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1 Introduction

Urban freight transport encompasses the movement of freight vehicles whose primary purpose is to
carry goods into, out of, and within urban areas (OECD, 2003). These movements are part of the
logistics activities performed in the city regarding, mainly, the transport, storage, and handling of
goods, to answer the demand raised by most economic and social activities taking place in urban
areas. For the city inhabitants, it supplies stores and places of work and leisure, delivers goods at
home, provides the means to get rid of refuse, etc. It forms a vital link for firms with suppliers and
customers situated both within the city limits and elsewhere in the world. There are indeed few
activities in a city that do not require at least some commodities being moved. Thus, efficient urban
freight transport and logistics is a major enabling factor for city life and development. However, it
is also a major disturbing factor to urban life in terms of congestion, pollution, safety, and security
(OECD 2003).

The new organization and business models known as City Logistics (CL) have emerged to ad-
dress these issues, aiming to conciliate, to jointly “optimize” the economic and social goals of
sustainable urban transportation and logistics activities. While CL definitions vary (e.g., Crainic,
2008; Taniguchi, 2014; Gonzalez-Feliu, 2018c), a consensus seems to emerge of City Logistics as
an integrated logistics system, based on cooperation among stakeholders, resource sharing, consol-
idation, synchronization of operations, multi and intermodality, and the separation of commercial
transactions generating goods movements from the planning and execution of the corresponding
activities. Each element’s degree and way of inclusion define problem variants and applications, as
described in this chapter.

City Logistics are complex transportation and logistics systems (Benjelloun and Crainic, 2009;
Taniguchi and Thompson, 2014; Bektaş et al., 2017). This follows, on the one hand, from the
inherent interactions between the supply of infrastructure, resources, and service networks put up
to answer the demand to move and, eventually, store freight on its way from origins to destinations.
Complexity also follows from the fact that CL is part of the more extensive urban transportation
system, where people and goods flow, objectives, and requirements meet and often conflict and are
part of regional, national, and international networks. Finally, CL involves multiple actors, stake-
holders, and decision-makers, from public authorities and various citizen associations regulating or
pressuring the regulation processes to entities generating or receiving freight flows, from private or
public firms operating vehicle fleets, warehousing capacity, and integrated services over large parts
of the city to firms focusing on specific neighborhoods or the very last kilometer of the chain, often
operating new-technology vehicles (e.g., drones and robots) and continually innovating in terms of
delivery services.

Therefore, advanced decision-support methods are required to account for this complexity, ad-
dress the associated challenges, and reach the CL goals of service, economic, and environmental
efficiency. Operations Research (OR) provides the necessary methodology to design and deploy
such advanced planning and management decision-support systems. The CL-dedicated OR re-
search and development efforts started with the millennium and have yielded a broad and rich
portfolio of methods for most planning and management issues. Reviewing this field is the scope
of the chapter.
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Given the various categories of stakeholders and the classical view of transportation analysis as
the result of the balance of demand and supply, one may classify the planning and management
methods as targeting demand, aiming to forecast the types and quantities of goods required to be
moved and stored, or supply, which aim to design and optimize the transport and logistics systems
that will serve that demand. Both approaches are complementary and necessary. Yet, given the
complexity of the topic, the extensive coverage of demand aspects in the rest of the book, and the
length restrictions, the focus of the chapter is on the supply side of CL systems and the Operations
Research approaches to design and manage them. For modeling and methodological details in this
area, as well as views on the other aspects of City Logistics, planning, and execution, the interested
reader may consult the papers listed in the following sections, the extended version of this chapter
(Crainic et al., 2021a), as well as several books and chapters (Bektaş et al., 2017; Crainic, 2008;
Crainic et al., 2021b; Ehmke, 2012; Gonzalez-Feliu, 2018c; Taniguchi et al., 2001; Thompson and
Taniguchi, 2001) and the compendiums of papers out of the City Logistics International Conferences
(http://citylogistics.org/).

City Logistics and urban freight transportation and logistics share many elements and complexity-
inducing factors and, thus, an extensive set of planning and management issues. The issues and
methods presented in this chapter for the former may therefore be applied in the larger context of
the latter. However, we focus exclusively on City Logistics systems as we view CL as paradigm-
changing for cities and the avenue towards digitally-intelligent urban transportation and logistics
systems.

The chapter first presents, Section 2, a systemic view of City Logistics and the main supply-
side planning issues, which are detailed in the next three sections addressing, respectively, strategic
planning (Section 3) mostly based on Location methodology, tactical-operational planning (Section
4) and the Service Network Design (SND) and Vehicle Routing Problem (VRP) methodologies,
and dynamic management (Section 5)). Conclusions and perspectives, Section 6, bring the chapter
to an end.

2
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2 City Logistics Systems

This section introduces the main City Logistics (CL) concepts and definitions necessary to present
the Operations Research methods proposed to support the smart, optimized CL-system planning
and operations.

City Logistics supply infrastructure, resources, and service networks to answer the demand to
move and, eventually, store freight on its way from origins to destinations. Demand is addressed
in Section 2.1 together with the freight flows it generates, which circulate within the CL-supplied
network. Section 2.2 introduces the supply side of the CL system, in particular, the facilities
involved, the layout of the CL network made up of these facilities, and the demand origins and
destinations, as well as the transport resources and services connecting them all. CL operations,
that is, how demand flows are moved through the supply network, are briefly described in Section
2.3. Freight transportation and logistics involve many interested parties in providing service, using
the service, or being impacted by the resulting operations. CL is no exception, and it may involve
a relatively large pallet of stakeholders as evoked in Section 2.4. Section 2.5 finally describes
the main issues related to planning CL systems in long, medium, and short terms, as well as to
implementing, updating, and executing the plans and activities. The following section then presents
the main Operations Research methods proposed to support decision-making at all these levels of
planning and execution.

2.1 Demand and flows

Demand is the reason transport and logistics systems are designed and operated. When freight
is concerned, demand means the quantities of particular products which need to be handled and
delivered from their respective origins to their specific destinations in the network. These origins
and destinations are usually defined by the customers of the system, which, in all generality, are
all the firms, organizations, institutions, and private citizens that ship or receive freight through
the system. The freight-demand production (“generation”) and consumption (“attraction”) take
place both within and outside the city, even though most CL studies have so far focused on the
external-production-internal-consumption case typical of consumer-goods distribution.

For planning purposes, the many possible external origins and destinations of CL demand
are aggregated into several external zones (the “large” disks outside the hexagonal city limits in
Figure 1), connected to the city by various transportation modes (see Section 2.2.3), schematically
illustrated through dotted arrows in the figure. Similarly, locations within the city are aggregated
into customer-demand zones, referred to as customer zones in the following, and represented by
circular disks within the city limits of Figure 1. The granularity of the aggregation depends on the
level of planning considered, e.g., the shorter the horizon, the higher the granularity, i.e., the more
disaggregated data is required.

The demand side of the system thus consists of a set of freight loads that need to be moved
between particular pairs of customer and external zones. Three types of demand may be identified
(Crainic et al., 2012, 2021b). Inbound demand is to be delivered from external-zone origins to

3
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customers in the city, while outbound demand is to be picked up at customers in the city and
then be shipped to specified external-zone destinations. Local demand is to be picked up from a
customer within the city and delivered to another customer within the city.

Each individual origin-destination (OD) demand is characterized by a volume to be moved
and time-related features, e.g., its availability time representing when the demand would enter the
system and could start to be handled, as well as delivery and pick-up time windows at customers
within the city. The attributes of the physical product and the possible rules and restrictions in
terms of vehicle and storage utilization may also be of interest (Crainic et al., 2009), particularly
when a varied set of heterogeneous products needs to be handled. The use of smart containers
(Montreuil, 2011, π-containers), which can be loaded together in the same vehicles irrespective
of their content, could help address this challenge and facilitate CL operations. To simplify the
presentation of Sections 3 - 5, but without loss of generality, we assume the use of smart containers
in this chapter. In modeling terms, this yields single product problems, the loading container, but
multicommodity in the OD demand treated.

Flows then represent the movements of these freight loads throughout the CL system, together
with those of the vehicles carrying them, as well as for their handling in the facilities of the system.
In the OR methods of the following sections, flows result from the decisions on how to satisfy
demand with the provided supply to achieve the objectives of the CL system and its stakeholders.

2.2 Supply - Infrastructure, resources, and service networks

The supply side of a City Logistics network consists of one, two, or more layers of terminals, called
facilities in the following, and the transportation means and infrastructures linking them and the
customer and external zones. We briefly present the former in Sections 2.2.1 and 2.2.2, while the
latter is the topic of Section 2.2.3. Figure 1 schematically illustrates two major CL network layouts
and components, which are used to illustrate the concepts described in the chapter and the OR
models of the following sections.

2.2.1 Facilities

Flows between external and customer zones pass through one or more facilities, playing various roles
in the CL logistics chain, ranging from freight consolidation hubs for distribution within the city
or long-haul transportation towards external destinations to transfer and re-consolidation points
between modes of transport, to temporary storage locations. Facilities are essential components
of CL systems to consolidate flows, coordinate transport, transshipment, and storage activities,
and synchronize freight and vehicle movements. The various facilities found in CL applications
(Meza-Peralta et al., 2020) may be classified as either city distribution centers or satellites. Notice
that storage facilities may be customers for planning purposes when they are the destination of
particular demand flows. We use this classification in this chapter.

The primary purpose of City Distribution Centers (CDC s) is to receive inbound freight for
operations, e.g., storage, sorting, and consolidation, facilitating a coordinated and efficient city

4
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City-freighter route

Urban-vehicle routeCDC

Satellite

External customer zone

Inbound Outbound customer

Figure 1: Single & two-tier CL system layouts and components

delivery. Outbound loads picked up within the city may also be delivered, sorted, and consolidated
at CDCs for long-haul transportation to external-zone destinations. CDCs are defined here by their
physical and functional role, not by institutional or collaborative issues. Thus, e.g., a wholesaler
platform, an urban consolidation center, a regional distribution center, and an intermodal terminal
may play a CDC role in a CL system. CDCs are often located at the border of the city, close to
main interurban transportation infrastructures, and are illustrated by filled-up squares in Figure 1.

Satellites are part of multi-tier CL Systems. Satellites are located close to or within the city
areas where traffic is controlled and certain vehicle types, e.g., large trucks, are not allowed to
penetrate. It is at satellites, illustrated through triangles in Figure 1, that the junction is made
between the CDCs, part of the first-tier of the system, and the customers within the CL-controlled
area where loads are to be delivered or picked up from, freight being generally transferred between
synchronized vehicles according to transshipment and/or cross-docking principles, with little or no
temporary storage (Crainic et al., 2004). Vehicles operating on different tiers and carrying inbound
or outbound cargo may thus be present simultaneously at a satellite, competing for the capacity it
offers for vehicle docking, parking, and cargo transfer.

Satellites may thus be any type of (attended or unattended) “rendez-vous” location or facil-
ity, including dedicated terminals, parking lots, bus or rail stations, lockers, mobile depots, and
locations within the city which may be used for short-time secure vehicle-to-vehicle transshipment
(Verlinde et al., 2012). The type of satellites used in a particular CL system depends on the urban
setting considered (dimensions, organization, etc.), the number of tiers involved (Section 2.2.2),
and the type of transport service being implemented (Section 2.2.3). In all cases, satellites are
“small” facilities (on either a public or private space), where CL logistics operations are carried
out, efficiently connecting external and customer zones.

5
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2.2.2 Layout

The network layout describes the form of that network, i.e., the definition and organization of the
facilities and the connections between the facilities and the external and customer zones. The two
basic layout configurations observed in City Logistics and urban freight networks are the single- and
multi-tier networks, illustrated in Figure 1. Tier in the CL vocabulary stands for a set of facilities
of similar nature and role, together with the transportation means and services connecting these
facilities to those of the next “lower” tier. Notice that the first tier generally includes connections
with the external zones, while the last tier also includes customer zones. Notice also that the
vehicle-routing and logistics literature refers to tiers as echelons. We use the term “tier” in this
chapter, with exceptions in Sections 3.2 and 4.2 to reflect routing-literature usage.

Single-tier CL Systems were proposed initially (for inbound demand) and are currently operat-
ing in many cities, particularly of small to medium dimensions. Illustrated on the left of Figure 1,
single-tier CL systems operate CDC-type of facilities, customers being serviced directly from the
CDCs, vehicle routes starting at a CDC to deliver or pick up loads at customers (initial deployments
involved one CDC and one vehicle type only).

More advanced multi-tier system systems are emerging to personalize service and resources to
the each particular neighbourhood, take advantage of new vehicular technologies that naturally
lead to the design of multi-modal transportation chains (e.g., cargo bikes, drones, and robots),
and to handle the complexity of large cities. Multi-tier systems are based on consolidation and
involve the management of multiple interacting facilities and transportation resources. The right
part of Figure 1 illustrates two-tier CL systems, which received the most attention in both the
scientific literature and actual applications, involving CDCs on the first tier and satellites of a
similar nature on the second. Several tier-specific types of satellites are involved when more than
two tiers are considered. The size and range of activities at satellites are generally decreasing as
the tier is further away from the first one, the focus of the activity of each satellite being a more
local neighborhood. Notice that, even though the size of the formulations may grow significantly,
the fundamental Operations Research methodological concepts are the same for two or more tiers.
Therefore, the OR models described in this chapter are based on a two-tier system canvas, reflecting
the majority of contributions in the literature.

2.2.3 Transportation

Transportation services in a CL system are provided by carriers operating vehicle fleets of various
modes and characteristics adapted to the particular tier of activity.

Historically, road-based motor vehicles were the only ones considered in most literature and
applications. The “multi modality” and environmentally-conscious characteristics of CL were ad-
dressed through new motorization types, e.g., electric, hydrogen, and hybrid, for smaller vans used
in lower tiers. However, the field is continuously evolving towards true multi-modality and a broad
range of vehicle types adapted to the particular tier and neighborhood they are expected to service.

First-tier transportation between CDCs and second-tier satellites illustrates this trend. Indeed,
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one observes the increased involvement of people-oriented mass-transportation modes and vehicles,
e.g., regular and light rail, and bus (e.g., Trentini and Mahléné, 2010; Freemark, 2011; Masson et al.,
2017; De Langhe, 2017; Gonzalez-Feliu, 2018a; Riemann, 2019, see also http://www.citylogistics.info/tag/cargo-
tram), as well as alternate freight-carrying modes, e.g., rail and canal or river barges (e.g. Lendjel
and Fischman, 2014; Diziain et al., 2014; Van Duin, 2014). Combined with motor vehicles, these
modes and services greatly enlarge the spectrum of transportation possibilities on the first tier in
traditional and environmentally conscious motorization.

It is noteworthy that the utilization of dedicated light-rail services, e.g., tramways, belongs to
the concept of mobile depots. It was initially introduced for service in historic city centers in Europe,
and based on road modes only. It involves two tiers. Dedicated first-tier vehicles (or convoys of
small trailers or tramway cars) stop at several strategic locations. They become satellites and meet
second-tier vehicles for the transfer of inbound or outbound loads. Notice that the same principle
may be used on lower tiers as well. Mobile facilities clearly illustrate that “location” decisions in
the context of city logistics may be considered as strategic-planning issues and within the scope of
short and medium-term planning.

Following Crainic et al. (2021b), we distinguish between line-based and no-line transportation
modes and services. The latter include the various trucks and barges for which one may define
services along any path within their admissible networks, such as a city trucking or canal network.
Line-based modes are often captive of particular infrastructures, such as passenger buses, which
are “captive” of their predefined lines, regular and light rail captive of their tracks, and trolley-
buses captive of their aerial power lines. Two main approaches for line-based services are being
contemplated within City Logistics projects around the world. On the one hand, regular vehicles
may be equipped with special compartments for the transportation of goods. On the other hand,
freight-dedicated vehicles may be operated on the same infrastructure, either independently or as
parts of regular convoys.

Second, and lower-tier transportation is also increasingly multi-modal. The traditional small
vans (Melo et al., 2014; Anderluh et al., 2021) are still encountered, but one also notices the
utilization of eco-friendly electric or hydrogen small vans (Van Duin et al., 2013; Melo et al.,
2014), traditional or cargo bikes (Gruber et al., 2014), drones and sidewalk robots (Savelsbergh
and Van Woensel, 2016), automated light vehicles, well as individuals using their own cars (Durand
and Gonzalez-Feliu, 2012; Carbone et al., 2017).

2.3 CL Operations

To simplify the presentation and to be consistent with the literature, first-tier vehicles are called
urban vehicles in this chapter, irrespective of the mode. Similarly, vehicles used in single-tier CL
systems, as well as the vehicles performing service on the lower tiers of multi-tier networks, are
called city freighters.

Operations within single-tier CL systems are relatively straightforward as customer service is
performed directly out of a CDC. Inbound loads from external zones received at a CDC are thus first
sorted and consolidated into city freighters and distributed to customers. City freighters may also
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pick up outbound and local freight at customers delivering it to a CDC and destination customers,
respectively. The outbound loads brought to a CDC at the ”same” time by several city freighters
are sorted, consolidated, and loaded for the long-haul part of their journeys to their final external-
zone destinations. The passage through a CDC notwithstanding, the itinerary of an OD demand
in a single-tier CL system corresponds simply to part of a vehicle route.

Multi-tier CL systems involve a richer set of activities. To illustrate two-tier systems, inbound
loads from external zones are first received at a CDC, to be sorted and consolidated into urban
vehicles, which will bring them to satellites. A urban vehicle work starts from a CDC (after leaving
its garage or a waiting station), travels to one or more satellites assigned to the service it performs,
and returns to a CDC, possibly different from the one from which it started, to repeat the service,
initiate a new one, or exit the system until called again.

Inbound loads arriving at a satellite are transshipped and consolidated (a second time) into city
freighters, which deliver them to customers. City freighters also pick up outbound and local freight
at customers delivering it to satellites and destination customers, respectively. The outbound loads
brought to a satellite at the ”same” time by several city freighters are loaded and consolidated
into urban vehicles to be moved to the appropriate CDC, from where the goods are shipped to
their final external zones. City-freighters thus also operate multi-tour routes among satellites and
customers, with returns to the garage or waiting stations when consecutive tours are too far apart
in time.

Demand in two-tier CL systems is thus moved from origins to destinations via itineraries that in-
clude the facilities and the transportation services on all relevant tiers. Inbound-demand itineraries
are made up of the movement from the external zone to a CDC, an urban-vehicle activity, a trans-
shipment operation at a satellite, and the final distribution by a city-freighter. Outbound-demand
itineraries involve the same operations in reverse order. Local-demand itineraries correspond to
pick-up and delivery routes (possibly passing at satellites to service the other types of demands)
among customer zones.

Determining the mode and tier-specific services to offer, the routes to be performed by the
vehicles, the synchronized schedules governing this execution, and the itineraries used to move the
demand flows from origins to destinations make up an essential set of planning decisions and are
part of most OR models presented in the following sections.

2.4 Stakeholders and decision makers

Identifying interested parties, together with their characteristics, objectives, limitations, and be-
havior, is generally considered part of the social, economic, and behavioral analysis of complex
systems, including transportation and logistics. The CL aspect of these topics is amply analysed
in the rest of the book. We, therefore, briefly identify the main classes of CL stakeholders by
following the CL system structure described earlier in this section and briefly discussing the CL
decision-making structure and its implication for the planning issues of Section 2.5.

As already described, CL systems are made up of a demand and a supply component, interacting
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within the regulatory and fiscal environment set up by authorities and within the cultural and social
environment of the city and country they belong to. We thus identify the stakeholder classes of
customers, carriers, and authorities, with a brief mention of the indirect stakeholders involved.

Customers generate the CL system demand and are all the firms, organizations, institutions,
and private citizens which ship, have shipped (i.e., they place orders generating demand for trans-
portation), or receive freight through the system. It is from the customers who decide to be part of
(serviced by) a CL system that identifies the products to be handled, together with their character-
istics, as well as the temporal and economic characteristics of demand and, thus, of the looked-for
service supplied. It is noteworthy that, in traditional systems, the organization of the transport-
logistics chain is strongly linked to the transactional activities generating the demand. The latter
is still in the scope of customer decision-making, together with possible transport and storage con-
ditions requirements. However, the CL difference is to disconnect these two aspects on the city
boundaries (at a CDC), the urban component being taken care of to achieve the customers and the
city (and CL system) objectives. Two observations are necessary to be made in this respect.

First, customers desire high-quality, on-time service at the lowest price possible. These objec-
tives must be accounted for in planning CL services, particularly since passing through terminals
implies additional delays and costs. Optimizing the consolidation of flows, the resources shared, and
the resulting supply network and services aims to answer these challenges. Second, one witnesses
the constant increase in e-commerce scope and volume, accelerated by the confinement measures
authorities imposed as a partial answer to the worldwide covid-19 pandemic. This results in higher
demand heterogeneity, higher volumes of “small” packages sent to individuals’ homes, and a quest
for rapid, even instant, deliveries (Durand and Gonzalez-Feliu, 2012; Dablanc et al., 2017). Inte-
grating this increasing role of individuals as flow generators is a challenge both for the CL concept
and organization and for the OR methods designed to plan and manage them.

Carriers provide the transport and warehousing resources and services making up the supply
side of the CL system (or have the responsibility for those activities). We use the generic term
“carrier” to cover actual owners and managers of freight-transport fleets of all possible modes or of
facilities where CL activities may be carried on, or both, public or private owners and managers of
people-transport fleets involved in carrying CL freight, and last-mile and logistics service providers,
the so-called xPL (with x = 2, 3 or 4) depending on the range of services provided, which already
coordinate transport for several customers. Carriers may involve all or only part of their resources in
the activities of the CL system, sharing those resources with the system and the other stakeholders.
The models described in the following sections address the planning and management of the CL
resources made up of the shared resources. On the other side, Carriers have their own planning
activities, not covered herein, with respect to how many resource to share and according to what
conditions, as well as how best to manage the resources not shared with the CL system.

Orchestrators. Borrowing an IT term, the orchestrator provides the OR-based digital intelli-
gence to integrate, plan and manage the (shared) resources and supplied services of the CL system
to address the demand to achieve the stakeholder, system, and city objectives. In exploring the
early literature, one may notice that IT and, especially, OR have been rather slow to penetrate the
application field. This is changing, CL being increasingly viewed as part of an intelligent city.

The orchestrator is thus the CL decision-maker. From an institutional point of view, the orches-
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trator could be a public entity, one of the carriers, or a neutral system manager. The latter option
has the advantage of an arm-length distance from all parties involved, enforcing the confidentiality
of the information provided by the stakeholders involved, and coordinating, managing, and glob-
ally optimizing the system according to the collaboration principles and conventions agreed among
the participants. Notice that, while the neutral manager could be implemented as a distributed
information and decision structure, the global scope of its decisions is the main issue here.

We complete this section with short mentions of the public authorities and the indirect stakehold-
ers. The latter include citizens, lobbying groups, real estate actors, and professional associations.
While enjoying the benefits of goods delivered and moved away, they may suffer and complain from
the nuisances of freight-related traffic and activities. These impacted parties are not acting directly
on CL systems but may have an essential influence through pressure on public authorities and
changes to the “social acceptance” of freight-related activities. The fundamental concepts of City
Logistics aim to address such issues. The impact costs included in many OR models and described
in the following sections contribute to alleviating the negative impacts. Still, more social (with the
public) and methodological (to represent these fears) integrated concepts are needed.

The public policy and regulatory authorities are crucial for making CL Systems viable and re-
spected (Dablanc, 2007). According to the local culture and politics, they may get more (e.g.,
Western Europe) or less (e.g., North America) involved in the organization and management of
CL. Still, they offer the necessary regulatory, fiscal, and operational environment, from the supra-
national (e.g., the European Union) and national (budgetary and environmental laws and regula-
tions) to the city (access, traffic, parking, environment, etc.) level regulation. These are essential
issues beyond the scope of this chapter. We refer the interested reader to the relevant chapters of
the book.

2.5 Planning and executing operations

City Logistics are complex consolidation-based transportation and logistics systems. They involve
a broad set of customers and carriers, products, facilities, transportation modes, vehicles, and
services, interacting in their spatial, temporal, and operational characteristics. They need to be
collectively and simultaneously considered when deciding on the management and operations of
the system. This translates into the need to design and plan the system, its services resources,
and operations and, then, execute those plans. We introduce the central planning and execution
issues in Section 2.5.1. We then briefly discuss two important characteristics of CL systems, time in
Section 2.5.2 and uncertainty in Section 2.5.3, which are to be found in many of the decision-support
models presented in the following sections.

2.5.1 Planning levels

The three planning levels found in most transportation and logistics settings, strategic, tactical, and
operational (Crainic and Laporte, 1997), are also found in City Logistics planning and management.

Strategic planning (Section 3 addresses long-term design and deployment horizons, with impacts
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usually valid for years, and rather high-level public or private management. Two sets of issues,
decisions, and methods may be qualified as “strategic”. Setting up a CL system is undoubtedly
a strategic decision. Thus, the first is at the level of public authorities, hopefully with the col-
laboration of the major stakeholders possibly involved in the CL system. They have to decide
on deployment within the city or neighborhood and on design, partnerships, network layout, ser-
vice type, policies, rules, legal and financial frameworks, etc., given each alternative’s expected
behavior and performance. These evaluations should be part of more integrated approaches for
urban planning and the corresponding people and freight transportation networks. Much more
work is required in this field, particularly on the inclusion of freight transport issues into city urban
and transportation planning methods. Discussion of these issues and methods (see Bektaş et al.,
2017, for an introduction to the field) is beyond the scope of this chapter, as most of them are
generally not of an Operations Research type. They may be and hopefully are, supported by Op-
erations Research models providing quantitative evaluations and analyses of contemplated systems
and policies. The second type of strategic planning methods, on the system design, and the tactical
planning methods, on service design, provide such performance-evaluation tools for contemplated
or existing CL systems and policy designs.

Deciding to set up a CL system of a given type for a particular city requires indeed designing
the system. This means, in particular, to determine, e.g., the number, location, and characteristics
of facilities, the main corridors allowed for each participating transportation mode, and the size
and composition of fleets. Based on predictions of resource availability and user utilization needs,
as well as on various criteria, e.g., economic, service-quality, resource utilization, and impact on
the city, its inhabitants, and the environment, such models combine network design, location, and
vehicle routing (VRP) methodologies. They are described in Section 3.

Tactical-operational planning targets the design of the CL services over a medium to short-
term planning horizon. Recall that tactical planning for consolidation freight carriers (Crainic
and Hewitt, 2021) aims to select and schedule services, together with the itineraries used to move
freight flows from origins to destinations in the resulting service network. The goal is to satisfy the
regular demand in the most cost- and resource-utilization efficient way possible while satisfying the
service-quality levels set by the carrier to answer customer requirements. The tactical plan also
yields activity profiles of terminals and the resources required to support the selected services. The
service network and plan is determined for a relatively short period called schedule length, a day or a
week, and it is then repeatedly applied over a particular medium-term planning horizon, the season
(e.g., six months). The scheduling of particular resources, e.g., crews and terminal operations, may
complete the process. It is assumed that the major elements of the plan, i.e., demand, selected
scheduled services, and main resource assignments to services and terminals, will not be modified
during regular operations for the length of the planning horizon. Adjustments of the plan to actual
demand are then primarily performed through modifications to the terminal and fleet utilization,
as well as to the routing of demand flows at operation time (see Section 5).

In City Logistics terms, the regularity of demand and selected services concerns the first-tier
service operations of multi-tier CL systems, particularly the utilisation of terminal facilities and
the customer-to-satellite assignment. This contrasts with the pick-up and delivery routes providing
service on the lower tiers, which may vary from day to day according to the particular demand.
The goal is to determine the most cost-effective plan to satisfy forecast demands with the available
resources, where the generalized transportation costs account for operations-related costs and city-
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impact considerations. With such a plan, material and human resources can be allocated for the
duration of the planning horizon, which makes management easier and lowers costs (see Section 4).

Operational planning addresses the same issues but for a shorter planning horizon, generally
equal to the schedule length. Planning is thus performed much closer to the activity time, e.g.,
the day before, rather than a number of weeks before, and with a better knowledge/estimation of
the future demand and resource availability. The full range of decisions may be considered when
the system environment is such that no long-term planning is possible (e.g., highly volatile demand
and resource availability, combined to broad managerial capability to call upon and assign human
resources). Alternatively, the short-term decisions may be guided by medium-term ones such as,
for example, first-tier line-based services and schedules which cannot be altered. The fundamental
methodology is the same in all cases. However, combining network design and vehicle routing and
scheduling as appropriate to the particular application is considered. Section 4 presents the main
methodological contributions to CL tactical planning.

Plans are put into practice through an execution phase. This chapter focuses on adjusting
the plan, i.e., the re-organization and re-optimization of specific components (routes, itineraries,
satellite activities), in real or quasi-real-time, following new or updated information. Indeed, many
events may perturb operations and challenge the smooth execution of the plan, particularly in the
highly constrained and congested urban context, even if uncertainty is explicitly accounted for in
the planning process. These events may concern the demand, e.g., new orders or delayed ones and
customers not ready to receive or load the planned freight, as well as the supply, e.g., incidents
and accidents delaying or blocking planned routes and itineraries and larger-than-expected traffic
delays. These issues and the dynamic adjustment and re-optimization OR methods proposed to
address them for CL-system plans and operations are reviewed in Section 5.

2.5.2 Time representation

All problems and models discussed in this chapter exhibit important temporal, time, and tim-
ing defining characteristics. The temporal scope of refers to when decisions are taken (planned)
concerning when and for how long they are implemented. In this respect, strategic and tactical-
operational planning are anticipatory-planning processes and methods, generally performed based
on estimated demand and resource levels. Operation optimizations and decisions are thus planned,
without direct interaction with real-time events. In contrast, executing the plan and operations
generally relies on dynamic, real-time decision processes and methods.

Anticipatory planning does not mean, however, that time-related (and uncertainty, see Section
2.5.3) issues are not considered. The time perspective refers to whether key data elements and
decision variables are defined with respect to time, that is, whether their values are fixed for the
duration of the schedule length and planning horizon, or are time-dependent. The passage of time
is explicitly modeled in the latter case, time-dependent data and decision variables receiving one
or several time attributes. Thus, for example, a particular demand may be defined by the moment
(or time interval, also called time window in the following) it is expected to become available at the
origin and a delivery time window at the destination. Similarly, the travel time along the same link
of the CL network could be assumed fixed. Still, it could also receive specific time period-specific
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values to reflect the estimated congestion effects. It is noteworthy that including time-dependent
data in a problem definition and model implies that the corresponding decision variables are also
time-dependent, and so is the model.

Timing refers to the case when several activities need to occur more or less simultaneously at
the same particular point in time and space. In the City Logistics literature, this refers mostly to
what Drexl (2012) defines as operation synchronization of different vehicles at the same or different
locations concerning the moment in time when the vehicles perform their respective operation
at those locations. The particular case of several first and second-tier vehicles meeting at the
same satellite (Figure 1) to exchange freight is a major and challenging characteristic of multi-tier
CL systems. The need for vehicle synchronization at satellites follows the simultaneous pressure
of customer availability and delivery time windows, limited satellite capacity, and the goal of
economically and environmentally efficient system operations. This raises significant challenges
for planning activities and Operations Research-based methodology, as discussed in the following
sections.

2.5.3 Accounting for uncertainty

Decision-making means evaluating alternatives and making decisions “now” by taking into account
what may happen in the more or less distant future, that is, they mean the implicit or explicit
inclusion of predicted/estimated data on demand and supply into today’s decision process and the
OR methods designed to support them. Consequently, the quality of the plans and the system’s
performance depend on the quality (accuracy) of the predictions and on how the uncertainty in-
herent to predictions is accounted for. Explicitly integrating uncertainty in planning methods aims
to address these challenges.

In methodological terms, this translates into including a certain level and complexity of look-
ahead capability into the problem definition and the mostly deterministic formulations presented
in this chapter. Various sources and types of uncertainty may be identified (see, e.g., Klibi et al.,
2010) from the ubiquitous, also called random or business-as-usual, variability in demand and
travel and service times, to the rare but still predictable events, e.g., accidents and temporary
modifications to infrastructure access, also called hazards, to the few and far between and difficult
to predict but high-impact events, such as natural or man-made disasters, thus assigned the deep
uncertainty label. Several main methodological approaches exist to explicitly model uncertainty
and its consequences in optimization (see, e.g., Birge and Louveaux, 2011; King and Wallace, 2012;
Bertsimas et al., 2011; Powell, 2021) The choice of methodology is related, on the one hand, to
the problem addressed and the preferences of the decision-maker and, on the other hand, to the
magnitude of the predicted variability and the confidence one puts in the forecasts. A series of
problem settings and formulations follows from the combination of particular answers to these
choices.

To illustrate, consider a tactical-planning problem where the daily variation of the volume of
demand is considered. The tactical plan is built based on a prediction of this demand. When
executed, the actual demand is “observed” a short time before the daily activities start, and the
plan is adjusted by, e.g., calling on extra vehicles or modifying routes and schedules or both.
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To reduce the impact of these variations on execution, one then aims for a tactical model that
accounts for the variability of demand volumes by optimizing the cost of setting up the system
and the expected cost to adjust the plan to the observed demand. The classical case of confidence
in the prediction of (very) low variability leads to the choice of a deterministic model, such as as
most formulations presented in this chapter. Minor, accidental variations are then addressed during
operations by, e.g., calling on extra vehicles or delaying some demand at a penalty cost.

At the other end of the spectrum, one finds the case of high variability combined with low
confidence in the possibility to forecast it adequately. This case is characteristic of the (quasi) real-
time operations of full-vehicle-load fleet-management problems, where resources (e.g., vehicles)
are dispatched in reaction to incoming demands (e.g., Powell et al., 2007). Approximate dynamic
programming (Powell, 2021) offers then the possibility to account for the impact of current decisions
on the future state of the system (e.g., the availability of resources at specific locations at future
time instants and the value of having a resource at the point in space and time), but no tactical
plan may be built.

The various problem settings and methodological choices in between these extremes differ in the
latitude left to the adjustment of the plan once the actual demand is observed. Robust optimization
(Bertsimas et al., 2011) may be used to aim for plans which are valid under a broad range of
demand variations, or when taking a longer horizon look at planning, under a set of extreme
values which could significantly damage performance. Chance-constrained stochastic programming
models replace constraints enforcing particular limits, e.g., deliver demand on time, by constraints
requiring these limits to be obeyed with a certain probability, e.g., 90% on-time delivery. Intuitively,
this approach appears attractive when time-related uncertainty is contemplated, particularly as
probabilistic constraints may be combined with a multi-stage stochastic program. Most research
in these areas has yet to be undertaken.

A priori, multi-stage stochastic programming (Birge and Louveaux, 2011; King and Wallace,
2012) appears appropriated to integrate uncertainty, particularly regarding demand, into tactical
plans. The question then is what part of operations should be fixed within the plan, based on
predictions, and what should be left to be decided on the day of operation execution, once new
information becomes available (is “revealed”) and recourse actions may be taken to adjust the
plan to these observations. Adjusting the plan involves costs, which vary according to the selected
recourse, from doing nothing and paying penalties to muster extra resources and re-optimizing the
operations. Put into stochastic-programming terms, “what decision goes into each stage?”, the first
stage generally corresponding to building the plan, the second and following stages to the cascade
of information-revelation and recourse actions occurring during operations. Two-stage formulations
assume that new information becomes available and adjustments are performed only once at each
occurrence of the plan application (e.g., each day). This is the methodology most often used in
planning consolidation-based freight carriers (Hewitt et al., 2021), and it is the one we illustrate in
this chapter (Section 4.4).

To sum up, the literature is very sparse regarding the explicit integration of uncertainty in
planning models and methods for City Logistics, and most research is still to be undertaken. In
particular, to the best of our knowledge, duration and cost uncertainty have not been addressed to
any significant extent, a few contributions targeting business-as-usual demand uncertainty only.
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3 Strategic Planning - Designing the System

Strategic planning generally addresses long-term decisions with long-term impacts. This section
is dedicated to the system-design strategic decisions, focusing on the main methodologies pro-
posed for the selection of facilities and their impact on the system performance. Location-based
methodologies, Section 3.1, focus on where facilities should be, how large they should be, and what
interconnections should be selected among these facilities as well as among them and the clients
they serve. How the movements are to be performed, that is, the transportation activities with
their spatial, temporal, and economic attributes, is less emphasized, the associated decisions and
attributes being generally aggregated. More refined methodologies explicitly include the design
and planning of the transportation network in the formulations. Location-routing addresses these
issues combining location and vehicle routing (LRP ; Section 3.2), while Location-Design combines
location and (scheduled) service network design (Section 3.3).

3.1 Location

Since facilities are the starting point of supply, their location is a major issue in strategic plan-
ning. Therefore, most contributions in the literature addressing the design of CL systems focus on
the location of facilities with varying levels of detail on the networks exploited and the activities
performed. The problem has been developed and applied to many fields, mostly in regional and
inter-urban transport (Crainic and Laporte, 1997), for single (Verter, 2011) or multi-tier systems
(Ortiz-Astorquiza et al., 2018). In those surveys, the main principles of modelling, mathematical
formulations and solution approaches can be found. However, in CL systems, the specific features
of context, demand and supply need the development of specific modellng approaches. This first
section describes then the two pioneering modeling approaches in designing CL systems.

Taniguchi et al. (1999) introduced probably the first model aiming to optimally select the lo-
cations and dimensions of facilities for a single-tier, single-mode CL distribution system. Proposed
before the “City Logistics” term was adopted, the facilities are identified as “public logistics ter-
minals” or “multi-company distribution centers”. They are seen as essential building blocks of
cooperative freight systems, which could efficiently address the serious challenges cities face in
terms of traffic congestion, environment, energy, and labor costs. The authors address a large-area
transportation system. The network is made up of two parts, long-haul, for large vehicles bringing
freight to the terminals (e.g., the expressway network), and pickup and delivery, for delivering
freight from terminals to customers by a different fleet of small trucks. Origin to destination de-
mand is identified for each part of the network. The terminals connecting the two parts are to be
located to reduce the total generalized cost of the system, which includes the costs of terminal set
up and utilization, transportation, pollution, and so on. The authors assume the facility-location
decisions are taken by some authority, while the trucking companies or their drivers select the
terminals to visit and the routes to perform. The authors propose a two-model approach, a high-
level one to select and dimension facilities, and a nonlinear traffic-equilibrium-type model reflecting
congestion and the choice behavior of the truck carriers at the lower level. Experimentation was
carried on a small-scale application using a very aggregated representation of the road network in
the Kyoto-Osaka region of Japan.
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There are a few subsequent works based on this approach. Yang et al. (2005) adapts this
framework to port areas, to interface maritime transport to city logistic, adding to (Taniguchi
et al., 1999) warehousing components and an update of costs to include port issues. Authors
propose a genetic algorithm to solve the problem in realistic cases and apply their work to the
city of Dalian (China). Rao et al. (2015) go in-depth on the definition of sustainability evaluation
criteria for locating such facilities, in a multi-criteria, fuzzy logic, perspective. This work remains
theoretical, the numerical illustration is based on instances that do not belong to a real city but
show the main interests of the approach. (Ruiz-Meza et al., 2021) propose a two-tier version of
the system, i.e. mono-commodity and single mode, but adding a second layer of satellites to locate
in parallel to CDCs. Authors propose a two-tier model that considers both size and location of
terminals (1st tier) and satellites (2nd tier), and include synchronization issues at satellites via
time constraints. The framework, solved using a commercial MIP software, is applied to the city of
Barranquilla (Colombia). We believe it is worth examining, however, as it opens very interesting
research avenues including the adaptation of recent results in bi-level programming, the modeling of
various business and operational CL organizations, and solution methods able to address realistic-
sized problem instances. Such developments could be used not only for designing the CL systems
but also as components of urban planning methodologies.

Crainic et al. (2004) formally introduced the general two-tier CL system concept (see also
Gragnani et al., 2004), which launched the continuously growing research stream on multi-tier CL
systems. In this pioneering study, the CL consolidation and coordination activities are performed
at facilities organized into a hierarchical, two-tiered structure (e.g., the right part of Figure 1 with
major terminals sited at the city limits and cross-dock satellite facilities strategically located close to
or within the CL area of the city. The authors consider inbound multi-product origin-to-destination
demand and single motor-carrier modes and fleets for each of the two tiers of the system, the urban
trucks, later generalized to urban vehicles, and city freighters, respectively. The authors address
the strategic-decision issue of determining the satellite structure of the system, given aggregated,
strategic-planning level representations of the city network and demand for transportation. They
proposed a location-allocation methodology and performed a proof-of-concept study based on data
from a large city with a very rich and dense web of activities, political, administrative, commercial,
cultural, touristic, and multi-modal transport of people and freight, within a well-defined territory.

The network model includes nodes representing the potential satellite locations, the external
zones (the CDCs), standing for the origin of the freight to be moved, the customer zones, i.e., the
destinations of the demand, as well as the main intersections in the actual city ring-road and street
network. The arcs of the network model represent possible movements between external zones and
satellites, and between satellites and customer zones. Each such arc stands for the min-cost path
in the respective part of the actual city network (arcs are uncapacitated, congestion factors being
included in the travel costs).

The authors introduce the impact-on-the-city or undesirability-factor concept in defining the
economic attributes of the network, in order to reflect the negative impact, or the perception thereof,
of having a facility in a particular location or moving freight vehicles on certain streets or through
certain neighborhoods of the city. Such a factor is included in the (fixed) cost to open a satellite in
a given location, as well as in the travel costs associated with each arc for each product considered.
Potential satellites are further characterized by location, product-specific unit handling costs, and
capacities in terms of the maximum number of urban vehicles and city freight they can handle.
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Several vehicle (fleet) types may operate at each tier. Each type is characterized by capacity and
unit utilization cost, the latter being viewed as a “social” cost of the presence of a vehicle of that
type in the corresponding part of the city.

The goal is to identify, among the candidate sites, a number of satellite locations where freight
may be transshipped from urban vehicles to city freighters for distribution within the core of the city
and, thus, satisfy demand. Selection decision variables are associated with each potential location.
Path-flow decision variables are defined for each product and origin-to-destination demand to yield
the quantity of that demand being moved from the external to the customer zone through each
of the potential satellites. This structure leads to a location-allocation formulation, where the
objective function minimizes the generalized cost of the system, accounting for the fixed cost of
opening and operating the satellites, as well as the transportation costs to satisfy demand. Other
than the flow-conservation (demand satisfaction) constraints, the model includes linking constraints
enforcing the capacities of the selected satellites.

The model was presented as a means toward a proof-of-concept for the potential benefits of two-
tiered CL, and actual data from the city of Rome was used to estimate the demand, the division
of the city in external and customer zones, the identification of possible sites for the satellites, and
the cost of moving within and impacting the city. The study area corresponds in its general lines
to what is known as the centro storico, the historical center of Rome (the zone within the Aurelian
walls as well as the neighborhoods around the Vatican City), an extremely important, sensitive,
and busy area in Rome. The proof-of-concept experimentation produced very encouraging results,
indicating that such a system may indeed contribute towards reaching the goals of a better city
environment at a reasonable cost. This work was the seed for numerous research projects and
contributions, including Baldi et al. (2012) addressing the same problem setting with stochastic
costs for the flow paths.

3.2 Location-Routing

Location-routing formulations (Drexl and Schneider, 2014, 2015; Prodhon and Prins, 2014; Albareda-
Sambola and Rodŕıguez-Pereira, 2019) aim to capture the intricacies and cost of using fleets of less-
than-truckload vehicles to deliver and pick up goods using the facilities one desires to locate. The
transportation part is therefore modeled on a network representing either the direct movements al-
lowed among facilities and among those and the customer zones, or the actual infrastructure (e.g.,
street) network used to perform the routes. The former case corresponds to the representation
generally used in the vehicle-routing field, the actual infrastructure network being used to compute
the distance (cost) matrix and associate these to the network model (see Section 4.2). This is also
the approach of most location-routing models, in particular those discussed in the following.

Guyon et al. (2012) proposed what may be the first location-routing model for CL. The authors
addressed a single-tier, single-fleet, inbound traffic system, where vehicles deliver parcels from logis-
tics facilities to customer zones inside the city. Each potential facility is characterized by a capacity,
in number of bay doors for vehicles, which needs to be determined as well. Each customer zone
must be serviced by a single vehicle route. The vehicles providing the service have limited loading
capacity and the routes they may perform have limits on distance and duration, the later including
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service times at customers and travel times adjusted for congestion within each customer zone The
decision variables concern the selection of facilities and their corresponding capacities, together
with the construction/selection of the vehicle routes needed to satisfy demand. The generalized
objective function encompasses terms reflecting the economic cost and the environmental impact
of the system, as well as the social acceptability of the facilities by the population. The integer
programming formulation was solved using a commercial software. An application to the city of
Marseilles, France, was used to showcase the performance of the methodology and the potential
benefits of the proposed system.

Most LRP contributions to the planning of two-tier CL systems address location decisions on a
single tier only (e.g., Hemmelmayr et al., 2012; Gianessi, 2014; Gianessi et al., 2016; Winkenbach
et al., 2016; Boccia et al., 2018). A general formulation of a n-tier LRP (addressing location
decisions at n-1 levels) can be found in Gonzalez-Feliu (2012). Given the limited chapter length,
we focus on one of these contributions, which brings also forth an interesting variant of the CL
architecture.

The CL system studied in Gianessi et al. (2016) is based on a ring of CDCs that collect the
inbound and outbound flows of freight between the external and customer zones of the city. Freight
between external zones and CDCs passes through specific points called gates, each gate giving access
to a subset of potential and close by CDCs. Notice that, gates are not proper terminals, but play
the role of first-tier facilities in directing traffic. Freight at a CDC may be either distributed
directly to customers, or first moved to another CDC, closer to the respective customer zone,
and distributed out of that facility. The inter-CDC movements are to be performed by a ring of
transportation infrastructure or services, circling the city, while movements between CDCs and
the customer zones they service are performed as pickup-and-delivery operations. A number of
additional characteristics are considered, e.g., vehicle capacity and route length limits, open routes
(i.e., not returning to the starting facility), extra vehicles available for hire, and fleet repositioning
at the “end of the day”. Time aspects are not considered. The ring location-routing problem
addressed by the authors then includes binary decision variables for the location of CDCs and the
design decisions constructing the ring linking all the selected CDCs, continuous arc-flow variables on
the superior network for the freight itineraries between the corresponding entry or exit gate to a first
and, possibly, a second CDC, the latter on the ring, and binary pickup-and-delivery route-selection
variables for the second tier customer visits. The authors propose a mixed-integer formulation, a
number of valid inequalities to strengthen the formulation, and a matheuristic solution method that
decomposes the problem into several main blocks: selection of facilities and demand assignment,
ring construction, ring flow determination, and route generation. As expected, a commercial solver
can solve tiny instances only. A hybrid heuristic, solving exactly the problem on a reduced set of
routes gives good results as the size increases, but the matheuristic is needed for somewhat larger
instances.

Boccia et al. (2011, 2010) are probably the first to address the integrated problem of simulta-
neously locating facilities on both echelons of two-tier CL systems, the transportation of freight on
the resulting network being modelled through routing problems at each tier. The considered Two-
Tier Location-Routing Problem (2E-LRP to use the usual “echelon” term found in the literature)
setting considers the location of a set of capacitated CDC facilities on the first tier and of a set of
capacitated satellites on the second tier. Urban vehicle move freight from CDCs to satellites, while
city freighters deliver freight from the latter to customers. Vehicles on both tiers perform closed
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routes, each ending at the same CDC or satellite it started from. Although pioneering, the problem
setting is still very close to “classical” location-routing focusing on inbound demand for a single
(subsituable) product and a no-split-delivery policy within a static context (i.e., without time and
synchronization considerations). Still, three sets of decisions make up this core 2E-LRP: 1) facility
selection on each tier; 2) assignment of customers to selected satellites and of selected satellites to
selected CDCs; and 3) vehicle routing on each tier.

Boccia et al. (2011) proposed several mixed-integer which follows classic modelling approaches
for the Vehicle Routing Problem (VRP) (see Section 4.2): 1) a three-index model, inspired by the
work of Ambrosino and Scutella (2005), with a detailed arc-based representation of the routing
decisions; 2) a two-index model inspired by the multi-depot VRP of Dondo and Cerdá (2007);
and a single-index path-based formulation with sets of routes (paths) being generated for each
tier. The first formulation is very flexible. It may be adapted to address problem settings with
either symmetric or asymmetric cost matrices, and it may be extended to take into account a
large amount of features, e.g., multi-commodity (origin-to-destination) demands, customer and
facility time windows, maximum route length restrictions, and heterogeneous fleets. It involves,
however, a very large number of variables and constraints, which makes it harder to solve. The two-
index formulation is less flexible, e.g., it is less suitable for asymmetric cost instances. Moreover,
while it involves significantly less decision variables, it includes a larger number of difficult linking
constraints. These differences were echoed in the results of an experimental comparison of the two
formulations, performed using a commercial MIP software on a set of small problem instances. The
three-index formulation yields better lower-bound values than the two-index one and, thus, appears
to perform better as the problem size increases (in number of potential locations). Yet, the size of
the instances that could be addressed is limited and the lower bounds are not sufficiently tight for
efficient enumeration algorithms.

Two major research directions for this area thus appear promising. On the one hand, path-
based (single index, also called set partitioning) formulations have proven successful for many VRP
and a few location-routing settings (Albareda-Sambola and Rodŕıguez-Pereira, 2019). The need
to dynamically generate routes on two or more tiers, and to route freight on itineraries combining
pieces of these routes makes the problem extremely challenging, in particular when characteristics
proper to CL systems are considered (e.g., several demand and traffic types, time-dependency of
demand and routes, synchronization, and multiple tours). Most of the research in this area is still
to be undertaken. Not surprisingly that, on the other hand, most developments are taking place in
the second direction, efficient meta- and matheuristics being increasingly proposed.

Boccia et al. (2010) proposed a Tabu Search method for the basic 2E-LRP setting described
above. The method is based on decomposing the problem by tier. This yields two tier-specific
LRPs, each of which is further decomposed into a capacitated facility location problem and a
multi-depot VRP. The meta-heuristic iterates on the LRP subproblems through a feedback loop,
returning to the first tier when a new solution for the second tier either improves the best solution
found so far, or violates the capacity of a selected CDC. Classic neighbourhoods make up the VRP
part of the meta-heuristic. Compared to the results of the exact-solution method applied to the
two formulations, the Tabu Search found the optimal solutions to all small instances and improved
those the exact method could not solve to optimality.

Contardo et al. (2012) introduced a new two-index arc-based formulation for the same basic
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2E-LRP setting where, besides the binary variables to select facility locations and the arcs used
to move freight at each tier, ’new continuous variables stand for the amount of flow shipped to
and from each satellite’. This formulation yields tight linear-relaxation lower bounds, shown to be
much tighter than that what was offered in the literature. Moreover, most valid inequalities known
to be efficient for the capacitated LRP (Belenguer et al., 2010; Contardo et al., 2013) are also valid
for this new formulation. Contardo et al. (2012) use the satellite-flow variables to implement the
idea of decomposing the 2E-LRP along tiers, yielding two tier-specific capacitated LRPs, into an
exact solution method and a meta-heuristic. The Branch-and-Cut (B&C) algorithm makes use of
the bounds and cuts mentioned previously, together with new valid inequalities particular to the
problem setting. The Adaptive Large Neighbourhood Search meta-heuristic iterates on the two
LRPs, addressing the first (CDC) tier LRP each time the new solution of the second (routing)
tier LRP changes the satellite configuration. The ALNS meta-heuristic follows the structure of
the ALNS proposed for the two-echelon vehicle routing problem (Hemmelmayr et al., 2012). Eight
destroy and four repair operators are proposed. The former either explicitly open or close a satellite
(three operators) or indirectly change the satellite configuration by removing sets of customers (the
other five). Repair is performed according to insertion principles, all repair operators selecting an
open satellite, a route, and an insertion position for every customer one needs to insert, but applying
particular insertion criteria. Local search is used to improve the second-tier routes of promising
solutions. An extensive experimental campaign highlighted the capabilities of the methodology
proposed, the proposed exact and meta-heuristic solution methods being the best in their respective
categories for the 2E-LRP.

We are aware of only one contribution targeting a multi-attribute 2E-LRP, which brings the
LRP field closer to the general two-tier CL problem setting described in Section 2. Escobar-Vargas
et al. (2021) addresses a rich 2E-LRP with time-dependent multicommodity inbound demand from
external to customer zones, first and second-tier facilities, capacity restriction for the trans-dock
satellites (i.e., a limited short-term warehousing capacity is available), tier-specific fleets with lim-
ited vehicle capacity, and synchronization. Two time attributes characterize each origin-destination
demand: the availability time at the external zone (origin), which yields an availability time at each
of the first-tier facilities which may service it, and the due time window for delivery to the customer
zone (destination). The problem requires the selection of facilities on each tier, the assignment of
each demand to a CDC and of each customer zone to a satellite, the timely delivery of that demand
from its selected CDC through the selected satellite to its destination, the synchronized routing
and scheduling of the vehicle fleets on each tier of the system. The vehicle schedules specify the
departure times from the CDCs and satellites, synchronization taking place at satellites between
the first-tier urban vehicles bringing the freight from the CDCs and the second-tier city freighters
distributing the freight from satellites to the customer zones. The objective is to minimize the total
cost of the system computed as the sum of the fixed costs of selecting facilities on both tiers and
of the variable costs of operating vehicles on both tiers to transport the freight. Demand must be
delivered on time and it must not be split (single itinerary and each customer visited by a single
vehicle). The capacity limitations of the facilities and vehicles must be enforced.

Escobar-Vargas et al. (2021) propose two formulations for this problem setting, which differ in
the representation of the time interval, also called schedule length, considered for planning and of
how the system activities take place during that time. The first model is a three-index continuous-
time formulation, which focuses on the timing of operations, i.e., the time instances when vehicles
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arrive at and depart from CDCs, satellites, and customer zones. This representation of time leads
to a compact formulation with a polynomial number of variables (relative to the arcs and nodes
of the network). An allocation variable matches the vehicle and the commodity it picks up at the
moment the operation takes place. Synchronization is then enforced by limiting the time difference
between vehicles operating on different tiers when exchanging freight at satellites. The itinerary
used for each demand may then be deduced by associating the vehicle flow (visits of vehicles to
nodes), the allocations (what commodity is allocated to what vehicle), and the time variables (at
what time a node is visited). The resulting MIP is then solved through a well-known commercial
software.

The second model is a “classical” discretization approach, where the schedule length is parti-
tioned into a number of time periods, each physical node being duplicated at each possible time
period when at activity may take place (e.g., a customer zone is duplicated only at the periods
within the relevant time window). This mechanism leads to a time-space network, where every
node is a (physical node, time period) pair, physical arcs representing travel which may take place
between two such nodes. In contrast to the continuous representation of time, this model explicitly
encodes the timing decisions in the definition of the nodes and arcs in the network. Synchronization
and other timing decisions and limits are consequently expressed as selection and routing decision
variables and as constraints in the resulting time-space network MIP. It is well known that time-
space network design formulations yield more precise results when the discretization is more refined
(more time periods), but that they generally grow rapidly with this refinement. It is therefore note-
worthy that Escobar-Vargas et al. (2021) develop the first Dynamic Discretization Discovery (DDD,
Boland et al., 2017) solution method for location-routing. An extensive experimentation campaign
evaluate the performance, in terms of computational efficiency and quality of the upper (feasible
solutions) and lower bounds, of the two models and of the DDD solution method under various
problem and parameter settings

3.3 Location-Design

Section 4 presented Scheduled Service Network Design (SSND) models addressing tactical planning
issues for CL systems. These SSND formulations yield “best”, optimal, when solved exactly, plans
and multi-tier scheduled service networks in terms of the generalized cost of the system, given the
forecast demand, the system layout, composition, and attributes, as well as current regulations
and operation policies. The objective of this section is to emphasize that the SSND methodology
may be used not only for drawing tactical plans and guiding operations, but also as a valuable
analysis and evaluation tool for a broad range of longer-term issues. The study could be part of the
cost-benefit analysis, in economic, social, and environmental terms, of possible CL system selection
and deployment decisions. Similar studies may also be undertaken to evaluate potential impacts
on the system performance of the evolution and modification of internal or external elements.

The SSND modeling framework with approximated second-tier routing (Section 4.3) appears
appropriate to evaluate long-term strategic CL system selection, deployment, and modification sce-
narios, as the planning horizon implies a certain level of imprecision in the demand data. Such
scenarios may be related to the design, structure, layout, environment, business models, and op-
erating policies of the contemplated system, e.g., different 2T-CL layouts in terms of number,
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location, and capacity of facilities, the design of freight-dedicated corridors throughout the city,
particularly between CDCs and satellites, and the introduction of new or upgraded infrastructure
and services. Solving the SSND formulation would provide the decision maker with an evaluation
of the corresponding system performance in terms of the criteria and measures considered.

The SSND formulations of Sections 4.1 and 4.2 (as well as their variants integrating uncertainty,
e.g., Section 4.4) may be used when more detailed system supply and demand elements are available
and a more in-depth study is required. Such scenarios could concern, for example, changes in
facility capacity, particularly in dense urban zones (e.g., new city traffic rules that restrict access
and reduce satellite capacity, the assignment of customers to CDCs and satellites, the vehicle fleet
deployment, including the number of modes and fleets, the fleet dimensions and corresponding
vehicle characteristics, etc.

The SSND models may also be used to study different cooperation rules when several service
providers (public and private carriers, terminals, etc.) share infrastructure and perform CL activi-
ties under joint planning and operations-management mechanisms (e.g., an intelligent, arm-length
information-sharing and decision platform). Such rules may specify, for example, how to distribute
costs, vehicle utilization, or both among the participating carriers and facility managers, in order
to reflect their contractual commitments in terms of type and size of the fleet committed, territory
covered, financial and risk share, etc. Not much research has been dedicated yet on how to extend
SSND models to account for these issues.

To illustrate this problem setting (see, e.g., Crainic et al., 2020, for a limited foray into this
field), consider a type of carriers operating at the first tier, each with a threshold value on its
activity level, in terms of total ton-km performed or total cost of fleet usage. This threshold
may be represented through an “acceptable range of variation” of the corresponding measure, and
enforced by adding constraints to the formulation. These constraints would compare each carrier
share with the total cost associated with the selection of services, and limit it to the corresponding
range of variation. Penalties on exceeding the thresholds could be added to the objective function,
instead of including constraints, to add flexibility to the solution methods. Integrated location-
design formulations may also be built for a direct utilization as decision-support instruments for
strategic decision-making concerning, e.g., number, locations, and characteristics of facilities, CDCs
and satellites, to build or select, the construction of dedicated infrastructure or the connection of
the CL facilities to public transport infrastructure and services, the types of vehicles to use and the
dimensions of the fleets. Such integrated formulations generalize SSND models. Design (binary or
non-negative integer) decision variables are added to represent the selection of the contemplated
facilities or infrastructure structures, together with the corresponding commodity-flow decision
variables. Then, one must add and the linking (also enforcing capacity limitations, of course) as
constraints, connecting the various decision sets and enforcing, e.g., that only selected and paid
for facilities may the used by selected services of commodity flows. A similar approach may be
used to integrated fleet (vehicle) acquisition decisions or the addition or departure (selection-type
of decision in both cases) of a stakeholder (e.g., carrier or facility management firm). Budget
constraints, enforcing the total expenditure of selecting, operating, or both, may also be added to
the formulations.
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4 Short and Medium-term Planning - Designing the Service

We dedicate this section to four major classes of problem settings and models for the short (opera-
tional) to medium-term (tactical) planning of multi-tier CL systems. To simplify the presentation
and to represent the literature adequately, we focus on the case of two-tier systems. Extending the
methodology to multi-tier cases, particularly relevant for very large urban areas, implies moving
from a routing component on the second tier to a multi-tier routing setting. This is a challenging
and timely research area. Section 4.1 introduces a general methodology for CL tactical planning
combining network design and vehicle routing. Section 4.2 examines models based exclusively on
VRP principles for single and multi-tier settings. The issue of the representation of the lower-tier
pick-up and delivery activities within tactical-planning models is addressed in Section 4.3, while
uncertainty issues and tactical planning are illustrated in Section 4.4.

4.1 A general planning model for two-tier CL systems

We present a general modeling framework for two-tier CL systems, which accounts for time-
dependent origin-destination demand, several line-based and no-line transportation modes and
services, limited fleet sizes, various facility-capacity limitations, and synchronization requirements.
The model addresses the main tactical-planning issues:

1. Select a subset of scheduled services out of the set of possible line-based and no-line multi-
modal services;

2. Build the multi-tour pick-up and delivery (P&D) routes of the second-tier city freighters;

3. Determine the itineraries of each demand through the selected CL service network, including
the assignment to a CDC and a satellite for inbound and outbound demands;

4. Manage resources, i.e., the terminals and the multimodal fleets of urban vehicles and city
freighters, which connect and synchronize at satellites.

Scheduled service network design (SSND) formulations defined over time-space networks are
generally used to model tactical planning problems for consolidation-based freight carriers and
transportation systems. This is also the case for the first tier of this model, a multi-attribute P&D
modeling approach being used for the second tier. The presentation follows Crainic et al. (2021b)
and Crainic et al. (2009).

The tactical-planning optimization is performed for a given schedule length, CL infrastructure,
potential first and second-tier services, and a deterministic estimation of demand, travel times, and
activity times at facilities and customers. The goal of the model is to minimize a total generalized
cost, reflecting both the economics of operating the system and the potential impact on the city
while satisfying demand. The resulting service plan is supposed to be used repeatedly over a certain
tactical-planning horizon.
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As in most models discussed in this chapter, the problem is defined on a physical network. The
nodes encompass the external zones, the customer zones, the CDCs, and the satellites. The external
zones, which stand for the out-of-city origins and destinations, are linked by various transportation
modes to the city and the CDCs. The CDC used by each demand is to be selected by the model
and, thus, arcs representing the possible external zone - CDC connections are part of the physical
network. The network also includes modal arcs representing the connection possibilities among
CDCs and satellites and among satellites and customer zones.

Inbound, outbound and local requests for transportation make up the demand of the system.
Each customer demand, with its volume, is defined between a pair of origin-destination physical
nodes, which can be an external or a customer zone, and must move between these nodes. Time
attributes specify when the volume is available at origin and when it must be delivered at the
destination.

The SSND model is then built on a time-space network, corresponding to the discretization of
the schedule length into an appropriate number of periods. The physical nodes are duplicated at all
relevant time periods. A set of links representing the modal transportation and terminal-holding
activities connecting these nodes completes the time-space network. Movements are performed by
vehicles of different types and transportation modes.

The modeling framework does not impose limits to the volumes of a number of vehicles processed
at CDCs, reflecting that most CDCs are large facilities, where capacity issues are not critical and
sufficient space is available for vehicles to wait for loading and unloading activities. However, this
is not the case for satellites, where the space available for transferring goods limits the number
of urban vehicles and city freighters that can be present simultaneously. Furthermore, there is
generally no space for storing goods at satellites or vehicles to wait. Several capacity limits are
thus explicitly included for each satellite.

A potential first-tier urban-vehicle service is defined by the type of service, line-based or no-line,
and mode. It starts from a CDC, travels to one or more satellites assigned to it, and returns to
a CDC, possibly different from the one it started. The urban-vehicle route is thus composed of a
series of legs, from the CDC to the first satellite, from the latter to the second one, until the last leg
from the previous satellite to the destination CDC. The service schedule is given by the departure
time from origin, as well as by the arrival and departure times at all the satellites on its route,
which account for the travel time along the arcs of the specific mode and the loading and unloading
times at satellites. A cost is defined for each service to capture both the monetary expenses of
operating it and the city-infrastructure-utilization cost reflecting the “nuisance” factors related to
the presence of the urban vehicle in the city at the particular time of the service.

The second-tier pick-up and delivery activities between satellites and customer zones are per-
formed by city freighters operating multi-tour synchronized routes called work assignments. A
city-freighter work assignment operates a city freighter of a given type (and mode or fleet) over
a sequence of work segments, separated by returns to the garage, each segment being made up
of visits to satellites to load and unload freight and one or several pick-ups (outbound demand),
delivery (inbound demand), and pickup-and-delivery (local demand) activity phases. The schedule
of a work segment starts in the period at the first satellite or customer on its route. It continues
with the arrival and departure times at the visited satellites and customers. The cost of operating
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city-freighter work assignments is composed of the costs of its segments and those associated with
the garage (back and forth movements, idles time, etc.). Similar to the first-tier services, it includes
the fixed operating cost and the city-infrastructure-utilization (“nuisance”) cost.

Demand is moved from origins to destinations via itineraries that include the facilities and the
first and second-tier services. Inbound-demand itineraries are thus made up of the movement from
the external zone to a CDC, an urban-vehicle movement, a transshipment operation at a satellite,
and the final distribution by a city-freighter work segment. Outbound-demand itineraries involve
the same operations in reverse order. Local-demand itineraries correspond to pick-up and delivery
routes (possibly passing at satellites to service the other types of demands) among customer zones.

The path-based SSND formulation aims to minimize the number, cost, and impact of vehicles
in the city while satisfying demand requirements and capacity limitations. Three sets of decision
variables are defined to select urban-vehicle services, city-freighter work assignments, and demand
itineraries, respectively. The objective function computes the total generalized cost of the system
(operations and negative impact on the city) as the sum of the costs of the selected urban-vehicle
services and city-freighter work assignments.

The constraints state that each demand must be satisfied by a single itinerary (split demands
may be accommodated), enforce the urban-vehicle capacity restrictions for each leg of the vehicle
route, and enforce city-freighter capacity restrictions at all times for each segment of a work as-
signment. These last two groups of relations are the classical linking constraints of network design
formulations. Additional constraints enforce the satellite capacity restrictions regarding total num-
bers of urban vehicles (services), mode-specific urban vehicles, city freighters, and freight handled.
Note that the coherence and synchronization of the respective numbers of urban vehicles and city
freighters present simultaneously at satellites are provided by the flow of freight imposed by the de-
mand itineraries. A final group of constraints limits the numbers of services and work assignments
of each type operated to the size of the corresponding fleet.

4.2 Routing-based models

Routing vehicles, of any mode on the appropriate infrastructure, to provide transportation for the
freight loads with origin or destination or both in the urban area studied is an intrinsic part of
City Logistics. The issue is directly linked to the first/last mile/kilometer activities, particularly
for single-tier systems, and most pick-up and delivery activities on the components of the second
tier of more complex systems. It is also noteworthy that the generation of first-tier services may be
addressed through routing principles. Not surprisingly, several models have been proposed where
all transportation activities are represented through the vehicle routing perspective.

This subsection is dedicated to presenting a brief overview of these models. We start with the
basics, namely, the last-mile/km delivery of inbound demands to customers, which is a core activity
in all CL systems (Section 4.2.1). Demand delivery may take place out of CDCs, particularly in
single-tier systems or satellites. We then turn to the case of the multi-type demand with com-
binations of inbound demand delivery, outbound demand pick-up, and local demand pick-up and
delivery activities (Section 4.2.2). We conclude with models where routing is planned and possibly
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synchronized, on several tiers (Section 4.2.3).

4.2.1 Last-mile delivery

City logistics customers are confronted with the final transportation operator, which provides the
last-mile delivery service. Last-mile delivery is the final stage of the supply chain where products
are sent from a facility, which can be a local warehouse, a CDC, or a satellite, to customers. Last-
mile delivery is most often managed as a less-than-truckload service, where shipments for different
customers are consolidated onto a vehicle. The vehicle then visits the customers in a sequence
called a route. The determination of optimal routes is precisely the objective of what is called the
Vehicle Routing Problem (VRP) in the operations research literature.

The VRP was introduced in the late 1950s by Dantzig and Ramser (1959). In its initial setting,
the VRP is a “pure” combinatorial problem, far from the actual applications in City Logistics.
The VRP is defined on a network. In CL terms, the nodes of this network represent the facility
(the depot in VRP vocabulary) and the customers. These nodes are connected by uncapacitated
edges (traffic may flow in both directions). A cost (distance, in pure VRP) is associated to each
edge, to be incurred when a vehicle travels along it. Each customer has an inbound demand to
be delivered from the facility-depot. A homogeneous fleet of capacitated vehicles is available at
the facility-depot and provides the delivery service. The VRP aims at determining minimum cost
routes, i.e., sequences of customers, such that each customer is visited once and the capacity of
vehicles is not exceeded. This problem is now called the Capacitated Vehicle Routing Problem
(CVRP), while the acronym VRP denotes the family of vehicle routing problems.

Over the last sixty years, there has been a steady increase in the variants considered, mainly
motivated by applications. These variants are defined by considering a different type of input
data, additional constraints, other objective functions. Several features have to be considered to
tackle real-life applications such as those encountered in City Logistics. Such VRPs are called “rich
VRPs”. Rich VRPs can be classified according to the scenario characteristics and the physical
problem characteristics as proposed in Lahyani et al. (2015). The features of the scenario are
defined by the type of input data, management decisions, number of depots, types of operation
types, load splitting constraints, planning period, and vehicle utilization (single/multi-trip). The
physical characteristics of the problem are related to the vehicles, the time-window structure and
time constraints, the incompatibility constraints, and the objective function definition. These
characteristics define variants of the VRP, which are generally addressed in a general setting but
are relevant in City Logistics. We focus on some of them, starting with the variants based on
the scenario characteristics. The input data can be dynamic (see Section 5). However, in short
to medium-term planning, stochastic VRPs are of interest for capturing the variability of the
environment. Stochasticity is usually considered in terms of demand, service times, and travel
times (see Oyola et al., 2017a,b, for a survey).

The routing decisions can be made jointly with other management decisions in integrated routing
problems. Among them are Location Routing Problems, which aim to simultaneously determine the
location of depots and the routes rooted at those depots (Section 3.2). Inventory routing Problems
consist in determining the routes and quantities to be delivered to avoid shortage at customers
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(Coelho et al., 2014). This problem is related to the Vendor-Managed Inventory (VMI) policy, in
which the supplier monitors the inventories of retailers and decides on replenishment policies. VMI
is used in particular in food distribution in City Logistics (see, e.g., De Maio and Laganà, 2020).

The different types of operations considered in the VRP literature are encountered in City
Logistics. We distinguish delivery/pick-up operations from/to a terminal, pick-up and delivery
operations, and delivery-then-pickup operations. The first case corresponds to the classical VRP.
The goods are loaded at the depot and then delivered to the customers or vice-versa. The second
case is the general one known as the VRP with Pick-ups and Deliveries. Goods are picked up
and delivered at any location. There are many variants of this problem. For example, pick-up and
delivery sites can or cannot be different. A one-to-one relationship between the pick-up and delivery
locations may be imposed, as in the courier industry, or not. In the last case, the operations are
carried out in sequence: deliveries first, then pick-ups second. This problem is known as the VRP
with Backhauls. For an overview of this class of problems, we refer to Battarra et al. (2014); Koç
et al. (2020); Koç and Laporte (2018). In Section 4.2.2, we provide a brief overview of the VRP
with Pick-ups and Deliveries in multi-tier CL.

Regarding the physical characteristics, we do not detail all constraints related to the vehicles,
including their number, type, structure, capacities, loading policy, and driver regulations. Instead,
we focus on the constraints related to time management. While a limit on the route duration is
included in the basic definition of the VRP, the VRP with time windows (VRPTW) was among the
first extensions considered. A hard time-window constraint at a node imposes that the node must
be visited by a vehicle between a lower and upper time limit. A time window constraint is said to
be soft when a penalty is applied for late arrival. Time windows can be unique or multiple and
can be imposed at the depot. In the context of City Logistics, vehicles may visit facilities, CDCs
or satellites, to be reloaded during the planning period. Time-windows are then defined at the
satellites to model synchronization in a multi-level distribution systems (see Section 4.2.2; Nguyen
et al., 2013). Desaulniers et al. (2014) propose a survey of models, exact methods, and heuristics
for the VRPTW.

The last characteristic we would like to mention is related to the objective function. The classical
variants of the VRP variants minimize cost-oriented functions such as the total distribution cost,
total travel time, or total duration. However, other objective functions have been considered in
the literature (see, e.g., Jozefowiez et al., 2008). In the context of City Logistics, the so-called
sustainable VRP is particularly relevant. The sustainable VRP consists in taking into account
social and environmental criteria in the design of routes. Social factors can be customer, driver, or
society oriented depending on whether there are related to customer satisfaction, such as on-time
delivery or the freshness of the products, related to job satisfaction, such as workload balance or
delivery consistency, or associated with the density of population, the people utilization of the
streets making up the route, or the cultural, social, or touristic interest of those same streets. Such
social aspects have not yet been addressed, unfortunately, except for a few environmental issues.
VRPs addressing the latter are called green VRPs in the literature. The environmental factors
are related to gas emissions and the use of electric vehicles or hybrid vehicles, taking into account
energy consumption. These alternative objectives have been classified by Vidal et al. (2020), and
a review of the sustainable VRP in City Logistics is proposed by Dündar et al. (2021).

The VRP solution methods cover the whole spectrum of integer programming optimization
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algorithms. They cover exact methods based on mathematical programming approaches as well
as approximate procedures. Such methods are presented in the book by Toth and Vigo (2014).
During the last ten years, algorithms have been designed to tackle specific variants of the VRPs,
including many of the characteristics mentioned above. Nowadays, approximates methods are
frequently based on metaheuristics. The most popular ones are tabu search, variable neighborhood
search, genetic algorithms, and ant colony optimization (see, e.g., Elshaer and Awad, 2020). As
for the exact approaches, they are based on the branch-and-price or branch-and-price-and-cut
frameworks (see, e.g., Costa et al., 2019). A significant methodological advance is the development
of algorithms able to identify high-quality/optimal solutions for different variants of the VRP.
Two essential works in this line of research are the articles of Vidal et al. (2014) and Pessoa
et al. (2020). Vidal et al. (2014) have developed a genetic algorithm hybridized with local search
procedures, which is problem independent. Operators related to the specificities of the considered
variant are selected automatically. They correspond to the assignment, sequencing, and evaluation
of routes. The authors assessed 29 classical variants of the VRP on which they could match or
outperform the state-of-the-art tailored methods. Considering exact methods, Pessoa et al. (2020)
propose a generic framework to model VRP problems and a Branch-and-Cut-and-Price algorithm
to solve them. This algorithm includes most of the advanced features, which were introduced to
solve various VRP variants. New concepts are also introduced related to the modeling part, such as
the concept of mapping between the route variables and the constraints of the master problem or
to the solution method such as the concept of packing and elementarity sets, which lead to extend
some advanced components such as the consideration of non-elementary routes (i.e., routes that
serve more than once a customer). The authors were able to solve instances of 6 classical variants
of the VRP to optimality. Their approach outperforms the state-of-the-art for five of them, while
it is dominated on a specific class of instances of the VRP with pick-ups and deliveries.

To conclude this section, we should point out that several variants have appeared in the VRP
literature that are directly related to the specifics of City Logistics in recent years. Thus, many
articles consider the various types of last mile delivery services: 1) home delivery; 2) pick-up points
such as dedicated lockers or stores; 3) trunk/in-car delivery, also called roaming delivery. In the
latter case, customers’ packages can be delivered to the trunks of cars. In-car delivery is different
from home delivery and pick-up points delivery since a car moves and may be in different locations
during different periods. These delivery services can be combined and proposed to customers who
benefit from greater flexibility according to their convenience. Moreover it contribute to increase
the rate of successful first-time deliveries and decrease delivery costs (e.g., Reyes et al., 2017; Yuan
et al., 2021; Dumez et al., 2021).

The management of the vehicle fleet has specific characteristics in City Logistics. Very often,
the route durations are shorter than the possible planning horizon. This means that the courier is
going to make more than one route during his shift, but rather a sequence of routes. The multi-trip
VRP addressed this additional assignment decision. We refer the interested reader to Cattaruzza
et al. (2016) for a survey. Collaboration between carriers through city incentives has also been
considered. Montoya-Torres et al. (2016) have shown that substantial gains in distance could be
achieved for the city of Bogota with a horizontal collaborative system. Finally, large retailers can
complement their delivery service by offering to deliver online orders to their in-store customers
on their way home. This strategy is called crowd shipping and the related optimization problem
has been addressed as the vehicle routing problem with occasional drivers (Archetti et al., 2016;
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Dayarian and Savelsbergh, 2020).

When VRPs are addressed in the context of City Logistics, space and time issues naturally arise.
A recurring concern is related to synchronization related to the load, to a resource, or locations.
We refer the reader Sections 2.5, 4.1, and 4.2.3 where they are discussed in more detail. As
mentioned above, the routing part can be considered too schematic in the VRP as a path between
two places to visit is reduced to its distance and duration. Recently, authors have considered a
more detailed approach by including information related to the real road network in the problem
definition (see Ben Ticha et al., 2018, for a survey). Finally, to be even more realistic, many authors
have considered the time-dependent VRP. In this case, time or speed functions are associated with
the arcs of the underlying graph. In most models (see Gendreau et al., 2015, for a survey) arcs are
associated with the pairs of locations to be visited. Recent works (see, e.g., Huang et al., 2017)
have, however, defined them at the level of the real-road network.

4.2.2 Pickup & delivery Operations in Multi-Tier City Logistics

Most CL projects and research developments address inbound movements only, reflecting the dom-
inant position the traffic proceeding from the exterior of the urban area towards its center occupies
within the travel patterns observed in most cities. Yet, the volumes of freight produced within the
city and shipped to locations within or outside it may be significant, particularly as the dimen-
sions and density of the city increase. The situation is gradually changing, however, an increasing
number of projects and contributions to the CL literature addressing the simultaneous satisfaction
of several demand types with the same resources, facilities, and multimodal fleets (Crainic et al.,
2021b). As a result, Pickup-and-Delivery vehicle routing (P&D) formulations are increasingly pro-
posed to address the corresponding planning and management problems. This section focuses on
challenges and recent contributions targeting these issues in the context of multi-tier CL systems.

To our best knowledge, Crainic et al. (2012) were the first to investigate this issue within the
context of two-tiered CL systems. The authors did not formulate models or algorithms. They
instead examined various integration strategies of inbound, outbound, and local (at the second
tier) traffic and discussed the potential impact on operations and management of strategies where
facilities and vehicle fleets are more or less integrated. Thus, for example, the problem is much
simplified when the deliveries to customers (last-mile part of inbound demand) and the collection
of goods at origins within the area (first-mile part of outbound demand) may be separated by, for
example, performing them at different periods during the day. The same resources may then be
used sequentially, within the constraints of the working hours of the facility employees and vehicle
operators, for each type of operation. The total resource-related costs are then expected to be low.
The models and methods described in Section 4.2.1 and the surveys mentioned above may be used
for each operation.

Combining several demand and traffic types within the same operations procedures and, there-
fore, within the same optimization models is more complex, however, both from a managerial point
of view and from a modeling and algorithmic-development perspective. Let us illustrate such poten-
tial complexity within the routing of vehicles on a second tier of the CL system. Figure 2 illustrates
part of a potential city-freighter P&D route when the three demand types may be serviced within
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Figure 2: Pickup & delivery city-freighter route for multi-type demand

the same vehicle. We assume that an optimization module has built this route to minimize the
generalized CL costs within the constraints of satellite and customers time windows, operating
rules regarding the driver and the vehicle, and the vehicle loading and unloading operation policies,
given the urban-area location and the time period. The latter is important for all P&D routing
problems but are particularly stringent in the CL context. Indeed, mixing pick-up and delivery
operations means that one has easy access to loads within the vehicle when a delivery needs to be
performed. Thus, either the vehicle is so equipped that any load may be reached at any time, or
sufficient time, and pace, is available at all relevant locations to unload what is needed to achieve a
specific load which is to be delivered and to reload everything back into the vehicle, such situations
are implausible to occur in CL contexts, or freight is to be loaded in an appropriate order for easy
unloading and delivery. The Last-In-First-Out (LIFO) loading policy implements such an order,
as well as the VRP-with-Backhauls operating strategy. According to the latter, a vehicle operating
a P&D route first visits linehaul customers, which require deliveries, and then backhaul customers,
which require pick-ups (see the P&D surveys referred to above, and Koç and Laporte, 2018, for a
detailed review of model formulations and solution methods).

The city-freighter multi-tour route of Figure 2 was generated according to the LIFO policy. Still,
the operation strategy provides quite a high flexibility in using resources and servicing customers.
The vehicle loads inbound freight at satellite Si and starts a sequence of visits to customers until all
inbound traffic has been delivered. This sequence is followed by a series of P&D activities servicing
local demand, followed by a sequence of collections of outbound loads, which are delivered to
satellite Sj for transfer to a first-tier service bringing them to the appropriate CDC (and, from
there, to their final destinations outside the city). The city freighter loads a new set of inbound
loads, delivers some of them, continues with a series of P&D operations, completes the delivery of
inbound demand, collects outbound demands, delivers them to a satellite, and continues its planned
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route.

More complex strategies, still abiding by the LIFO rule, may be defined, as described in Crainic
et al. (2012). The authors also emphasize that the efficiency of the routing problem, in terms of the
number of vehicles, total cost, and time, will increase with the degree of integration of operations.
Yet, on the other hand, the managerial and operational (particularly for the driver performing the
loading and unloading operations) complexity would increase as well. The authors thus generalize
the VRP-with-Backhauls idea and propose a Pseudo-Backhaul strategy, where several delivery, pick-
up, and P&D sequences may be combined, provided each sequence is completely finished before a
different type of operations is undertaken (the partition of the second inbound-delivery sequence
in Figure 2 contradicts this definition). Figure 3 illustrates a city-freighter route implementing a
Pseudo-Backhaul policy while servicing inbound, outbound, and local demand customers between
two satellite visits.

Si
Inbound 
delivery 

Local 
Pickup & delivery 

Outbound 
pickup Sj

Unloading outbound
Loading inbound

Unloading outbound
Loading inbound

Figure 3: Pseudo-Backhaul Pickup & delivery city-freighter route

Fontaine et al. (2021) applied such a policy to the utilization of first-tier vehicle compartments
within a two-tier CL SSND tactical-planning model with approximated second-tier routing. Nguyen
et al. (2017); Crainic et al. (2016b) adopted the same strategy in their studies of multi-zone, multi-
trip VRP with P&D and time windows, where the vehicle routes visited a series of satellites (supply
points in the articles) and inbound, outbound, and local demand customers, in such a way as to
synchronize the hard time windows of the satellites and customers. The authors extended the
tabu search algorithm proposed by Nguyen et al. (2013) to address the increased complexity and
challenges of integrating the three demand types within the same model and algorithm. Bettinelli
et al. (2019) proposed a Branch-and-Cut-and-Price algorithm for the same multi-trip problem with
separated pick-up and delivery operations.

4.2.3 Integrated Freight and Vehicle Routing in Multi-tier City Logistics

Generalizing the definitions of Gonzalez-Feliu (2013) and Cuda et al. (2015), Multi-echelon Vehicle
Routing Problems (nE-VRP for a generic number of n echelons) address the issue of optimally
routing freight from origin to destination through the terminals of a multi-echelon/tier system,
while simultaneously optimizing the routes of the vehicles providing transport services at each tier.
The nE-VRP methodology is thus appropriate for the short to medium-term planning of multi-
tier CL systems, mainly when no line-based transportation services are considered on the first tier
and the vehicle routes of the no-line modes have to be determined. Cuda et al. (2015) present a
general survey of the 2E-VRP historical development, models, and solution methods. Additional
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information may be found in Cattaruzza et al. (2017), which describes the various freight flows
and vehicle movements within urban areas and the implications in terms of models and solution
methods. Guastaroba et al. (2016) also briefly touch on nE-VRP while focusing on intermediate
facilities in service network design and routing.

The surveys referred to above, as well as in Sections 4.2.2 and 3.2, indicate that 1) the study of
multi-echelon location-routing problems (Section 3.2) was initiated quite some time before that of
nE-VRP; 2) the literature in both cases addresses almost exclusively two-echelon problem settings;
we consequently focus this section on 2E-VRPs applied to 2T-CL systems; 3) City Logistics is the
application field which motivated the introduction of 2E-VRP problems, the paper by Crainic et al.
(2009) introducing the first formal definition of the problem (Cuda et al., 2015); most papers in the
literature focus on the basic version of the problem settings, the Capacitated 2E-VRP (2E-CVRP).

Like the CVRP, the 2E-CVRP is defined on a network with nodes representing a single CDC
(the depot), a set of satellites, and customers. Two sets of undirected edges link these nodes
without capacity limits. The first set connects the first-tier nodes, CDC and satellites, and pairs of
the latter, while the second performs the same role for the second tier, each satellite to customers
and pairs of customers. Each customer has an inbound demand, all demand being available at
the CDC. Two tier-specific homogeneous and capacitated fleets of vehicles provide the delivery
services. A single itinerary must deliver each customer demand, a first-tier urban-vehicle route, a
transfer at a satellite, and a second-tier city-freighter route. A cost is associated with each edge
of the network, incurred wherever included in a vehicle route. A unit handling cost is associated
with each satellite for unloading freight from the urban vehicle, transferring and loading it into the
appropriate city freighter. The number of city freighters that may load freight at a satellite, i.e.,
the number of routes initiated at the satellite, is limited by a satellite capacity.

It is noteworthy, given this definition, that the application of 2E-CVRP methodology to City
Logistics is restricted to cases with a single first-tier facility. Arc and path-based models may be
defined for the 2E-CVRP, and exact and meta-heuristic solution methods have been proposed for
both model types.

The 2E-CVRP name is introduced in Gonzalez-Feliu et al. (2008), including also a formal
definition as well as a three-index, mixed-integer arc-based formulation (based on multi-commodity
network design with arc flow decision variables). From that formulation, Perboli et al. (2011)
(see also Perboli et al., 2010) introduce a set of families of valid inequalities to strengthen the
formulation, two matheuristics, as well as a Branch-and-Cut algorithm with an initial heuristic
solution. Jepsen et al. (2013) notice that, when the assignment of customers to satellites is given,
the problem decomposes into a split-delivery CVRP on the first tier and a set of CVRPs, one
for each satellite. The authors then propose a three-index edge-flow formulation, which provides
upper bounds even for cases with more than three satellites. They derive a relaxation based on
the previous observation, which provides a lower bound. These elements are then integrated into a
Branch-and-Cut algorithm that outperformed the other exact algorithms present in the literature.

Sets of first and second-tier feasible routes are defined for path-based 2E-CVRP formulations,
the cost of each route being computed as the sum of the costs of its arcs. Binary selection decision
variables are associated to each route. A flow variable is also associated with each pair of first-tier
vehicles and satellites representing the freight loaded on the vehicle at the CDC to be delivered
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to the satellite. The path-based model then minimizes the total cost of the system, computed
as the sum of the costs of the selected routes on the first and second tiers, plus the total freight
handling cost at satellites. The constraints of the model enforce the capacity restrictions of the
satellites, first and second-tier vehicles, the delivery to each customer by a single itinerary (no-split
delivery, Archetti and Speranza, 2008), the flow balance at satellites (total flow brought in by ur-
ban vehicles must equal the total flow taken out by the city freighters), and the number of routes
used at each tier to the number of vehicles in the associated fleet. Baldacci et al. (2013) proposed
such a path-based formulation. The authors derive continuous and integer relaxations, a bounding
procedure based on dynamic programming, a lagrangian heuristic, and a problem reformulation
based on an enumeration of collections of first-tier routes yielding a set of multi-depot CVRPs with
side constraints (Baldacci and Mingozzi, 2009). The exact solution method built on these elements
outperformed the other exact solution methods present in the literature at that time. Yet, the
current best exact algorithm for the 2E-VRP is a Branch-and-Cut-and-Price algorithm proposed
by (Marques et al., 2020) for a new route-based formulation. Using several advanced CVRP model
enhancements, the proposed route-based formulation does not include CDC-to-satellite flow vari-
ables but rather an exponential number of constraints (enforcing flow conservation), which can be
separated in polynomial time. The authors also proposed new families of inequalities strengthening
the linear relaxation of the model and a new branching strategy tailored for the two-echelon prob-
lem setting. The authors report optimal solutions to the instances in the literature (with up to 200
customers and ten satellites) and a set of new instances with 300 customers and 15 satellites.

The 2E-CVRP is NP-Hard (see, e.g., Cuda et al., 2015) and it is thus not surprising that heuristic
solution methods are proposed. Large neighborhood-search-based meta- and matheuristics (Gen-
dreau and Potvin, 2019) currently offer the best performances for this class of problems, including
Hemmelmayr et al. (2012), which proposes an Adaptive Large Neighbourhood Search with destroy
(removing part of the current solution, customers or satellites) and repair (to build a new feasible
solution by re-inserting the removed customers or satellites in different positions) operators tailored
for each tier of the problem; Breunig et al. (2016) improved most of the best solutions through a
Large Neighbourhood Search (LNS) meta-heuristic, which focuses on the second tier through new
route destroy and repair operators combined with a local-search route-improving phase, the first
tier routes being reconstructed at each iteration; Wang et al. (2017) enhanced the problem setting
with time-dependent travel times on congested second-tier arcs and fuel-consumption and emis-
sion cost considerations and proposed a matheuristic combining a Variable Neighbourhood Search
meta-heuristic to construct a set of second-tier routes and an exact integer programming method
over the set of generated routes. The currently best-performing meta-heuristic for the 2E-CVRD
is proposed by Mühlbauer and Fontaine (2021) for a CL application involving cargo-bicyles on
the second tier, containers being transferred at satellites from first-tier vans to cargo-bikes. The
authors also acknowledge that travel times are not generally symmetric in urban areas and propose
a new formulation addressing the issue. The synchronous parallel meta-heuristic (Crainic, 2019)
starts with several different initial solutions, each being the starting point of a Large Neighbour-
hood Search thread (with particular parameter values). The threads are stopped and synchronized
after a certain number of iterations, solutions are exchanged, and new initial solutions for the LNS
threads are identified. A heuristic is used to update the first-tier routing when the demands at
satellites are modified.

This rapid survey of the field (more references and in-depth surveys offered by Cuda et al., 2015;
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Schiffer et al., 2019) illustrates that, on the one hand, most contributions address the fundamental
problem setting but, on the other hand, urban transportation and CL characteristics start to appear
in the 2E-CVRP literature. We already mentioned time-dependent travel times and environmental
concerns (Soysal et al., 2015; Wang et al., 2017) and the utilization of cargo-bicycles on the second
tier of a CL system with asymmetric travel times. As the variety and modes of vehicles used in City
Logistics are continuously broadening, the introduction of electric vehicles in the 2E-CVRP problem
setting is worthy of notice. (Breunig et al., 2019) address this problem and the particular challenges
brought by the recharging constraints to second-tier vehicle routing, and propose an exact method
based on the algorithm of Baldacci et al. (2013) and an LNS meta-heuristic inspired by ideas
introduced by Breunig et al. (2016). Extensive comparison results showed the good performance
of the proposed meta-heuristic and the value of integrated planning.

Also important is the explicit consideration of time considerations in 2E-CVRP settings. Grang-
ier et al. (2015) integrate customer time windows, synchronization at satellites, and multi-trip
second-tier routes in a new 2E-CVRP formulation. Customer time windows and no storage capac-
ity at satellites imply synchronization requirements (Drexl, 2012), i.e., that first and second-tier
vehicles must “meet” at satellites to ensure smooth freight transfers and on-time delivery at cus-
tomers. The authors address this issue by explicitly defining decision variables for the time vehicles
start service at the nodes, satellites, and customers, of the network, together with constraints en-
forcing the order of operations at satellites. An ALNS meta-heuristic is proposed, together with
operators tailored to rebuild feasible solutions concerning time.

Yet, as this brief literature survey illustrates, 2E-CVRP contributions address very few of the
system attributes and challenges of 2T-CL systems. Many of these attributes were introduced
by Crainic et al. (2009) in the first formal definition of the two-echelon vehicle routing problem,
presented within their study of tactical planning of two-tier CL systems. The authors proposed
path and arc-based models for the 2E-VRPTW with multiple CDCs (depots), scheduled (i.e., time-
dependent) multi-commodity non-substitutable inbound demand defined by origin-destination and
by product type, customer time windows, heterogeneous and capacitated urban-vehicle and city-
freighter fleets with particular product-to-vehicle restrictions, multi-tour city-freighter routes on
the second tier, time-dependent travel times, capacitated satellites with no storage room, and syn-
chronization requirements. The authors also defined the corresponding single-tier routing problem
for the second tier of the system when the satellites handling each customer demand are known.
The authors discuss solution-method avenues and introduce a meta-heuristic framework based on
decomposing the problem along tiers. No implementation is, however, reported.

Research on this class of problems is still in its initial stages. We are not aware of any con-
tribution addressing all the characteristics present in Crainic et al. (2009), which, moreover, does
not include several important attributes, e.g., outbound and local demand, public and private
high-capacity transportation modes (such as interurban rail connected to stations within the city
and passenger light-rail, bus or trolleybus), ”new” transport technologies, e.g., drones, robots, and
autonomous vehicles, short-term storage, involvement of individuals in the last tier of the system,
either to deliver or pick-up loads on their way out of or toward their destinations (e.g., crowd
sharing) or to collect their own loads at near-by facilities (e.g., lockers), and uncertainty. Most
of these recent delivery strategies have started to be addressed for one-tier systems (see section
4.2.1). Research in all these aspects is needed. In problem settings, it combines several of them,
to problem definition, modeling, solution-method development, and case studies of applications in
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cities in various social, political, economic, and cultural environments. We illustrate some of the
first steps in this field in the rest of the section.

Zhou et al. (2018) address a 2E-VRP with inbound (e-commerce package) demand, multiple
CDCs (depots), and shared resources. In this problem setting, each CDC belongs to a particular
logistics operator. Hence, each customer is associated with a particular CDC, and the problem
has multi-commodity (origin-to-destination) demand. The deliveries out of all CDCs are, however,
performed through a set of shared satellites. Satellites have capacities restricting the amount of
freight and the number of customers, which may be serviced. Homogeneous fleets of urban vehicles
are associated to each CDC and are thus not shared. On the second tier, however, homogeneous
fleets of city freighters are associated with each satellite and thus shared resources. All vehicles
are capacitated, and each fleet is of a limited size. Duration limits are imposed on first-tier routes,
while a maximum number of city freighters may be used globally. An additional type of facility is
defined. Called customer pick-up, it stands for sites where customers may pick up their package
close to one of their activity locations (e.g., home or work). A set of delivery preferences then
characterizes each customer; either home, or a set of preferred pick-up facilities, or both. The goal
is to design first and second-tier routes and the customer-demand itineraries given corresponding
to-be-determined pick-up options to minimize costs while enforcing the usual facility, vehicle, and
customer demands. A hybrid multi-population genetic meta-heuristic is proposed (based on Vidal
et al., 2012), with very good results. The experimentation included a real-world instance, based on
an application in China, and showed customers the benefits of offering pick-up options.

Dellaert et al. (2019) address a 2E-CVRP setting with multiple CDCs, a substitutable (may
be satisfied from any CDC) inbound customer demand, hard customer time windows, and waiting
allowed at all locations at no cost. Given the typical cost and capacity restrictions, the goal is to
design sets of first and second-tier routes to satisfy customer demands within their time windows
through single city-freighter visits. The authors propose a somewhat classical three-index arc
formulation and discuss the additional complexity and challenges brought by the interconnectivity
and coordination of first and second-tier tours at satellites, including arrival and departure times
of the corresponding vehicle routes. The authors thus propose a second formulation based on tour-
trees, a tour-tree being composed of an urban-vehicle tour and at least of city-freighter tour starting
from each satellite visited by the urban vehicle. Considering the sets of feasible tour-trees, the one-
path model takes the form of a set partitioning formulation, where the optimal set of tour-trees
satisfying demand with a single visit to each customer is to be selected. A Branch-and-Price solution
method is proposed. The authors also proposed a decomposition of the tour-trees along the tiers,
yielding a two-path formulation. The associated solution method enumerates the first-tier tours
and adapts a Branch-and-Price algorithm to generate the associated second-tier tours dynamically.
This last formulation and solution method outperformed the one-path model on instances with up
to five satellites and 100 customers (optimal solutions obtained).

The explicit consideration of origin-to-destination multi-commodity (inbound) demand consti-
tutes an important development in the field. Dellaert et al. (2020) extend their previous work in
this direction, and introduce an arc-based formulation, based on single-commodity one (Dellaert
et al., 2019), and a three-path model (Crainic et al., 2009, and Section 4.1). The authors acknowl-
edge the limitations of the arc-based formulation in terms of instance size, which may be addressed,
and discuss the challenges of synchronizing first and second-tier vehicles at satellites, in particular
to the dynamic generation of first and second-tier tours and OD demand itineraries, built out of
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those two. They, therefore, propose a third model, where the first-tier routing is arc-based, while
a path-based formulation takes care of the second-tier routes. Customer-to-satellite assignment
decision variables and inter-tier synchronization constraints (more straightforward to write due to
the arc formulation on the first tier) connect the two models. The authors extend the solution
methodology proposed in the earlier paper and report near-optimal solutions for instances with up
to five satellites and 100 customers.

We complete this literature tour with what we believe to be the first multi-objective contribution
to the 2E-VRP literature in a CL context. Anderluh et al. (2021) address a problem setting, where
cargo-bicycles or small electric vehicles perform the second-tier tours delivering inbound freight to
customers in the controlled inner-center of the city (Vienna is both the inspiration and the source of
the instances used for the experiments). A fleet of urban vehicles both performs this service in the
rest of the city and brings the freight to be delivered in the inner city to meeting points where the
two fleets synchronize, and transfers take place. Synchronization takes place at satellites without
storage capabilities. The problem setting acknowledges that there is no clear-cut frontier between
the inner and the rest of the city. Instead, there is a “grey zone” between the two and the goals
is to select how to service (regular urban vehicle or cargo-bicycle). The authors explicitly consider
the CL planning problem’s multiple objectives, identifying three goals to minimize transportation
cost, emission, and disturbance inconvenience for citizens. They propose a Large Neighbourhood
Search meta-heuristic and perform an extensive computational study of the impact of the different
problem elements on the tactical plan proposed and on the city.

4.3 Multi-tier planning with approximated lower-tier activities and costs

The SSND model of Section 4.1, combining network design and vehicle routing methodologies, may
be applied both to medium-term tactical and to short-term operational planning processes, with
the appropriate definition of external and customer zones (more aggregated for tactical planning
than for operational decisions) and estimation of demand and resources. It is indeed noteworthy
that Crainic et al. (2009) introduced the day-before planning problem, together with path and
arc-based versions of the SSND formulation (and the two-echelon VRPTW described in Section
4.2, Crainic et al., 2009), for the inbound-demand case.

However, the authors also noticed that including the detailed customer demand and the precise
routing of second-tier vehicles when building the tactical plan some time before repeatedly applying
it appears less appropriate than for the day-before situation. One certainly cannot neglect, however,
lower-tier activities and costs. Their impact on first-tier decisions and the global performance
of the CL system may be indeed significant, as they are a determining factor in building and
selecting freight itineraries and ensuring the synchronization of vehicles at satellites. Approximating
these activities and costs and embedding the approximations into the SSND formulation (similar
development may be performed for the multi-tier routing models) appears as a promising research
and utilization avenue. The model proposed by Fontaine et al. (2021) for the tactical planning of
two-tier CL systems follows up on this observation.

The problem setting is similar to that of Section 4.1, in particular regarding the definition and
attributes of first and second-tier facilities, the inbound and outbound multi-commodity demand,
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the set of potential first-tier line-based and no-line multimodal urban-vehicle services. With respect
to transportation modes and vehicles, the authors enrich the problem setting and formulation by
introducing the notion of the compartment. This addresses the observation that several vehicle
types have more than one cargo-holding space, e.g., river and canal barges with multiple cargo
bays, most proposed cargo tramways, as well as any vehicle, by whatever mode, with vertical or
horizontal separators of the cargo-holding space yielding a partition where each component may
be accessed independently of the others. Compartments are introduced into the tactical-planning
model by defining the set of its compartment services (of cardinality 1 when no compartments are
present). Loads are thus assigned to a specific service compartment while all compartment services
are selected when the corresponding service is selected.

As indicated above, the second tier is represented through an approximated cost of servicing
each customer zone out of each satellite. It may be connected (delivery out of satellites to receiving
customer zones and pick up at shipping customer zones to deliver at satellites then CDCs). The
authors propose a compact network representation by adding this cost to the cost of the services
which may carry the flow of the particular demand into or out of the satellite in time. Similar
to all other costs described in this chapter, the assignment costs represent not only the transport,
unloading, and loading costs, but also city-disturbance factors related to these activities.

Freight itineraries may then be defined straightforwardly based on the service used. An inbound-
demand itinerary thus starts at the external-zone of origin, bringing the demand to the selected
CDC, where the goods are loaded into an urban vehicle (and compartment) of the selected service,
which transports them to the selected satellite (with possibly intermediary stops but no work
on the goods considered), from where they are delivered to the final customer zone paying the
approximated assignment-routing cost. An outbound-demand itinerary follows the same definition
in reverse order. Notice that this definition is directly provided by the selection of a service and
compartment, which fixes the CDC, satellite, and relevant time stamps which then, implicitly, takes
care of the synchronization.

The formulation selects the first-tier scheduled services, determines the satellites which service
each customer zone, selects the itineraries of each inbound and outbound demand, and provides
an estimation of the dimensions of the urban-vehicle and city-freighter fleets required to satisfy
demand, as well as of the utilization of the facilities and multimodal fleets.

It is an arc-based formulation of the SSND problem with resource management based on two
sets of binary (yes or no) decision variables: 1) service selection and 2) assignment of given origin-
destination demand to a specific service and compartment to be delivered to a particular satellited
visited by the service.

The objective function minimizes the total generalized cost of the system. Constraints then
ensure that each item is assigned precisely to one compartment and that outbound demand is
assigned to a compartment only after the inbound demand is unloaded and the compartment is
empty. Linking constraints enforce the capacity restrictions on each compartment and service.
Capacity constraints limit 1) the number of vehicles of each fleet assigned to a city distribution
center; 2) the number of urban vehicles, in total and per fleet (mode), present at a satellite at each
time period; and 3) the total amount of cargo which can be unloaded or loaded at a satellite at each
period. An innovative solution method based on Benders decomposition is proposed and shown to
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be very effective through an extensive experimental campaign.

4.4 Illustration of demand uncertainty in CL tactical planning

The literature addressing uncertainty in the context of City Logistics is very sparse. We use
these contributions to illustrate the business-as-usual demand uncertainty type of problem and the
associated modeling challenges.

Crainic et al. (2016a) study the issue of uncertain demand in the two-tier CL context introduced
in Crainic et al. (2009) (Section 4.1). Recall that such stochastic formulations are required when
major human and material resources must be allocated and their utilization must be planned for
the length of the planning horizon, before the actual operations take place, while simultaneously
acknowledging the strategies and costs that are involved during operations to adjust the plan to the
observed demand. The tactical plan, which is built prior to the beginning of the season, then aims
to determine the main structure of the service network and associated resource allocation, which
will be executed regularly at each period of the planning horizon, but without fixing the operational
details that will be addressed at execution time. The goal is to optimize the overall cost (operations
and environmental impact) of the system in terms of service selection and resource allocation,
plus an estimation of the costs involved in adjusting the plan and operating accordingly over
the contemplated planning horizon. One thus expects that the explicit flexibility thus introduced
into the tactical plan makes is more robust, that is, increases the capability of the selected service
network to accommodate a certain forecast range of demand variability with no or little modification
to the activities of the major resources involved.

Crainic et al. (2016a) propose a two-stage stochastic-programming formulation, the first stage
corresponding to the selection of the first-tier services and the determination of partial demand
itineraries up to the selected satellites together with customer-to-satellite assignments. These re-
sults guide and constrain the second-stage recourse strategies, which address the selection of ad-hoc
(additional) city freighters and the global city-freighter routing and, eventually, slightly modify the
service network to deliver the revealed demand. The definition of first-tier services, second-tier city
freight work assignments, and demand itineraries do not fundamentally change from the determin-
istic setting; the same may be said for most problem parameters. Indeed, definitions are adjusted
according to the stage they occur (e.g., in the first stage, demand itineraries stop at satellites with
customer-to-satellite assignments). Additional costs, decisions variables, and constraints are also
added to account for the recourse strategies, e.g., the cost of ad-hoc freighters and their limited
capacity enforcement, but they are of the same nature as the initial model.

The significant change in problem components is that, instead of a single figure assumed cer-
tain, customer-demand volumes are represented by some probability distribution of the possible
realizations when the plan will be applied repeatedly. A set of scenarios then represents the future,
each corresponding to a possible realization of the customer demands, that is, to a possible “day”
when the CL system operates according to the plan, adjusting the latter to the revealed demand.
This yields an extensive mixed-integer program composed of the decision variables and constraints
of the first stage and of as many blocks of scenario-specific (decision variables and) constraints as
the scenarios generate to represent the future. The objective value of the two-stage SSND formu-
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lation links all the pieces together by minimizing the expected generalized cost of the system. It is
composed of the objective function of the first-stage and the sum of the objective functions of each
scenario in the second-stage, weighted by the corresponding probability of the scenario being met
in the future.

Three recourse strategies are studied, all targeting the routing of regular and ad-hoc city
freighters but differing in the degree of freedom relative to the first-stage customer-to-satellite
assignments and whether or not slight adjustments are allowed to the service network selected in
the first stage. The first strategy aims to modify the plan as little as possible and, thus, the sets of
selected services and the associated customer-to-satellite assignments are not modified. Ad-hoc city
freighters are added if needed, and the global routing is determined. The second recourse strategy
adds flexibility to the system management by relaxing the customer-to-satellite assignments, which
allows the re-optimization of the demand flows on the selected services and additional freedom in
determining city-freighter work assignments. The third recourse strategy increases the managerial
flexibility even more. It does not modify the first-stage service selection but introduces the possi-
bility of slightly changing the departure times to fit the revealed demand better. The authors used
the meta-heuristic of Crainic et al. (2009) as the basis of a Monte-Carlo evaluation procedure of
these recourse strategies. Not surprisingly, the increased flexibility in resource allocation (satellite
and city-freighter utilization) and system management displayed the best performances.
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5 Real-time execution

At the execution phase, when CL systems operate, the plans prepared previously (at tactical-
operational planning level, mainly the day before) are examined, updated, and executed. This is
of particular importance since, in a highly constrained and congested context, small unexpected
events can have huge consequences in realizing the plans. For instance, new orders arriving either
little before routes start or during the time vehicles are delivering or picking up goods, customers
not being home at the vehicle arrival time (failure to deliver), and traffic congestion or other
unexpected events en-route (e.g., accidents) leading to not meeting time windows. As indicated
in Section 2.5, we focus on the plan re-adjustment, i.e., the re-organization and re-optimization
of various components (routes, itineraries, satellite activities), in real or quasi-real-time, following
new or updated information, due to unexpected events or demand/capacity updates. We include
the re-adjustment of vehicle routes and demand itineraries.

In the last decades, dynamic problems have attracted increasing attention from the research
community (Psaraftis et al., 2016). These problems are characterized by the property that the
problem inputs are partially known in advance and dynamically change during the operation period.
This reflects the real demand from the current logistics and transportation industry. Dynamism
is an intrinsic property of many real-world applications. The exact information related to request
arrivals, customer locations, time windows, etc., is not always fully available when the routes are
planned. On the other hand, the applications are boosted by the recent advances in communication
and information technologies, which allow decision-makers to receive updated information in real-
time and dynamically adapt the ongoing route plans to the changing environment.

Section 5.1 introduces the context, the main decisions to be addressed related to the adjustment
of operational plans, as well as the main decision problems to tackle at the execution level. The main
areas that impact route performance are on demands since they can change the entire route plan and
need to be addressed on a more global, systemic level. Therefore, Section 5.2 describes optimization
problems related to the adjustment of route sets (or itineraries) due to demand dynamics. Other
areas that affect single routes and need a route, path, or itinerary adjustments, mainly done at local
levels, are examined in Section 5.3, as well as the related optimization problems to deal with them.
Finally, the crucial question of path (or trip) computation, resulting in the well-known family of
the Shortest Path Problem (SPP), is examined in Section 5.4. The SPP is also used to estimate
travel distances and times to feed strategic, tactical, and operational planning models. Still, it
is at the execution phase that they need to be robust and reliable due to the needs of real-time
computation.

5.1 Background, context, and problem statement

The real-time CL operations are subject to many unexpected events due to the urban context in
which they are executed. Indeed, CL systems are included in a set of complex systems: the Urban
Freight Distribution system, which is also part of the Urban Dynamics system (Gonzalez-Feliu,
2018b). These unexpected events during execution are a source of uncertainty. They can also be
considered in tactical or operational planning (see Section 4.4). However, and although planners
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do their best in anticipating those uncertainties and hazards setting their initial plan, they mainly
materialize at the execution phase, imperatively necessitating a real-time action to modify these
initial plans. Those main sources of uncertainty in a City Logistics context are:

• Demand and its characteristics. It involves the quantity to deliver, origin location, destination
location and/or a time slot where the freight can be delivered. This impacts the entire route
plan, since new demands, if accepted, need to be placed in the planned vehicles, possibly
resulting in re-planning.

• Travel times and delays. This involves infrastructural issues such as congestion, traffic in-
cidents or modifications in network accessibility related to works, manifestations, or other
incidents that can limit the circulation or access to some arcs in the network. This leads to
local re-optimizations at the level of every single route, either the re-scheduling of customers’
visit orders or the re-calculation of the O-D path.

• Parking or accessibility issues at the destination. They can lead to a non-visit of the customer,
which will induce a return, or the reintroduction of the customer in the remaining set of
customers to visit, i.e., a re-scheduling of its visit.

• Vehicle availability. This can lead to a vehicle replacement, a partial fleet re-optimization,
re-assignment, or a global re-routing of the entire fleet.

The main issue involves dealing with real-time changes due to uncertainties and dynamics
during execution. Note that routes (or stops within the line) are pre-established, and the main
changes in the plans involve demand loading/unloading needs (that can in some cases exceed
capacities), re-scheduling of transit/stop times (due to different delay causes) or eventually trip or
stop cancellations. Unexpected events can also lead to changes inside one route (route adjustments
or re-configuration of the customer visiting order) or on a group of demands. At the optimization
level, those modifications result in the following decision problems:

• The re-configuration of entire sets of routes (in a more systemic viewpoint) in a real-time vi-
sion, leading to the well-known families of Dynamic Vehicle Routing and Pick-up and Delivery
Problems (DVRP and DPDP).

• The re-configuration of routes, re-scheduling of the customer’s order, and adjustment of one
route, leading to dynamic and time-dependent online versions of the Travelling Salesman
Problem (DTSP).

• The calculation and re-calculation of itineraries and paths, for which online Shortest Paths
Problems (SPP) are deployed.

Each of these three families of decision problems are examined in the next sections. Section 5.2
presents the main problems and solution methods related to dynamic re-configuration of entire sets
of routes. Section 5.3 explains the main issues and events that impact the respect of each single
route schedule, as well as the methods for adjusting and re-scheduling its customers’ order and
consequently re-configuring the route, totally or partially. Finally, Section 5.4 introduces the main
issues of path calculation, starting from the SPP leading to their dynamic considerations.
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5.2 Dynamic route optimization

Imperfect demand knowledge is the primary motivation of demand-driven, agile and responsive
approaches to managing logistics and freight transport at both operational and execution levels
(Christopher, 2016). Demand can be anticipated (see previous sections), but fast response to
demand changes is necessary during the execution phase. Demand dynamics strongly impact the
entire route set performance. Changes in demand can lead to unfeasible routes in terms of capacity
requirements or time constraints.

Demand dynamics can take two forms: (1) unexpected events altering demand (errors in declar-
ing volumes to transport, changes in time constraints, shipping issues and mistakes that change
the availability of shipments, etc.), or (2) in some CL systems accepting real-time requests, the
inclusion of online demand into already planned and partly operated routes.

In a dynamic context, requests are arriving either before or during the transport service time
and can be accepted or refused by the company (Cattaruzza et al., 2017). These events are modeled
as modifications in the demand, similar to online requests. The decisions in a real-time adjustment
vision start by examining such requests to evaluate the feasibility of accepting them (i.e., processing
them to deliver them). It is important to note that a fast decision needs to be made concerning a
request’s acceptance or refusal (Barkaoui and Gendreau, 2013) since customers are willing to wait
for an answer for only a short amount of time. After a request is accepted, it needs to be assigned
to a vehicle. If the vehicle is en route, it may need to return to the depot to pick up the parcel, or
this parcel needs to be included in the next route of the vehicle. If the vehicle has not started its
route, the assignment and the consequent route configuration can be made using a static algorithm.

We distinguish two main dynamic routing problems: the dynamic vehicle routing problem
(DVRP) and the dynamic pick-up and delivery problem (DPDP). Although the basic formulations
of such problems differ by their nature (Sections 4.2 and 4.2.2), the way dynamics is included in
optimization, as well as the family of the solution algorithms, are similar. In the literature, the
sources of demand dynamics in vehicle routing can be represented as follows (Pillac et al., 2013;
Ritzinger et al., 2016):

• Stochastic Vehicle Routing Problems (SVRP) are defined when one or more parameters are
uncertain when the routing is planned, i.e. their exact value is unknown but can be anticipated
(mainly via random variables following known probability distributions). However, once
routes are planned, they execute them without any new re-optimization or systematic re-
organization (stochastic problems are used to anticipate those sources of uncertainty better
but in advance and via static approaches).

• Dynamic (and deterministic) problems. In those problems, demand (and sometimes other
constraint or cost elements) is revealed (totally or partially) during the execution of the
transport plan. The optimization is then made in a real-time context, and although initial
routes can be anticipated, they are re-optimized in a real-time context. In such problems,
demand is deterministic, i.e., demands arriving in real time are known and sure, so the
planning is made iteratively but has a deterministic nature.

• Dynamic and stochastic problems combine one or more uncertain parameters (not only de-
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mand) with a dynamic optimization context (mainly related to demands arriving during the
execution plans). They aim to handle real-world applications more accurately, considering the
recent advances in information and communication technologies. The main idea of dynamic-
stochastic problems is to simultaneously take dynamic events and stochastic knowledge from
the revealed data. The problem is then dynamic and stochastic.

In the OR literature, Static and Stochastic problems are related to the two categories presented
above. However, since static problems correspond to a (in general tactical or operational) planning
phase, they occur in the pre-execution planning phase and not in online or real-time execution.
Therefore, they have been addressed in Section 4.4. For further analyses of methods and problems
related to dynamic adjustment of route sets, see Ritzinger et al. (2016); Oyola et al. (2017a,b) for
DVRP and Berbeglia et al. (2010); Ulmer et al. (2020) for DPDP.

According to Kucharska (2019), DVRP problems can involve different types of dynamics: the
nature and importance of customers (including the dynamic nature of demand), travel times, service
times, or vehicle availability, among others. However, the literature agrees on defining a dynamic
VRP only when at least the nature of the demand is dynamic. As on DVRP, in DPDP, the main
dynamics issue is demand, i.e., the users’ requests. Not all requests to be delivered are loaded at
the route’s starting point in pick-up and delivery routes. Consequently, the vehicle is, during its
service, collecting and delivering parcels (Savelsbergh and Sol, 1995). In dynamic PDPs, some of
the input data (the origin and destination of each demand, its volume, its eventual time constraints,
travel times, and other operational issues, among others) are revealed or updated during the time
period operations take place. For all those reasons, a solution to a dynamic problem (either for only
delivery or for pick-up and delivery routes) cannot be a static, deterministic output, but rather a
solution strategy specifying, given the revealed information, the main actions to be performed in a
real-time context (Berbeglia et al., 2010; Ritzinger et al., 2016).

The dynamic (re) optimization of route sets can be defined as a mono-objective (Ritzinger et al.,
2016) or multi-objective (Nahum and Hadas, 2016) problem. Taking into account the dynamic
nature of demand, classical linear programming approaches, which are suitable for static cases, are
not adapted, and new ways of solving such problems, mainly heuristics, were developed (Pillac
et al., 2013; Ritzinger et al., 2016).

Berbeglia et al. (2010) propose the most general formalization of the DPDP, briefly concluding
on the need to address the problem via heuristic algorithms and on the unsuitability of MIP and
LP approaches, due to the dynamic nature of the problem, that will exponentially increase the
complexity of such models. Ritzinger et al. (2016) shows the impacts of forecasting, pre-processing,
and managing only online actions on the improvement of route performance, based on a meta-
analysis of published CVRP works, some of them of CL nature. The authors do not propose a
formal model and show the need to solve the problem using heuristics. In general, the literature on
DVRP and DPDP (Berbeglia et al., 2010; Pillac et al., 2013) does not formally define such models
for those reasons. Indeed, because of the dynamic nature of the problem, its solving needs to be
interactive, so classical LP methods are not adapted.

In practice, the dynamic problem is in general transformed into a set of static problems (by
discretizing time, for example) that are consecutively solved (Flatberg et al., 2007). An initial stage
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is defined starting from a first set of static demands that, forming an initial static problem, can feed
a classical, static VRP and then give the first set of routes. Then, each time a new request appears,
a new static problem is defined. When new requests can be rejected, insertion procedures are used
to determine whether the request should be accepted or discarded (in this case, the customer could
know in real-time if his request is accepted or not), then re-optimization procedures could be used
to determine the new routes. Those procedures can re-configure routes of vehicles not already
running (in which case higher flexibility and re-configuration potential are allowed) or to routes in
progress (in that case, the problem will compulsory include pick-ups and deliveries). In case all
requests need to be accepted, insertion and re-optimization become compulsory. Such procedures
find the most suitable route for the request, leading to a feasible solution that minimizes the overall
cost increase of such action.

Since the speed of response in real-time optimization is crucial, most algorithms are based on
local search or quick insertion procedures that allow a short computational time. An alternative to
them is to launch more complex algorithms in the time between two events occur. A third solution
would be to find a first, quick solution, pre-selecting a vehicle and scheduling its pick-up, and
search for a better solution in the time left between a first solution is found and the pre-selected
vehicle leaves its last destination before picking up that request. For deterministic problems, most
frameworks propose insertion procedures mainly derived from the well-known savings algorithm
(Clarke and Wright, 1964), the Push-Forward insertion method (Solomon, 1986) or popular local-
search such as 2-Opt, 3-Opt, K-Opt or Or-Opt, among others (Du et al., 2005; Ritzinger et al.,
2016). Those algorithms are also used to improve solutions, mainly because, being quick, they can
be run in a real-time context.However, in recent years, the use of meta-heuristic has increased,
with the Tabu Search (Gendreau et al., 1999) and the Genetic Algorithms (Hanshar and Ombuki-
Berman, 2007) being the most widely used to solve, at each step, the static VRP obtained once
a set of new requests is identified. Moreover, hybrid and evolutionary algorithms and adaptations
of ALNS (Ropke, S. and Pisinger, D., 2006), very popular for static problems, are starting to be
generalized.

Concerning stochastic and dynamic VRPs, the stochastic nature of demand is in general modeled
as a Markov Decision Processes or with Stochastic Programming (Du et al., 2005). Because their
ability to handle large-scale problems is limited, heuristics such as Simulated Annealing Algorithm
or the Noising Method can be used (Du et al., 2005). However, all those approaches remain limited
because of their high computation times, so local search heuristics, although less performing in
reaching near-optimal solutions, appear to be more robust to handle real-time issues. In both cases
(deterministic and stochastic dynamic problems), it is essential to note that classical metaheuristics
used for static problems (see Section 4) are able to be adapted for their dynamic versions, knowing
that they need to be combined to insertion heuristics and be run in few seconds (or minutes) to
produce fast but robust solutions and support online decision making.

In City Logistics, few works addressed explicitly dynamic optimization, but the work of Taniguchi
and Shimamoto (2004) is a pioneer in the field and merits to be cited. The authors propose a
DSVRP for a single tier, mono-commodity, mono-modal CL system that considers dynamic travel
time. This work is an extension of the stochastic VRP defined in Taniguchi et al. (2000) and
Taniguchi and Yamada (2003) in an execution phase, where ICT reports the status of traffic dy-
namically. Vehicles can be tracked (via GPS or other devices) to re-schedule the entire sets of
routes iteratively and dynamically during each execution phase. The authors propose a forecast
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of routes via a stochastic VRP formulation that is solved using a genetic algorithm. A dynamic
optimization procedure based on the definition of subsets of groups, the evaluation, at each time
interval, of the feasibility of each set, then routes are moved from one set to another to improve
the overall transport plans (knowing that some of the routes are already being executed) and the
remaining customers to deliver are rearranged systemically (i.e., via the adjustment of route sets
composition) using the same genetic algorithm. To test the model, a set of CL instances and a
discrete event traffic simulation are used. In the same line, Van Woensel et al. (2008) propose
to model traffic via a queueing model. The problem is similar, and mainly addresses travel time
dynamics. The proposed model is solved via a heuristic method combining a constructive heuristic
(that gives an initial set of routes) with a combination of local search and tabu search.

Other works presenting preliminary works on dynamic fleet management and optimization pro-
pose a conceptual model of dynamic management of demands and travel times for urban last-mile
routes (for single-tier CL systems or city-freighter routes in 2-tier schemes), including the decision
of accepting or not requests and re-routing vehicles (Zeimpekis et al., 2005), or focus on cooperation
and information exchange related to the traffic to operate re-routing and adjustment, in a DSVRP
where both demands and travel times are dynamic (Köster et al., 2015).

To summarize, in dynamic problems, a first, systemic solution, with a set of static demands is
made (but can be done in a deterministic or stochastic demand context), then the dynamic demand
arrival is managed by re-optimization and re-insertion procedures, whose goal is to find the suitable
vehicles that can manage the requests (with a minimum cost increasing) then assigning them.

5.3 Unexpected events

The second family of optimization problems is related to the re-arrangement of a route due to
unexpected events, locally, without the need for a global re-optimization or re-adjustment. This is
usually made when unexpected events, like traffic, parking issues, road incidents, customer avail-
ability issues or other unexpected events change, during the route, ongoing travel times, service
times, or the possibility to deliver or pick up a request at a customer’s location. Indeed, traffic
reliability can be the main issue in making urban deliveries more robust, regular, and efficient
(Cedillo-Campos et al., 2014) and the non-respect of time constraints, either for access cities (Quak
and De Koster, 2009; Munuzuri et al., 2013; Munuzuri and van Duin, 2014) or for servicing a cus-
tomer (Deflorio et al., 2012) have a substantial impact on the feasibility of the remaining set of
customers of a route.

When executing a route and the driver faces an unexpected event, rearranging the remaining
composition of the route can be (sometimes) easier than making a global route set re-optimization,
since the first action can be executed locally. Nowadays, trucks and delivery vehicles have terminals
able to give the required computational efforts for a local route re-optimization. For those reasons,
a series of decision problems can be related to re-arrangement and re-optimization of single routes
or itineraries, including:

• Online calculation of a new path between two points, with or without impacting the route
composition: in case of a traffic or infrastructure problem, the first action is, in general, to
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re-calculate the path to reach the next destination (Ran and Boyce, 1996). This is done via
shortest path problems which are addressed in the next section.

• Route re-organization due to unexpected events: in case of significant delays because of road
accessibility or traffic during a journey, the visit of some customers can be compromised, and
the route needs online re-organization. Since, in general, only one route is affected each time,
the dynamic problem is a DTSP (Eyckelhof and Snoek, 2002), as discussed below.

• Dynamic search of best parking slot/delivery bay location: in some cases, since a set of
neighbor customers are defined, the truck driver can, using ITS, find the closest delivery area
free to optimize its parking searching time and avoid double lines (Magniol et al., 2018). To
identify such locations, online matching and assignment problems can be used. This can have
an impact on the total travel time of a route and might need route re-optimization.

• Customer prioritization: prioritization techniques can support the choice of customers to keep
in the route and those that will not be served and whose demand needs to return to the depot
(Senkel et al., 2013). This does not change the customers’ order in a route (and would not
affect the execution of the remaining plan) but needs to account for non-delivered requests
to be processed once the route is finished at the depot.

Those issues motivate and promote the development of dynamic traveling salesman problems
(DTSP), i.e., dynamic optimization and re-optimization of a route taking into account the modi-
fications of arrival and/or departure times (Ravassi, 2011). Indeed, in DTSP, the primary sources
of dynamics are travel times between customers, which are continuously subject to change. Dy-
namics in this family of problems arise then mainly on travel and service times (Eyckelhof and
Snoek, 2002), although in some variants, not all customers need to be visited (those unvisited im-
ply penalties for the deliverer instead). To handle those dynamics (i.e., on arrival and departure
times at customers, and then on the capability to respect all time constraints), various methods
are proposed, evolutionary algorithms being the most popular (Zhou et al., 2003; Liu and Kang,
2003; Osaba et al., 2012). Also, ant colonies optimization shows a high number of works, learning
procedures being used to handle real-time optimization to reduce computation times (Strak et al.,
2019). However, since the TSP can be solved by dynamic programming, this technique can also be
adapted to solve its dynamic variants.

To the best of our knowledge, the first work dealing explicitly with dynamic re-arrangement
of routes in CL systems is that of Ehmke (2012). The author considers various types of problems
(also dynamic versions of VRP). Still, one of the main contributions of this work arises from the
interactions and influences between traffic information and the robustness of route optimization,
with an in-depth focus on single route optimization and time-dependent TSP (TDTSP). Travel
times are calculated from traffic conditions via ICT as on Ehmke et al. (2012b). The author shows
that reliable mastering information improves single-route optimization substantially. An extension
of this work can be seen in Ehmke et al. (2012a), where the authors propose a set of heuristics for
solving a dynamic TSP, mainly classical construction heuristics, adapted to a dynamics context,
like Nearest Neighbor, Dynamic Programming Nearest Neighbor, Insertion procedures, the Savings
Algorithm and combinations of them. This framework presents the advantage of being reliable,
quick of execution, and adaptable to real situations.
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5.4 Computation of Shortest Paths

Beyond the complex problems described above, CL operators face a more basic but challenging
problem: shortest path computation. Indeed, from an operational point of view, operators need to
compute shortest paths repeatedly to determine routes on a short-term horizon or adjust them in
real-time. The shortest path can be calculated based on distance or duration. We consider the latter
in what follows. In city logistics, this fundamental problem turns to be difficult for several reasons:
1) it must be determined on a road network, i.e., on a large-scale network; 2) the computation time
must be extremely short, typically less than one second; 3) in real-time, the travel information is
updated frequently, i.e., typically every two minutes.

Several strategies have been developed to address these concerns. We describe below the main
ones, first for the static case and then for the real-time problem. To cope with the size of the
network and the need for short computation times, a common strategy in the static case is to
implement a duration oracle. It consists of a pre-processing step during which precomputations are
performed and stored in ad-hoc structures and a query step which, in the best case, is performed
in constant time. In road networks, a relevant approach is to build a Highway Hierarchy in the
pre-processing step (see Sanders and Schultes (2005)). Notice that computation time is not an issue
for this step since it is performed in advance. When we turn to dynamic shortest path problems,
the first issue is collecting and fusing traffic information. Several sources of real-time traffic data
exist. For example, a municipality can install a network of cameras to measure traffic by image
processing. Sensors can be installed within the pavement. On toll road networks, electronic tags
provide an additional source of information. Due to their widespread use, cell phones equipped
with GPS can also be used to monitor traffic. Finally, connected cars are a rich source of traffic
data as they provide a set of parameters related to the behavior car in its environment. Initially,
limited fleets of such vehicles, also called probe vehicles, were considered: taxi fleets, police cars,
etc. Nowadays, more and more vehicles have onboard devices which allow detailed data collection.

The dynamic single-source shortest path problem is an online problem based on the traffic
data, which are typically updated every two minutes. The algorithms (Fakcharoenphol et al.
(2004)) include two main steps: the graph update phase, which consists in deleting, adding arcs,
or in modifying their characteristics, and the computation of the shortest path from an origin to a
destination. The algorithms able to proceed to add and remove operations are called fully dynamic
algorithms. When only deletion operations are considered, they are called decremental algorithms
and incremental for add operations only. A naive approach, which consists in computing the shortest
path from scratch after each graph update, would lead to an algorithmic complexity that is too
high given the dynamic nature of the problem. From a theoretical point of view, Roditty and Zwick
(2004) showed that the algorithmic complexity of the update phase for decremental algorithms is
unlikely to be better than the number of arcs multiplied by the number of nodes. Therefore, from
a theoretical point of view, researchers have mainly considered epsilon approximation algorithms,
see, e.g., Bernstein and Roditty (2011), Henzinger et al. (2014). From a practical point of view, the
algorithms (see Nannicini et al. (2010)) frequently consider a time-discretization approach. This is
because the data update is not performed continuously but according to a time step. Moreover,
data updates do not include all network arcs but only a subset of them. Researchers (see Nannicini
et al. (2010)) have proposed propagation techniques to enlarge the set of impacted arcs.
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Solution algorithms are mainly based on the Dijkstra and A* algorithms, which are speed-up
by implementing additional procedures. First, a Highway Hierarchy of the road network can be
considered (see above). Then, a bidirectional search (from the origin and from the destination)
can be invoked. A lower bound on the remaining time from the current point to the destination
can also be considered (A* algorithm). Goldberg and Harrelson (2005) introduced a subset of
nodes called landmarks from and to which shortest paths are computed to all other vertices in a
pre-processing step. From these durations, we can easily define a lower bound. Impressive results
are obtained by Nannicini et al. (2010) who implemented a bidirectional Dijkstra algorithm using
a Highway Hierarchy. On the French road network (more than seven million nodes and 17 million
arcs), they could identify near-optimal paths in less than 0.1 seconds. This approach dominates
other algorithms based on landmarks which require a time-consuming update phase.

One exciting work relating SPPs to City Logistics is found in Nakamura et al. (2010). The
authors propose a path calculation method inside dynamic vehicle routing approaches for single-
tier CL systems. They adapt the adaptive least-expected path algorithms presented by Miller-Hooks
(2001), the Fu and Rilett (1998)’s continuous-time, traffic-related, shortest path method, and the
well-known Dijkstra et al. (1959)’s algorithm based on average travel times. The authors show that
all the path calculation algorithms result in similar overall route performance, so the final costs
do not differ significantly, proving the importance of estimating shortest paths when dynamically
re-calculating routes.
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6 Conclusions and Perspectives

In this chapter, we reviewed the various Operations Research approaches to design and efficiently
manage advanced City Logistics systems, efficiency being measured in economic terms for the
involved parties, and the impact on the environment and life of the city and its citizens.

We view City Logistics as paradigm-changing for cities and one of the main avenues, echoing
and interacting with other similar developments in new business and organizational models such
as Physical Internet and synchromodality towards digitally-intelligent freight transportation and
logistics systems. The issues and methods presented in this chapter for City Logistics may therefore
be applied in the larger context of the latter. Operation Research and analytics accompany and
sometimes precede this evolution by providing decision-support methods and software tools for
analyzing, planning, and managing transportation and logistics systems. The impact is a two-way
street as changes in social and industrial behavior and technology challenge the field and spur
modeling and algorithmic development. We reflected on this symbiosis in this chapter.

Given the chapter-length restrictions, the complexity of the topic, and the extensive coverage of
the demand and socio-economic aspects in the rest of the book, we focused on the supply side of City
Logistics systems. We first presented a systemic view of City Logistics and the main supply-side
planning issues. We then detailed the main model and method Operations Research frameworks
dedicated to strategic planning, tactical-operational planning, and dynamic management, identify-
ing several challenges and emerging topics which we sum up in the following.

Modeling, methodological, and application issues and challenges are many and of the utmost
interest, both for City Logistics and Operations Research. On a general level, it is noteworthy that
the particular political, social, and entrepreneurial characteristics of each city and country impact
directly how technology is accepted and used, what and how information is exchanged, how traffic
is ruled, and how people and institutions can behave. A continuous scientific challenge is how these
application characteristics are adequately represented in quantitative decision-support methods,
together with the study of the impacts of such characteristics on methodological efficiency. New
technology and changing social behavior also strongly influence the field and science. The former
includes a vast range of issues, from the Internet of Things, the Smart City concepts, and the
automated vehicles and terminals, to the drones, robots, lockers, and crowd-based logistics, which
are increasingly part of local delivery and pickup activities. The latter is also extensive, from the
movement towards an automated, digitally intelligent transportation and logistics 4.0 industry,
to the continuously stronger trend of online shopping combined with customer requirements for
very fast and very cheap service, the increasing variety of time and cost-defined customer-service
classes, and the revenue management strategies. How these issues are represented individually and
when several are jointly present in the problem setting makes for particularly challenging issues.
The challenge is increased considering that one needs coherent representations at all planning
and management levels and aims for an objective function and constraint formulations that are
amenable to efficient solving.

We already mentioned in previous sections several important and challenging research direc-
tions not only for City Logistics but also for location, service network design, and vehicle routing
in general. One of these major research directions is to extend these model classes to the multi-tier
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cases, which also integrate inbound, outbound, and local demand into comprehensive formulations.
Worthy of notice in this context is the modeling and algorithmic challenges of integrating and syn-
chronizing time- and OD-dependent service network design, location, and multi-tour heterogeneous
pickup and delivery routing. On the one hand, this raises the issue of the adequate modeling of
routing into tactic and strategic formulations and the related efficient and representative approxi-
mations of costs and times. On the other hand, one notices the need for significant research efforts
to model time dependencies and synchronization, particularly in multi-tier routing settings.

Most methods described in the chapter assume that some entity plans and manages shared
resources and services of the system to answer the global demand. Research on the various mech-
anisms for information exchange, collaboration, resource/capacity sharing, and jointly-satisfying
decision making for multiple cases of stakeholder consortia, operating a unified system of private
and public resources under various profit-cost-risk-resource utilization sharing rules, is seriously
lacking, however. More efforts are needed to define and analyze such mechanisms from both the
individual entity and the system. Adequately representing such mechanisms in the Operations
Research models and methods makes up the other facet of this research area.

We emphasized that the uncertainty characterizing City Logistics planning and operations is
not yet, adequately addressed. Research is needed regarding both modeling and solution-method
developments concerning the explicit representation and integration of the uncertainty, at all levels
of planning and management, regarding the demand and travel and service times at facilities and
customer locations. Resilience and recovery from various disturbing events make up a second
important direction of research which, to our best knowledge, has not been addressed yet for CL
systems. Uncertainty is also an essential element of revenue management mechanisms, which are
also in dire need of research. Uncertainty, resilience, and revenue management are broad issues for
transportation and logistics, and research in those directions promises to yield substantial results
for both science and applications.

Regarding solution methods, one observes that there is not as yet any exact or meta-heuristic
solution method consistently providing high-quality solutions to integrated formulations. Moreover,
the algorithmic challenge increases significantly with the dimensions of the system in numbers of
facilities, customers, fleets, time periods. It is further compounded when uncertainty is explicitly
considered. Research is thus required on high-performance solution methods for deterministic
and time-dependent stochastic location and network design models, with explicit or approximated
routing, for City Logistics. Here are a few very promising avenues to be studied individually and,
eventually, combined into efficient solution frameworks: 1) decomposition methods of path and arc-
based formulations through, e.g., novel projections of the synchronization relations on tier-specific
subproblems; 2) dynamic generation of first-tier services and lower-tier pickup and delivery routes,
taking advantage of the similarities among network design and vehicle routing problems; 3) dynamic
generation of the multi-tier time-space network; 4) exact parallel methods and collaborative-search
matheuristics to efficiently address deterministic and stochastic formulations of realistic dimensions.

We complete the chapter with two integrative research directions, which challenge and may
benefit the broader community. First, the integration of demand prediction, learning mechanisms,
and optimization methods leads to comprehensive models, algorithms, and decision-making support
instruments. Second, follows the observation that freight transport and logistics in general, and
City Logistics in particular, are very poorly represented, if at all, in the methods for urban planning.
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Working towards integrating City Logistics systems into the more general urban planning and land
use management system will be highly beneficial for the city and its citizens.
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