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Abstract

Damage localization and quantification constitute different aspects of structural damage diagnosis, which

are of particular interest in the Structural Health Monitoring field. Therein, a classical solution is model

updating, where the parameters of a finite element model of the possibly damaged structure are optimized

to match with the corresponding parameters estimated from its vibration responses. To avoid ill-posedness

of the classical finite element updating problem, damage localization and quantification can be treated

separately. First, the information about regions or clusters of possibly damaged elements in the structure

is obtained by a damage localization method. Then, this information is used to reduce the number of

parameters for damage quantification. A framework combining the advantages of methods for damage

localization with model optimization is proposed in this paper. For the exploration of the clustered physical

model space, a stochastic optimization algorithm is coupled with the evaluation of the statistical properties of

the MAC and frequency differences between the numerical model and the estimated modes for an adequate

treatment of the data-based uncertainties. Herein, the development of the statistical properties of the

MAC estimate is an important step, which is based on a recent quadratic framework that is adapted to the

context of the inner product between an estimated mode shape and a numerical mode shape. This statistical

information is used in the formulation of the objective function as well as in a data-driven stopping criterion

for the optimization search. The proposed framework is validated on numerical simulations of a beam model,

where damage at multiple locations is quantified up to the clustering precision.

Keywords: Damage quantification, Stochastic optimization, Modal parameters, Modal assurance criterion,

Uncertainty quantification

1. Introduction

The damage diagnosis problem can be divided into damage detection, localization and quantification [1].

When performing these tasks in a cascade fashion, the full structural diagnosis problem is amenable to a
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solution. Whereas the detection of damage from vibration measurements is well established, e.g., in [2–6],

the localization and quantification of damage is more complex, and requires additional physical information

on the examined structure [7–10]. In this respect, few complete frameworks for damage identification exist,

e.g., [11–13]. Some methods consider a specific structural type in their theory, e.g., beams [12], while

other methods incorporate the required physical information from a finite element (FE) model, which allows

application to more complex structures. In this context, the sensitivities of a damage feature computed from

structural responses can be used to infer FE model parameter changes in [11], under the assumption of small

damage extents. Contrary to these approaches, FE model updating methods are usually not limited by the

structural type or by the damage extent. Model updating is a generic term encompassing a family of direct

and indirect methods [14, 15] that are often applied in the damage quantification context [16–19]. While

applicable to arbitrary structures, model updating is often poorly conditioned due to the possibly large FE

parameter space in comparison to relatively few parameters that can be extracted from data, and is prone

to statistical uncertainty errors of the estimated features. The objective of this paper is to develop a cascade

framework where the damage is first localized and then quantified on the subset of the damaged parameter

space, and which explicitly considers data-based uncertainties. The resultant methodology belongs to the

family of indirect methods and relies on an iterative FE model optimization.

The purpose of model optimization is to adjust the model to minimize the misfit between some model

features and the corresponding data features. The model is expressed by a full physical parametrization that

cannot be directly retrieved from data due to limited sensor instrumentation and limited modal information.

A minimization procedure will yield the best model candidate regarding the data, and in the context of the

current paper, the best change candidate for damage quantification. In this context, the features of potential

interest are derived from the modal parameters [20–23].

Depending on the model complexity, the physical parametrization size may be large. Different values

of the parametrization may yield the same numerical frequencies and mode shapes at the limited number

of sensor positions, and may be indistinguishable when compared to the data features. Conversely, the

estimated data features may react similarly to damage occurring in different parameter components. Thus

a change in some parameter components of the physical model can be indistinguishable for the considered

feature, i.e., the modal parameters. A pragmatic solution is to group such physical parameter components

into a cluster. A cluster contains a subset of parameters, whose sensitivity is close and no distinction among

different elements of the cluster can be made. Then, only a global evaluation of the change in the parameter

value over the cluster is meaningful. A sensitivity-based parameter clustering was first proposed in [24] and

developed further in [25–27]. In [7], the limitation of working with a large physical parameter space and

a limited set of sensors and modes was addressed by Fisher information-based clustering. The benefit of

using the Fisher information-based clusters resides in accounting for the statistical uncertainty of the metric

to locate changes in the considered parametrization, which is in contrast to deterministic sensitivity-based
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approaches. As such, the Fisher information-based clustering will be used in the current paper to reduce

the dimension of the parameter search domain for model optimization.

Model optimization is to be done by means of an objective function. Considering the large size of the

parameter search domain, the minimization of the objective function by exhaustive search may not be an

option. To circumvent taxing brute-force search, different algorithms have been investigated, like stochastic

gradient-type methods [28] which are however limited to convex functions, or global deterministic search

methods [29]. Global and stochastic algorithms, like genetic algorithms and evolution strategies, are good

candidates for finding the optimum for non-convex and rugged objective functions. Therein the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) [30] appears to be suitable for optimization of non-linear,

non-convex functions with local minima, and has been applied to damage quantification [31]. A number

of convergence studies suggest that CMA-ES is likely to reach the optimum for a large enough number of

iterations [32–34], which is usually fixed to an upper bound. As a consequence and drawback, this large

number of iterations can lead to an unnecessary computational burden for the resulting optimization. In

this context, an improvement will be the development of a stopping criterion able to assess the quality of the

solution to achieve an early stop. A good stopping criterion will prevent a waste of resources by ceasing the

algorithm when further optimization is not statistically significant, as well as avoiding a premature stopping

[35]. Classic criteria are formulated with empirical factors, e.g., relative change in the optimized parameters,

relative change in the value of the objective function, or maximum number of iterations. Those factors are

usually related to the performance of the optimization algorithm, and not to the quality of the investigated

solution, and are defined without any insight on the uncertainty of the estimated parameters. A properly

designed stopping criterion should relate to the properties of the investigated parameters [36]. A stopping

criterion based on the modal parameter estimates and the MAC estimate is proposed herein and developed

to take into account their statistical uncertainty.

The uncertainty in model updating can be due to statistical feature estimation or due to idealization of

the model-based parameters [37]. The former originates due to the finite data length and noise [38], and

the latter stems from the assumptions and simplifications in modeling. In order to assess the quality of the

solution given by the model optimization, the model and measurement uncertainties should be accounted

for. Model errors are oftentimes taken into account with stochastic model updating [39–41], which is beyond

the scope of this paper. Parameter estimation errors can be accounted for by incorporating their statistical

uncertainty to the objective function, which was addressed by Bayesian weighting least-squares problem

[23], by model perturbation [42, 43] or by using the variance of estimated model parameters computed

empirically over different data sets [15, 21]. An extensive review on this subject can be found in [37], where

the necessity of further examining the statistical uncertainty related to estimated parameters was pointed

out. Besides the uncertainty errors, both the estimated and the model features can vary due to changes in

environmental and operating conditions. Such variations must be properly considered when analyzing the
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misfit between both, either by removing the environmental effects from the estimated features [44–47], or by

using adequate modeling assumptions for both the numerical model and the identification method [48, 49].

As such, accounting for changes in environmental and operating conditions is important in practice, however

it is beyond the scope of this paper.

The current paper focuses on the impact of the uncertainty of the estimated modal parameters in the

model optimization, and most particularly for the MAC estimate, whose statistical properties in this context

were never investigated, but only inferred in Bayesian updating [50]. In general, the MAC can be viewed as

the inner product of two Gaussian unit vectors. Considerable attention has been devoted to the derivation

of the distribution properties of such a product in the past, which also applies to the MAC. The majority

of the work, however, focuses on the case where both vectors are stochastic [51–53]. A possible solution

was investigated in [54], where the exact mean values of both vectors are required, which are not available

in practice. In the present paper, the uncertainty quantification is achieved by the statistical delta method

[55], which has been deployed previously as a first order linearization for evaluating uncertainties of modal

parameters [38, 56], modal indicators [57, 58], or for physical parameters of mechanical systems [28], without

a priori information on the solution. In [58], a second-order extension of the first-order delta method was

used to derive a general scheme for uncertainty quantification of the MAC between two estimated mode

shapes. The present paper considers a particular application of MAC, where one mode shape is estimated

and the other is deterministic. As such, its uncertainty can be derived based on the general approach from

[58] but under different assumptions.

In summary, this paper comprises the following developments on three different levels, namely

� theoretical: the explicit derivation of the statistical uncertainty of the MAC between a mode shape of

an FE model and an estimated mode shape,

� algorithmic: the design of an objective function and a stopping criterion incorporating the variance of

modal parameters estimated from one data set,

� methodological: the development of a cascade framework for damage quantification, where first the

damage is localized among a set of clustered parameters, and then quantified by minimization of the

previously elaborated objective function thanks to an evolutionary algorithm.

These developments lead to a coherent optimization approach for damage quantification, whose novelty

resides in the consideration of uncertainties for its objective function, its stopping criterion and the definition

of the search domain in terms of Fisher information-based parameter clusters.

The plan of this paper is as follows. The considered model optimization problem is stated in Section 2.

The effect of the statistical uncertainties on the objective function is illustrated in Sections 3 and 4, where

adequate uncertainty quantification approaches are developed and incorporated to its formulation. The
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indistinguishability of physical parameters is considered further in Section 4.3. The damage quantification

framework based on the damage localization-based parameter clustering and the stochastic optimization

scheme is presented in Section 5, before illustrating it on a numerical application in Section 6.

2. Problem statement

The overall goal of damage quantification is the estimation of the structural parameter change between

a healthy (reference) state and the current damaged state of the structure. Let θ ∈ Θ ⊂ Rp be the

parameter vector that contains the damage-sensitive parameters of the structural elements of interest for

the considered problem within a bounded parameter space Θ. The parametrization is user-defined and

adapted to the specific monitoring problem at hand. It is assumed that the parameter vector θ0 in the

healthy state of the structure is known, and let θ∗ be the parameter vector in the damaged state. It is the

goal to obtain an estimate θ̂ of θ∗ from vibration measurements in the damaged states for estimating the

damage extent δ = θ∗ − θ0. Finding the optimal θ̂ can be formulated as an optimization problem, where an

objective function F (θ), also called cost function, is minimized over the parameter space Θ.

The objective function is designed to represent the discrepancy between the estimate of a feature vector v̂

computed from measurement data recorded under the (unknown) system parameter θ∗, and its counterpart

v(θ) computed from a parametric model. The optimal solution for θ is then obtained as

θ̂ = arg min
θ∈Θ

F (θ). (1)

The monitored system is modeled as linear time-invariant (LTI) with d degrees of freedom (DOF) and

it is described by the differential equation of motion

Mθ q̈(t) +Dθ q̇(t) +Kθq(t) = u(t) (2)

where t denotes continuous time, and Mθ, Dθ and Kθ ∈ Rd×d denote the mass, damping and stiffness

matrices, respectively, which depend on the system parameter θ. The vectors q(t) ∈ Rd and u(t) ∈ Rd

denote the continuous-time displacements and the unknown external forces, respectively.

The true modal parameters of system (2) are obtained from the eigenvalues µθi ∈ C and eigenvectors

Ψθ
i ∈ Cd, which are the solution of the eigenvalue problem

(
(µθi )

2Mθ + µθiDθ +Kθ
)

Ψθ
i = 0 , (3)

and yield the natural frequencies fθi =
|µθi |
2π and the mode shapes ψθi = LΨθ

i ∈ Cr at the observed DOF

for a given sensor type, where L ∈ Cr×d maps the eigenvectors to the mode shapes that can be obtained

from measurements at r sensors, respectively. Denote f̂i and ϕ̂i the respective estimates of the i-th natural

frequency and the i-th mode shape, and assume that the deployed system identification method is consistent,
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i.e., f̂i and ϕ̂i converge to their true values fi,∗ and ϕi,∗ when the data length N goes to infinity. This

is satisfied by multiple system identification methods, for example stochastic subspace identification (SSI)

methods [56, 59, 60], where these parameters can be identified, e.g., from acceleration, velocity, displacement

or strain measurements.

A classic feature vector v̂ for the design of the objective function F (θ) in (1) is based on f̂i and ϕ̂i for

i = 1, . . . ,m where m denotes the number of considered modes, and v(θ) is its counterpart computed from

the model. The main issue for the solution of the resulting optimization problem is its possible ill-posedness

or ill-conditionedness due to the fact that different parameter vectors θ can yield the same or close feature

vectors v(θ). The problem is aggravated by the presence of uncertainties in the estimate v̂, which are

unavoidable due to unknown excitation and measurement noise. Indeed, the modal parameter estimates are

random variables that have been proved to be asymptotically Gaussian for SSI methods [61, 62], satisfying

f̂i ≈ N
(
fi,∗,

1
N σ

2
fi

)
, and

<(ϕ̂i)

=(ϕ̂i)

 ≈ N
<(ϕi,∗)

=(ϕi,∗)

 , 1
NΣϕi

 , (4)

where <(·) and =(·) express the real and imaginary parts of a complex variable, N (µ,Σ) denotes a Gaussian

distributed variable with mean µ and covariance Σ, and σ2
fi
∈ R and Σϕi ∈ R2r×2r are the asymptotic

covariance of f̂i and ϕ̂i, respectively. The computation of the respective covariance estimates σ̂2
fi

and Σ̂ϕi

from the same data set as the modal parameter estimates can be found, e.g., in [38, 56, 62].

In Section 2.1, an academic beam example is defined, which will serve as a supporting proof of concept

for the different methodological steps introduced throughout the paper, as well as for the application of the

developed quantification method in Section 6. In Section 2.2 a standard modal parameter-based objective

function is recalled, which will be further developed by incorporating the estimation uncertainties in Sections

3 and 4.

2.1. Illustrative example

The considered Euler-Bernoulli beam has 95 elements and consequently 192 DOF. The beam is modeled

in free-free boundary conditions. For the sake of simulation, damping is assumed to be proportional, where

the damping matrix is defined such that each mode has a damping ratio of 1%. The system is excited by

a white noise signal acting at all translational DOF. The acceleration responses are recorded by six sensors

at a sampling frequency of 5000 Hz with a length of 200 s, and white Gaussian measurement noise with a

standard deviation of 5% of the standard deviation of the output is added to the each response measurement.

The beam model is illustrated in Figure 1.

Damage is emulated as changes in the mass properties of the structure. In the reference state, the

density of each beam element is ρj = 2700, where j = 1 . . . 95 is the element number. Two damage cases

are considered, namely
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Figure 1: Numerical beam model with sensors.

Table 1: Exact natural frequencies f (Hz) of the beam model.

State f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

Healthy 39.98 110.56 215.91 371.27 532.01 713.03 958.19 980.86 1275.5 1300.5 2119.7 2130.8

Case 1 39.95 110.56 215.90 371.18 531.73 712.65 956.57 979.61 1275.5 1300.5 2112.6 2127.6

Case 2 39.93 110.42 215.90 370.76 530.99 712.56 956.08 979.31 1274.8 1299.7 2112.3 2127.6

� Case 1: 15% increase in ρ9,

� Case 2: 15% increase in ρ9 and ρ33.

Hereafter let θ be the collection of the element densities ρj . Albeit the inflicted damage relates to changes

in the density of beam elements, the damage quantification framework proposed herein is general and can

be formulated to quantify changes in any parameter of the numerical model for which the modal parameter

sensitivities are non-zero.

Both damage scenarios modify the exact natural frequencies of the FE model. The chosen modes for

the analysis comprise the first twelve flexible modes of the beam and are presented in Table 1. It can be

viewed that the reduction in the natural frequencies is small and no more than 0.08% for the first mode in

the second damage scenario. The applied damage also perturbs the mode shape vectors. The MAC between

two complex-valued mode shapes vectors ϕ and ψ is defined as [63]

MAC(ϕ,ψ) =
|ϕHψ|2

ϕHϕψHψ
=
ϕHψψHϕ

ϕHϕψHψ
, (5)

and the change in mode shapes can be observed when comparing the mode shapes of the healthy and

damaged models through the corresponding MAC values. The maximum decrease in the MAC occurs for

the twelfth mode shape vector at up to 14.8% for the MAC between the mode shape of the healthy model

and the same mode shape in damage case 2.

2.2. Modal parameter-based objective function

A classic objective function for model optimization is expressed by the difference between the estimated

and the numerical modal parameters [37]. For this purpose, the estimated modal parameters must be paired

with their counterparts from the numerical model to correspond to the same mode. It is hereafter assumed

that such a pairing is accomplished, e.g., with modal parameter-based criteria [64]. Denote ∆θ
fi

as the
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normalized difference between the estimated natural frequency f̂i and the natural frequency fθi from the

model under parameter θ, with

∆θ
fi = 1− fθi

f̂i
. (6)

For the comparison of the mode shape estimate ϕ̂i (computed from measurements under unknown system

parameter θ∗) to the numerical counterpart ψθi from the model, the MAC is used. If θ = θ∗, the MAC

between both mode shapes is close to 1 and tends to 1 when the data length N →∞, since ϕ̂i is a consistent

estimate. Conversely, if the MAC between both mode shapes tends to 1, the parameter vector θ is a valid

candidate for θ∗, up to some question of model identifiability that is discussed later in the paper.

Let ∆θ
MACi

be the difference between 1 and the respective MAC, defined as

∆θ
MACi = 1−MAC(ϕ̂i, ψ

θ
i ) . (7)

The objective function F (θ) indicates the distance between the estimated modal parameters and their

model counterparts, and it can be expressed as the sum of the respective differences ∆θ
fi

and ∆θ
MACi

for all

considered modes i = 1, . . . ,m, as

F (θ) =

m∑
i=1

∣∣∣∣∆θ
fi

∣∣∣∣+

m∑
i=1

∆θ
MACi . (8)

The function F (θ) in (8) maps the p-dimensional parameter space to a multidimensional hyperplane whose

shape can easily be illustrated for p = 2. Consider the estimates of fθ∗i and ϕθ∗i corresponding to the

beam data simulated for the damage case 1 as described in Section 2.1, and the beam model parametrized

with element densities ρj as illustrated in Figure 1. The function F (θ) is displayed for the parameter pair

(ρ8, ρ9) ∈ [2600, 3400]2 in Figure 2 (left). It can be viewed that F (θ) is convex in the considered parameter

region. The global minimum of F (θ) is at 0.022, which is misaligned with the value F (θ∗) = 0.034 at the

exact parameter value pair (2700, 3105) for the parameters ρ8 and ρ9. This is a consequence of the statistical

Figure 2: Objective function F (θ) for the parameter pair ρ8 and ρ9 in the single fault case (left) and for the parameter pair ρ9

and ρ33 in the double fault case (right).
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Table 2: Different model states and corresponding pairs of ρ8 and ρ9 in damage case 1.

Model ρ8 ρ9 F (θ)

A 2600 2950 0.066

B 2616 3096 0.022

C 2735 3070 0.029

Exact 2700 3105 0.034

uncertainty introduced by the modal parameter estimates in F (θ). As a result, the true model can reach

higher values of F (θ) than other slightly different but close models, as illustrated by three parametrization

cases in Table 2. The values of F (θ) for these models are very close, and to answer which one can be

accepted as a solution cannot be solely based on the shape of the discussed objective function F (θ), but

should also take into account the underlying modal parameter uncertainties. Similarly, the objective function

for damage case 2 is shown in Figure 2 (right), having also low values for a wide range of parameters.

3. Objective function considering the statistical uncertainty of the natural frequency estimates

First, the statistical uncertainties of the frequency estimates are introduced into the objective function,

before considering the statistical properties of the MAC in the next section. Notice that only the statistical

uncertainty is considered here, under the assumption that there exists a model parameter vector θ = θ∗ such

that the modal parameter estimates can converge to their model counterparts if the data length is large

enough. Misspecified modeling or model errors are not taken into account in this paper.

3.1. Confidence interval of the natural frequency estimates

Since the frequency estimates are approximately Gaussian distributed, their confidence intervals are

symmetric and centered around the computed estimates. They cover a range of plausible values that include

the true value of the parameter with some given confidence level γ, e.g., γ = 0.9544 for the ±2σ bound. At

this value, the corresponding confidence interval

cf̂i = [f̂min
i , f̂max

i ] (9)

encompasses the true value fi,∗, where f̂min
i = f̂i − 2 · 1√

N
σ̂fi and f̂max

i = f̂i + 2 · 1√
N
σ̂fi with 95.44%

probability, which is hereafter denoted as the 95% confidence interval. Assume any model parameter θ and

the data are generated under the parameter θ∗. If the natural frequency of the model fθi is inside cf̂i , then

it can be inferred that both θ and θ∗ are statistically close. Conversely, when θ differs significantly from

θ∗, the corresponding model frequency fθi is likely to be outside the confidence interval of the estimated

frequency. This can be illustrated based on a Monte Carlo simulation of the beam from Section 2.1, where

1000 data sets are simulated for damage case 1. For each data set, the modal parameters and their variances
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Figure 3: Illustration of Gaussian confidence intervals for frequency estimates.

are estimated with data-driven subspace-based system identification [62]. The estimated modal parameters

are then compared to the numerical modal parameters of the models under different parameter vectors θ

as depicted in Table 2. Histograms of the first natural frequency estimates together with a 95% confidence

interval for one selected estimate are illustrated in Figure 3.

It can be viewed in the first histogram that Model A is statistically different from θ∗, where θ∗ corresponds

to damage case 1. This is reflected by the fact that its first natural frequency (dashed line) is strictly outside

the confidence interval centered around the selected natural frequency estimate. This applies for the chosen

estimate in Figure 3 (red square), however it would also be true for most of the values of the histogram and

their variances. In the second histogram, Model B shows a closer correspondence, hence its first frequency

will belong to more of the confidence intervals computed for each frequency estimate. The first frequency

of Model C will belong to the confidence interval for most of the values of the third histogram. Based on

the displayed estimates, Models B and C yield acceptable solutions for ρ8 and ρ9, and Model A would be

rejected most of the time.

3.2. Design of an objective function considering the confidence intervals of natural frequency estimates

The normalized difference (6) between the estimated frequency f̂i and the model frequency fθi is now

penalized when fθi is outside the 95% confidence interval of f̂i. The corresponding difference is defined as

∆̃θ
fi =

1− fθi
f̂i
, if f̂min

i ≤ fθi ≤ f̂max
i

1, otherwise

(10)

and the corresponding objective function is defined as

F̃ (θ) =

m∑
i=1

∣∣∣∣∆̃θ
fi

∣∣∣∣+

m∑
i=1

∆θ
MACi . (11)

Based on the confidence intervals (9), the acceptance region

Θ̃ = {θ : fθi ∈ cf̂i for all i = 1, . . . ,m} (12)
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Figure 4: Objective function F̃ (θ) for single fault (left) and double fault (right).

can be defined, which comprises all parameter vectors θ that yield model frequencies within the confidence

intervals of their estimated counterparts. Thus, Θ̃ comprises the statistically acceptable solutions for θ∗ with

regards to the considered frequencies, and a stopping criterion of the optimization search can be formulated

as θ ∈ Θ̃.

The shape of F̃ (θ) is illustrated in Figure 4 for the same data set and the same parameter space as for the

previously analyzed objective function F (θ). For both damage cases, it can be viewed that F̃ (θ) is rugged

and steeper than the classic F (θ) in Figure 2. Also, the bottom region corresponds by design to all the

models where all the model frequencies and the estimated frequencies satisfy (12). The resulting acceptance

region is still quite wide, with the minimum and the true value well apart, and does not take into account

any statistical information about the mode shapes, which is analyzed next.

4. Objective function considering the uncertainty of both the frequency and MAC estimates

In this section, the uncertainty related to the MAC estimate is investigated for the objective function

and the stopping criterion. This uncertainty is particularly relevant when evaluating if the estimated mode

shapes ϕ̂i and numerical mode shapes ψθi match, which is an objective for model optimization. Due to the

statistical nature of the estimated mode shapes, it is not meaningful to evaluate if the MAC is exactly at 1

for a match, but if it is close enough to 1 up to the statistical uncertainty.

While classical Gaussian confidence intervals can be easily defined for the frequencies, as in the previous

section, the uncertainty quantification of the MAC is more intricate. The MAC distribution can only

be approximated as Gaussian when the two mode shapes are significantly different, i.e., the MAC is well

separated from 1. Then, the mode shape covariance can be propagated to the MAC by a first-order sensitivity

approach similar to [38, 62]. However, for model optimization it is the goal to find a parameter θ such that

the estimated and numerical mode shapes match. Then, MAC(ϕ̂i, ψ
θ
i ) should be close to 1 and its limit value
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is expected to be 1 for N −→∞. The distribution of MAC(ϕ̂i, ψ
θ
i ) is bounded at 1 where it will accumulate,

so it cannot be Gaussian or symmetric anymore. Thus, the MAC distribution for this case needs to be

characterized before the uncertainty can be evaluated, which is carried out in detail in Appendix A. Based

on the framework of [58], it is shown successively:

1. The statistical distribution of the MAC between a mode shape estimate and a numerical mode shape is

characterized by a quadratic form if the mode shapes match. The analysis is based on a second-order

Taylor expansion, as shown in Appendix A.1.

2. The distribution of the quadratic form can be approximated by a scaled and shifted χ2 distribution,

whose parameters are detailed in Appendix A.2.

Finally, this statistical analysis is used to determine whether the underlying mode shapes are matching.

The evaluation of the MAC distribution yields a quantile at the desired confidence level and subsequently

an interval of plausible values of MAC estimates under the assumption that the true MAC value is 1. Then,

this assumption can be accepted or rejected based on the value of the MAC estimate and the associated

interval, to evaluate if the mode shape estimate matches the mode shape from the model in the optimization

process. The computation of the quantile for the MAC uncertainty quantification is detailed in Section 4.1

and summarized in Algorithm 1, before incorporating it into the objective function in Section 4.2.

4.1. Computing the quantile of MAC as a criterion for the collinearity of ϕ̂i and ψθi

The assumption MAC(ϕi,∗, ψ
θ
i ) = 1 is checked based on the MAC estimate MAC(ϕ̂i, ψ

θ
i ) and its statisti-

cal properties to verify if the parameter θ corresponds to the true parameter θ∗ in the optimization process.

Under this assumption, it is not useful to define a confidence interval around the MAC estimate in which

the true MAC value should lie as in the classical Gaussian case, since the true MAC value is known and

assumed to be 1. Instead, a quantile tMACi of the MAC distribution approximation can be obtained for a

chosen confidence level γ, e.g., γ = 0.95, yielding∫ 1

tMACi

fMAC(x)dx = γ, (13)

where fMAC is the probability density function (pdf) of the MAC distribution in (A.11). Based on (A.11),

the quantile tMACi is computed as

tMACi = 1− β
N −

α
N tχ2 , (14)

where tχ2 is the γ quantile of the underlying χ2 distribution at l DOF, satisfying
∫ tχ2

0 fχ2(x)dx = γ.

Parameters l, α and β of the MAC distribution are computed in Appendix A.2.

Since the assumed true MAC value is at its maximum at 1, tMACi has been chosen as the lower bound of

the range of the plausible MAC estimates in (13), which are contained in the interval [tMACi , 1]. This interval
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Algorithm 1: Computation of the q-interval related to MAC uncertainty

Input : mode shape estimate ϕ̂, model mode shape ψθ and the mode shape covariance estimate

Σ̂ϕ, e.g., from subspace identification [38, 56, 62]

Output: quantile tMAC of the MAC distribution approximation

1 compute Hessian HMAC
ϕ̂ based on (A.8) using ϕ̂, ψθ and k̂ = ψH ϕ̂/ψθHψθ, and H

MAC

ϕ̂ = − 1
2 HMAC

ϕ̂ ;

2 compute c1, c2 and c3 in (A.9) ;

3 compute number of DOF l = c32/c
2
3, scaling parameter α = c3/c2 and shift parameter β = c1 − c22/c3

(see Appendix A.2);

4 compute quantile tMAC for the desired confidence level in (14)

is denoted as the q-interval and contains the MAC estimate with probability γ, if the true MAC value is

actually 1. Thus, it can be checked if the MAC estimate lies in the q-interval to verify the assumption that

the true MAC is 1. Note that this is different to the Gaussian case, where the true value should lie in the

confidence interval around the estimate. Based on tMACi it can be inferred that the MAC estimates with

MAC(ϕ̂i, ψ
θ
i ) ≥ tMACi are plausibly close to 1, whereas MAC estimates satisfying MAC(ϕ̂i, ψ

θ
i ) < tMACi

are not. In the latter case it can be inferred that MAC(ϕi,∗, ψ
θ
i ) 6= 1 for the considered confidence level,

thus the true mode shape ϕi,∗ and the model mode shape ψθi do not match, and consequently ψθi does not

correspond to θ∗.

The proposed framework is applied to match the first mode shape computed from data of the beam

example (see Section 2.1) with the first mode shape of the numerical models B and C as stated in Table

2. Monte Carlo histograms of the MAC estimates, along with the corresponding distribution quantiles, are

illustrated in Figure 5. For Model B, the MAC histogram is clearly Gaussian shaped in Figure 5 (left).

A Gaussian confidence interval for a selected MAC estimate is obtained based on (A.2)–(A.4) for a 95%

Figure 5: Examples of Gaussian confidence interval and quadratic quantile for the MAC histograms.
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confidence level (green error bar), and it can be seen that it covers most of the histogram including the

mean value. The entire histogram lies outside the q-interval of the selected estimate for a 95% confidence

level (purple error bar), which indeed indicates that the mode shape estimate is not corresponding to the

model with statistical significance. Conversely, for the MAC histogram for Model C in Figure 5 (right),

the q-interval contains around 95% of the MAC histogram values, indicating matching mode shapes. Thus

testing if the estimate is within [tMACi , 1] leads to the acceptance or the rejection of the hypothesis that the

numerical mode shape and the estimated mode shape correspond to the same model.

4.2. Design of an objective function considering uncertainty information for frequency and MAC

If the MAC between the tested numerical mode shape and the reference estimate does not belong to the

q-interval for the chosen confidence level, the numerical mode shape is considered to be different from the

estimate. In this case, the corresponding value (7) is penalized in the objective function, and the difference

between the MAC and 1 is defined as

∆̃θ
MACi =

1−MAC(ϕ̂i, ψ
θ
i ), if tMACi ≤ MAC(ϕ̂i, ψ

θ
i )

1, otherwise

(15)

The resulting objective function writes

F (θ) =

m∑
i=1

∣∣∣∣∆̃θ
fi

∣∣∣∣+

m∑
i=1

∆̃θ
MACi , (16)

and the corresponding acceptance region is defined as

Θ = {θ : fθi ∈ cf̂i and MAC(ϕ̂i, ψ
θ
i ) > tMACi for all i = 1, . . . ,m}. (17)

Thus, Θ comprises the statistically acceptable solutions for θ∗ with regards to the considered frequencies

and MAC values, and a stopping criterion of the optimization search can be formulated as θ ∈ Θ.

The resulting plot of the objective function for the considered numerical example from Section 2.1 is

displayed in Figure 6, where it can be seen that the stopping region is narrower than in Figure 4. Taking into

account the MAC uncertainty provides more information and reduces the pool of accepted model candidates.

4.3. Model identifiability discussion

Due to limited sensor instrumentation, the acceptance region for F (θ) in (17) does not only contain

a single value of parameter θ, but there are many physical models that yield the same frequencies and

mode shapes. For example, the region highlighted in Figure 7 is the acceptance region for damage case 1,

corresponding to a slice of the discretized parameter space for three parameters. As it can be seen, this region

is a plane encompassing dependent parameter components. All the models corresponding to these values

will generate statistically equivalent natural frequencies and mode shapes. As such, no separation between

14



Figure 6: Objective function F (θ) for single fault (left) and double fault (right).

Figure 7: Discretized parameter space of the beam for parameter triplet (ρ8, ρ9, ρ10).

these models is possible, which relates to the identifiability of the model through the available limited set of

sensors and modes. All these models are equally valid as a solution of the optimization problem. Since the

ultimate goal is the quantification of damage, the respective parameter changes should not be evaluated for

each parameter component individually, but should also include the dependent parameter components, as

described in the following section.

5. Damage quantification strategy

In the previous section, an objective function has been elaborated whose set of minima corresponds to

models that are statistically compliant with the modal parameter estimates. As such, looking for the minima

of this function will yield the sought models. This, however, is not trivial. For example, some optimization

strategies might be stuck in local minima due to the rugged nature of the proposed objective function,

and an exhaustive search can be time consuming. Moreover, the lack of identifiability for parameters of

large FE models requires clustering in order to estimate the change over subsets of similar parameters, and
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Measurement data under θ∗ Model: Kθ, Mθ, Dθ

Subspace damage localization

Model optimization

θloc

f̂i, σ̂
2
fi

and ϕ̂i, Σ̂ϕi fθi and ϕθi

Figure 8: Damage quantification flow chart.

consequently to quantify the possible damage.

In this paper, it is proposed to chain a damage localization approach with a model optimization procedure,

to minimize the designed objective function (16) over the subset of parameters that have been recognized as

damaged by the localization strategy. In this way, the search domain for the optimization approach can be

reduced efficiently. The resultant damage quantification framework is summarized in Figure 8. For damage

localization, the subspace-based damage localization approach [7] is chosen, and the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [30] is adapted as the optimization approach. Both methods are

outlined in the following subsections. The damage quantification procedure comprising the aforementioned

strategies is summarized in Algorithm 2.

5.1. Damage localization and clustering by the subspace-based damage localization method

The subspace-based damage localization strategy has been proposed in [65] and refined in [7]. This

method is based on a data-driven feature vector that compares the subspaces of output covariance Hankel

matrices between the reference and damaged states. The feature vector is statistically evaluated, taking

into account its covariance and its sensitivity with respect to FE model parameter vector θ, in order to

determine which components of θ have changed for damage localization. Due to a possibly large FE model-

based parametrization θ on one side and limited measurements regarding the number of sensors and modes

on the other side, the sensitivity of the feature vector with respect to some components of θ may be equal

or be very close. Thus, such parameter components are indistinguishable for damage localization, and

a clustering of the parameters is performed to ensure distinguishable clusters for localization. Hereby,

parameter components of θ for which the sensitivities are equal, or are very close, form a cluster. The

localization resolution is defined by the clusters, and no separation is possible between the elements of the

same cluster. The elements of one cluster are all either detected as damaged, even if only one of them is

actually damaged, or none of the cluster elements is recognized as damaged. In [7], it has been shown how

the clusters can be defined in the reference state and a procedure for optimal clustering has been developed

in [66]. The parameter clusters established for the beam example from Section 2.1 are shown in Table 3.
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The output of the localization procedure is a subset of the parameter vector θ, denoted by θloc, which

contains all parameters of the clusters that are recognized as damaged. Hence, it can be considered that the

remaining parameters in θ are unchanged. Subsequently, the damage extent can be quantified by updating

only the parameter subset θloc. Thus, linking the damage localization procedure with an adequate model

optimization method should lead to a complete damage quantification strategy, where the dimension of the

search domain is reduced by the localization approach.

4-13 14-19 20-23 27-30 31-42 43-69 73-76 77-83 84-89 90-92

Table 3: Parameter clusters for the numerical example from subspace-based damage localization.

5.2. Model optimization with modified CMA-ES

Starting with the initial value θ = θinit corresponding to the model in the reference state, the CMA

algorithm consists in generating λ model candidates θgj , j = 1, . . . , λ, in each population g, by sampling a

multivariate Gaussian distribution. The model candidates are only modified on the parameter subset θloc

that is given by the localization approach. The sampling is carried out on the considered parameter subset

for the subsequent population g + 1 as

(θloc
j )g+1 = mg + εj where εj ∼ σgN (0, Cg) , for j = 1, . . . , λ (18)

where mg is a weighted mean of the model candidates (θloc
j )g in the parent generation. Then, the parameter

subset of the full parameter vector θg+1
j is updated with (θloc

j )g+1. Equation (18) represents a mutation

and recombination into offsprings, for which the CMA-ES algorithm adapts the parameters Cg and σg in

each generation. The covariance matrix Cg of the added Gaussian noise represents the amplitude for the

sampling to occur, and the scaling factor σg determines the range of the considered mutation. Consequently,

the optimization continues and the best parent solutions replace the offspring until it converges to a solution.

For CMA-ES, the covariance matrix Cg is incrementally updated with rank-one matrices representing the

direction between the best parent solutions at two consecutive generations, such that the likelihood of

previously successful search steps is increased [30].

For the convergence to a solution, a stopping criterion is defined based on the acceptance region (17).

Since all models therein are equally optimal in the statistical sense, the CMA-ES algorithm can stop once

a number topt of population model candidates are inside the region, where topt ≥ 1. A higher value leads to

more confidence in the set of retained solutions. Once inside the acceptance region, there is no need to further

minimize the objective function, avoiding unnecessary additional computations. Since the acceptance region

yields a hyperplane, the mean of the selected model candidates θgjk ∈ Θ in the last population g is also an
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acceptable solution for the final parameter value, with

θsol = 1
topt

topt∑
k=1

θgjk . (19)

Using (19) centers the solution among the model candidates satisfying the stopping criterion. It allows

to ponder some possibly erroneously selected model candidates, since the considered stopping criterion is

defined for a given confidence level.

Finally, the change in the parameter vector is evaluated for damage quantification. The changes in the

parameter components of each cluster are indistinguishable and cannot be evaluated separately, as described

in the previous section. However, the global change for each cluster c can be evaluated as

δ̂c =

pc∑
k=1

θ
ic(k)
sol − θic(k)

init (20)

where ic(1), . . . , ic(pc) are the indices of the components of parameter vector θ that correspond to cluster c,

and pc is the number of elements in c.

Algorithm 2: Model optimization

Input : frequency and mode shape estimates f̂i, ϕ̂i, i = 1, . . . ,m, and (co-)variances σ̂2
fi

, Σ̂ϕi ;

physical parameter θinit and its subset θloc
init corresponding to located damaged clusters ;

parametrized structural model Kθ, Mθ, Dθ ;

set of initial optimization parameters from Table 4 ;

Output: estimated parameter value θloc
sol and estimated total change δ̂ for each damaged cluster ;

1 compute cf̂1 , . . . , cf̂m in (9) ;

2 create Kθinit , Mθinit , Cθinit and evaluate fθinit1 , . . . , fθinitm , ψθinit1 , . . . , ψθinitm ;

3


Model

evaluation
compute tMAC1

, . . . , tMACm in Algorithm 1 ;

4 evaluate F (θinit) in (16) ;

5 repeat

6 get λ model candidates θ1, . . . , θλ in (18) ;

7 repeat Model evaluation steps 2, 3 and 4 with θ1, . . . , θλ ;

8 update CMA-ES optimization parameters after [30] ;

9 count the number tΘ of model candidates θj with θj ∈ Θ in the acceptance region, see (17) ;

10 until tΘ ≥ topt;

11 compute θsol in (19) as the mean of all model candidates in Θ ;

12 compute the change in the parameter value δ̂c for each damaged cluster c in (20)
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6. Numerical application

This section is devoted to the application of the proposed scheme to quantify damage exerted in the

numerical beam example introduced in Section 2.1, for which simultaneous faults in parameters ρ9 and ρ33

are investigated. Note that these parameters belong to different clusters, as shown in Table 3.

First, the damage case 2 comprising 15% reduction in both ρ9 and ρ33 is analyzed. Second, five cases

consisting of different fault combinations of 2.5%, 5%, 10% and 15% damage in ρ9 and ρ33 are examined. The

beam data are simulated after the procedure in Section 2.1, and the natural frequencies f̂1, . . . , f̂12 and mode

shapes ϕ̂1, . . . , ϕ̂12 together with their corresponding covariances are computed with the SSI-UPC algorithm

[62]. The fully parametrized beam model comprises 80 parameters (excluding the junction elements in Figure

1), whose updating can involve a considerable number of iterations and may not be efficient for damage

quantification in practice. To reduce the search parameter space and focus the optimization algorithm on

the potentially damaged parameters, the subspace-based damage localization is applied.

The Fisher information related to the subspace damage localization residual is used for complete linkage

parameter clustering [7], and the resultant parameter clusters are shown in Table 3. After the subspace-

based localization is applied, both clusters containing the faulty parameter components, namely the first

and the fifth cluster of Table 3, are detected. Both clusters contain 22 parameters, which are used instead of

the initial 80 parameters in the optimization procedure. The parameters used to initialize the optimization

algorithm are depicted in Table 4. The first model candidate arrives in the acceptance region after 38

iterations in 550 seconds in Matlab 2018b on a i7 2.9GHz CPU with 16GB of RAM. The whole model

optimization takes 56 iterations to converge to a solution with 60% of the population in the acceptance

region, lasting 880 seconds. The model candidates retained in the acceptance region are visualized in the

modal parameter space for the first and the twelfth mode in Figure 9. It can be viewed that in both cases the

difference between the estimated and the model natural frequencies are very small, and the corresponding

MAC values are approximately 1 for the first mode and higher than 0.99 for the twelfth mode. The parameter

value that corresponds to the exact model is within both regions. Furthermore, it can be observed that the

accepted MAC and frequency pairs create an elliptic surface when projected into a two-dimensional modal

parameter space, where the ellipse is the 95% confidence region of the accepted samples, as illustrated in

Figure 9. The shape of the ellipse signifies the boundary of the acceptance region and differs for different

modes. Notice that those plots are just a slice of the multidimensional parameter search. As the clusters of

Table 4: CMA-ES optimization parameters.

σinit θiinit θimin−max λ topt

810 2700 2295-3510 1000 60% λ
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Figure 9: Natural frequency and MAC differences at the last iteration: first mode (left), twelfth mode (right).

interest have altogether 22 parameter components, the search is over 22 dimensions, which is significantly

less than the original parameter size.

Prior to damage quantification, the statistical uncertainty of the MAC estimates is examined in more

detail. The uncertainty of the MAC has been derived and incorporated into the objective function in this

paper, and it takes an important role in the definition of the acceptance region. To validate the derived

statistical properties of the MAC, a Monte Carlo experiment with 1000 simulations of the measurement data

and the optimization procedure from Figure 8 is considered for each simulation. Two scenarios for the MAC

computation are distinguished. First, the MAC is computed between the mode shape estimate ϕ̂i of each

simulation and the true numerical mode shape ψi,∗. Second, the MAC is computed between the mode shape

estimate ϕ̂i and the numerical mode shape ψsol
i corresponding to the mean solution of the optimization

algorithm in each simulation. The respective histograms for the first and the twelfth mode shape are shown

in Figure 10 together with a MAC distribution fit, whose parameters are computed for one realization of

the Monte Carlo simulation with Algorithm 1. These results illustrate that the distribution of the MAC

estimates is well approximated by the scaled and shifted χ2 distribution, as developed in Appendix A.

The practical application of the statistical analysis is the estimation of the corresponding q-intervals

based on the quantile tMACi in (14), to infer if the MAC between a mode shape estimate and a numerical

mode shape is significantly close to 1 in the optimization with the chosen confidence level of γ = 0.95.

The computation of these intervals can be validated in the Monte Carlo experiment, where 95% of the

intervals [tMACi , 1] should contain the respective MAC estimate when the mode shapes match. The ratios

of occurrences where the estimates of MAC are indeed in the interval are shown in Table 5. It can be

viewed that approximately 95% of all MAC estimates are contained in the interval [tMACi , 1], showing that

the proposed uncertainty quantification scheme is accurate. Even if the displayed percentages are slightly

higher than expected, they are within 1% of each other when the estimated mode shapes are compared to

the mode shape of either the true model or the result of the optimization. With these results, the statistical
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Figure 10: MAC distribution fits to histograms of MAC(ϕ̂1, ψ∗,1) (top left), MAC(ϕ̂1, ψsol
1 ) (top right), MAC(ϕ̂12, ψ∗,12)

(bottom left) and MAC(ϕ̂12, ψsol
12 ) (bottom right).

Table 5: Percentage of MAC estimates contained in the 95% q-intervals of the MAC distribution approximation.

Mode i 1 2 3 4 5 6 7 8 9 10 11 12

MAC(ϕ̂i, ψi,∗) 96.4% 97.8% 97.4% 96.2% 97.4% 96.8% 97.4% 97.3% 97.0% 97.8% 97.4% 96.7%

MAC(ϕ̂i, ψ
sol
i ) 97.5% 98.7% 98.5% 97.0% 98.1% 97.9% 98.3% 98.0% 97.9% 98.5% 98.1% 97.4%

properties of the MAC estimates are validated for use in the proposed optimization procedure.

The goal of the damage quantification approach is to estimate the change in the parameters of each

damaged cluster. This change is expressed as the sum of the differences between the considered parameter

components of θsol and their initial values θinit in the cluster in (20). In the iterations of the optimization

procedure, each population contains λ model candidates, from which topt are required to be within the

acceptance region for the algorithm to stop. The mean of these candidates is defined as θsol. The esti-

mated change can be examined for every population of model candidates at each iteration of the algorithm,

illustrating its performance, as depicted in Figure 11. It can be seen that the estimated change reaches

the lowest values of the objective function for the parameters inside the acceptance region. The estimated

cluster changes corresponding to the mean solution θsol and the true value θ∗ are within the envelope of the

cluster changes corresponding to the accepted models of the final population. The final estimates based on

θsol as shown in Figure 11 (green circle) are δ̂4−13 = 423.8 and δ̂31−42 = 390.2. Their standard deviations
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Figure 11: CMA-ES optimization of the change in parameter clusters (left) with zoom on the cluster changes corresponding to

the acceptance region in the last iteration (right).

Figure 12: Damage extent estimation for different scenarios.

originating from the final population of the optimization algorithm are 19.3 and 15.7, respectively, where

the true value of the change is 405 in both cases.

Finally, the variability of δ̂4−13 and δ̂31−42 is illustrated when estimated on different data sets in the

Monte Carlo experiment. This variability stems from the statistical uncertainty of the modal parameter

estimates and is shown in a bivariate histogram of δ̂4−13 and δ̂31−42 for 1000 simulations of damage case 2

in Figure 12 (left). Furthermore, histograms of progressive damage built from 50 simulations are shown

in Figure 12 (right). These histograms indicate that the proposed damage quantification approach yields

accurate estimates of the change in the considered parameter clusters, regardless of the varying fault extent.

It also can be seen that the true change is always contained inside the support of each histogram.
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7. Conclusions

In this paper, a model optimization framework has been proposed to quantify the extent of structural

damage. The framework takes into account the uncertainty of the estimated modal parameters by in-

corporating it in both the design of the objective function and the stopping criterion of the optimization

procedure. This has been made possible by the evaluation of the statistical properties of the MAC between

the mode shapes from the numerical model and the mode shape estimates from measurements. An improved

optimization procedure has then been designed whose outcome is coherent with the data-based uncertain-

ties. Finally, the potentially large dimension of the model parameter space has been addressed by linking

statistical clustering and localization to focus the model optimization on a subset of potentially damaged

elements for damage quantification. The proposed framework has been validated on a numerical simulation

of a beam, where the damage extent of the damaged clusters has been correctly quantified for multiple

damage scenarios. The framework has been used with the subspace-based damage localization method and

CMA-ES for the optimization, but other methods can be used similarly. While in this work data-based

uncertainties have been addressed, future work should include the handling of uncertainty due to modeling

errors for the proposed damage quantification framework.

Appendix A. Approximation of MAC(ϕ̂, ψ∗) distribution

Appendix A.1. Expression of the quadratic form

A classic approach to quantify the statistical uncertainty of estimated parameters is to propagate the

sample covariance of measurement-related quantities (like output covariances) onto computed parameters

based on their sensitivities. Their distribution function is often inferred with the first-order delta method,

which allows to characterize the probability distribution of a function of a Gaussian variable also as Gaussian.

Consider two complex-valued mode shapes ϕ∗ and ψ∗ that are possibly equal. A consistent estimate ϕ̂ of

ϕ∗ is obtained from measurements, and it is assumed that its uncertainty is already quantified, e.g., by

subspace identification methods, with

(ϕ̂− ϕ∗)Re =

<(ϕ̂− ϕ∗)

=(ϕ̂− ϕ∗)

 ≈ N (0, 1
NΣϕ∗

)
, (A.1)

cf. (4). Consider MAC(ϕ̂, ψ∗) and its derivative w.r.t. the first variable while the second variable is constant

JMAC
ϕ∗

=

∂MAC
∂<(ϕ) |ϕ=ϕ∗

∂MAC
∂=(ϕ) |ϕ=ϕ∗

 =

 2<(ψ∗ψ
H
∗ ϕ∗)T

ϕH∗ ϕ∗ψH∗ ψ∗
− 2<(ϕ∗)TMAC(ϕ∗,ψ∗)

ϕH∗ ϕ∗
2=(ψ∗ψ

H
∗ ϕ∗)T

ϕH∗ ϕ∗ψH∗ ψ∗
− 2=(ϕ∗)TMAC(ϕ∗,ψ∗)

ϕH∗ ϕ∗

 (A.2)

following from (5). Then, based on the first-order Taylor expansion

MAC(ϕ̂, ψ∗) = MAC(ϕ∗, ψ∗) + JMAC
ϕ∗

(ϕ̂− ϕ∗)Re + o(||ϕ̂− ϕ∗||), (A.3)
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the first-order delta method [55] states that for MAC(ϕ̂, ψ∗) it holds

(MAC(ϕ̂, ψ∗)−MAC(ϕ∗, ψ∗)) ≈ N
(
0, 1

N σ
2
MAC

)
, (A.4)

where σ2
MAC = JMAC

ϕ∗
Σϕ∗(JMAC

ϕ∗
)T . This approximation of the asymptotic MAC distribution is only valid

if JMAC
ϕ∗

6= 0. However, when the limit of ϕ̂ coincides with ψ∗ then MAC(ϕ∗, ψ∗) = 1, and it can easily

be shown that the MAC derivative JMAC
ϕ∗

in (A.2) is zero if and only if MAC(ϕ∗, ψ∗) = 1 (or 0, which is

not of interest here). In this case, the first-order delta method for approximating the distribution from the

covariance of MAC(ϕ̂, ψ∗) cannot be used, since the linearization by the first-order Taylor expansion from

(A.3) is insufficient. Then, a second-order Taylor expansion yields

MAC(ϕ̂, ψ∗) ≈ MAC(ϕ∗, ψ∗)︸ ︷︷ ︸
=1

+JMAC
ϕ∗︸ ︷︷ ︸
=0

(ϕ̂− ϕ∗)Re + 1
2 (ϕ̂− ϕ∗)TRe HMAC

ϕ∗
(ϕ̂− ϕ∗)Re, (A.5)

where HMAC
ϕ∗

∈ R2r×2r is the Hessian, i.e., the second derivative of MAC(ϕ,ψ) as detailed in the next section.

Let H
MAC

ϕ∗
= − 1

2 HMAC
ϕ∗

, then the asymptotic properties of MAC(ϕ̂, ψ∗) follow from (A.5) with

N(1−MAC(ϕ̂, ψ∗)) ≈
√
N(ϕ̂− ϕ∗)TRe H

MAC

ϕ∗

√
N(ϕ̂− ϕ∗)Re , (A.6)

which is a quadratic form of the Gaussian variable
√
N(ϕ̂−ϕ∗)Re. The exact distribution of such a quadratic

form is difficult to characterize. It is clearly non-Gaussian, and thus cannot be defined solely by its mean

and variance. However, an approximation of the distribution using a scaled and shifted χ2 distribution [67]

can be applied when the matrix H
MAC

ϕ∗
is positive semi-definite. With this approximation, the statistical

properties of the quadratic form can be related to the asymptotic covariance Σϕ∗ in (A.1), and subsequently

the pdf of the MAC estimate can be retrieved through the relation (A.6) as detailed in the next section.

Appendix A.2. Approximation of the quadratic form

The quadratic form in (A.6) is characterized by its inner matrix H
MAC

ϕ∗
, which is related to the Hessian of

the MAC. Since the MAC distribution is developed under the assumption that ϕ∗ and ψ∗ are corresponding

mode shapes, they are collinear with

ϕ∗ = k · ψ∗ (A.7)

for some k ∈ C. Taking the derivatives of (A.2) and plugging in (A.7) leads to the Hessian

HMAC
ϕ∗

=
2

|k|2d2
∗

M∗xx +M∗yy − d∗Ir M∗xy −M∗yx
M∗yx −M∗xy M∗xx +M∗yy − d∗Ir

 , (A.8)

with M∗xx = <(ψ∗)<(ψ∗)
T , M∗yy = =(ψ∗)=(ψ∗)

T , M∗xy = <(ψ∗)=(ψ∗)
T , M∗yx = =(ψ∗)<(ψ∗)

T , and d∗ =

ψH∗ ψ∗. At the end of this section it is shown that HMAC
ϕ∗

is negative semi-definite, and thus H
MAC

= − 1
2 HMAC

ϕ∗

is positive semi-definite, so the distribution approximation of the quadratic form from [67] can be applied.
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Denote the first three cumulants of the quadratic form (A.6) as c1, c2 and c3. They satisfy [67]

cj = tr
(

(H
MAC

ϕ∗
Σϕ∗)j

)
, j = 1, 2, 3. (A.9)

The approximate pdf fQ of the quadratic form is then linked to the χ2 distribution and writes [67]

fQ(x) =
1

α
fχ2

l

(
x− β
α

)
, x ∈ [β,+∞), (A.10)

and fQ(x) = 0 for x < β, where α = c3/c2 and β = c1−c22/c3 are scaling and shift parameters, and l = c32/c
2
3

is the number of DOF. Note that l is in general not an integer. Strictly speaking, fχ2
l

is always the pdf of a

Gamma distribution, generalizing the χ2 distribution family for non-integer values of l. For simplicity, this

distribution is still denoted as χ2. By (A.10), the distribution of MAC(ϕ̂, ψ∗) follows immediately based on

relation (A.6), it yields the pdf

fMAC(x) =
N

α
fχ2

l

(
N(1− x)− β

α

)
, x ∈ (−∞, 1− β

N ]. (A.11)

The MAC distribution is hence approximated by a scaled and shifted χ2 distribution under the assumption

that MAC(ϕ∗, ψ∗) = 1. For the computation of the distribution parameters l, α and β of the χ2 approxi-

mation, estimates of the mode shape covariance Σϕ∗ and of the Hessian HMAC
ϕ∗

are required for (A.9). The

mode shape covariance estimate Σ̂ϕ∗ is obtained from the system identification, and an estimate HMAC
ϕ̂ of

the Hessian is obtained by evaluating (A.8) with ϕ̂ and k̂ = ψH∗ ϕ̂/ψ
H
∗ ψ∗ based on (A.7).

To finalize this section, it is proved that HMAC
ϕ∗

is negative semi-definite and thus H
MAC

ϕ∗
= − 1

2 HMAC
ϕ∗

is positive semi-definite, which is a requirement for the applicability of the approximation from [67]. From

(A.8) follows

|k|2d∗
2

HMAC
ϕ∗

=
1

d∗

M∗xx +M∗yy M∗xy −M∗yx
M∗yx −M∗xy M∗xx +M∗yy

− I2r
= LLT − I2r, where L =

1√
d∗

<(ψ∗) −=(ψ∗)

=(ψ∗) <(ψ∗)

 ∈ R2r×2. (A.12)

Notice that the norm of both columns of L =
[
L1 L2

]
is 1 since

√
d∗ =

√
<(ψ∗)T<(ψ∗) + =(ψ∗)T=(ψ∗),

and they are orthogonal. There exist 2r − 2 linearly independent vectors q1, . . . , q2r−2 ∈ R2r such that

matrix L̃ =
[
L1 L2 q1 . . . q2r−2

]
∈ R2r×2r is orthogonal, i.e., L̃T L̃ = L̃L̃T = I2r. Then, it follows

from (A.12)

|k|2d∗
2

HMAC
ϕ∗

= L̃ diag(1, 1, 0, . . . , 0) L̃T − L̃L̃T

= L̃ diag(0, 0,−1, . . . ,−1) L̃T

which is an eigenvalue decomposition. Since all eigenvalues are non-positive and |k|
2d∗
2 > 0, it follows that

HMAC
ϕ∗

is negative semi-definite, which concludes the proof.

25



References

[1] A. Rytter, Vibrational based inspection of civil engineering structures, Ph.D. thesis, Aalborg University, Denmark (1993).
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[7] S. Allahdadian, M. Döhler, C. Ventura, L. Mevel, Towards robust statistical damage localization via model-based sensitivity

clustering, Mechanical Systems and Signal Processing 134 (2019) 106341.

[8] D. Bernal, M. D. Ulriksen, Subspace exclusion zones for damage localization, Mechanical Systems and Signal Processing

114 (2019) 120 – 127.

[9] M. D. Ulriksen, D. Bernal, L. Damkilde, Shaped input distributions for structural damage localization, Mechanical Systems

and Signal Processing 110 (2018) 499 – 508.

[10] M. D. Ulriksen, L. Damkilde, Structural damage localization by outlier analysis of signal-processed mode shapes – ana-

lytical and experimental validation, Mechanical Systems and Signal Processing 68-69 (2016) 1 – 14.
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