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Abstract
Cryptographic algorithms, protocols, and applications are difficult to implement correctly, and errors
and vulnerabilities in their code can remain undiscovered for long periods before they are exploited.
Even highly-regarded cryptographic libraries suffer from bugs like buffer overruns, incorrect numerical
computations, and timing side-channels, which can lead to the exposure of sensitive data and long-
term secrets. We describe a tool chain and framework based on the the F∗ programming language
to formally specify, verify and compile high-performance cryptographic software that is secure by
design. This tool chain has been used to build a verified cryptographic library called HACL∗, and
provably secure implementations of sophisticated secure communication protocols like TLS and
Signal. We describe these case studies and conclude with ongoing work on using our framework to
build verified implementations of privacy preserving machine learning systems.

2012 ACM Subject Classification Security and Privacy → Formal security models; Security and
Privacy → Logic and verification

Keywords and phrases Formal verification, Applied cryptography, Security protocols, Machine
learning

1 Introduction

Cryptography is the backbone of most internet applications, from e-commerce and online
payment, to social networking and user communications, including messaging. Different
algorithms and protocols are used to guarantee different levels of confidentiality, integrity
and authentication protection, depending on application and user requirements. In some
applications, its use can be opaque to end users, such as in digital rights management and
business analytics. While there is no need to motivate the use of cryptography online,
implementing cryptographic software for real world applications can be incredibly complex
and error-prone. Though governments, companies, and standards bodies have been using
and stress-testing cryptographic algorithms for more than twenty years, surprisingly, there is
a lack of rigour in how many new protocols and applications are implemented.

Implementations of cryptographic primitives can have obvious as well as subtle vulnerab-
ilities that are often difficult to detect. To illustrate, in OpenSSL, a widely used open-source
(and hence open to scrutiny) implementation of common cryptographic algorithms, 16 CVEs
(common vulnerability and exposures reports) have been issued since 2017 for vulnerabilities
in the core cryptographic functions. These bugs range from incorrect implementations of
numerical computations (5), to timing side channel attacks (6), and memory safety issues
(5). Such programming errors can often be exploited by a remote attacker to tamper with
the cryptographic computation, leading to various degrees of exposure, and invalidating the
security guarantees the algorithm was designed for in the first place. As a typical example,
Brumley et al. [19] show how an arithmetic bug in the implementation of an elliptic curve in
OpenSSL can be practically exploited to retrieve a victim’s long term private key.
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2 Practical Formal Methods for Real World Cryptography

Finding such bugs in large codebases that are focused more on high-performance than
high-assurance is not an easy task. Software development practices, from good hygiene and
code reviews, to unit-testing and fuzzing, are best-effort and usually incapable of finding
subtle vulnerabilities. Rather than attempt to find and fix bugs in an ad hoc manner, our
philosophy, in line with a number of recent works [20, 7, 45, 15, 6, 38, 24], is to use formal
verification to prove the absence of large classes of vulnerabilities by design.

We use the F∗ programming language and verification framework [42] to build and verify
HACL∗, a library of verified cryptographic algorithms in C. Given a published standard
specification of a cryptographic primitive, we write verified code in F∗ that is memory safe,
functionally correct, and resistant to timing side-channels. This code is then compiled to
readable C code that is as performant as hand-written C code in state-of-the-art libraries like
OpenSSL. HACL∗ supports most of the algorithms used in modern cryptographic protocols
and applications, and is currently being used by the Mozilla Firefox Web browser, the
WireGuard VPN, the Tezos Blockchain, and the Microsoft WinQuic protocol stack.

HACL∗ provides a robust basis for building high-assurance cryptographic applications, but
the cryptographic library is only one component of the security stack. To protect connections
between clients and servers, Web applications rely on standardized protocols like Transport
Layer Security (TLS) [41]. For end-to-end secure messaging, WhatsApp and Skype rely
on a complex cryptographic protocol called Signal [1]. These protocols invoke a series of
cryptographic constructions across multiple messages to achieve sophisticated security goals.
The overall security of each protocol depends on subtle invariants, which may be falsified by
incorrect designs or buggy implementations. For example, the Triple Handshake attacks on
the TLS [13] uncovered a protocol design flaw in the way three TLS sessions can be composed
together, resulting in an attack on client authentication that had remain undiscovered for 18
years. The SMACK attacks on TLS libraries [9] found a class of implementation bugs that
allowed attacker to completely bypass the security of a large subset of HTTPS connections
on the Web. Preventing these kinds of attacks requires careful formal analysis.

We observe that cryptographic primitives are themselves getting more complex, with
new post-quantum algorithms and homomorphic encryption constructions currently being
standardized and deployed. Applications that use these new constructions, such as electronic
voting and privacy preserving machine learning, are even more complicated to specify and
analyse than traditional cryptographic protocols. Inevitably, attackers are also getting more
sophisticated, and the classic network attacker model needs to be augmented with finer
distinctions to catch and fix vulnerabilities.

We argue that the combination of complex protocols, sophisticated security properties, and
powerful attackers demands a more rigorous treatment of cryptographic software development.
In this paper, we describe how we can apply our verification tool chain across all layers
of a secure distributed application, starting with cryptographic algorithms (Section 2), to
end-to-end protocols with sophisticated security properties (Section 3), all the way to novel
privacy-preserving applications (Section 4). Through these case studies, we show how formal
methods can play an important role in building high-assurance cryptographic software.

2 Verified Cryptography: HACL∗

HACL∗ [46] is a verified open-source library of modern cryptographic algorithms, including
the elliptic curve Curve25519 [3], the authenticated encryption construction ChaCha20-
Poly1305 [2], the hash function SHA-2 [43], and the signature scheme Ed25519 [4]. Put
together, these algorithms are enough to satisfy all the classic cryptographic needs of a
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Figure 1 HACL∗ verification and compilation tool chain

distributed software application. In particular, HACL∗ supports the full NaCl cryptographic
API [8], and implements a full ciphersuite of TLS 1.3 [41]. The distributable code of HACL∗
is in portable C, and hence it can be easily wrapped into multiple languages and dropped into
application software that needs these algorithms. For example, HACL∗ is currently used to
implement TLS in Mozilla Firefox and as the NaCl implementation in the Tezos blockchain.

The verification and compilation tool chain used in the development of HACL∗ is depicted
in Figure 1. All the code in HACL∗ is written in F∗, an ML-like functional programming
language with a type system that includes polymorphism, dependent types, monadic effects,
refinement types, and a weakest precondition calculus [42]. The language is aimed at program
verification, and its type system allows the expression of precise and compact functional
correctness and security property specifications for programs, which can be mechanically
verified, with the help of an SMT solver. After verification, an F∗ program can be compiled
to OCaml, F#, C, or even WebAssembly, and so it can run on a variety of platforms.

Figure 1 shows the workflow for adding a new verified cryptographic primitive in HACL∗.
The first step is to write a high-level specification (Spec) in a higher-order purely functional
subset of F∗. This specification relies on standard libraries for basic datatypes such as
mathematical and machine integers (Z,MachineInt), and immutable arrays (Sequences), also
written in Pure F∗. Next, an optimized implementation of the primitive itself (Code) is
written in Low∗, a low level subset of F∗ that can be efficiently compiled to C, using the
KreMLin compiler [40]. For a full description of the syntax, type system, and semantics of
F∗, refer to [42], and for the formal development of Low∗ and its compilation to C, see [40].

The Low∗ Code cannot use mathematical integers, and it is only allowed to use machine
integer operations in ways that are safe from timing side channels. For example, if an
unsigned 32-bit integer (uint32) holds a secret value, e.g. part of an encryption key, it cannot
be compared with another integer, it cannot be used as an index into an array, and it cannot
be used in a division or modulo operation. This is because, on most hardware platforms,
the time taken by these operations may reveal the contents of the secret integer to a remote
attacker. Cryptographic code that uses such operations is not secret independent, and hence
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may be vulnerable to various side-channels attacks.
The Low∗ code can also use mutable but memory-safe arrays (Buffers) to hold crypto-

graphic state. However, all the arrays used in HACL∗ are stack-allocated, that is, they never
use the heap, and hence do not have to be explicitly allocated or freed.

The code for each crytpographic algorithm is then verified, using the F∗ typechecker,
to ensure that it conforms with the logical preconditions and type abstractions in the F∗
library. A failure to type check here may indicate the presence of memory safety, functional
correctness, or side channel vulnerability (or that the type checker may need more annotations
to prove correctness). If type checking succeeds, the Low∗ code is compiled using KreMLin
to portable C code, preserving all the properties verified in F∗.

Surprisingly, writing formally verified cryptographic code in HACL∗ does not have a
performance cost. Our C code is as fast as the hand-optimized C code in state-of-the-art
cryptographic libraries like OpenSSL. In many cases, the structured compact code generated
from F∗ is even faster. Performance is especially important for encryption algorithms and
elliptic curves that are used within network protocols like TLS, where cryptography often
dominates cost and can be a performance bottleneck. For example, our HACL∗ implementation
of Curve25519 was about 20% faster than the previous code for this elliptic curve in Firefox.
Hence adopting our code significantly cut the cost of HTTPS connections between Firefox
and popular websites like GMail. Similarly, the WireGuard VPN [22], which runs within the
Linux Kernel and needs high-performance high-assurance code for Curve25519, uses HACL∗.

HACL∗ is an evolving project. We are extending it with more elliptic curves, encryption
algorithms, and hash functions. To further improve the performance of HACL∗ code, we
are building a cryptographic provider called EverCrypt that combines verified C code from
HACL∗ with verified assembly code from the Vale project [15]. We use HACL∗ as a basis for
building implementations of more advanced and experimental cryptographic constructions
like those for post-quantum cryptography and homomorphic encryption.

Verified Homomorphic Encryption

3 Verified Protocols: LibSignal∗

Cryptographic protocols can go wrong in many ways. Consider the Transport Layer Security
(TLS) protocol, the de facto standard for secure communications across the Internet. Although
it was carefully specified and widely implemented, a large number of vulnerabilities were
regularly found in TLS, both in the protocol design (e.g [13]) and in its implementations
(e.g. [9]). So when the Internet Engineering Task Force (IETF) began the process of
standardizing TLS 1.3, it invited researchers to help them design the new protocol to be
secure by design. Many researchers responded to this challenge, publishing a series of papers
analyzing verious draft versions of the protocol. In our work, we built detailed formal models
of several drafts of TLS 1.3 using the verification tools ProVerif and CryptoVerif [10]. As part
of Project Everest [11], we are also helping build a verified implementation of TLS 1.3 in F∗
using the same tool chain as HACL∗, but extending with cryptographic security proofs [12].

In this section, we describe how we can extend this tool chain to implement and verify
another important real-world protocol called Signal. The Signal protocol is an end-to-end
encryption protocol for instant messaging that is used in many popular messaging applications
like WhatsApp, Skype, and Facebook Messenger, by billions of users worldwide. The main
design goal of Signal is to maximally protect the privacy of its users, even if the Signal
servers are compromised, and even if some users devices are stolen or confiscated. To this
end, Signal uses a novel key exchange protocol called X3DH [35] paired with an agressive key
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Figure 2 LibSignal* verification and compilation toolchain

update mechanism called the Double Ratchet [37] that frequently changes message encryption
keys, rendering old keys obsolete. Formally, Signal seeks to achieve a novel property called
post-compromise security [21], in addition to classic secure channel guarantees like sender
authentication, message confidentiality, and forward secrecy.

There are several implementations of Signal, including official libraries in Java (for Android
phones), in C (for iPhones), and in JavaScript (for Web applications), that are embedded
within various messaging apps. For example, the desktop version of Skype uses a library
called libsignal-javascript for private conversations. This means that any flaw in the design of
Signal or a bug in its JavaScript code may break the security of these private conversations.

We have built a verified implementation of Signal called LibSignal∗ [39] using the tool
chain depicted in 2. We first wrote a formal specification of the Signal protocol in the pure
fragment of F∗. Then we hand-translated this specification to the syntax of the ProVerif
protocol analyzer [14] and verified it for all the target security properties of Signal, including
forward and post-compromise security, following the methodology of [32]. If ProVerif fails to
verify the protocol, it produces a counter-example that may indicate a security vulnerability.
However, our analysis found no flaws in Signal, except for a known replay vulnerability [32].

Our next step was to write a Low∗ implementation of Signal, which needed several
cryptographic algorithms, including AES-CBC, HMAC, Curve25519, Ed25519, and SHA-
2, all of which we implemented and verified in HACL∗. We then verified the Low∗ code
of Signal (composed with the Low∗ code for HACL∗) for conformance to the high-level
protocol specification. Finally, we compiled the code, via the KreMLin compiler to C and
WebAssembly, obtaining verified implementations of the Signal protocol in these languages.

WebAssembly [29] is a new meta-assembly language supported by all Web browsers
and many application frameworks. It allows compact, efficient low-level programs to be
embedded within JavaScript applications and run on any platform. In comparison with
JavaScript, WebAssembly enjoys many advantages, making it a good target for verified
code. In particular, WebAssembly is a small, statically typed language with a clean formal
semantics, and it offers strong isolation guarantees against malicious JavaScript code. We
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developed a formal translation from Low∗ to WebAssembly and implemented this as a new
back-end for the KreMLin compiler [39]. We used this back-end to compile both HACL∗
and LibSignal∗. Our WebAssembly version of HACL∗ may independently be used in any
JavaScript application that needs verified cryptography.

We observe that just generating the core cryptographic protocol code for Signal does not
make it immediately usable by a messaging application. For example, the libsignal-protocol-
javascript library provides a session and key management layer and exposes a simple interface
to its applications. Our implementation of LibSignal∗ borrows this JavaScript code so that we
meet the same interface and pass all the interoperability tests of Signal. Notably, however, we
embed our verified WebAssembly code into the unverified JavaScript in a defensive manner
that reduces the risk of private key exposure.

Our work with LibSignal∗ shows how we can compose the low-level guarantees of HACL∗
with the sophisticated security proofs of Signal to obtain a verified cryptographic protocol
implementation that can readily be deployed in real world messaging applications. We believe
that this methodology offers a template for many more future applications.

4 Verified Applications

Encouraged by this flexibility and modularity, we plan to extend our framework to target
real world distributed applications. These include electronic voting and privacy preserving
machine learning. With the flaws discovered in the Swiss e-voting system [30, 33], an attacker
with access to the Scytl voting machine (say the machine vendor itself) could tamper with
cast-votes and change them. This vulnerability is embedded deeply in the cryptographic
system that verifies the cast-votes. A flaw in the implementation of trapdoor commitments
nullifies the end-to-end security guarantees of the system, making a strong case for a composite
tool chain where all levels of the application are verified. In the next subsection of our paper.
we describe a new line of research, and explore the problem of privacy in machine learning
classification.

4.1 Privacy Preserving Machine Learning
Machine learning as-a-service is an attractive use-case for cloud servers. Such a server could
host a classifier algorithm, and process and reply to classification queries from subscribers.
Since learning applications consume large amounts of training data to generate useful clas-
sifiers, user privacy is a pressing concern. Protecting sensitive and personally identifiable
information (PII) of users from servers, both during model learning and subsequent classi-
fication is a legal/compliance requirement in many contexts. A machine-learning classifier
that preserves user privacy should not learn anything about the user query or its subsequent
response (the resulting class). At the same time, from the point of view of server, the
mathematical models used for learning and inference can be proprietary and need to be
hidden from users.

In model learning, the inputs to the learning algorithm are labeled data values, converted
to feature vectors ~x, and used to learn a model of weights w of a classifier consisting of
say k classes c1 · · · ck, given by C(~x,w). In the classification or prediction phase, the label
cj , 1 ≤ j ≤ k for an unseen feature vector ~y input by a client, is predicted using the classifier
C as cj = C(~y, w). In this model, the server presented with a query and is expected to return
the appropriate class label prediction to the requesting client as described.

Cyptographic techniques can offer a solution to the privacy problem that satisfies both
parties. Some relevant cryptographic schemes in this context include applications based on
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Figure 3 Programming and Verification Framework: The programmer first writes a high-level
mathematical specification of the classifier (or any other computation over private data) in F*.
The programmer can run and test this specification. She then implements this specification as a
distributed program with components running at the client and the cloud server. The program is
composed with a cryptographic library and the whole system is verified using F*. If verification
succeeds, the code is compiled to C and can be deployed on the network.

homomorphic encryption (HE) [25, 18, 31, 28] secure multi-party computation (SMC) [44, 34],
garbled circuits [28, 31], and functional encryption (FE) [17], which allow clients and servers
to jointly compute functions over encrypted or private data without revealing their inputs
to each other. In HE, the result also remains encrypted, and can only be decrypted with
the appropriate key. A typical HE algorithm takes an encrypted input x for program P and
produces the encrypted result of applying x on the function encoded by P .

With HE, both the model w and query ~y are encrypted using say a public HE key. The
prediction classifier is implemented on the server as the homomorphic evaluation function
Eval(C). The result of the prediction, cj , has to be declassified and presented to the client
that issued the query. The cryptographic properties of the HE scheme ensure that the
client does not learn anything about model w beyond what it can learn from observing
the predicted class of its input, and the server does not learn the value of the input, or its
predicted class. A caveat here is that there are certain types of attacks, including model
inversion, and access to prior knowledge that de-duplicate records even if they are encrypted.
Techniques such as differential privacy [23] can help alleviate these concerns, and we plan to
study them in the future.
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HE schemes that can compute arbitrary functions (called fully HE or FHE) are fairly
straightforward to implement, but are prohibitively expensive. Even with the latest imple-
mentation of HELib [26], general depth-limited homomorphic computations of interest in
machine learning have very large overheads, e.g, with matrix multiplication being over 600K
times slower than plaintext computations, which does not make them practical for useful
applications. However, HE schemes that are restricted in their functionality, called partial HE
schemes (PHE) are more practical, and can perform one type, say add or multiply [36, 27] or
a small number of computations, e.g., quadratic functions [16]. We have seen e.g., in [18, 31],
that PHE schemes can be combined with other auxiliary cryptographic schemes such as secure
multi-party computations and garbled circuits, or even with strong hardware protection
guarantees to build solutions that are practical, and provide strong guarantees.

We propose a programming and verification framework to help developers build distributed
software applications using composite partial homomorphic encryption protocols, incorpor-
ating verified cryptographic primitives and high-assurance implementations of auxiliary
schemes With our framework, a developer can prove that the application code is functionally
correct, that it correctly composes the various cryptographic schemes and protocols it uses,
and that it does not accidentally leak any secrets (via side-channels, for example.) Our
end-to-end solution can be seen as a logical extension of our work presented in the earlier
two sections, and results in verified and efficient implementations of state-of-the-art secure
privacy-preserving learning and classification techniques.

Given a high-level algorithmic specification of a machine learning inference computa-
tion, along with a set of confidentiality constraints on its inputs, our goal is to build and
verify its implementation as an efficient distributed cryptographic protocol. Our verified
implementation toolchain is shown in Figure 3, with four stages:

1. Global High-Level Specification: We first write a global high-level specification of
our desired distributed computation in F*, focusing on classification algorithms for now.
The specification consists of the function φ it computes, the characterization of its model
w, in terms of feature vectors ~χ, input ~x ∈ ~χ, and the result ci = φ(w, ~x) from C the set
of classes. The high-level confidentiality specification is that the evaluation of φ must
preserve the secrecy of w, ~x, and ci from different parties.

2. Distributed Implementation: We then write implementations, also in F*, of the
client and the cloud server, detailing all their network interactions and cryptographic
computations. We prove that this implementation meets the high-level spec, while
preserving our desired confidentiality goals, given an abstract (trusted) interface for the
underlying cryptography. The implementation can itself be broken into a reusable verified
library of commonly used constructions, like addition, secure comparison, dot products,
polynomial evaluation, etc. and application-specific code for the classification algorithm
we seek to implement.

3. Cryptographic Instantiation: The code for these two parties will usually rely on a
variety of cryptographic primitives, which will need to be instantiated with concrete
schemes such as Paillier, GCs, random permutations, etc. which are themselves hard to
implement correctly. We build verified implementations of all the cryptographic schemes
we need, as an extension to the HACL* verified crypto library [46]. These primitives
compile to C code that is as fast as state-of-the-art hand-written crypto libraries. Each
primitive is verified for memory safety, resistance to common timing side-channels, and
functional correctness with respect to a high-level mathematical specification. We propose
to build a series of verified HE and 2PC schemes in HACL*, which will also be reusable
in other applications.
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4. Low-Level Executable Components: Finally, we compile all our F* code along with
the cryptographic library to C to obtain two C libraries, one for the client and one for
the server. We envisage that these libraries will be embedded into larger applications
that will handle less security-critical concerns like user interfaces, networking code, and
persistent storage. Generating C code allows our code to run efficiently on a variety of
platforms, including smartphones, and enables existing legacy applications to use our
toolchain to verify their core cryptographic components.

At the end of this workflow, we aim to obtain high performance verified protocol code
in C for Clients, and Servers which can communicate over an untrusted network, but still
provide strong correctness and confidentiality guarantees.

5 Proposed Roadmap

We propose to build our verification toolchain in stages, evaluating them over a series of
case studies. Our eventual goal is to be able to verify privacy-preserving implementations of
inference for naïve Bayes classifiers, hyperplane decision classifiers (perceptron, least squares,
Fischer’s linear discriminants, SVMs), decision tree classifiers, and neural networks.

As a longer-term goal, we see our toolchain as something that can be integrated into a
mainstream framework for building distributed cryptographic applications. For example, the
machine learning framework can be integrated with TensorFlow [5], which offers an API to
developers that is not very far from the core operations we consider in this work: addition,
multiplication, dot-product, comparison etc. We envision that machine learning developers
will be able to write and test their high-level specifications as TensorFlow programs and our
toolchain will help them develop verified low-level distributed protocols that implement these
programs in a privacy-preserving style that can be safely deployed in the untrusted cloud.

Our verified framework and the modular tool chain we describe allows us to develop
high-assurance cryptographic applications that incorporate state-of-the-art cryptographic
algorithms, complicated cryptographic protocols and their composition, and allow us analyze
the resulting implementation for sophisticated and fine-grained end-to-end security properties.
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