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ABSTRACT
We propose a programming and verification framework to help
developers build distributed software applications using composite
homomorphic encryption (and secure multi-party computation)
protocols, and implement secure machine learning and classifica-
tion over private data. With our framework, a developer can prove
that the application code is functionally correct, that it correctly
composes the various cryptographic schemes it uses, and that it does
not accidentally leak any secrets (via side-channels, for example.)
Our end-to-end solution results in verified and efficient implemen-
tations of state-of-the-art secure privacy-preserving learning and
classification techniques.
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1 INTRODUCTION
Enterprise machine learning applications consume vast amounts of
user data to produce useful analytics, which support a wide range of
services and products. As more of these applications use dedicated
machine learning services on public cloud servers, protecting this
sensitive and personally identifiable information (PII), already a
legal requirement in many countries, is becoming a critical concern.
From the point of view of enterprises deploying these services
on public clouds, the mathematical models used for learning and
inference can also be sensitive and need to be hidden from the
servers.

In this context, technologies that keep user data and models
private or encrypted, either using hardware protection, or by using
cryptographic techniques, can be very useful. A typical scenario is
a cloud-based service that answers queries by consulting a model
that has been trained on a private database. Users may send private
queries asking the server to classify a new input. The server should
not learn the model, the query or its result, and the client should not
learn anything about the model except for the results to its queries.
To begin with, storing data in encrypted form on the servers is
attractive as the data at rest is resilient to inadvertent disclosure,
active attacks, or malicious insiders. However, processing encrypted
data is problematic. There are two families of solutions that seek to
tackle this problem.

The first line of research requires the data to be decrypted on the
server before processing, and relies on trusted hardware solutions
such as secure coprocessors [2] and secure enclaves [14, 17, 21, 24,
26] on the server to guarantee its security. The processing is done in
secure memory implemented by hardware and cannot be accessed
by another application on the server. The other approach is to build
on cryptographic schemes like homomorphic encryption (HE) [5,
11, 15, 18] secure multi-party computation (SMC) [20, 25], garbled
circuits [15, 18], and functional encryption (FE) [4], which allow
clients and servers to jointly compute functions over encrypted or

private data without revealing their inputs to each other, extending
the scope of guarantees offered to data at rest by encryption to the
operations and results of computation. We focus on the HE scenario
to illustrate the need for a formal framework in order to build truly
secure software implementations. A typical HE algorithm takes an
encrypted input 𝑥 for program 𝑃 and produces the encrypted result
of applying 𝑥 on the function encoded by 𝑃 . Note that our work
extends to software for SMC and secure enclaves as well, and will
comment on this briefly.

We focus on supervised machine learning with two phases. In
model learning, where the inputs to the learning algorithm are
labeled data values, converted to feature vectors ®𝑥 , and used to
learn a model of weights𝑤 of a classifier consisting of say 𝑘 classes
𝑐1 · · · 𝑐𝑘 , given by 𝐶 ( ®𝑥,𝑤). In the classification or prediction phase,
the label 𝑐 𝑗 , 1 ≤ 𝑗 ≤ 𝑘 for an unseen feature vector ®𝑦 input by
a client, is predicted using the classifier 𝐶 as 𝑐 𝑗 = 𝐶 ( ®𝑦,𝑤). With
machine learning as-a-service, a (third-party) server is presented
with a query and is expected to return the appropriate class label
prediction to the requesting client as described.

For this article, we highlight the classification phase(similar
to [18, 20]) and briefly comment on howwe extend it to model learn-
ing later. With HE, both the model 𝑤 and query ®𝑦 are encrypted
using say a public HE key. The prediction classifier is implemented
on the server as the homomorphic evaluation function Eval(𝐶).
The result of the prediction, 𝑐 𝑗 , has to be declassified and presented
to the client that issued the query. In terms of security guarantees,
the client should not learn anything about model w beyond what it
can learn from observing the predicted class of its input, and the
server should not learn the value of the input, or its predicted class.

HE schemes that can compute arbitrary functions (called fully
HE or FHE) are fairly straightforward to implement, but are prohibi-
tively expensive. Even with the latest implementation of HELib [12],
general depth-limited homomorphic computations of interest in
machine learning have very large overheads, e.g, with matrix multi-
plication being over 600K times slower than plaintext computations,
which does not make them practical for useful applications. How-
ever, HE schemes that are restricted in their functionality, called
partial HE schemes (PHE) are more practical, and can perform one
type, say add ormultiply [13, 22] or a small number of computations,
e.g., quadratic functions [3].

One of the earliest practical proposals to use PHE for secure clas-
sification is the work by Bost et al [5]. The idea is to compose sev-
eral PHE schemes, and build a library of multi-party protocols that
offers all the basic building blocks needed for many machine learn-
ing classification algorithms. This library implements distributed
algorithms for computing the XOR, addition, dot products, and
polynomials over encrypted inputs, as well as protocols for secure
comparison and argmax over encrypted and unencrypted inputs.
These building blocks are composed together to implement Naïve
Bayes, hyperplane decision, and decision tree classifiers efficiently,



Figure 1: Machine learning classification over encrypted data:
Input to the classifier on the server is encrypted user query
𝑥 , output is class 𝐶 (𝑥,𝑤). Model𝑤 and query 𝑥 are opaque to
the server.

on real world medical dataset examples requiring only milliseconds
for classification.

In this and other works that also look at model learning [6, 9,
15, 16, 18–20], several PHE and SMC schemes are composed to
compute the classifier of interest, and intermediate results are often
masked, declassified and transformed from one scheme to another
before they are finally revealed.

As we show next, the security of the composition needs to be
analyzed carefully, as different PHE functions have different rep-
resentations and security assumptions. In addition, the inherent
implementation complexity of the compositions, reasoning about
the correctness of the computed results, and the need for rigorous
arguments regarding the security guarantees in terms of leakages,
all point towards a more formal treatment of software development
in this domain.

2 SECURE ML PROTOCOLS
We present an example machine learning classifier to illustrate
the complexity of protocol implementation in this domain. Our
operating environment is described in Figure 1. A typical client
presents an encrypted query 𝑥 = ®𝑥𝑖 to a classifier 𝐶 implemented
on a third-party cloud server as shown. For example, a hospital that
presents the encrypted features from a scrubbed record on behalf
of a patient, to a cancer-screening classifier hosted on the cloud
server, and expects an encrypted response indicating the class of
the sample. The output of the classifier (given to the client) is the
class 𝑐 that 𝑥 belongs to, according to the model 𝑤 . The idea is
that the client does not learn this model𝑤 , beyond the output class
value 𝑐 for its input, and the server does not learn anything about
the client’s input ®𝑥 or the model𝑤 .

What is implicit in this scenario is who owns the (data used to
compute) model𝑤 . Model𝑤 may not be secret, eg., as in PATE [23],
where a public model with enough fidelity that cannot be linked
to any user record is generated(privacy-preserving). In this case
only the client query needs to be kept secret from the server. If the
model is secret (say because it is proprietary), then the decryption
key rests with the owner of the model. Both clients and third-party
servers only work on encrypted data and have public keys. Even if

the client and the model owner belong to the same trust domain
knowledge of model parameters could leak information about the
training data to the client beyond what can be learnt from query
responses.

The problem of model learning on encrypted data, is also an
active area of research [6, 9, 16, 18, 20]; and we plan to explore
this in future work. The process of learning the model requires
additional trust assumptions regarding the provenance and privacy
of the labeled samples. Usually, labeled data is sanitized to remove
identifying attributes, and we assume that there is one stakeholder
who can claim ownership of scrubbed data (similar to model owner
in Figure 1). This owner (or a consortium of owners) has control
over the declassification of themodel parameters. In order to protect
privacy, additional filters, including differential privacymechanisms
may be needed for secure declassification. For now, we also do not
consider private data leaks that are inherent to a specific machine
learning system, such as model inversion attacks [10], which are
related but orthogonal to our work. We will explore the integration
of security and privacy properties in future work.

2.1 A classifier over encrypted data
Since FHE techniques are largely impractical, researchers have
explored the use of PHE techniques along with masking and de-
classification of partial results to implement faster algorithms and
protocols to work directly on encrypted data. One of the first along
these lines is the work by Bost et al. [5]. We use their example of a
typical Naïve Bayes classifier for input ®𝑥 (size 𝑑) to illustrate the
complexity of a typical protocol in this domain.

Algorithm 1: Naïve Bayes Classifier

1 , Input : {𝑝 (𝐶 = 𝑐𝑖 )}, 𝑘 classes, {𝑝 (𝑋 𝑗 = 𝑣 |𝐶 = 𝑐𝑖 )}
Output :𝑘∗

2 begin
3 𝑘∗ = argmax(𝑝 (𝐶 = 𝑐𝑖 ) · Π𝑑

𝑗=1 (𝑝 (𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐𝑖 )))

Algorithm 1 presents a high-level specification of the standard
Naïve Bayes classifier on plaintext models. The two entities are the
server and the client: the server has the classifier and the client the
query. Given an input feature vector ®𝑥 = 𝑥1, · · · , 𝑥𝑑 , capturing an
observation, we estimate the conditional posterior probability that
its class is 𝑐𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , given by 𝑝 (𝐶 = 𝑐𝑖 , 𝑋1 = 𝑥1, · · · , 𝑋𝑑 = 𝑥𝑑 )
using Bayes’ rule as the dot product of the prior and conditional
probabilities 𝑝 (𝐶 = 𝑐𝑖 ) · Π𝑑

𝑗=1 (𝑝 (𝑋 𝑗 = 𝑥 𝑗 |𝐶 = 𝑐𝑖 )). The class cho-
sen by the classifier is the one with the highest such probability,
represented by index 𝑘∗, the argmax of the computed values. (The
denominator in Bayes’ rule 𝑝 (𝑋 = 𝑥) is omitted as it is effectively
constant).

The Secure Naïve Bayes protocol for two parties using is shown
in Algorithm 2. This example is slightly different from the third-
party server model we have discussed so far. Here, the server (S) is
trusted to know the model𝑤 and the PHE secret key. The client (C)
only knows the public keys. The prior and conditional probabilities
are represented as logarithms and the dot product operation can
now be carried out as addition, suggesting the choice of an additive



Algorithm 2: Secure Naïve Bayes Classifier
Input :S: (PKP, SKP), (PKQR, SKQR),𝑤 = (𝑃,𝑇𝑖, 𝑗 (𝑥 𝑗 ))
Input :C: PKP, PKQR, ®𝑥 = (𝑥1, · · · , 𝑥𝑑 ) ∈ Z𝑑
Output :𝑖0 to Client such that 𝑝 ( ®𝑥, 𝑐𝑖0 )

1 begin
2 S creates and sends tables J𝑃K and J𝑇𝑖, 𝑗 K using PK𝑃 to C
3 C computes J𝑝𝑖K = J𝑃 (𝑖)K · Π𝑑

𝑗=1 (J𝑇𝑖, 𝑗 (𝑥 𝑗 )K)
4 C and S together run argmax, C gets 𝑖0 = argmax(𝑝𝑖 )

PHE scheme such as Pailler [22] and the corresponding PHE keys
(PKP, SKP).

In this protocol the trusted server encrypts the model and gives it
to the client who computes encrypted J𝑝𝑖Ks, a list of posterior prob-
ability values. However, the client cannot directly decrypt these
values to get argmax as required. If the client sends the J𝑝𝑖K s di-
rectly to the server, then the server learns the magnitudes of the
clients features. Instead, the client and server work together using
several sub protocols, which include techniques such as permuta-
tions, masking, declassification, and re-encryption. First, the client
chooses a random permutation over its ciphertexts and picks the
first two ciphertexts, so that even if the server learns the which of
the two is larger(without learning the magnitude), it will not learn
the right index. It then works with the server to implement a pro-
tocol to jointly discover which of the two are larger. This protocol
internally uses the SecureCompare [7, 8] protocol that works a dif-
ferent bitwise additive homomorphic encryption scheme (quadratic
residues or QR [13] as shown), whose secret key is known only
to the server. This subprotocol reveals which ciphertext is larger
among the pair to the server, without revealing its magnitude.

The client now masks both values compared (which remain
encrypted) by adding large random numbers homomorphically and
sends the pair to the server. The server decrypts the masked pair
and sets the appropriate value as max (plus the implicit masking)
and updates its maxindex. Note that the server does not know
the real max value, as it has been masked by the client, or the real
maxindex as it has been permuted by the client. This max is re-
encrypted and sent back to the client, who removes the masking by
subtracting it (homomorphically, without learning the magnitude),
and repeats the protocol by picking the next element in the list and
the current max, and using SecureCompare again, and moving on
to the next encrypted value in the list and so on, until the maxindex
is updated consistently all along the list. At the end of the protocol
the server sends this maxindex (unencrypted) to the client, who
undoes the permutation it picked to obtain the real argmax.

2.2 Security analysis
Already we see that a simple one-line plaintext protocol, when
implemented using PHE as presented, requires the orchestration
of embedded sub protocols, two different additive homomorphic
schemes, additive masking (Paillier), bit encryption, bit-counting
operations (GM), declassification, permutations, and re-encryption.

The usual trust assumption in these cryptographic solutions
is the honest-but-curious adversary, who has access to encrypted
data (without access to the secret keys to be able to decrypt it) and

follows the computation steps correctly. If one of the participants
deviates from the protocol, either through malice or because of a
bug, the security guarantees of the algorithm are lost.

We now discuss informally how the algorithm presented above
can leak information about the client’s inputs. Even without know-
ing the values, the server can count how many times it updated its
maxindex. This is a server who is honest-and-curious, without need-
ing to mount an active attack. In the worst case, if all values in the
encrypted list have the same magnitude, the server will learn this
information. Whether this is ultimately useful or not will depend on
the classifier and features. While this particular vulnerability about
counting the number of changes to maxindex can be addressed by
a preprocessing step in the encrypted world using homomorphic
operations that makes all values unique, without changing the real
order, there are other subtle vulnerabilities that can be exploited
including side channels in the cryptographic implementations that
can reveal some operand values.

We cannot rule out that the server is malicious and mount active
attacks eg., in an extended three-party version of this protocol,
where the secret keys are held by the data owner. For example, the
cloud server can set all weights to identity values, and respond to
queries to learn features adaptively. In such a three-party setting,
the data owner who has the secret keys will need to be present on-
line to declassify masked/partial results, so rewriting this protocol
with a separate model owner and an untrusted public server will
require the explicit consideration of this requirement.

The complexity of the construction along with these trust as-
sumptions further emphasizes the need for a formal proof that the
implementation of a secure machine learning scheme is correct.
Things can go wrong in implementations. The protocol specifica-
tions in Bost et al [5] contain minor typos, with the client being
given the QR secret keys, as well as the wrong masking value for
re-encryption, which will invalidate any security guarantees if im-
plemented as such. The challenge is to show this rewriting will not
compromise the security of the computations.

With this is mind, we propose to build a software framework
that can be used to implement a range of distributed applications
on secret data, such as machine-learning inference protocols using
PHE with strong verified guarantees. We would like to maintain
these guarantees against both passive and active adversaries, and
even if the adversary were able to measure side-channels such as
timing leaks. Further, we seek to build and verify practical and
efficient implementations, and hence our proofs will account for
the low-level optimizations in such solutions.

3 OUR FRAMEWORK
Given a high-level algorithmic specification of a machine learning
algorithm on secret data, along with a set of confidentiality con-
straints on its inputs, our goal is to build and verify its implementa-
tion as an efficient distributed (two or three-party) cryptographic
protocol. To this end, we design a programming and verification
framework based around the F* language [1], as depicted in Figure 2.

F* is a functional programming language with a type system that
includes polymorphism, dependent types, monadic effects, refine-
ment types, and a weakest precondition calculus [1]. The language



Figure 2: Programming and Verification Framework: Pro-
grammer writes high-level mathematical specification of the
classifier (or any other computation over private data) in F*.
The programmer can run and test this specification, imple-
ment this specification as a distributed program with compo-
nents running at the client, model owner, and cloud server.
The program is composed with a cryptographic library and
the whole system is verified using F*. If verification succeeds,
the code is compiled to C and can be deployed on the net-
work.

is aimed at program verification, and its type system allows the ex-
pression of precise and compact functional correctness and security
property specifications for programs, which can be mechanically
verified, with the help of an SMT solver. After verification, and F*
program can be compiled to OCaml, F#, C, or even WebAssembly,
and can run in a variety of platforms.

We propose to develop our verified applications in four stages,
as shown in Figure 2:

(1) Global High-Level Specification: We first write a global
high-level specification of our desired distributed compu-
tation in F*, focusing on classification algorithms for now.
The specification consists of the function 𝜙 it computes, the
characterization of its model𝑤 , in terms of feature vectors
®𝜒 , input ®𝑥 ∈ ®𝜒 , and the result 𝑐𝑖 = 𝜙 (𝑤, ®𝑥) from C the set of
classes. The high-level confidentiality specification is that
the evaluation of 𝜙 must preserve the secrecy of 𝑤 , ®𝑥 , and
𝑐𝑖 from different parties. (We are deliberately generic with
the notation; the particular domains, ranges and categories
need to be clearly articulated for each algorithm.)

(2) Distributed Implementation: We then write implemen-
tations, also in F*, of the three parties, detailing all their
network interactions and cryptographic computations. We
prove that this implementation meets the high-level spec,
while preserving our desired confidentiality goals, given an
abstract (trusted) interface for the underlying cryptography.

The implementation can itself be broken into a reusable ver-
ified library of commonly used constructions, like addition,
secure comparison, dot products, polynomial evaluation, etc.
and application-specific code for the classification algorithm
we seek to implement.

(3) Cryptographic Instantiation: The code for the three par-
ties will usually rely on a variety of cryptographic primitives,
which will need to be instantiated with concrete schemes
such as Paillier, GCs, random permutations, etc. which are
themselves hard to implement correctly. We build verified
implementations of all the cryptographic schemes we need,
as an extension to the HACL* verified crypto library [27].
HACL* is written in a subset of F*, but is compiled to C code
that is as fast as state-of-the-art hand-written crypto libraries.
Each primitive is verified for memory safety, resistance to
common timing side-channels, and functional correctness
with respect to a high-level mathematical specification. Our
plan is to build a library of verified HE and 2PC schemes in
HACL*, which will also be reusable in other applications.

(4) Low-Level Executable Components: Finally, we compile
all our F* code along with the cryptographic library to C to
obtain three C libraries, one for each party. We envisage that
these libraries will be embedded into larger applications that
will handle less security-critical concerns like user interfaces,
networking code, and persistent storage. Generating C code
allows our code to run efficiently on a variety of platforms,
including smartphones, and enables existing legacy applica-
tions to use our toolchain to verify their core cryptographic
components.

At the end of this workflow, what we have is high performance
verified protocol code in C for Clients, Servers and Model Owners,
which can communicate over an untrusted network, but still provide
strong correctness and confidentiality guarantees.

We have implemented F* specifications of the secure Na"ive
Bayes classifier from Bost et al., [5] and built the underlying imple-
mentations of Pailler and GM PHE schemes. These implementations
are verified against confidentiality, correctness, and side channel
resilience requirements and compile down to efficient C libraries.
With our implementation we are able to show the vulnerability
discussed by declassification in SecureCompare, and provide a fix,
which is verified within the framework. We also show how to im-
plement secure permutations and techniques for converting inputs
to unique values, which are of general utility to protocols in this
domain.

4 FUTURE DIRECTIONS
Our grand goal is to build a comprehensive framework, which will
have all the libraries to implement efficient verified protocols for
privacy preserving machine learning, in addition to the security
and functional correctness requirements we discussed. We plan to
extend our F* specifications to include garbled circuits, SMC, and
linear algebra primitives at both levels 2 and 3 in our framework
and derive optimized implementations in level 4, which can be
incorporated into large applications and provide strong guarantees.
At the specification level, we plan to work on abstractions to imple-
ment and verify Convolutional Neural Networks (CNNs) [18, 20]



for image classification and propose to integrate privacy-preserving
mechanisms into our tool kit as well.
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