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Spanning eulerian subdigraphs in semicomplete digraphs

Jørgen Bang-Jensen∗ Frédéric Havet† Anders Yeo‡

December 9, 2021

Abstract

A digraph is eulerian if it is connected and every vertex has its in-degree equal to its out-
degree. Having a spanning eulerian subdigraph is thus a weakening of having a hamiltonian
cycle. In this paper, we first characterize the pairs (D, a) of a semicomplete digraph D and
an arc a such that D has a spanning eulerian subdigraph containing a. In particular, we show
that if D is 2-arc-strong, then every arc is contained in a spanning eulerian subdigraph. We then
characterize the pairs (D, a) of a semicomplete digraph D and an arc a such that D has a spanning
eulerian subdigraph avoiding a. In particular, we prove that every 2-arc-strong semicomplete
digraph has a spanning eulerian subdigraph avoiding any prescribed arc. We also prove the
existence of a (minimum) function f(k) such that every f(k)-arc-strong semicomplete digraph
contains a spanning eulerian subdigraph avoiding any prescribed set of k arcs. We conjecture
that f(k) = k+ 1 and establish this conjecture for k ≤ 3 and when the k arcs that we delete form
a forest of stars.

A digraph D is eulerian-connected if for any two distinct vertices x, y, the digraph D
has a spanning (x, y)-trail. We prove that every 2-arc-strong semicomplete digraph is eulerian-
connected.

All our results may be seen as arc analogues of well-known results on hamiltonian paths and
cycles in semicomplete digraphs.
Keywords: Arc-connectivity, Eulerian subdigraph, Tournament, Semicomplete digraph, polyno-
mial algorithm.

1 Introduction

A digraph is semicomplete if it has no pair of non-adjacent vertices. A tournament is a semi-
complete digraph without directed cycles of length 2. Two of the classical results on digraphs are
Camion’s Theorem and Redéi’s theorem (both were originally formulated only for tournaments but
they easily extend to semicomplete digraphs).

Theorem 1 (Camion [8]). Every strong semicomplete digraph has a hamiltonian cycle.

Theorem 2 (Rédei [13]). Every semicomplete digraph has a hamiltonian path.

Thomassen [14] proved the following. (It was originally formulated only for tournaments but the
proof works for semicomplete digraphs as it easily follows from Theorem 10.)

Theorem 3 (Thomassen [14]). In a 3-strong semicomplete digraph, every arc is contained in a hamil-
tonian cycle.

The 3-strong assumption in this theorem best possible: Thomassen [14] described an infinite class
of 2-strong tournaments containing an arc which is not in any hamiltonian cycle. It is easy to modify
his example to show that there is no k such that every k-arc-strong tournament has a hamiltonian
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cycle containing any given arc. No characterization of the set of arcs which belong to a hamiltonian
cycle in a semicomplete digraph (or a tournament) is known.

A natural question is whether the 3-strong assumption of Theorem 3 can be relaxed if instead of
a hamiltonian cycle, we only require a spanning eulerian subdigraph. In this paper we answer this
question by proving the following analogue to Theorem 3.

Theorem 4. Let D = (V,A) be a 2-arc-strong semicomplete digraph. For every arc a ∈ A there exists
a spanning eulerian subdigraph of D containing a.

In addition (and contrary to the lack of a known characterization for hamiltonian cycles mentioned
above), in Section 5, we characterize the pairs (D, a) such that D is a strong semicomplete digraph
containing the arc a and no spanning eulerian subdigraph of D contains the arc a.

In Section 6, we also study spanning eulerian subdigraphs of a semicomplete digraph avoiding a
prescribed set of arcs. Fraisse and Thomassen [9] proved the following result on hamiltonian cycles
avoiding a set of prescribed arcs. For a strengthening of this result, see [5]. The connectivity re-
quirement of Theorem 5 is best possible as there are k-strong tournaments with vertices of out-degree
exactly k.

Theorem 5 (Fraisse and Thomassen [9]). Every (k + 1)-strong tournament contains a hamiltonian
cycle avoiding any prescribed set of k arcs.

This theorem does not extend to semicomplete digraphs. Indeed the 2-strong semicomplete digraph
obtained from a 4-cycle by adding a 2-cycle between each of the two pairs of non-adjacent vertices
has a unique hamiltonian cycle, and thus no arc of this cycle can be avoided. Observe however
that Theorem 3 implies that every 3-strong tournament contains a hamiltonian cycle avoiding any
prescribed arc. Improving a previous bound by Bang-Jensen and Thomassen, Guo [10] proved that
every (3k+ 1)-strong semicomplete digraph contains a spanning (k+ 1)-strong tournament. Together
with Theorem 5, this implies that every (3k+ 1)-strong semicomplete digraph contains a hamiltonian
cycle avoiding any prescribed set of k arcs. We conjecture that a much lower connectivity suffices.

Conjecture 6. Let k be a non-negative integer. Every (k+ 2)-strong semicomplete digraph contains
a hamiltonian cycle avoiding any prescribed set of k arcs.

Bang-Jensen and Jordán [6] proved that every 3-strong semicomplete digraph contains a spanning
2-strong tournament. Combining this with Theorem 5 shows that Conjecture 6 holds for k = 1.

As an analogue to Theorem 5, we prove that there is a function f(k) such that every f(k)-arc-
strong semicomplete digraph contains a spanning eulerian subdigraph avoiding any prescribed set of k
arcs. In Proposition 28, we show that f(k) ≤ (k+1)2/4+1. Since there are k-arc-strong semicomplete
digraphs in which one or more vertices have out-degree k, we have f(k) ≥ k + 1. We conjecture that
f(k) = k + 1.

Conjecture 7. For every non-negative integer k, every (k + 1)-arc-strong semicomplete digraph D
has a spanning eulerian subdigraph that avoids any prescribed set of k arcs.

Observe that Camion’s Theorem implies this conjecture when k = 0, that is f(0) = 1. In
Corollary 31, we prove Conjecture 7 for k ≤ 2 and in Theorem 32, we prove it for k = 3. Hence
f(1) = 2, f(2) = 3 and f(3) = 4. Since this paper has been submitted, it has been proved in [2] that
f(k) ≤ d 6k+1

5 e. In particular, Conjecture 7 holds for k ≤ 4.

In Section 7, we characterize the pairs (D, a) such that D = (V,A) is a strong semicomplete
digraph, a ∈ A and every spanning eulerian subdigraph of D contains the arc a (Theorem 35).

A digraph D is (strongly) hamiltonian-connected if for any pair of distinct vertices x, y, D
has a hamiltonian path from x to y. Thomassen [14] proved the following. (Again it was originally
formulated only for tournaments but the proof works for semicomplete digraphs as it easily follows
from Theorem 10.)

Theorem 8 (Thomassen [14]). Every 4-strong semicomplete digraph is hamiltonian-connected.
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The 4-strong assumption in this theorem best possible: Thomassen [14] described infinitely many
3-strong tournaments that are not hamiltonian-connected. Again, it is natural to ask whether the
connectivity assumption of Theorem 8 can be relaxed if instead of hamiltonian-connected, we only
require the digraph to eulerian-connected. A digraph D is eulerian-connected if for any two vertices
x, y, the digraph D has a spanning (x, y)-trail. We prove that every 2-arc-strong semicomplete digraph
is eulerian-connected.

Theorem 9. Every 2-arc-strong semicomplete digraph is eulerian-connected.

This theorem can been seen as an analogue of Theorem 8. The 2-arc-strong condition is best
possible. In Proposition 17, we describe strong tournaments with arbitrarily large in- and out-degrees
in which there is an arc contained in no spanning eulerian subdigraph. Independently from us, Liu et
al. [12] also studied the notion of eulerian-connected digraph, which they call strongly trail-connected.
They proved the restriction of Theorem 9 tournaments.

To prove Theorems 3 and 8. Thomassen [14] gave the following sufficient condition for a semicom-
plete digraph to contain a hamiltonian (x, y)-path, which implies both results immediately.

Theorem 10 (Thomassen [14]). Let T be a 2-strong semicomplete digraph, and let x and y be two
distinct vertices of T . If there are three internally disjoint (x, y)-paths of length greater than 1, then
there is a hamiltonian (x, y)-path in D.

To prove our results, we prove a theorem that can be seen as an arc analogue to Theorem 10.

Theorem 11. Let D be a strong semicomplete digraph, and let x and y be two vertices of D. If there
are two arc-disjoint (x, y)-paths in D, then there is a spanning (x, y)-trail in D \ {yx}.

This theorem directly implies Theorems 4 and 9.

2 Terminology

Notation generally follows [4, 3]. The digraphs have no parallel arcs and no loops. We denote the
vertex set and arc set of a digraph D by V (D) and A(D), respectively and write D = (V,A) where
V = V (D) and A = A(D). Unless otherwise specified, the numbers n and m will always be used to
denote the number of vertices, respectively arcs, in the digraph in question. We use the notation [k]
for the set of integers {1, 2, . . . , k}.

Let D = (V,A) be a digraph. The subdigraph induced by a set X ⊆ V in a digraph D is denoted
by D〈X〉. If X is a set of vertices we denote by D −X the digraph D〈V \X〉, and if A′ is a set of
arcs in D, then we denote by D \A′ the digraph we obtain by deleting all arcs in A′.

When xy is an arc of D we say that x dominates y and write x→y. If x→y for all x ∈ X and
all y ∈ Y , then we write X→Y and we write X 7→Y when X→Y and there is no arc from Y to X.
For sake of clarity, we abbreviate {x}→Y to x→Y . For a digraph D = (V,A) the out-degree, d+D(x)
(resp. the in-degree, d−D(x)) of a vertex x ∈ V is the number of arcs of the kind xy (resp. yx) in A.
When X ⊆ V we shall also write d+X(v) to denote the number of arcs vx with x ∈ X.

A walk is an alternating sequence W = (v0, a1, v1, . . . , ap, vp) of vertices and arcs such that
ai = vi−1vi for all 1 ≤ i ≤ p. Its initial vertex, denoted by s(W ), is v0 and its terminal vertex,
denoted by t(W ), is vp. The vi, 1 ≤ i ≤ p− 1, are the internal vertices of W . A walk is completely
determined by the sequence of its vertices. Therefore for the sake of simplicity, we use the sequence
v0v1 · · · vp to denote the walk (v0, a1, v1, . . . , ap, vp).

A walk W is closed if s(W ) = t(W ). A trail is a walk in which all arcs are distinct, a path is a
walk in which all vertices are distinct and a cycle is a closed walk in which all vertices are distinct
except the initial and terminal vertices. Note that, walks, trails, paths and cycles are always directed.

An (s, t)-walk (resp. (s, t)-trail, (s, t)-path is a walk (resp. trail, path) with initial vertex s and
terminal vertex t. Observe that if s 6= t, then an (s, t)-trail can be seen as a connected digraph such
that d+(s) = d−(s) + 1, d−(t) = d+(t) + 1 and d+(v) = d−(v) for all other vertices. For two sets X,Y
of vertices, an (X,Y )-path is a path with initial vertex in X, terminal vertex in Y , and no internal
vertices in X ∪ Y .
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Let P = x1 · · ·xp be a path. For any 1 ≤ i ≤ j ≤ p, we denote by P [xi, xj ] the path xi · · ·xj , by
P [xi, xj) the path xi · · ·xj−1, by P (xi, xj ] the path xi+1 · · ·xj , and by P (xi, xj) the path xi+1 · · ·xj−1.
Similarly, if C is a cycle and x, y two vertices of C, we denote by C[x, y] the (x, y)-path in C if x 6= y
and the cycle C if x = y. Denote by x+ the out-neighbour of x in C and by y− the in-neighbour of y
in C, and let C(x, y] = C[x+, y], C[x, y) = C[x, y−] and C(x, y) = C[x+, y−].

A digraph D is eulerian if it contains an eulerian tour, that is a spanning eulerian trail W such
that A(W ) = A(D). Equivalently, by Euler’s theorem, a digraph D is eulerian if it is connected and
d+(v) = d−(v) for all v ∈ V (D).

The underlying (multi)graph of a digraph D, denoted UG(D), is obtained from D by suppress-
ing the orientation of each arc. A digraph D = (V,A) is connected if UG(D) is a connected graph. It
is strong if it contains an (s, t)-path for each ordered pair of distinct vertices s, t ∈ V . It is k-strong
if D−W is strong for every subset W ⊆ V of at most k−1 arcs. It is k-arc-strong if D \A′ is strong
for every subset A′ ⊆ A of at most k − 1 arcs. The largest k such that D is k-arc-strong is called the
arc-connectivity of D and is denoted by λ(D). A cut-arc in D is an arc a such that D \ a is not
strong.

3 Structure of semicomplete digraphs

Let D be a digraph. A decomposition of D is a partition (S1, . . . , Sp), p ≥ 1, of its vertex set. The
index of vertex v in the decomposition, denoted by ind(v), is the integer i such that v ∈ Si. An arc
uv is forward if ind(u) < ind(v), backward if ind(u) > ind(v), and flat if ind(u) = ind(v). For sake
of clarity, we often abbreviate Sind(u) into Su.

A decomposition (S1, . . . , Sp) is strong if D〈Si〉 is strong for all 1 ≤ i ≤ p. The following
proposition is well-known (just consider an acyclic ordering of the strong components of D).

Proposition 12. Every digraph has a strong decomposition with no backward arcs.

A 1-decomposition of a digraph D is a strong decomposition such that every backward arc is a
cut-arc and all cut-arcs are either forward or backward.

Proposition 13. Every strong digraph admits a 1-decomposition.

Proof. Let D be a strong digraph and let C be its set of cut-arcs. If C = ∅, then the trivial decom-
position with only one set S1 = V (D) is a 1-decomposition, so assume that C 6= ∅. Observe that
D \C is not strong. Thus, by Proposition 12, D \C has a strong decomposition (S1, . . . , Sp) with no
backward arcs. This decomposition is clearly a 1-decomposition of D.

Let (S1, . . . , Sp) be a decomposition of a digraph. Two backward arcs uv and xy are nested if
either ind(v) ≤ ind(y) < ind(x) ≤ ind(u) or ind(y) ≤ ind(v) < ind(u) ≤ ind(x). See Figure 1.

S1

· · ·

v1

v3

· · · v2 · · ·

u3

· · · u2 · · ·

u1

· · ·

Sp

Figure 1: Illustration of nested backwards arcs. The arcs u1v1 and u2v2 are nested; the arcs u1v1 and
u3v3 are nested; the arcs u2v2 and u3v3 are not nested.

Proposition 14. Let (S1, . . . , Sp) be a 1-decomposition of a strong semicomplete digraph D. The
following properties hold:
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(i) If u1v1 and u2v2 are two cut-arcs, then ind(u1) 6= ind(u2) and ind(v1) 6= ind(v2).

(ii) There are no nested backward arcs.

(iii) If |V (D)| ≥ 4 and uv is a forward cut-arc, then |Su| = |Sv| = 1 and ind(v) = ind(u) + 1.

Proof. (i) Assume for a contradiction that ind(u1) = ind(u2). Since D is semicomplete, there is an arc
between v1 and v2. Without loss of generality, we may assume that v1v2 is an arc. InD〈Su1

〉 = D〈Su2
〉,

there is a (u2, u1)-path P . Note that P avoids u2v2 because this arc is not flat. But then P ∪ u1v1v2
is a (u2, v2)-path in D \ u2v2, contradicting that u2v2 is a cut-arc.

(ii) Suppose for a contradiction that D contains two nested arcs uv and xy such that ind(v) ≤
ind(y) < ind(x) ≤ ind(u). By (i), ind(v) < ind(y) and ind(x) < ind(u). Moreover by (i), D contains
the arcs vy, xu. But now xuvy is an (x, y)-path in D \ xy, contradicting the fact that xy is a cut-arc.

(iii) Assume |D| ≥ 4 and let uv be a forward cut-arc.
For any vertex u′ in Su \ {u}, there is a (u, u′)-path P in D〈Su〉, and so vu′ is a backward arc for

otherwise P ∪ u′v would be a (u, v)-path in D \ uv. Hence by (i), |Su \ {u}| ≤ 1, so |Su| ≤ 2.
Assume for a contradiction that |Su| = 2, say Su = {u, u′}. Let S = Sind(u)+1 ∪ · · · ∪ Sv. If v has

an in-neighbour w in S then, by (i), uw is an arc (since vu′ is a backward arc), and so uwv is a (u, v)-
path, a contradiction to the fact that uv is a cut-arc. Hence, by (i), S = {v}. Now since |V (D)| ≥ 4,
either ind(u) > 1 or ind(v) < p. By (ii) vu′ is the only arc from Sv ∪ · · · ∪ Sp to S1 ∪ · · · ∪ Su, and
by (i) the only cut-arc with tail in Su is uv, and the only cut-arc with head in Sv is uv. Therefore, if
ind(u) > 1, there is no arc from Su ∪ · · · ∪Sp to S1 ∪ · · · ∪Sind(u)−1, and if ind(v) < p, there is no arc
from Sind(v)+1 ∪ · · · ∪ Sp to S1 ∪ · · · ∪ Sv. This is a contradiction to the fact that D is strong.

Hence |Su| = 1. Symmetrically, we obtain |Sv| = 1.
Let W = {w | ind(u) < ind(w) < ind(v)}, X = {x | ind(x) < ind(u)}, and Y = {y | ind(v) <

ind(y)}. Observe that for every w ∈ W , either uw /∈ A(D) or wv /∈ A(D) for otherwise uwv would
be a (u, v)-path in D \ uv (contradicting that uv is a cut-arc). Since D is semicomplete, this implies
that one of the two arcs wu, vw is a backward arc. In particular, |W | ≤ 2 for otherwise either there
would be two backward arcs with tail v or two backwards arcs with head u, contradicting (i).

Assume for a contradiction that |W | = 2, say W = {w1, w2} and w1→w2. If uw1 is an arc
then the fact that uv is a cut-arc would imply that v would have backwards arcs to each of w1, w2,
contradicting (i). Hence uw1 is not an arc and D contains the arcs w1u (as uw1 6∈ A(D)), uw2 (by
(i)), vw2 (as uv is a cut-arc) and w1v (by (i)) and does not contain the arcs w2u, vw1, w2w1. Observe
that by (i) w1w2 is not a cut-arc and so ind(w2) ≥ ind(w1). Since D is strong, w1 must have an
in-neighbour z, which must be in X ∪ Y . If X 6= ∅, then there must be an arc from W ∪ Y ∪ {u, v}
to X. By (i) the tail of this arc is not in {u,w1} and so this arc and w1u are two nested backward
arcs, a contradiction to (ii). Similarly, we get a contradiction if Y 6= ∅. However X = ∅ and Y = ∅ is
a contradiction to z ∈ X ∪ Y .

Assume for a contradiction that |W | = 1, say W = {w}. Since uv is a cut-arc, then uwv cannot
be a path, so either uw or wv is not an arc.

Let us assume that uw is not an arc. Then wu ∈ A(D) because D is semicomplete. Thus X = ∅,
for otherwise wu and any arc from Y ∪ {u, v, w} to X would be two nested arcs (as by (i) it can not
leave {u}), a contradiction to (ii). Hence Y 6= ∅, since |D| ≥ 4. So there must be an arc from Y to
{u, v, w}. By (i), the head of this arc must be w. Let y be its tail. By (i) vw and yu are not backward
arcs, so uywv is a (u, v)-path in D \ uv, a contradiction.

Similarly, we get a contradiction if wv is not an arc. Hence W = ∅, that is ind(v) = ind(u)+1.

A nice decomposition of a digraph D is a 1-decomposition such that the set of cut-arcs of D is
exactly the set of backward arcs.

Proposition 15. Every strong semicomplete digraph of order at least 4 admits a nice decomposition.

Proof. Let D be a strong semicomplete digraph of order at least 4. If uv has a cut-arc, which is
forward. By Proposition 14 (iii), Su = {u}, Sv = {v}, and ind(v) = ind(u) + 1. Inverting Su and
Sv (that is, considering the decomposition (S1, . . . , Sind(u)−1, {v}, {u}, Sind(u)+2, . . . , Sp) ), we obtain
another 1-decomposition with one forward cut-arc less. Doing this for all forward cut-arcs, we obtain
a nice decomposition of D.
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Given a semicomplete digraph and a nice decomposition of it, the natural ordering of its back-
ward arcs is the ordering in decreasing order according to the index of their tail. Note that this
ordering is unique by Proposition 14 (i).

Proposition 16. Let D be a strong semicomplete digraph of order at least 4, let (S1, . . . , Sp) be a nice
decomposition of D, and let (s1t1, s2t2, . . . , srtr) be the natural ordering of the backward arcs. Then

(i) ind(tj+1) < ind(tj) ≤ ind(sj+1) < ind(sj) for all 1 ≤ j ≤ r − 1 and

ind(tj+1) ≤ ind(sj+2) < ind(tj) for all 1 ≤ j ≤ r − 2;

(ii) s1 ∈ Sp and tr ∈ S1;

(iii) If ind(tj) = ind(sj+1) = i and tj 6= sj+1, then there are two arc-disjoint (tj , sj+1)-paths in
D〈Si〉.

Proof. (i) By Proposition 14 (i), ind(sj+1) < ind(sj), and as D is strong, ind(tj) ≤ ind(sj+1) <
ind(sj). By Proposition 14 (ii), sjtj and sj+1tj+1 are not nested so ind(tj+1) < ind(tj). Assume for
a contradiction that ind(tj) ≤ ind(sj+2). By Proposition 14 (i), sjsj+1 and tj+1tj+2 are not arcs, so
sj+1sj and tj+2tj+1 are arcs. If ind(tj) < ind(sj+2), then tjsj+2 ∈ A(D), and if ind(tj) = ind(sj+1),
then there is a (tj , sj+2)-path in D〈Stj 〉. In both cases, there is a (tj , sj+2)-path P not using the arc
sj+1tj+1. Now sj+1sjtj ∪ P ∪ sj+2tj+2tj+1 is an (sj+1, tj+1)-path in D \ sj+1tj+1, a contradiction.

(ii) Because D is strong, there must be a backward arc with tail in Sp and a backward arc with
head in S1. By the above inequality, necessarily s1 ∈ Sp and tr ∈ S1.

(iii) Assume for a contradiction that ind(tj) = ind(sj+1) = i and there do not exist two arc-
disjoint (tj , sj+1)-paths in D〈Si〉. By Menger’s Theorem, there is an arc a such that D〈Si〉 \ {a} has
no (tj , sj+1)-path. But then, there is no (tj , sj+1)-path in D \ {a}, that is a is a cut-arc of D. This
contradicts the fact that (S1, . . . , Sp) is a nice decomposition.

4 Eulerian-connected semicomplete digraphs

We first observe that being strong and having large in- and out-degrees are not sufficient to guarantee
every arc of a tournament to be in a spanning eulerian subdigraph.

A B

x

y

z

a b

Figure 2: The tournament T in Proposition 17.

Proposition 17. For every positive integer k, there exist strong tournaments with minimum in- and
out-degrees at least k containing an arc which is not in any spanning eulerian subdigraph.

Proof. Let T (see Figure 2) be a tournament with vertex set A∪B ∪ {x, y, z} such that A→{x, y, z},
{x, y, z}→B, x→{y, z}, y→z, there exists a vertex a ∈ A and a vertex b ∈ B such that T contains all
arcs from A to B except ab (and so b→a), and T 〈A〉 and T 〈B〉 are strong tournaments with minimum
in- and out-degrees at least k. Clearly T is strong and has minimum in- and out-degrees at least k.
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Let us now prove that every eulerian subdigraph containing the arc xz does not contain y and is
therefore not spanning. Let D be an eulerian subdigraph of T containing xz. Set S = A ∪ {x}. In D,
there are as many arcs leaving S (i.e. from S to V (T ) \ S) as arcs entering S (i.e. from V (T ) \ S to
S). Now xz is arc leaving S in D, and ba is the only arc entering S in T . Thus, ba ∈ A(D) and xz
is the unique arc leaving S in D. Therefore y has no in-neighbour in D because all its in-neighbours
are in S. So D does not contain y.

In the remaining of the section, we prove Theorem 11, which we recall.

Theorem 11. Let D be a strong semicomplete digraph, and let x and y be two vertices of D. If
there are two arc-disjoint (x, y)-paths in D, then there is a spanning (x, y)-trail in D \ {yx}.

Let us start with some useful preliminaries.
A vertex v of a digraph D is an out-generator (resp. in-generator) if v can reach (resp. be

reached by) all other vertices by paths.
The following lemma is easy and well-known.

Lemma 18. Let D be a non-strong semicomplete digraph. For every out-generator x of D and
in-generator y of D, there is a hamiltonian (x, y)-path in D.

Lemma 18 and Camion’s Theorem immediately imply the following.

Corollary 19. In a semicomplete digraph, every out-generator is the initial vertex of a hamiltonian
path.

We shall now prove a lemma which is a strengthening of Camion’s Theorem.

Lemma 20. Let D be a semicomplete digraph, F a subdigraph of D, and z a vertex in V (F ). If
D \A(F ) is strong, then there is a cycle containing all vertices of V (D) \ V (F ) and z.

Proof. Let D′ = D〈(V (D) \ V (F )) ∪ {z}〉. If D′ is strong, then by Camion’s Theorem, it has a
hamiltonian cycle, which has the desired property.

If D′ is not strong, then let X be its set of out-generators and let Y be its set of in-generators.
Since D \ A(F ) is strong, there is a (Y,X)-path P in D. Set D′′ = D′ − P (s(P ), t(P )). Clearly,
t(P ) is an out-generator of D′′ and s(P ) is an in-generator of D′′. Hence, by Lemma 18, D′′ has a
hamiltonian path Q from t(P ) to s(P ). The union of P and Q is the desired cycle.

Proof of Theorem 11. We proceed by induction on the number of vertices, the result holding trivially
when |V (D)| = 3.

By the assumption there are two arc-disjoint (x, y)-paths P1, P2. Let y′i be the out-neighbour of x
in Pi and let x′i be the in-neighbour of y in Pi. We assume that P1∪P2 has as few arcs as possible and
under this assumption that P1 is as short as possible. In particular, x′2 and y′2 are not in V (P1) and all
internal vertices of P1 except y′1 dominate x, and all internal vertices of P1 except x′1 are dominated
by y.

Assume first that x→y. By our choice of P1 and P2, we have P1 = xy. The digraph D \ A(P1) is
D \ {xy} and contains P2. Hence it is strong, so by Lemma 20, D \A(P1) contains a cycle C covering
all vertices of V (D) \ {y}. The union of C and P1 is a spanning (x, y)-trail in D \ {yx}.

Assume now that xy /∈ A(D). Then y→x and P1 has length at least 2. Let w1 be the in-neighbour
of x′1 on P1. Set D′ = D \ {yx}.

Assume first that D′ is not strong. Since D is strong, by Camion’s Theorem, it contains a hamil-
tonian cycle C. Now C must contain the arc yx, and C \ {yx} is a hamiltonian (x, y)-path, and so a
spanning (x, y)-trail in D′. Henceforth, we assume that D′ is strong.

If D′ \ A(P1) is strong, then, by Lemma 20, D′ \ A(P1) contains a cycle C covering all vertices
of V (D) \ V (P1) and a vertex of V (P1). The union of C and P1 is a spanning (x, y)-trail in D′.
Henceforth we may assume that D′ \ A(P1) is not strong. Let (X,Y ) be a partition of V (D) such
that there is no arc from Y to X in D′ \ A(P1) and Y is minimal with respect to inclusion. Then it
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is easy to see that D〈Y 〉 is strong. Since D′ is strong, there must be an arc of P1 with tail in Y and
head in X. Observe that because P2 is a path in D′ \A(P1), we cannot have x ∈ Y and y ∈ X.

Assume for a contradiction that x ∈ X and y ∈ Y . The vertex x′1 is the unique vertex of P1 in X
because all other internal vertices of P1 are dominated by y. Similarly, vertex y′1 is the unique vertex
of P1 in Y because all others internal vertices of P1 dominate x. So P1 = xy′1x

′
1y. Consider now P2

and recall that x′2, y
′
2 6∈ V (P1) and |V (P2)| ≥ |V (P1)| = 4. The vertex y′2 is dominated by y, so it

must be in Y . Similarly, x′2 dominates x, so it must be in X. But then an arc of A(P2) must have
tail in Y and head in X, a contradiction.

Assume that x, y ∈ Y . The vertex x′1 is the unique vertex of P1 in X because all other internal
vertices of P1 are dominated by y. Furthermore w1x

′
1 is the unique arc of D from Y to X. Moreover,

since D is strong, x′1 must be an out-generator of D〈X〉. Thus, by Corollary 19, there is a hamiltonian
path QX of D〈X〉 with initial vertex x′1. The terminal vertex of QX dominates Y \ {w1}. Let
D′′ = D〈Y 〉 ∪ {w1y}. This digraph is strong. Observe moreover that w1y was not in A(D) by our
choice of P1. Therefore P1[x,w1]∪w1y and P2 are two arc-disjoint (x, y)-paths in D′′. By the induction
hypothesis, there is a spanning (x, y)-trail W in D′′. Let u be an out-neighbour of w1 in W . Replacing
the arc w1u by wx′1 ∪QX ∪ t(QX)u, we obtain a spanning (x, y)-trail in D.

By symmetry, we get the result if x, y ∈ X.

Remark 21.

• Note that in the spanning (x, y)-trail given by the above proof, every vertex has out-degree at
most 2.

• The proof of Theorem 11 can easily be translated into a polynomial-time algorithm.

5 Arcs contained in no spanning eulerian subdigraph

The aim of this section is to prove a characterization of the arcs of a semicomplete digraph D that are
not contained in any spanning eulerian subdigraph of D. Observe that if the semicomplete digraph
is not strong, then there are only such arcs, and if the semicomplete digraph is 2-strong there are no
such arcs by Theorem 4.

We first deal with digraphs of order at most 3, before settling the case of digraphs of order at least
4, for which we use structural properties established in Subsection 3.

Let D3 be the digraph with vertex set {x, y, z} and arc set {xy, yz, zy, zx}. The following easy
proposition is left to the reader.

Proposition 22. Let D be a strong semicomplete digraph D of order at most 3 and let a be an arc
of D. The arc a is contained in a spanning eulerian subdigraph unless D = D3 and a = zy.

Let D be a strong semicomplete digraph of order at least 4, (S1, . . . , Sp) a nice decomposition of
D, and (s1t1, s2t2, . . . , srtr) the natural ordering of the backward arcs. A set Si is ignored if there
exists j such that ind(sj+1) < i < ind(tj−1) or 1 < i < ind(tr−1) or ind(s2) < i < p. An arc uv of D is
regular-bad if it is forward and there is an integer i such that ind(u) < i < ind(v) and Si is ignored
(see Figure 3.) The arc uv is left-bad if S2 = {u}, S1 = {tr}, tr 6= v, and tru /∈ A(D). The arc uv
is right-bad if Sp−1 = {v}, Sp = {s1}, s1 6= v, and vs1 /∈ A(D). An arc is bad if it is regular-bad,
right-bad or left-bad. A non-bad arc is good.

Theorem 23. Let D be a strong semicomplete digraph of order at least 4, (S1, . . . , Sp) a nice decom-
position of D and (s1t1, s2t2, . . . , srtr) the natural ordering of the backward arcs. An arc is contained
in a spanning eulerian subdigraph of D if and only if it is good.

Proof. Recall that an arc uv is contained in a spanning eulerian subdigraph of D if and only if there
is a spanning (v, u)-trail in D \ {uv}.

Let us first prove that a bad arc is not contained in any spanning eulerian subdigraph.
Assume first that uv is a regular-bad arc. Let i0 be an integer such that ind(u) < i0 < ind(v) and

Si0 is ignored. Let j be the integer such that ind(sj+1) < i0 < ind(tj−1), or j = r if 1 < i0 < ind(tr−1),
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

s1t1 s2t2

s3t3

Figure 3: A nice decomposition of a strong semicomplete digraph with three backwards arcs (in thin
black). The grey sets (S2, S3, S5, S9) are ignored. The thick blue arcs are regular-bad.

or j = 1 if ind(s2) < i0 < p. Set L =
⋃ind(sj+1)

i=1 Si if j 6= r and L = S1 if j = r, set R =
⋃p

i=ind(tj−1)
Si

if j 6= 1 and R = Sp if j = 1, and set M = V (D) \ (L ∪ R). Observe that M 6= ∅, because Si0 ⊆ M .
Moreover, by defintion u ∈ L and v ∈ R. Consider a (v, u)-trail W in D. It must start in R, as v ∈ R,
and then use sjtj , which is the unique arc from R to L ∪M . But then W cannot return to R ∪M
after using sjtj , as u ∈ L and sjtj is the unique arc from R ∪M to L. Hence W is not spanning,
because it contains no vertex of M . Therefore there is no spanning (v, u)-trail in D \ {uv}.

Assume now that uv is a left-bad arc. Since D is semicomplete, utr ∈ A(D). By Proposition 14 (i),
u is the unique in-neighbour of tr, and u has in-degree 1 in D. Thus any spanning eulerian subdigraph
E contains utr. Moreover u has in- and out-degree 1 in E and so E does not contain uv. Similarly, if
uv is right-bad, we get that there is no spanning eulerian subdigraph containing uv in D.

We shall now prove by induction on |D| that a good arc uv is contained in a spanning eulerian
subdigraph. This is equivalent to proving the existence of a spanning (v, u)-trail in D \ {uv}. If
|D| = 4, the statement can be easily checked. Therefore, we now assume that |D| > 4.

For each 1 ≤ j < r, let Nj be a (tj , sj+1)-path in D〈Stj 〉 if ind(tj) = ind(sj+1) and let Nj =
(tj , sj+1) otherwise (that is if ind(tj) < ind(sj+1)). Let N = (s1, t1)∪N1∪ (s2, t2) · · ·∪Nr−1∪ (sr, tr).
Note that N is an (s1, tr)-path containing all backward arcs.

We first consider the backward arcs. Let P1 be a hamiltonian path of D〈S1〉 with initial vertex tr
and let x be its terminal vertex. Let Pp be a hamiltonian path of D〈Sp〉 with terminal vertex s1 and
let y be its initial vertex. Then Q1 = Pp ∪N ∪ P1 is a (y, x)-path. Observe that in the semicomplete
digraph D−V (Q1(y, x)), x has in-degree zero and y has out-degree zero. Hence, by Lemma 18, there
is a hamiltonian (x, y)-path Q2 in D − V (Q1(y, x)). Thus Q1 ∪Q2 is a hamiltonian cycle containing
all backward arcs.

Assume now that uv is a flat arc. In D, there are two arc-disjoint (v, u)-paths. Indeed, suppose
not. By Menger’s Theorem, there would be a cut-arc separating v from u. But this cut-arc must be
in D〈Su〉 = D〈Sv〉, which is strong, contradicting that we have a nice decomposition. Therefore, by
Theorem 11, there is a spanning (v, u)-trail in D \ {uv}.

Assume finally that uv is a good forward arc.

Claim 23.1. If ind(u) ≥ 3 or ind(u) = 2 and |S1| > 1, then D has a spanning eulerian subdigraph
containing uv.

Proof. Let L = {x | ind(x) < ind(u)}, and R = {x | ind(x) ≥ ind(u)}, and let j be the integer such
that sj ∈ R and tj ∈ L. Let DL be the digraph obtained from D〈L〉 by adding a vertex zL and all
arcs from L to zL and zLtj . Let DR be the digraph obtained from D〈R〉 by adding a vertex zR and all
arcs from zR to R and sjzR. Observe that DL and DR are strong. Moreover, ({zR}, Sind(u), . . . , Sp)
is a nice decomposition of DR. Thus uv is neither regular-bad nor a right-bad in DR for otherwise it
would already be regular-bad or right-bad in D, and it is not left-bad in DR because zR dominates u
in this digraph.
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Since ind(u) ≥ 3 or ind(u) = 2 and |S1| > 1, then DR is smaller than D. Observe moreover that
if DR is isomorphic to D3, then the arc uv is in the spanning eulerian subdigraph uvzRu. Therefore,
by the induction hypothesis, or this observation, in DR there is a spanning eulerian subdigraph ER

containing uv. Since zR has in-degree 1 in DR, ER contains the arc sjzR and an arc zRyR for some
yR ∈ R. By Camion’s Theorem, there is a hamiltonian cycle CL of DL. It necessarily contains the
arc zLtj because zL has out-degree 1 in DL. Let yL be the in-neighbour of zL in CL. Observe that
yL 6= tj , because |V (DL)| ≥ 3. Thus yL→yR, and the union of CL − zL, yLyR, ER − zR and sjtj is a
spanning eulerian subdigraph of D containing uv. ♦

By Claim 23.1, we may assume that ind(u) = 1 or ind(u) = 2 and |S1| = 1 (that is S1 = {tr}).
Similarly, we can assume ind(v) = p or ind(v) = p− 1 and |Sp| = 1 (that is Sp = {s1}).

Claim 23.2. If ind(u) = 2 and |S1| = 1, then D has a spanning eulerian subdigraph containing uv.

Proof. Assume first that r = 1 or ind(tr−1) > 2. Let D1 be the strong semicomplete digraph obtained
from D by removing tr and adding the arc sru. Then |D1| = |D| − 1 ≥ 4 and (S2, . . . , Sp) is a nice
decomposition of D1. Consequently, uv is not bad and so, by the induction hypothesis, there is a
spanning eulerian subdigraph W1 of D1 containing uv. Necessarily, W1 contains sru which is a cut-arc
in D1. Hence (W1 \ {sru}) ∪ srtru is a spanning eulerian subdigraph of D containing uv.

Assume now that r ≥ 2 and ind(tr−1) = 2. Consider D2 = D − tr. As above, one shows that
D2 has a hamiltonian cycle (containing all backward arcs) so D2 is strong, and (S2, . . . , Sp) is a nice
decomposition of D2 in which uv is good in D2 (for otherwise it would not be good for (S1, . . . , Sp)).
Therefore, by the induction hypothesis, there is a spanning eulerian subdigraph W2 of D2 containing
uv. If sr is the tail of an arc srw ∈ A(W2) \ {uv}, then (W2 \ {srw}) ∪ srtrw is a spanning eulerian
subdigraph of D containing uv. If not, then sr = u and v is the only out-neighbour of u on W2.
Thus u has a unique in-neighbour z in W2. Since uv is not left-bad, we have d−D(u) ≥ 2. Thus u has
an in-neighbour y distinct from z. If y = tr then W2 ∪ utru is a spanning eulerian subdigraph of D
containing uv, and if y 6= tr then W2 ∪ utryu is a spanning eulerian subdigraph of D containing uv
(Note that try ∈ A(D) because by Proposition 14 (i), D cannot contain the arc ytr). ♦

By Claims 23.1 and 23.2, we may assume that ind(u) = 1 and ind(v) = p.
For every 1 ≤ i ≤ p, let Ci be a hamiltonian cycle of D〈Si〉.
Set t0 = v and sr+1 = u. For 0 ≤ j ≤ r, let Xj = {x | ind(tj) ≤ ind(x) ≤ ind(sj+1)}. Since each

backward arc is a cut-arc the Xj are disjoint. Moreover, as uv is good, there is no ignored set, so
every Sj is in some Xj . Hence the Xj , 0 ≤ j ≤ r, form a partition of V (D).

Claim 23.3. For every 0 ≤ j ≤ r, there is a spanning (tj , sj+1)-trail Tj in D〈Xj〉.

Proof. Set i1 = ind(tj) and i2 = ind(sj+1).

If i1 < i2, then pick a vertex xi in each set Si for i1 < i < i2. Then tjxi1+1 · · ·xi2−1sj+1∪
⋃i2

i=i1
Ci

is a spanning (tj , sj+1)-trail in D〈Xj〉.
Assume now that i1 = i2. There must be two arc-disjoint (tj , sj+1)-paths in D〈Xj〉, for otherwise,

by Menger’s Theorem, there is a partition (T, S) of Si1 with tj ∈ T , sj+1 ∈ S such that there is a
unique arc a with tail in T and head in S. But then a would also be a cut-arc of D, which is impossible
because it is a flat arc. Now, by Theorem 11, there is a spanning (tj , sj+1)-trail in D〈Xj〉 = Si−1. ♦

Now
⋃r

i=0 Tj ∪{sjtj | 1 ≤ j ≤ r}∪{uv} is a spanning eulerian subdigraph of D containing uv.

6 Eulerian spanning subdigraphs avoiding prescribed arcs

In this section, we give some support for Conjecture 7. First, in Subsection 6.2, we prove the existence
of a minimum function f(k) such that every f(k)-arc-strong semicomplete digraph contains a spanning
eulerian subdigraph avoiding any prescribed set of k arcs. Conjecture 7 states that f(k) = k + 1. In
Subsections 6.3 and 6.4, we shall verify Conjecture 7 for the cases k = 1, k = 2 and k = 3. The case
k ≤ 2 is obtained in Corollary 31 and the case k = 3 is obtained in Theorem 32. Note that, after
this paper was written, it was shown in [2] that f(k) ≤ d 6k+1

5 e. This proves Conjecture 7 for k ≤ 4.
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However, the proof of the bound on f(k) is long so we have decided to keep our proof of the cases
k = 1, 2, 3.

We need a number of preliminary results.

6.1 Preliminaries

In this subsection we establish some results for general digraphs that are of independent interest and
will be useful in our proofs in the next subsections.

6.1.1 Eulerian factors in semicomplete digraphs

A digraph is semicomplete multipartite if it can be obtained from a complete multipartite graph
G = (V,E) by replacing each edge uv ∈ E by either a 2-cycle on u, v or one of the two arcs uv, vu.
An eulerian factor of a digraph D = (V,A) is a spanning subdigraph H = (V,A′) so that d+H(v) =
d−H(v) > 0 for all v ∈ V . We need the following theorem.

Theorem 24 (Bang-Jensen and Maddaloni [1]). A strong semicomplete multipartite digraph has a
spanning eulerian subdigraph if and only if it is strong and has an eulerian factor. Furthermore, there
exists a polynomial-time algorithm for finding a spanning eulerian subdigraph in a strong semicomplete
multipartite digraph D or concluding that D has no eulerian factor.

An independent set in a digraph D is a set of pairwise non-adjacent vertices. By a component
of the eulerian factor H we mean a connected component of the digraph H. Let d(X,Y ) denote the
number of arcs from X to Y .

Theorem 25. A digraph D has no eulerian factor if and only if V (D) can be partitioned into R1,
R2 and Y so that the following hold.

• Y is independent.

• d(R2, Y ) = 0, d(Y,R1) = 0 and d(R2, R1) < |Y |.

R1 R2

Y

independent

less than |Y | arcs

Figure 4: An illustration of Theorem 25. There are no arcs from R2 to Y and no arcs from Y to R1

and less than |Y | arcs from R2 to R1.

Proof. Let D = (V,A) be any digraph and let B be the bipartite digraph obtained from D by splitting
every vertex v into an in-going part v− and an out-going part v+. Formally, V (B) =

⋃
v∈V (D){v−, v+}

and A(B) = {v−v+ | v ∈ V (D)} ∪ {x+y− | xy ∈ A(D)}.
Consider the flow network N = (B, l, u) with l, u, being lower and upper bounds on arcs, respec-

tively, such that

l(v−v+) = 1, u(v−v+) = +∞ l(x+y−) = 0, u(x+y−) = 1
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for every v ∈ V (D), xy ∈ A(D).
It is easy to check that there is a one-to-one correspondence between feasible integer-valued circu-

lations on N and eulerian factors of D.
By Hoffman’s circulation theorem [11] (see also Theorem 4.8.2 in [3]), there exists a feasible integer

circulation of N if (and only if)
u(S̄, S) ≥ l(S, S̄) (1)

for every S ⊆ V (B).
First assume thatD has no eulerian factor, which implies that u(S̄, S) < l(S, S̄) for some S ⊆ V (B).

Consider the following possiblities for every x ∈ V (D) and construct Y ′, R′1 and R′2 as illustrated
below.

• If x− ∈ S and x+ ∈ S̄, then the arc x−x+ adds 1 to l(S, S̄), as l(x−x+) = 1. Add x to Y ′.

• If x+ ∈ S and x− ∈ S̄, then u(x−x+) = +∞ which contradicts u(S̄, S) < l(S, S̄). So this case
cannot happen.

• If x− ∈ S and x+ ∈ S, then add x to R′1.

• If x− ∈ S̄ and x+ ∈ S̄, then add x to R′2.

Note that R′1, R′2 and Y ′ is a partition of V (D). We note that l(S, S̄) = |Y ′|, as the lower bound
on all arcs except the x−x+, x ∈ V (D), is 0. We now prove that the following holds.

u(S̄, S) = d(R′2, R
′
1) + d(R′2, Y

′) + d(Y ′, R′1) + d(Y ′, Y ′) (2)

If xy is an arc from R′2 to R′1 then we note that u(x+y−) = 1 and therefore the arc xy contributes 1
to u(S̄, S). Analogously, if xy is an arc from R′2 to Y ′ or an arc from Y ′ to R′1, then it also contributes
1 to u(S̄, S). If y1y2 is an arc within Y , then u(y+1 y

−
2 ) = 1 and therefore the arc y1y2 also contributes

1 to u(S̄, S). As all arcs x+y− in the cut from S̄ to S have been counted, this proves Eq. (2).
Now as u(S̄, S) < l(S, S̄) = |Y ′|, we have

d(R′2, R
′
1) + d(R′2, Y

′) + d(Y ′, R′1) + d(Y ′, Y ′) < |Y ′| (3)

Assume that Y ′ has minimum size such that Eq. (3) holds. We will first show that d(R′2, y) = 0
and d(Y ′, y) = 0 for all y ∈ Y ′. Assume for the sake of contradiction that this is not the case and let
let Y ∗ = Y ′ \ {y} and let R∗2 = R′2 ∪ {y} and let R∗1 = R′1. Then |Y ∗| = |Y ′| − 1 and the following
holds.

• d(R∗2, R
∗
1) = d(R′2, R

′
1) + d(y,R′1).

• d(R∗2, Y
∗) = d(R′2, Y

′) + d(y, Y ′)− d(R′2, y).

• d(Y ∗, R∗1) = d(Y ′, R′1)− d(y,R′1).

• d(Y ∗, Y ∗) = d(Y ′, Y ′)− d(Y ′, y)− d(y, Y ′).

Summing up the four above equations we obtain the following (as we assumed that d(R′2, y) 6= 0
or d(Y ′, y) 6= 0).

d(R∗2, R
∗
1) + d(R∗2, Y

∗) + d(Y ∗, R∗1) + d(Y ∗, Y ∗)
= d(R′2, R

′
1) + d(R′2, Y

′) + d(Y ′, R′1) + d(Y ′, Y ′)− d(R′2, y)− d(Y ′, y)
≤ d(R′2, R

′
1) + d(R′2, Y

′) + d(Y ′, R′1) + d(Y ′, Y ′)− 1
< |Y ′| − 1
= |Y ∗|

So we note that the partition (Y ∗, R∗1, R
∗
2) is a contradiction to the minimality of Y ′ and we must

have d(R′2, y) = 0 and d(Y ′, y) = 0 for all y ∈ Y ′. Therefore d(R′2, Y
′) = 0 and d(Y ′, Y ′) = 0.

Analogously if d(y,R′1) 6= 0 for some y ∈ Y ′, then we can let R′′1 = R′1 ∪ {y}, Y ′′ = Y ′ \ {y} and
R′′2 = R′2 and obtain the following (as d(Y ′, Y ′) = 0).
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d(R′′2 , R
′′
1 ) + d(R′′2 , Y

′′) + d(Y ′′, R′′1 ) + d(Y ′′, Y ′′)
= d(R′2, R

′
1) + d(R′2, Y

′) + d(Y ′, R′1) + d(Y ′, Y ′)− d(y,R′)
≤ d(R′2, R

′
1) + d(R′2, Y

′) + d(Y ′, R′1) + d(Y ′, Y ′)− 1
< |Y ′| − 1
= |Y ′′|

Therefore d(Y ′, R′1) = 0, which implies that d(R′2, R
′
1) < |Y ′| and d(Y ′, R′1) = d(R′2, Y

′) =
d(Y ′, Y ′) = 0. Therefore we have obtained the desired partition of V (D).

This proved one direction of the theorem. Now assume that we can partition the vertices of V (D)
into R1, R2 and Y such that Y is independent and d(R2, Y ) = 0, d(Y,R1) = 0 and d(R2, R1) < |Y |.
In this case we note that to get from one vertex of Y to another vertex of Y (or the same vertex
of Y with a path of length at least 1) we need to use at least one arc from R2 to R1. However, as
d(R2, R1) < |Y |, this implies that D cannot contain an eulerian factor (which would contain at least
|Y | arc-disjoint paths between vertices in Y ).

Lemma 26. Let k be a non-negative integer and D be a (k + 1)-arc-strong semicomplete digraph.
Then D has an eulerian factor avoiding any prescribed set of k arcs.

Proof. Let A′ be any set of k arcs in a (k + 1)-arc-strong semicomplete digraph D. Let D′ = D \ A′
and note that D′ is strong. For the sake of contradiction, assume that D′ can be partitioned into R1,
R2 and Y such that Y is independent and d(R2, Y ) = 0 and d(Y,R1) = 0 and d(R2, R1) < |Y |. As D′

is strong, we must have R1 6= ∅ and R2 6= ∅ and d(R2, R1) ≥ 1. Therefore |Y | ≥ 2. Note that at least(|Y |
2

)
= |Y |(|Y | − 1)/2 arcs from A′ lie completely within Y (as Y is independent in D′). Furthermore

at least k+ 1− (|Y | − 1) arcs from A′ go from R2 ∪ Y to R1 as R1 has at least k+ 1 arcs into it in D
(and R2 has at least k+ 1 arcs out of it in D), as in D′ we have d(R2, R1) ≤ |Y | − 1. So the following
holds.

|A′| ≥ |Y |(|Y | − 1)

2
+ k − |Y |+ 2 = k + 2 + |Y |

(
|Y | − 3

2

)
The above implies that |A′| ≥ k + 1 (which can easily be verified when |Y | = 2 and |Y | ≥ 3),

a contradiction. Therefore the partition (Y,R1, R2) does not exist and D′ has an eulerian factor by
Theorem 25.

6.1.2 Merging eulerian subdigraphs

Let D = (V,A) be a digraph and D′ an eulerian subdigraph of D which is not spanning. A vertex
x ∈ V \ V (D′) is universal to D′ (or just universal when D′ is clear from the context) if x is
adjacent to every vertex of D′ and it is hypouniversal to D′ if it is adjacent to all vertices of D′

but at most one. If x has an arc to D′ and an arc from D′ then we say that x is mixed to D′.
Let H be an eulerian factor of a digraph D and let H1 and H2 be two distinct components of H.

Each Hi has a eulerian tour and, with a slight abuse of notation, for every vertex x of Hi we denote
by x+ (resp. x−) the successor (resp. predecessor) of x in this eulerian tour. This must be understood
as with respect to some fixed occurence of x in the tour.

If there exists a spanning eulerian subdigraph, H∗ of D〈V (H1) ∪ V (H2)〉, then we say that H1

and H2 can be merged, as in H we can substitute H1 and H2 by H∗ in order to get a eulerian factor
of D with fewer components.

Lemma 27. Let H1 and H2 be two components in an eulerian factor of a digraph D that cannot be
merged. Then all of the following points hold for all i ∈ {1, 2} and j = 3− i.

(a): There is no 2-cycle, uvu, where u ∈ H1 and v ∈ H2.

(b): For every arc uv ∈ A(Hi) and every x ∈ V (Hj) we cannot have ux, xv ∈ A(D).

(c): For every arc uv ∈ A(Hi) and every arc xy ∈ A(Hj) we cannot have uy, xv ∈ A(D).
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(d): If x ∈ V (Hi) is universal to Hj, then x is not mixed to Hj.

That is, x 7→V (Hj) or V (Hj) 7→x.

(e): If x ∈ V (Hi) is hypouniversal and mixed to Hj, then there exists a unique y ∈ V (Hj) such that
x and y are not adjacent and y−x, xy+ ∈ A(D).

Proof. Let D, H1, H2 and i, j be defined as in the statement of the lemma. If there was a 2-cycle,
uvu, where u ∈ H1 and v ∈ H2, then adding this to H1 and H2 shows that H1 and H2 can be merged,
a contradiction. This proves (a).

For the sake of contradiction assume that uv ∈ A(Hi) and x ∈ V (Hj) and ux, xv ∈ A(D). Adding
the arcs ux and xv and removing the arc uv from H1 ∪H2 shows that H1 and H2 can be merged, a
contradiction. This proves (b).

For the sake of contradiction assume that uv ∈ A(Hi) and xy ∈ A(Hj) and uy, xv ∈ A(D). Adding
the arcs uy and xv and removing the arcs uv and xy from H1 ∪ H2 shows that H1 and H2 can be
merged, a contradiction. This proves (c).

Let x ∈ V (Hi) be universal to Hj and for the sake of contradiction assume that x is mixed to Hj .
Let the eulerian tour in H2 be w1w2w3 · · ·wlw1 (every arc of H2 is used exactly once). Without loss
of generality we may assume w1x ∈ A(D) (as x is mixed to H2). Part (b) implies that xw2 is not an
arc in D, so w2x ∈ A(D) (as x is universal). Analogously w3x ∈ A(D). And so on by induction, we
get that every vertex of H2 dominates x, so V (H2)→x. As there is an arc from x to H2 in D (as x is
mixed) we have a 2-cycle between H1 and H2, a contradiction to (a). This proves (d).

We will now prove (e). Let x ∈ V (Hi) be hypouniversal and mixed to Hj . By (d), vertex x is not
universal to Hj , so there exists a unique y ∈ V (Hj) such that x and y are not adjacent. As x is mixed
to Hj there is an arc from x to V (Hj). As xy 6∈ A(D), we can assume that w ∈ V (Hj) is chosen such
that xw ∈ A(D) and xw− 6∈ A(D). By (b) we note that x and w− are non-adjacent and therefore
w− = y. This implies that xy+ ∈ A(D). Analogously, using (b), we can prove that y−x ∈ A(D).

6.2 Avoiding k arcs

Proposition 28. Every semicomplete digraph D = (V,A) with λ(D) ≥ (k+1)2

4 + 1 has a spanning
eulerian subdigraph which avoids any prescribed set of k arcs.

Proof. Consider a set A′ of k arcs and let X1, X2, . . . , Xr, r ≤ k, be the connected components of
D〈A′〉. Let D∗ be the semicomplete multipartite digraph that we obtain by deleting all arcs of A

which lie inside some component Xi. It is easy to see that we did not delete more than (k+1)2

4 arcs
across any cut of D so D∗ is strong. Moreover, every independent set of D∗ has size at most k + 1.
Thus, by Theorem 25, D has an eulerian factor. The claim follows from Theorem 24.

6.3 Avoiding a collection of stars

If D is a digraph and A′ ⊂ A(D) such that the underlying graph of the digraph induced by A′ is a
collection of stars, then A′ is called a star-set in D. Note that a matching in D is also a star-set.

Lemma 29. Let D be a semicomplete digraph and let A′ ⊂ A(D) be a star-set in D and let D′ = D\A′.
If D′ is strongly connected and contains an eulerian factor with two components H1 and H2 but no
spanning eulerian subdigraph, then the following holds for some i ∈ {1, 2} and j = 3− i.

(i): The eulerian tour in Hi can be denoted by w1w2w3 · · ·wlw1, such that w1 is not adjacent to any
vertex in Hj in D′.

(ii): There exists a k, such that R1 = {w2, w3, . . . , wk} and R2 = {wk+1, wk+2, . . . , wl} are both
non-empty and the only arc in D′ from R1 to R2 is wkwk+1.

(iii): There is no arc from R1 to w1 and there is no arc from w1 to R2 in D′.

(iv): V (Hj)7→R1 and R2 7→V (Hj) in D′.
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Proof. Let D, A′, D′, H1 and H2 be defined as in the lemma. Assume that D′ has no spanning
eulerian subdigraph. We now prove the following claims.

Claim 29.1. There must be a vertex in H1 which is not mixed to H2 or a vertex in H2 which is not
mixed to H1.

Proof. Suppose there is no such a vertex. Then D contains a cycle C whose vertices alternate between
V (H1) and V (H2) so taking the union of the arcs of C and those of H1, H2 we obtain a spanning
eulerian subdigraph of D, contradicting the assumption. This completes the proof of Claim 29.1. ♦

Definition of x: By Claim 29.1 we may assume without loss of generality that there is a vertex
x ∈ V (H1) which is not mixed to H2. Also without loss of generality we may assume that there is no
arcs from H2 to x. As D′ is strong we can pick x such that x+ has an arc into it from H2 (otherwise
consider x+ instead of x).

Claim 29.2. V (H2)7→x+ and x is non-adjacent to every vertex of H2.

Proof. Let ux+ be an arc from H2 into x+. By Lemma 27 (b) and (c), we note that xu 6∈ A(D′) and
xu+ 6∈ A(D′). As there is no arc from H2 to x this implies that x is not adjacent to u or u+. As A′ is a
star-set, x+ and u+ are adjacent. By Lemma 27 (c), we have x+u+ 6∈ A(D′) (as ux+ ∈ A(D′)), which
implies that u+x+ ∈ A(D′). We have now shown that ux+ ∈ A(D′) implies that u+x+ ∈ A(D′).
Analogously we must have u++x+ ∈ A(D′) and u+++x+ ∈ A(D′). And so on by induction, we get
that every vertex of H2 dominates xx+, that is V (H2)→x+. By Lemma 27 (a) there are no 2-cycles
between H1 and H2, which implies that V (H2)7→x+. By Lemma 27 (b) and the fact that there is
no arc from H2 to x we get that x is non-adjacent to every vertex of H2, completing the proof of
Claim 29.2. ♦

Claim 29.3. Every vertex in H2 is hypouniversal to H1. In fact, every vertex in H2 is universal to
V (H1) \ {x}.

Proof. This follows from the fact that x is not adjacent to any vertex in H2 and therefore must be
the center of a star in A′ (as |V (H2)| ≥ 2). Therefore all vertices in H2 are leaves in a star in A′ and
therefore have at most one non-neighbour in D′. By the above we note that they have exactly one
non-neighbour, which is x. ♦

Definition: Let w1w2w3 · · ·wlw1 be an eulerian tour of H1 and let w1 = x.

Claim 29.4. The vertex x only appears once in the eulerian tour of H1. That is, in H1 we have
d+(x) = d−(x) = 1.

Proof. Assume for the sake of contradiction that x appears more than once in the eulerian tour of
H1. As D′ is strong there is an arc from H1 to H2, say wku. Pick u and k such that k is as large as
possible. As wku ∈ A(D′) we note that by Lemma 27 (b) uwk+1 6∈ A(D′).

By the maximality of k this implies that k = l or u and wk+1 are non-adjacent. As wl+1 = w1 = x
we note that in both cases u and wk+1 are non-adjacent, which by Claim 29.3 implies that wk+1 = x.
So uwk+2 ∈ A(D′) by Claim 29.2. Now deleting the arcs wkwk+1 and wk+1wk+2 and adding the arcs
wku and uwk+2 we can merge H1 and H2 a contradiction.

Definition of R1 and R2: As D′ is strong there is an arc from H1 to H2, say wk+1u. Pick u
and k such that k is as small as possible. Note that k ≥ 2 as by Claim 29.2 we have V (H2)7→w2. Let
R1 = {w2, w3, . . . , wk} and let R2 = {wk+1, wk+2, . . . , wl}.

Claim 29.5. V (H2)7→R1 and R2 7→V (H2) in D′. Note that this proves part (iv) in the lemma.

Proof.
By Claim 29.3 and the minimality of k we note that V (H2) 7→R1 holds.
As wk+1u ∈ A(D′), by Lemma 27 (b) (and Claim 29.3), we have wk+2u ∈ A(D′) or wk+2 = x.

And so on by induction, one get that every vertex of R2 dominates u, that is R2→u. By Claim 29.3,
u− is universal to R2, so by Lemma 27 (b), we have R2 7→u−. Analogously R2 7→u−−. And so on by
induction, we get R2 7→z for every z ∈ V (H2). Hence R2 7→V (H2). ♦
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Claim 29.6. R1 ∩R2 = ∅ and the only arc from R1 to R2 in D′ is wkwk+1.

Note that this proves part (ii) in the lemma.
Proof. If y ∈ R1 ∩ R2, then by Claim 29.5 we have V (H2) 7→y and y 7→V (H2), which is not possible
since D′ has no 2-cycle by Lemma 27 (a). Therefore R1 ∩R2 = ∅.

Now assume for the sake of contradiction that uv ∈ A(D′) is an arc from R1 to R2 different from
wkwk+1. Note that uv 6∈ A(H1) as R1 ∩ R2 = ∅ and all arcs in H1 either lie within R1 or within
R2 or are incident with w1 or is the arc wkwk+1. Now let q ∈ V (H2) be arbitrary and add the arcs
uv, vq, qu to H1 and H2 and note that this merges H1 and H2, a contradiction. ♦

Claim 29.7. There is no arc from R1 to w1 and there is no arc from w1 to R2 in D′.

Note that this proves part (iii) in the lemma.
Proof. For the sake of contradiction assume that uw1 is an arc from R1 to w1. Let v ∈ V (H2) be
arbitrary and by Claim 29.5 note that vu ∈ A(D′). We can now merge H1 and H2 by taking the
union of the tour vuw1w2w3 · · ·wlv (wlv ∈ A(D′) by Claim 29.5) and H2. This contradiction, implies
that there is no arc from R1 to w1 in D′.

Analogously we can prove that there is no arc from w1 to R2 in D′. ♦

The above claims complete the proof of the lemma, as Claim 29.2 implies that part (i) of the
lemma holds and parts (ii), (iii) and (iv) follow from the Claims 29.5, 29.6 and 29.7.

Theorem 30. Let D be a (k + 1)-arc-strong semicomplete digraph and let A′ ⊂ A(D) be a star-set
of size k. Then D has a spanning eulerian subdigraph which avoids the arcs in A′.

Proof. Let D′ = D \ A′ and note that D′ is strong. By Lemma 26, D′ contains an eulerian factor.
Let H be an eulerian factor of D′ with the minimum number of components. Let H1, H2, . . . ,Hp be
the components of H, and for every i ∈ [p] set Di = D〈V (Hi)〉. For the sake of contradiction, assume
that p > 1.

Let T be the digraph we obtain from D′ by contracting each V (Di), i ∈ [p], into one vertex,
xi. Since D′ is strong, then T is also strong. As every Di contains at least two vertices, T is a
semicomplete digraph. Let G be the graph with V (G) = V (T ) and uv ∈ E(G) if and only if uvu is
a 2-cycle in T . We now need the following definitions and claims, which completes the proof of the
theorem.

Definition (vital vertex). Assume that xixj is an edge in G, implying that xixjxi is a 2-cycle
in T . By the minimality of p the properties of Lemma 29 hold. By Lemma 29 (i), either there is a
vertex in V (Hi) which is not adjacent to any vertex of Hj , in which case we say that xi is the vital
vertex of the edge xixj in G, or a vertex in V (Hj) which is not adjacent to any vertex of Hi, in which
case we say that xj is the vital vertex of the edge xixj in G. Note that xi and xj cannot both be vital
for xixj as A′ is a star-set. If a vertex is vital for any edge in G, then we say that it is a vital vertex
in G and otherwise it is non-vital.

Claim 30.1. G is a (possibly empty) set of vertex-disjoint stars, where the center vertices of the
non-trivial (i.e. of order at least 2) stars are exactly the vital vertices of G.

Proof. Assume that xixj ∈ E(G) and that xi is the vital vertex of xixj . That is, there is a w1 ∈ V (Hi)
which is not adjacent to any vertex of Hj . We will now show that dG(xj) = 1. That is, xixj is the
only edge in G touching xj . Assume for the sake of contradiction that xkxj is an edge in G with
k 6= i. As A′ is a star-set we note that xk cannot be the vital vertex for xkxj and xj also cannot be
the vital vertex. This implies that dG(xj) = 1.

So for every edge in G one endpoint is the vital vertex and the other endpoint has degree one.
This implies that G is a vertex-disjoint collection of stars, where the center vertices of the stars are
exactly the vital vertices of G, which completes the proof of Claim 30.1. ♦

Claim 30.2. If there exists a 3-cycle xixjxkxi in T such that xjxi 6∈ A(T ) and xixk 6∈ A(T ) and
there is a vertex u ∈ V (Hk) that is dominated by all of V (Hj), except for possibly one vertex, then
Hi, Hj and Hk can be merged.
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Proof. For the sake of contradiction assume w.l.o.g. that i = 1, j = 2 and k = 3 in the statement of
the claim. That is, x1x2x3x1 is a 3-cycle in T and x2x1 6∈ A(T ) and x1x3 6∈ A(T ) and there is a vertex
u ∈ V (H3) that is dominated by all of V (H2), except for possibly one vertex. Let W = H1 ∪H2 ∪H3.

As A′ is a star-set and there is no arc from H1 to H3 we note that either u has an arc out of it to
H1 or u− has an arc out of it to H1. Consider the two possibilities below.

• If there is an arc uv with v ∈ V (H1), then add uv to W .

• Otherwise there exists an arc u−v ∈ A(D′) with v ∈ V (H1) and add the arc u−v to W and
delete the arc u−u from W .

The new W now has d+(a) = d−(a) for all a ∈ V (W ) \ {u, v} and d+(u) = d−(u) + 1 and
d−(v) = d+(v) + 1. Analogously to above there is an arc from v to H2 or from v− to H2. Again
consider the two possibilities below.

• If there is an arc vw with w ∈ V (H2), then let vw ∈ A(D′) be such an arc and add vw to W .

• Otherwise there exists an arc v−w ∈ A(D′) with w ∈ V (H2) and add the arc v−w to W and
delete the arc v−v from W .

Analogously to above the new W now has d+(a) = d−(a) for all a ∈ V (W ) \ {u,w} and d+(u) =
d−(u) + 1 and d−(w) = d+(w) + 1. Note that there is an arc from w to u or from w− to u, as u was
dominated by all of V (H2), except for possibly one vertex.

• If there is an arc from w to u, then add wu to W .

• Otherwise w−u ∈ A(D′) and add the arc w−u to W and delete the arc w−w from W .

Now W is a spanning eulerian subdigraph of D〈V (H1) ∪ V (H2) ∪ V (H3)〉, contradicting the min-
imality of p, and thereby proving Claim 30.2. ♦

Claim 30.3. There is no induced 3-cycle in T .

Proof. For the sake of contradiction assume x1x2x3x1 is an induced 3-cycle in T . That is, x1x3, x3x2, x2x1 6∈
A(T ). If there is no vertex in H3 that is hypouniversal to H2, then all vertices in H2 are hypouniversal
to H3, as A′ is a star-set. So we can assume without loss of generality that there is a vertex u ∈ V (H3)
that is hypouniversal to H2 (otherwise reverse all arcs and rename H1, H2 and H3). Claim 30.2 now
implies that H1, H2 and H3 can be merged, a contradiction. This proves Claim 30.3. ♦

Claim 30.4. There is no vertex in G of degree p − 1 (that is, G does not consist of one spanning
star).

Proof. Assume for the sake of contradiction that x ∈ V (G) has degree p− 1 in G. By Claim 30.1 and
Claim 30.3 we note that T − x is a transitive tournament, so without loss of generality assume that
x = x1 and x2, x3, . . . , xp are named such that if 2 ≤ i < j ≤ p then xixj ∈ A(T ) (and xjxi 6∈ A(T )).
By Claim 30.1 we may assume that x1 is the vital vertex for all edges x1xi, i ∈ {2, 3, . . . , p} in G.

Consider the 2-cycle x1x2x1 ∈ T . By Lemma 29 the following holds.

(i): The eulerian tour in H1 can be denoted by w1w2w3 · · ·wlw1, such that w1 is not adjacent to any
vertex in H2 in D′.

(ii): There exists a k, such that R1 = {w2, w3, . . . , wk} and R2 = {wk+1, wk+2, . . . , wl} are both
non-empty and the only arc in D′ from R1 to R2 is wkwk+1.

(iii): There is no arc from R1 to w1 and there is no arc from w1 to R2 in D′.

(iv): V (H2)7→R1 and R2 7→V (H2) in D′.

17



In H1 we note that the only arc into R2 is wkwk+1. We now consider the cases when there is an
arc into R2 in D′ \ wkwk+1 and when there is no such arc.

Case 1. There is an arc into R2 in D′ \ wkwk+1. In this case assume that uv is such an arc and
note that u ∈ Hj for some j ∈ {3, 4, . . . , p} and v ∈ R2. Let q ∈ V (H2) be arbitrary and note that
vq ∈ A(D′) (as v ∈ R2 and R2 7→V (H2), by (iv) above) and qu ∈ A(D′) (as V (H2)7→V (Hj), as A′ is a
star-set). Therefore, uvqu is a 3-cycle in D′ and adding this 3-cycle to H1, H2 and Hj merges them,
a contradiction to the minimality of p.

Case 2. There is no arc into R2 in D′ − wkwk+1. In this case consider A′′, which consists of all
the arcs in A′ except the arcs between w1 and V (H2). As there are at least two arcs between w1 and
V (H2) in A′ (as |V (H2)| ≥ 2) we have |A′′| ≤ |A′| − 2 ≤ (k + 1)− 2 = k − 1. Furthermore wkwk+1 is
the only arc into R2 in D \A′′, which implies that D is at most k-arc-connected, a contradiction.

♦

Claim 30.5. There exists a 3-cycle, say x1x2x3x1, in T such that x2x1 ∈ A(T ) and x3x2 6∈ A(T )
and x1x3 6∈ A(T ).

Proof. If |V (G)| = 2, then as D′ is strong and therefore also T , we note that T consists of a 2-cycle.
However this is a contradiction to Claim 30.4. Therefore we may assume that |V (G)| = |V (T )| ≥ 3.
As by Claim 30.3 T does not contain an induced 3-cycle, G must contain a star S, and by Claim 30.4
a vertex x ∈ V (T ) \ V (S). Let y be the center of the star S (if |E(S)| = 1 let y ∈ V (S) be arbitrary)
and without loss of generality assume that yx ∈ A(T ). Let P = p1p2 . . . pl be a shortest path from x
(x = p1) to y (pl = y) in T . (Such a path exists because T is strong.) By the minimality of l note
that y 7→{p1, p2, . . . , pl−2} and as x 6∈ V (S) we have l ≥ 3.

Therefore C = pl−2pl−1plpl−2 is a 3-cycle in T and pl−2 6∈ V (S) (as pl−2pl 6∈ A(T )). Therefore
plpl−2 is not an edge in G. If pl−1 ∈ V (S) then pl−2pl−1 6∈ E(G) and if pl−1 6∈ S then pl−1pl 6∈ E(G).
So, in both cases C, has at most one arc belonging to a 2-cycle. By Claim 30.3 we note that there is
exactly one arc belonging to a 3-cycle, thereby proving Claim 30.5. ♦

One can now prove the theorem. By Claim 30.5, we may let x1x2x3x1 be a 3-cycle in T such that
x2x1 ∈ A(T ) and x3x2 6∈ A(T ) and x1x3 6∈ A(T ). By Lemma 29 either there is a vertex in H2 that
is not adjacent to any vertex in H1 or there is a vertex in H1 that is not adjacent to any vertex in
H2. By reversing all arcs if necessary, we may assume that x ∈ V (H2) is not adjacent to any vertex
of H1. This implies that x− 7→V (H1) and V (H1)7→x+, by Lemma 29. As x2x3, x3x1 ∈ A(T ) and
x3x2, x1x3 6∈ A(T ) and V (H1)7→x+ it follows from Claim 30.2 that H1, H2 and H3 can be merged, a
contradiction.

This completes the proof.

Since a set of at most two arcs always form a star-set, we have the following corollary.

Corollary 31. Every 2-arc-strong semicomplete digraph has a spanning eulerian digraph which avoids
any prescribed arc and every 3-arc-strong semicomplete digraph has a spanning eulerian digraph which
avoids any set of two prescribed arcs.

6.4 Avoiding three arcs

Theorem 32. Every 4-arc-strong semicomplete digraph has a spanning eulerian digraph which avoids
any set of three prescribed arcs.

Proof. Let D = (V,A) be a 4-arc-strong semicomplete digraph, let F = {a, a′, a′′} ⊂ A be a set of
three arcs and let D′ = D \ F . A
it non-edge of D is a pair {x, y} such that x and y are not adjacent, that is neither xy nor yx are arcs.
By Theorem 30 we may assume that the graph N induced by non-edges of D′ is either a triangle or
the path P4 on four vertices. If N is a triangle, then D′ is semicomplete multipartite and the claim
follows from Theorem 24, so the only remaining case is that N is a P4.
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By Lemma 26, D′ contains an eulerian factor. Let E be an eulerian factor of D′ with the minimum
number of components. Let H1, H2, . . . ,Hp be the components of E , and for every i ∈ [p] let Wi be a
closed spanning trail of Hi. For the sake of contradiction, assume that p > 1. If D′ contains a cycle
C all of whose arcs go between different components of E , then by adding the arcs of C we obtain a
better eulerian factor, contradicting the choice of E . Hence we may assume w.l.o.g. that H1 contains
a vertex v with no arc into it from any other Hj . As D′ is strong we can furthermore assume that
the successor v+ of v on W1 has an arc into it from another Hj and by renumbering if necessary we
can assume that there is a vertex u of H2 such that uv+ is an arc of D′. Let u+ be the successor of
u on W2. Since D′〈V (H1) ∪ V (H2)〉 has no spanning closed trail it follows from Lemma 27 (c) that v
is non-adjacent to both u and u+.

If v+ and u+ are adjacent in D′, then we must have u+v+ ∈ A(D′) by Lemma 27 (b), and now
since v dominates V (H2) − {u, u+} we have V (H2) = {u, u+} for otherwise the arcs vu++, u+v+

contradict Lemma 27 (c). If v+ and u+ are not adjacent in D′, then V (N) = {u, u+, v, v+}.
Suppose first that p > 2. It follows from the minimality of p and the fact that N is a P4 that

we must have V (H1) 7→ V (H3) ∪ . . . ∪ V (Hp). Suppose there is an arc zw ∈ A(D′) from V (Hi) to
V (H2) for some i > 2. If u+v+ ∈ A(D′), then w ∈ {u, u+} by the argument above and thus vzwv+ is
a path in D′ which shows that H1, H2, Hi can be replaced by one eulerian subdigraph, contradicting
the choice of E . So u+ and v+ must be non-adjacent as otherwise there is no arc entering V (H2),
contradicting that D′ is strong. As remarked above , this means that V (N) = {u, u+, v, v+} and
hence every vertex of V (Hi) is adjacent to every vertex of V (H2) so by Lemma 27 and the choice of
E we must have V (Hi) 7→ V (H2). Now v+zuv+ is a 3-cycle in D′ which shows that we can merge
W1,W2,Wi, contradicting the minimality of p. So we must have p = 2.

Suppose first that |V (H2)| > 2. By the remark above, V (N) = {u, u+, v, v+}. Hence v+ is adjacent
to all vertices of R = V (H2)\{u, u+} and since v dominates all of these, we also conclude from Lemma
27 and the minimality of p that v+ 7→ R and we see that V (H1) 7→ R. Let u++ be the successor of u+

on W2. If H2 has a spanning (u++, u)-trail T then we can insert V (H2) in W1 by deleting the arc vv+

and adding the arcs of the trail vu++T [u++, u]uv+, contradicting the minimality of E . Thus there is
no spanning (u++, u)-trail in H2 and, by Theorem 11 and Menger’s theorem, we can partition V (H2)
into two sets Z1, Z2 such that u++ ∈ Z1, u ∈ Z2 and there is precisely one arc from Z1 to Z2 in D2.
But then there are at most three arcs leaving Z1 in D, contradicting that D is 4-arc-strong.

Henceforth V (H2) = {u, u+}. As D is 4-arc-strong this implies that |V (H1)| > 2. Note that if
u+v+ ∈ A(D′), then we may assume, by renaming u, u+ if necessary, that u is adjacent to all vertices
of V (H1) \ {v, v+} in D′. This holds automatically if V (N) = {u, u+, v, v+}.

If uv− is an arc of D (and hence of D′), then it follows from Lemma 27 (b) that u 7→ V (H1) \ {v},
contradicting that the in-degree of u is at least 4 in D.

Hence v−u ∈ A(D′). This implies that either u+ and v− are non-adjacent or v− 7→ u+ by
Lemma 27 (b). As D is 4-arc-strong the vertex u has at least two in-neighbours and two out-neighbours
in V (H1) in D′. This and the minimality of p imply that there exists a vertex w ∈ V (H1) such that
u 7→ Y and X 7→ u, where Y = V (W1[v+, w−]) and X = V (W1[w, v−]). It is easy to see that we
also have u+ 7→ Y \ {v+} and if u+ is not adjacent to v− then u+ 7→ Y . Now we conclude that H1

has no spanning (v+, v−)-trail T ′ as otherwise either uv+T ′[v+, v−]v−u+u or u+v+T ′[v+, v−]v−uu+

would be a closed spanning trail of D. As v−v, vv+ ∈ A(D′) and v is adjacent to all vertices of
V (H1) \ v and cannot be inserted in the trail W1[v+, v−], there exists a vertex z ∈ V (H1) \ v such
that v 7→W1[v+, z−] and W1[z, v−] 7→ v. By symmetry we can assume that z ∈ X and thus v 7→ Y .

As D is 4-arc-strong, by Menger’s theorem, there are at least four arcs with tail in Y and head
in V (D) \ Y . As we have {u, u+} 7→ Y − v+, u 7→ v+ and v 7→Y the head of at least three of those
arcs must be in X. Consequently, in H1 there are at least three arcs with tail in Y and head in X.
In particular, there are y ∈ Y, x ∈ X such that yx is not the arc v+v− and there are two arc-disjoint
(y, x)-paths in H1. Thus by Theorem 11, there exists a spanning (y, x)-trail T1 in H1. Now either
T1[y, x]xu+uy or T1[y, x]xuu+y (or both) is a spanning eulerian trail of D′, a contradiction.
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7 Unavoidable arcs in semicomplete digraphs

Let D be a strong semicomplete digraph with at least one cut-arc (so λ(D) = 1) An arc a is unavoid-
able if it is contained in all spanning eulerian subdigraphs of D (so D \ a has no spanning closed
trail). Observe that every cut-arc is unavoidable.

The following is a direct consequence of Theorem 24. Note that if D \ a is semicomplete then it
has a hamiltonian cycle and we can find such a cycle in polynomial time in any semicomplete digraph.

Corollary 33. There is a polynomial-time algorithm that, given a semicomplete digraph D and an
arc a, decides whether a is unavoidable in D and returns a spanning eulerian subdigraph avoiding a
when one exists.

We believe that Corollary 33 can be generalized to the following.

Conjecture 34. For each fixed positive integer k, there exists a polynomial-time algorithm which,
given a semicomplete digraph D = (V,A) and A′ ⊂ A with |A′| = k, decides whether D \ A′ has a
spanning eulerian subdigraph.

The analogous conjecture for hamiltonian cycles was posed in [3, Conjecture 7.4.14] and is still
open for k ≥ 2. For k = 1 a polynomial-time algorithm follows from [7].

7.1 A classification of the set of unavoidable arcs

In this subsection we give a complete characterization of the pairs (D, a) such that D is a semicomplete
digraph in which a is an unavoidable arc. We shall prove the following theorem.

Theorem 35. Let D be a semicomplete digraph and let uv ∈ A(D) be arbitrary and let D′ = D\{uv}.
If D′ is strong, then D′ contains a spanning eulerian subdigraph if and only if V (D′) cannot be
partitioned into R1, R2 and Y = {u, v} such that Y is independent, d(R2, Y ) = 0, d(Y,R1) = 0 and
d(R2, R1) = 1.

Proof. Let D′ be defined as in the theorem. If D′ can be partitioned into R1, R2 and Y such that Y is
independent and d(R2, Y ) = 0 and d(Y,R1) = 0 and d(R2, R1) < |Y |, then we must have Y = {u, v}
since we only deleted one arc from a semicomplete digraph and d(R2, R1) > 0 as D′ is strong. Now it
follows from Theorem 25 that D′ contains no eulerian factor and therefore also no spanning eulerian
subdigraph. So assume that D′ cannot be partitioned in this way, which by Theorem 25 implies that
D′ contains an eulerian factor. D′ is clearly a semicomplete multipartite digraph so it follows from
Theorem 24 that D′ has a spanning eulerian subdigraph.

We first observe that the backward arcs with respect to a nice decomposition are unavoidable since
they are cut-arcs.

Proposition 36. Let D be a strong semicomplete digraph of order at least 4 and let (S1, . . . , Sp) be
a nice decomposition of D. Every backward arc is unavoidable.

If D is a semicomplete digraph with vertex set {a, b, c, d} such that {ab, bc, cd, ad, ca, db} ⊆ A(D) ⊆
{ab, bc, cd, ad, ca, db, cb}, then the arc ad is exceptional. See Figure 5.

a b c d a b c d

Figure 5: The two digraphs having an exceptional arc (ad in thick blue).

Let D be a semicomplete digraph of order at least 4 and let (S1, . . . , Sp) be a nice decomposition
of D. A forward arc uv is regular-compulsory if there is an index i such that 1 < i < p − 1,
Si = {u}, Si+1 = {v}, and both Si and Si+1 are ignored. If |Si| = 1 for all 1 ≤ i ≤ 3, say Si = {vi},
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

s1t1 s2t2

s3
v1 v2 u vv3

Figure 6: A nice decomposition of a strong semicomplete digraph with four backwards arcs (in thin
black). The arc uv is regular-compulsory. The arc v1v3 is left-compulsory.

and v2v1 ∈ A(D), v1v2 /∈ A(D), v3v2 /∈ A(D) and N−(v3) = {v1, v2}, then the arc v1v3 is left-
compulsory. If |Si| = 1 for all p − 2 ≤ i ≤ p, say Si = {vi}, and vpvp−1 ∈ A(D), vp−1vp /∈ A(D),
vp−1vp−2 /∈ A(D), N+(vp−2) = {vp−1, vp}, then vp−2vp is right-compulsory. See Figure 6.

Theorem 37. Let D be a strong semicomplete digraph of order at least 4 and let (S1, . . . , Sp) be a nice
decomposition of D. An arc is unavoidable if and only if it is either a cut-arc, regular-compulsory,
left-compulsory, right-compulsory, or exceptional.

Proof. If an arc ad is exceptional, then Theorem 35 implies that it is unavoidable (R1 = {c} and
R2 = {b}). If v1v3 is left-compulsory, then, again by Theorem 35, v1v3 is unavoidable (R1 = {v2}
and R2 = V (D) \ {v1, v2, v3}). Analogously, if vp−2vp is right-compulsory then it is unavoidable. If
uv is regular-compulsory, then again by Theorem 35, uv is unavoidable (R1 = S1 ∪ · · · ∪ Si−1 and
R2 = Si+2 ∪ Sp).

Let us now prove the reciprocal: if uv is not a cut-arc (backward arc) and not exceptional, left-
compulsory, right-compulsory or regular-compulsory, then it is not unavoidable.

Note that Theorem 35 implies that if D is a strong semicomplete digraph and uv ∈ A(D) is
not a cut-arc then the following holds, where D′ = D \ uv. The arc uv is unavoidable if and only
if N+

D′(u) = N+
D′(v) and N−D′(u) = N−D′(v) and N+

D′(u) ∩ N−D′(u) = ∅ and there is only one arc
from N+

D′(u) to N−D′(u). In particular if there is a path of length 2 between u and v then uv is not
unavoidable (unless it is a cut-arc). We shall use this observation several times below.

First assume that uv is an unavoidable forward arc where u ∈ Si and v ∈ Sj . If |Si| > 1, then
let w ∈ Si be an out-neighbour of u. If wv ∈ A(D), then uwv is a path of length 2 so uv is not
unavoidable, a contradiction. So vw ∈ A(D) and vw is a backward arc. In D there must be two
arc-disjoint paths, say P1 and P2, from w to u as otherwise there would be a cut-arc separating w
from u which, as Si is strong, must belong to Si, a contradiction. Therefore there must be at least
two arcs from N+(u) (as w ∈ N+(u)) to N−(u), so uv is not unavoidable, a contradiction. So |Si| = 1
and analogously |Sj | = 1.

Assume that there is a backward arc ru into u, where r ∈ Sk. As there is no a path of length 2
from v to u, rv ∈ A(D) and therefore i < k < j (as Sk cannot have two backward arcs out of it).
Assume that i > 1 and let xy be a backward arc from Si ∪ · · · ∪ Sp to S1 ∪ · · · ∪ Si−1. As backward
arcs are not nested (Proposition 14) we see that x must belong to Si ∪ · · · ∪ Sk−1. If x = u then uyv
is a path, a contradiction, so x ∈ Si+1 ∪ · · · ∪ Sk−1. This implies that xv ∈ A(D) (as otherwise ru
wouldn’t be a cut-arc) and uxv is a path, a contradiction. Therefore i = 1. Analogously if there is a
backward arc out of v then j = p.

Now assume that there is a backward arc vx out of v and a backward arc yu into u. Then i = 1 and
j = p. Note that x 6= y as otherwise vxu is a path. If there is any vertex in w ∈ S2∪· · ·∪Sp−1 \{x, y}
then uwv is a path, so V (D) = {u, v, x, y} and it is easy to see that uv is an exceptional arc.

So now assume that u has a backward arc, yu, into it and v has no backward arc out of it. Then
i = 1 and S1 = {u}, S2 = {y} and S3 = {v} as otherwise we could find a path of length 2 from u to
v. It is now easy to see that uv is left-compulsory. Analogously if there is a backward arc out of v
but no backward arc into u, then uv is right-compulsory.
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Finally assume that there is no backward arc into u and no backward arc out of v. In this case
j = i+ 1 as otherwise it is easy to find a path of length 2 from u to v. We now see that uv must be
regular-compulsory.

The remaining case is that uv is a flat arc and u, v ∈ Si. Then there are two arc-disjoint paths from
v to u in D \ uv as otherwise there would be a cut-arc in Si. But this implies that there are at least
two arcs from N+(v) to N−(v), implying that uv is not unavoidable by the above characterization of
unavoidable arcs derived from Theorem 35.
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[2] J. Bang-Jensen, H. Déprés, and A. Yeo. Spanning eulerian subdigraphs avoiding k prescribed
arcs in tournaments. Discrete Mathematics, 343(12):112129, 2020.

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag,
London, 2nd edition, 2009.

[4] J. Bang-Jensen and G. Gutin. Classes of Directed Graphs. Springer Monographs in Mathematics.
Springer Verlag, London, 2018.

[5] J. Bang-Jensen, G. Gutin, and A. Yeo. Hamiltonian cycles avoiding prescribed arcs in tourna-
ments. Combin. Prob. Comput., 6(3):255–261, 1997.

[6] J. Bang-Jensen and T. Jordán. Spanning 2-strong tournaments in 3-strong semicomplete digraphs.
Discrete Math., 310:1424–1428, 2010.

[7] J. Bang-Jensen, Y. Manoussakis, and C. Thomassen. A polynomial algorithm for Hamiltonian-
connectedness in semicomplete digraphs. J. Algor., 13(1):114–127, 1992.

[8] Paul Camion. Chemins et circuits hamiltoniens des graphes complets. C. R. Acad. Sci. Paris,
249:2151–2152, 1959.

[9] P. Fraisse and C. Thomassen. Hamiltonian dicycles avoiding prescribed arcs in tournaments.
Graphs Combin., 3(3):239–250, 1987.

[10] Y. Guo. Spanning local tournaments in locally semicomplete digraphs. Discrete Appl. Math.,
79(1-3):119–125, 1997.

[11] A.J. Hoffman. Some recent applications of the theory of linear inequalities to extremal combi-
natorial analysis. In R. Bellman and M. Hall, editors, Combinatorial Analysis, pages 113–128.
American Mathematical Society, Providence, RI, 1960.

[12] J. Liu, Q. Liu, X. Zhang, and X. Chen. Trail-connected tournaments. Applied Mathematics and
Computation, 389(C):S0096300320305506, 2021.
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