum decrease at each step of the higher price. All
these can be expressed as linear constraints, and we gather them under the constraint set:

(K, πL, πH) ∈ Φ. (A.15)

A.3.2 Complete optimization model

The model is defined for each of the capacity candidates and is thus noted Ptk for candidate
k and time frame t:

max
K,πL,πH

(
C(ctk, K, πL, πH),G(ctk, πL, πH)

)
(A.16)

(K, πL, πH) ∈ Φ (A.17)

C(ctk, K, πL, πH) ≤ C(clt, K, πL, πH) + δ ∀l ∈ St\k, (A.18)

where

C(ctk, K, πL, πH) =

K · ctk +
∑

ω∈Ω−
t (ctk)

xωpωπ
L
k +

∑
ω∈Ω+

t (ctk)

xωpωπ
H
k , (A.19)

G(ctk, πL, πH) = ctk ·
(
πH(c)− πL(c)

)
. (A.20)

A.4 Solution method and computational experiments

The proposed model was implemented and tested using historical consumption data [159]
measured on a pilot house. The instantaneous consumption was measured every two min-
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utes during 47 months on a residential building by the energy supplier and grid operator
EDF [103]. Since the focus is the energy consumed within a given time frame, the instan-
taneous power can be averaged for each hour, yielding the energy in kW · h and avoiding
issues of missing measurements in the dataset. Data preprocessing, density estimation and
discretization, and visualization were performed using Julia [104], matplotlib [160] and Ker-
nelDensity.jl [161]. The construction and optimization of the model were carried out using
CLP from the COIN-OR project [162] as a linear solver and JuMP [107]. For all experiments
where it is not specified, an inertia of δ = 0.05 has been applied. For every time frame and
for all capacity candidates, the bi-objective supplier problem with objectives (C,G) is solved
with the ε-constraint method implemented in MultiJuMP.jl [163]. In all cases, the objectives
are found to be non-conflicting, in the sense that the utopia point of the multi-objective prob-
lem is feasible and reached. This implies that a lexicographic multi-objective optimization
solves the problem and reaches the utopia point, but does not guarantee that this holds for
all problem configurations.

Figure A.3 shows the number of options computed at each hourly time frame and Figure
A.4 the capacity level in kW · h of each option. The option of a capacity level of 0 is always
possible. Two examples of TLOU settings obtained are presented in Figures A.5 and A.6.
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The expected cost for the user of booking any capacity, given the price setting provided in
Figure A.5 is shown Figure A.7. The most notable result is that in all cases tested, the utopia
point, defined as the optimal value of the two objectives optimized separately, is reachable.



148

0 1 2 3 4 5
c (kW.h)

0.5

1.0

1.5

2.0

2.5

3.0

 ($
/k

W
.h

)
Tariff curves c14 = 3.47kW. h

  K = 0.1949$/kW.h
booked capacity

Figure A.5 TLOU price settings to incentive
for capacity c = 3.47kW · h

0 1 2 3 4 5
c (kW.h)

0.5

1.0

1.5

2.0

2.5

3.0

 ($
/k

W
.h

)

Tariff curves c18 = 4.51kW. h
  K = 0.1531$/kW.h

booked capacity

Figure A.6 TLOU price settings to incentive
for capacity c = 4.51kW · h

This result is conceivable given that the supplier decision is taken in a high-level space,
allowing multiple solutions to be optimal with respect to the revenue. In order to ensure the
guarantee-maximizing optimal solution, a two-step process lexicographic multi-optimization
procedure is used:

1. Solve the revenue-maximizing problem to obtain the maximal reachable revenue v.

2. Solve the guarantee-maximizing problem, while constraining a revenue C(·) ≥ v.

Figures A.8 and A.9 present a TLOU configuration optimized for costs only and for cost and
guarantee.
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Figure A.7 Expected cost for any capacity booked under the price settings of Figure A.5
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Figure A.8 TLOU price settings for revenue
maximization only
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Figure A.9 TLOU price settings after lexico-
graphic optimization

All the models solved are linear optimization problems with a fixed number of variables and
a number of constraints growing linearly with the number of scenarios considered. However,
all these constraints are of type:

C(ctk, K, πL, πH) ≤ C(ctl, K, πL, πH) + δ ∀l ∈ St\k. (A.21)

This is equivalent to:

C(ctk, K, πL, πH) ≤ min
l∈St\k

C(ctl, K, πL, πH) + δ. (A.22)

Therefore, at most one of the l will be active with a non-zero dual cost. The method can
thus be scaled to a greater number of scenarios by adding these constraints on the fly.

With the current discretized distributions containing between 5 and 10 scenarios, the mean
and median times to compute the whole solutions for all candidate capacities are below 1

40

of a second. These metrics are obtained using the BenchmarkTools.jl package [164].

A study of the influence of the δ parameter is summarized Figure A.10. For any hour, there
always exists a maximum value δmax above which it becomes impossible to make a solution
better for the lower-level than the baseline with a difference greater than δmax.
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Figure A.10 Number of non-zero capacity solutions

A.5 Conclusion

TLOU is designed to price energy across time and to reflect varying costs and requirements
from the generation side. Defining two objectives for the supplier, we built the set of cost-
optimal price settings maximizing the guarantee in a lexicographic fashion. Computations
on distributions built from real data show the effectiveness of the method, requiring a low
runtime to compute the set of solutions. Future research will consider continuous probability
distributions of the consumption and the price-setting problem with multiple users.
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