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Abstract—Bounding the number of sessions is a long-standing
problem in the context of security protocols. It is well known
that even simple properties like secrecy are undecidable when
an unbounded number of sessions is considered. Yet, attacks on
existing protocols only require a few sessions.

In this paper, we propose a sound algorithm that computes a
sufficient set of scenarios that need to be considered to detect an
attack. Our approach can be applied for both reachability and
equivalence properties, for protocols with standard primitives
that are type-compliant (unifiable messages have the same type).
Moreover, when equivalence properties are considered, else
branches are disallowed, and protocols are supposed to be simple
(an attacker knows from which role and session a message comes
from). Since this class remains undecidable, our algorithm may
return an infinite set. However, our experiments show that on
most basic protocols of the literature, our algorithm computes a
small number of sessions (a dozen). As a consequence, tools for
a bounded number of sessions like DeepSec can then be used to
conclude that a protocol is secure for an unbounded number of
sessions.

I. INTRODUCTION

For several decades, decision procedures have been devel-
oped for the automatic analysis of security protocols. Various
security properties can be considered. Secrecy and authenti-
cation are usually formalized as reachability properties, while
anonymity, untraceability, and other privacy properties are ex-
pressed as equivalence properties. Such properties are known
to be undecidable in general [25]. However, if a bounded
number of sessions is considered, then reachability properties
as well as trace equivalence are decidable, see e.g. [32], [31],
[5], [10], [22].

In practice, attacks exploit only a few sessions. Let us
first clarify what we call sessions. A protocol defines several
roles (client, server, certificate authority, etc.). Each role is a
program that may be run several times, each run corresponds to
a session of the role. So the number of sessions will be the total
number of programs that can be run (once). Written in terms
of processes, this corresponds to the total number of processes
in parallel, with no replication. Up to our knowledge, extreme
cases are when 5-6 sessions are needed for an attack. For
example, the Triple Handshakes Attack on TLS [6] requires

The research leading to these results has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No 714955-POPSTAR), as
well as from the French National Research Agency (ANR) under the project
TECAP, and the Chaire IA ASAP.

an honest client C and an honest server S that each runs 3 sub-
programs, yielding 6 sessions (or even less, depending on how
programs are divided). The traceability attack on electronic
passports [13] requires one honest run between the reader
and the passport and then a replay against a passport, thus 3
sessions. Hence a tempting heuristic is to conclude that either
an attack can be found within a few sessions, or the protocol is
secure. Unfortunately, there is absolutely no formal guarantee
that this is indeed the case. It is possible to construct protocols
for which an arbitrary number of sessions can be needed for
attacks. Hence, bounding the number of sessions is a long-
standing problem. The goal is to identify criteria, achieved in
practice, such that if there is an attack, then there is an attack
within an a priori bounded number of sessions.

Related work. Several results have studied this question.
• Sybille Fröschle [27] proposes a decidability result for

the “leakiness” property, that guarantees that all data are
either public or secret. This excludes protocols with tem-
porary secrets. [27] holds for typed protocols: an agent
expecting a nonce or a key cannot accept a ciphertext. The
considered primitives are encryption and concatenation
only.

• In [16], [21], the notion of typed protocols is relaxed
to consider type-compliance, that intuitively requires that
unifiable messages have the same type. While protocol
agents may receive arbitrary messages, type-compliance
ensures the existence of a well-typed witness when an
attack exists. In [16], [21], the notion of dependency
graph is introduced with the aim to characterize how
actions depend from the other ones. For protocols with
an acyclic dependency graph, the number of sessions
can be bounded and hence reachability and equivalence
properties are decidable. This result assumes protocols to
be simple (actions can be precisely identified) and else
branches are disallowed.

• [23] defines the notion of “depth-boundedness” that re-
stricts intuitively the number of nested encryptions. It is
shown that secrecy is decidable for depth-bounded pro-
tocols. As for [27], this does not cover equivalence prop-
erties. [24] generalizes the notion of depth-boundedness
to support a wider variety of cryptographic primitives.

All these results provide new decidability results: they
identify classes of protocols for which secrecy (and some-



times equivalence) is decidable, for an unbounded number of
sessions and fresh nonces. In passing, they bound the number
of sessions. However, they do not provide explicit bounds or
the bounds are not practical. For example, [21] gives a bound
of 1019 sessions for the simple Denning-Sacco protocol and
the bound is even larger for more complex protocols.

Many other works have studied the analysis of security
protocols in a symbolic setting, aiming at reducing the search
space. Some approaches show that it is sufficient to consider
typed attack traces, where messages follow some format [3],
[15], [29]. Other results reason on the origination of messages
(see e.g. [28]).

Contribution. Our main contribution is to show that, under
assumptions similar to [21], it is possible to efficiently bound
the number of sessions. Our result holds both for reachability
and equivalence properties and for a generic class of equational
theories that encompasses standard cryptographic primitives
(symmetric and asymmetric encryption, signatures, hash). We
consider the class of protocols that are type-compliant, which
is intuitively guaranteed as soon as two encrypted messages of
the protocol cannot be confused. Type-compliance can often
be achieved by simply adding a tag, that indicates at which
step the message has been created. Such a tagging scheme is
usually considered as a good practice since it avoids attacks
and is shown to ensure type-compliance for protocols with
symmetric encryption and pairing [15]. Moreover, when equiv-
alence properties are considered, else branches are disallowed,
and protocols must also be simple, i.e. an attacker can identify
from which participant and which session a message originates
from.

Under these assumptions, we provide an algorithm that
explores the actions of a protocol and computes a bound on the
number of sessions needed for an attack. It is important to note
that our assumptions do not yield a decidable class, hence our
algorithm can also return that no bound could be found. On
the other hand, we do compute a bound for any protocol with
an acyclic graph as defined in [21], hence our algorithm covers
the decidable class introduced in [21]. Compared to [21], the
major difference is that we provide a small, usable, bound
where [21] is impractical. We also provide a bound in slightly
more cases but these additional cases cover contrived examples
only. Actually, instead of just a bound on the number of
sessions, our algorithm provides a list of scenarios that need to
be considered. Each scenario corresponds to a precise number
of replications of each role of the protocol, possibly truncated.
For example, maybe an attack needs two replications of role B
and only twice the two first steps of role A. This more precise
information can be helpful when running tools for the protocol
analysis.

We prove that our algorithm is correct: if there is an attack,
then there is an attack covered by one of the returned scenario.
The proof involves two main steps. First, we use the fact that
if there is an attack, then there is a well-typed attack, that is,
an attack where all the messages comply with the expected
format in the protocol. This result heavily relies on a previous

typing result [14], extended to else branches for reachability
properties. Then, in a second step, we need to show that our
algorithm explores all possible scenarios, that is, we show that
a well-typed attack of minimal size (minimal length and small
attacker steps) is necessarily covered by at least one of our
scenarios.

Implementation. We have implemented our procedure in a
tool HowMany that (i) first checks whether our assumptions, in
particular type-compliance, are satisfied, (ii) then recursively
computes, for each action of the protocol, how this action
can be reached from other steps of the protocol. This yields
the set of scenarios that need to be considered. If a loop
is detected, then no bound can be found. We experimented
our tool on several protocols of the literature. As already
noticed in [21], they all satisfy our assumptions, possibly
after tagging messages. For most protocols, HowMany can
find a bound of size 3 to 55 sessions, in the worst case. For
example, HowMany computes a bound of 3 sessions only for
the Denning-Sacco protocol, to be compared with the previous
1019 bound. Even in the case where 55 sessions may be needed
(for the Kao-Chow protocol), HowMany actually provides
finer grain information: one can either consider one scenario
with 55 sessions in parallel or, instead, 385 different scenarios
of at most 29 sessions each, and for which the analysis can
be done independently.

Discussion. Although they do not come with termination guar-
antees, tools like ProVerif [7] or Tamarin [30], dedicated to the
analysis of protocols for an unbounded number of sessions,
can already analyze efficiently the protocols considered in
our experiments. Hence, our first and main contribution is
theoretical: we hope to contribute to a better understanding on
the interplay between sessions and attacks. In particular, our
results show that yes, for standard protocols, it is possible to
find a reasonable bound on the number of sessions. Moreover,
our approach allows to extend the scope of existing tools de-
veloped for a bounded number of sessions such as Avispa [4],
Maude-NPA [26], DeepSec [12], or SAT-Equiv [19]. Despite
the state-explosion issue due to the intrinsic complexity (NP-
complete) of the bounded case, a major improvement has been
seen in the number of sessions that can be covered by these
tools. For example, DeepSec can analyze up to 10-50 sessions
for standard protocols of the literature. SAT-Equiv can even
analyze up to 60-400 sessions but covers a much smaller
fragment of protocols. Hence HowMany can be used as a
small add-on to these tools to conclude to the security of an
unbounded number of sessions when HowMany successfully
computes a bound. In our experiments, SAT-Equiv was able
to prove security for an unbounded number of sessions in all
cases, while DeepSec faces a time out (set to 24h) in about
15% of the cases and succeeds otherwise.

All files related to the implementation and case studies are
available as supplementary material in [20].



II. MODEL

A. Messages

As usual, messages are modeled with a term algebra. Private
data, such as private keys, private randomness and nonces,
are represented by a set of names N . Security protocols may
also use public data, like tags, or error messages, that are
represented by (public) constants of Σ0. Constants also model
other data known from the attacker, like corrupted private keys,
nonces generated by the attacker or her keys. For technical
reasons (related to the typing result [14]), the attacker is also
given non-atomic constants. We consider two sorts, atom and
bitstring. Any name in N is of the sort atom, while Σ0 is split
as Σ0 = Σatom

0 ]Σbitstring
0 , where the constants in Σatom

0 are of
sort atom and the constants in Σbitstring

0 are of sort bitstring.
We assume an infinite number of names in N , constants
in Σatom

0 and constants in Σbitstring
0 , such that protocol agents

can always generate fresh nonces, and the attacker can always
generate new keys and create new messages. Messages (or
an unknown part of them) expected by a party of a protocol
are represented through variables in X . Another set W of
variables is used to refer to messages learnt by the attacker.
Most often, those messages result from an output. Typically,
variables in X are denoted x, y, z, whereas variables in W
are denoted w1,w2, . . . . Names in N are denoted n,m and k
or sk when they are keys, while constants are denoted a, b, c.
We refer to variables, names and constants through the generic
term of data, while the word atomic or atom shall be used only
for data of sort atom.

We also need to model cryptographic operations, like en-
cryption, decryption, mac, hash function,... These operations
are represented by function symbols. A signature Σ is a set
of function symbols with their arity. We distinguish between
three types of symbols. We consider constructor symbols like
encryption, in Σc, destructor symbols, like decryption, in Σd,
and test symbols, in Σtest, i.e. Σ = Σc]Σd]Σtest. The sets Σd

and Σtest do not contain constant symbols, i.e. function sym-
bols of arity 0. Given a signature Σ and a set of data D, the set
of terms built from Σ and D is denoted T (Σ, D). Constructor
terms on D are terms in T (Σc, D). We denote vars(u) the
set of variables that occur in a term u. A term is ground
if it contains no variable. Given a substitution σ, we denote
dom(σ) its domain, img(σ) its image, and uσ its application
to a term u. The positions of a term are defined as usual. Given
a term t, the function symbol occurring at position ε in t is
denoted root(t), and we denote St(t) the set of the subterms
of t. Two terms u1 and u2 are unifiable when there exists a
substitution σ such that u1σ = u2σ. The most general unifier
between u1 and u2 is denoted mgu(u1, u2).

Any constructor f comes with its sort, i.e.

f : (s1 × . . .× sn)→ s0

where n is the arity of f, s0 = bitstring, and si ∈
{atom, bitstring} for 1 ≤ i ≤ n. Given a constructor term
t ∈ T (Σc, D), p is an atomic position of t if it corresponds

to a position where an atom is expected, i.e., p = p′.i, t|p′ =
f(t1, . . . , tn), with f ∈ Σc : (s1 × . . . × sn) → s0 and
si = atom. We say that a constructor term t is well-sorted
if t|p ∈ N ]X ]Σatom

0 for any atomic position p of t, i.e. any
subterm is of the right sort.

Example 1. Public-key encryption, signature, and pair can be
modeled by considering Σex = Σex

c ∪ Σex
d ∪ Σex

test with:

• Σex
c = {aenc, pk, sign, vk, ok, 〈 〉};

• Σex
d = {adec, getmsg, proj1, proj2};

• Σex
test = {check}.

The symbols aenc and adec (both of arity 2) represent resp.
asymmetric encryption and decryption. The symbol pk (arity 1)
is the key function: pk(sk) is the public key associated to
the private key sk. Signatures are modeled with the symbol
sign (arity 2). We assume that the content of a signature can
be extracted (symbol getmsg of arity 1). Its validity can be
checked with check (arity 2). The symbol vk (arity 1) is again
a key function which modeled the verification key associated
to a signing key. Pairing is modeled using 〈 〉 (arity 2),
and projection functions are denoted proj1 and proj2 (both
of arity 1). The sort of our constructors are as follows:

aenc : bitstring × bitstring→ bitstring
pk : atom→ bitstring

sign : bitstring × atom→ bitstring
vk : atom→ bitstring
〈 , 〉 : bitstring × bitstring→ bitstring

Consider k, ska ∈ N and ekc ∈ Σ0 (all of sort atom), the
term u0 = aenc(sign(k, ska), pk(ekc)) is a constructor term
that represents an encryption (by the public key associated to
the private key ekc) of a signature. This private key is modeled
using a public constant, and is therefore known to the attacker.
The atomic position of u0 are p1 = 2.1 and p2 = 1.2, and
since ska and ekc are indeed atoms, u0 is well-sorted.

Our main result relies on a typing result established in [14],
and thus we need to consider a similar setting. In particular,
in [14], a notion of shape is introduced, whose purpose is
to describe the expected pattern of a message. For example,
if asymmetric encryption is represented by aenc(m, pk(k))
then it should not be applied to other keys, e.g. vk(k).
Formally, to each constructor function symbol f, we associate
a linear term f(u1, . . . , un) ∈ T (Σc,X ) denoted shf which
is called the shape of f. Shapes have to be compatible, i.e.
for any f(t1, . . . , tn) occurring in a shape, we have that
shf = f(t1, . . . , tn). A term is well-shaped if it complies with
the shapes, that is, any subterm of t, heading with a constructor
symbol f is an instance of the shape of f. More formally, a
constructor term t ∈ T (Σc,Σ0 ∪X ) is well-shaped if for any
t′ ∈ St(t) such that root(t′) = f, we have that t′ = shfσ
for some substitution σ. Given D ⊆ N ∪ Σ0 ∪ X , we denote
T0(Σc, D) the subset of constructor terms built over D that
are well-shaped and well-sorted. Terms in T0(Σc,N ∪Σ0) are
called messages.



Example 2. Continuing Example 1, the shapes associated to
each constructor symbol are as follows:

aenc : shaenc = aenc(x1, pk(x2))
pk : shpk = pk(x2)

sign : shsign = sign(x1, x2)
vk : shvk = vk(x1)
〈 〉 : sh〈 〉 = 〈x1, x2〉

It is easy to see that these shapes are compatible. The term
u0 = aenc(sign(k, ska), pk(ekc)) is well-sorted and well-
shaped thus in T0(Σc,N ∪Σ0), whereas aenc(k, ekc) is well-
sorted but not well-shaped.

To model the effect of destructors, we use a set R of
rewriting rules built from Σ.

Example 3. The properties of the primitives given in Exam-
ple 1 are reflected through the following rewriting rules:

adec(aenc(x, pk(y)), y) → x
getmsg(sign(x, y)) → x

check(sign(x, y), vk(y)) → ok

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

Given a set R of rewriting rules, a term u can be rewritten
in v using R if there is a position p in u, and a rewriting rule
g(t1, ..., tn)→ t in R such that u|p = g(t1, . . . , tn)θ for some
substitution θ, and v = u[tθ]p, i.e. u in which the subterm at
position p has been replaced by tθ. Moreover, we assume that
t1θ, . . . , tnθ as well as tθ are messages, in particular they do
not contain destructor symbols. We consider sets of rewriting
rules that yield convergent rewriting systems. As usual, we
denote →∗ the reflexive-transitive closure of →, and u↓ the
normal form of a term u.

An attacker builds his own messages by applying public
function symbols to terms he already knows and that are
available through variables in W . Formally, a computation
done by the attacker is a recipe, i.e. a term in T (Σ,W ]Σ0).

Example 4. The set of rewriting rules given in Example 3
yields a convergent rewriting system. We have that:

v = getmsg(adec(u0, ekc))→ getmsg(sign(k, ska))→ k

Therefore, we have that v↓ = k. The term R0 =
getmsg(adec(w1, ekc)) with w1 ∈ W is a recipe.

B. Protocols

Our process algebra is inspired from the applied pi calcu-
lus [1], [2]. Our setting allows both pattern matching on the
input construct and explicit filtering using the match construct.

We assume an infinite set Ch of channels and an infinite
set L of labels. We consider processes built using the following

grammar:

P, P1, . . . , Pj , Q :=
0 null process

| inα(c, u).P input
| outα(c, u).P output
| new n.P name generation
| P | Q parallel
| i : P phase
| !P replication
| new c′.out(c, c′).P channel generation
| matchxwith filtering

(u1 → P1 | . . . | uj → Pj)

where α ∈ L, u, u1, . . . , uk ∈ T0(Σc,Σ0]N ]X ), c, c′ ∈ Ch,
n ∈ N , and i, j ∈ N. Given a process P , we denote fv(P )
the set of its free variables, i.e. those not bound by an input,
nor by a filtering in a match construct. A protocol is a process
with no free variable and with distinct labels.

Example 5. Consider the following process P :

P = in(c, x).matchxwith
(
f(y)→ out(c, ok)
| y′ → out(c, error)

)
This process represents an agent who is waiting for a message.
If the message received is of the form f(y) (for some value
of y), the constant ok will be sent. Otherwise, an error
message will be emitted. The match construct is used to model
conditional branching. We have that fv(P ) = ∅. Indeed, the
variable x is bound by the input construct, and y (resp. y′) is
bound by the filtering f(y) (resp. y′) in the match construct.

The construct inα(c, u) and outα(c, u) are the usual input
and output actions, except that they are now decorated with
labels α. These labels have no impact on the semantics of
processes. They are used to refer to a precise action of a
process and will be necessary to reason on the number of
sessions needed for an attack. The construct new n.P generates
a new name n and proceeds as P . The parallel composition
of two processes P and Q is built as P | Q. We consider
phases in our setting. They are useful to model protocols that
have several phases, for example some general setup followed
by the actual start of the main part of the protocol. A process
i : P may only react at phase i and can be discarded once the
phase is strictly greater than i.

As usual, replication of processes is denoted !P . We con-
sider a special construction to introduce a fresh public channel:
new c′.out(c, c′).P generates a new channel c′ and immedi-
ately publishes it on c. This is to allow for the generation of
public channels while private channels are not considered in
our setting. Finally, matchxwith (u1 → P1 | . . . | uj → Pj)
will try to unify the content of x with u1, . . . , uj (in order)
and will proceed as Pi as soon as one successful unification
is found for some ui.

Example 6. We consider a variant of the signature-based
Denning-Sacco protocol as given in [8]. The protocol aims at
ensuring the secrecy of the key k freshly generated by agent A



and sent to B relying on signature and asymmetric encryption.
Informally, we have that:

A→ B : aenc(sign(k, ska), pk(ekb))

As shown in [8], this variant is vulnerable to an attack. Indeed,
a dishonest agent C may reuse a signature sign(kc, ska) sent
by A to him to fool an honest agent B (see Example 7 for
more details).

The two roles of A and B are represented by the following
processes:

PA = new k.outα1(c, aenc(sign(k, ska), pk(ekb)))

PB = inβ1(c, aenc(sign(x, ska), pk(ekb)))

where k, ska, ekb ∈ N and x ∈ X . Then, the whole protocol
is modeled by the parallel composition of these (replicated)
processes, with an extra process PK that reveals public keys
to the attacker, i.e.

PDS = 1 :!PA | 1 :!PB | 0 : PK

with PK = outγ1(c, pk(ekb)).outγ2(c, vk(ska)).
Of course, we may want to consider a richer scenario

involving a dishonest agent c. In this case, we can consider
in addition the following processes (here ekc ∈ Σ0):

P ′A = new k′.outα
′
1(c, aenc(sign(k′, ska), pk(ekc)))

P ′B = inβ
′
1(c, aenc(sign(x′, ska), pk(ekc)))

yielding to the protocol P ′DS = PDS | 1 :!P ′A | 1 :!P ′B .
Note that ekc is known to the attacker since ekc ∈ Σ0.

The operational semantics of a process is defined as a rela-
tion over configurations. A configuration is a tuple (P;φ;σ; i),
with i ∈ N, such that:
• P is a multiset of processes.
• φ is a frame, that is a substitution with a (finite) domain

dom(φ) ⊂ W , and such that img(φ) only contains
messages. Intuitively, φ corresponds to messages sent on
the (public) network.

• σ is a substitution such that fv(P) ⊆ dom(σ), and
img(σ) only contains messages. It represents the current
instantiation of protocol variables.

By abuse of notation, given a protocol P , we will write P for
the configuration ({P}, ∅, ∅, 0).

The relation `−→ defining the operational semantics is de-
scribed in Figure 1 and follows the intended semantics. Note
that a process with a match is blocked if no possible match
is found in the list of ui. For the sake of conciseness, we
sometimes write P ] P instead of {P} ] P .

An action (or a step) is said visible when it is dif-
ferent from τ . The relation `1...`n−−−−→ between configurations
(where `1 . . . `n is a sequence of actions) is defined as the
transitive closure of `−→. Given a sequence of visible actions tr
and two configurations K and K′, we write K tr

==⇒ K′ when
there exists a sequence `1 . . . `n such that K `1...`n−−−−→ K′ and tr
is obtained from `1 . . . `n by erasing all occurrences of τ .

Given a configuration K = (P;φ;σ; i), we denote trace(K)
the set of traces defined as:

trace(K) = {(tr, φ′) | K tr
==⇒ (P ′;φ′;σ′; i′)

for some configuration (P ′;φ′;σ′; i′)}.

Note that, by definition of trace(K), we have that trφ↓ only
contains messages for any (tr, φ) ∈ trace(K).

Example 7. Continuing Example 6, we have that (tr0, φ0) ∈
trace(P ′DS) where:

tr0 = outγ1(c,w0).phase 1.outα
′
1(c,w1).inβ1(c,R1);

φ0 = {w0 . pk(ekb),w1 . aenc(sign(k, ska), pk(ekc))}

The recipe R1
def
= aenc(adec(w1, ekc),w0) means that the

attacker decrypts the message he received (from A) and he
re-encrypts it with the public-key of B. Note that R1φ0↓ =
aenc(sign(k, ska), pk(ekb)), and thus B will accept this mes-
sage thinking that the key k is a secret shared with him and
the agent A. However, we have that R0φ0↓ = k meaning
that this key is actually known by the attacker (with R0 =
getmsg(adec(w1, ekc))).

C. Equivalence

Some security properties are expressed as equivalence prop-
erties where the attacker wins if she can distinguish between
two scenarios. For example, Alice is traceable if an attacker
can distinguish the case where Alice is taking part several
times in a protocol from the case where different users are
involved.

First, we say that an attacker can distinguish between two
sequences of messages φ1 and φ2 if she can construct a test
that holds in φ1 and not φ2. She can also distinguish if some
evaluation (e.g. a decryption) succeeds in φ1 and not φ2.

Definition 1. Two frames φ1 and φ2 are in static inclusion,
written φ1 vs φ2, when dom(φ1) = dom(φ2), and:
• for any recipe R, we have that Rφ1↓ is a message implies

that Rφ2↓ is a message; and
• for any recipes R,R′ such that Rφ1↓, R′φ1↓ are mes-

sages, we have that: Rφ1↓ = R′φ1↓ implies Rφ2↓ =
R′φ2↓.

They are in static equivalence, written φ1 ∼s φ2, if φ1 vs φ2
and φ2 vs φ1.

Then we can define trace equivalence between configura-
tions K and K′: any trace of a configuration K should have
a corresponding trace in K′ with the same visible actions and
such that their frames are in static equivalence.

Definition 2. A configuration K is trace included in a config-
uration K′, written K vt K′ , if for every (tr, φ) ∈ trace(K),
there exists (tr′, φ′) ∈ trace(K′) such that tr =L tr′ (where
=L is equality without taking into account labels from L), and
φ vs φ′. They are in trace equivalence, written K ≈t K′, if
K vt K′ and K′ vt K.

This notion of trace equivalence slightly differs from the
original one (given e.g. in [11]), where the frames are required



IN (i : inα(c, u).P ] P;φ;σ; i)
inα(c,R)−−−−−→ (i : P ] P;φ;σ ] σ0; i)

where R is a recipe such that Rφ↓ is a message, and Rφ↓ = (uσ)σ0 for σ0 with dom(σ0) = vars(uσ).

OUT (i : outα(c, u).P ] P;φ;σ; i)
outα(c,w)−−−−−−→ (i : P ] P;φ ] {w . uσ};σ; i)

with w a fresh variable from W , and uσ is a message.

NEW (i : new n.P ] P;φ;σ; i)
τ−→ (i : P{m/n} ] P;φ;σ; i)

where m ∈ N is a fresh name.

NULL (i : 0 ] P;φ;σ; i)
τ−→ (P;φ;σ; i)

PAR (i : (P | Q) ] P;φ;σ; i)
τ−→ (i : P ] i : Q ] P;φ;σ; i)

REP (i :!P ] P;φ;σ; i)
τ−→ (i : P ′ ] i :!P ] P;φ;σ; i)

with P ′ a copy of P where bound variables are renamed.

OUT-CH (i : new c′.out(c, c′).P ] P;φ;σ; i)
out(c,c′′)−−−−−→ (i : P{c′′/c′} ] P;φ;σ; i)

where c′′ is a fresh channel name.

MATCH ({i : matchxwith (u1 → P1 | . . . | uj → Pj)} ] P;φ;σ; i)
τ−→ (i : Pj0 ] P;φ;σ ] σ0; i)

where j0 is the smallest index such that xσ and uj0σ unify and σ0 = mgu(xσ, uj0σ).

MOVE (P;φ;σ; i)
phase i′−−−−→ (P;φ;σ; i′) with i′ > i.

PHASE (i : i′ : P ] P;φ;σ; i)
τ−→ (i′ : P ] P;φ;σ; i)

CLEAN (i : P ] P;φ;σ; i′)
τ−→ (P;φ;σ; i′) when i′ > i.

Fig. 1. Semantics for processes

to be in static equivalence φ ∼s φ′ instead of static inclusion
φ vs φ′. Actually, these two notions of equivalence coincide
for determinate protocols [9], and in particular for the class
of simple protocols that will be introduced later on (see
Definition 9) when considering the case of equivalence.

III. ASSUMPTIONS

We consider two main assumptions in our setting. First,
we cannot consider arbitrary primitives. Instead, we propose a
generalization of decryption-encryption rules that allows us to
consider all standard primitives and a few additional ones. One
advantage of this generalization is not really its expressivity
(we are not much more general than the standard primitives)
but its flexibility. For example, encryption can be randomized,
several encryption or hash functions can be considered, etc.
We could consider a (long) list of decryption-like rules but
this would render the proofs unnecessarily cumbersome, with
dozen of cases to be considered. Our second main assumption
is the fact that protocols must be type-compliant, which
intuitively guarantees that each two encrypted messages of
the protocol that can be unified have the same type.

A. Shaped rewriting systems

Our main result relies on the fact that, thanks to [14], we
can consider only some particular form of traces (well-typed).
Hence we need to consider a similar setting. We consider
rewriting rules that apply a symbol in Σd ] Σtest on top of
constructor terms that are linear, well-sorted, and well-shaped.
Moreover, we strictly control the non-linearity of the rules,
and we assume the standard subterm property, as recalled
below. More formally, our set R is divided into two parts,

i.e. R = Rd ]Rtest, and for each symbol g ∈ Σd ]Σtest, we
assume there is exactly one rule of the form l −→ r such that:

1) l = g(t1, . . . , tn) where each ti is either a variable or
equal to shroot(ti) up to a bijective renaming of variables;

2) either l is a linear term, or there is a unique variable x
with several occurrences in l and:
• l = g(f(t11, . . . , t

k
1), t2, . . . , tn);

• {x} ⊆ {tjx1 , t2, . . . , tn} ⊆ {x}∪{f(x) | f ∈ Σc} for
some jx;

• x occurs exactly once in tjx1 , in atomic position, and
does not occur in the other tj1 for j 6= jx.

We denote lg −→ rg the rewriting rule in R associated to the
symbol g ∈ Σd]Σtest. Then, we assume that for any g ∈ Σtest,
the associated rule lg → rg is such that rg ∈ T0(Σc, ∅). In this
case, lg → rg is a rule of Rtest. When g ∈ Σd, we assume
that the associated rule g(t1, . . . , tn) → rg is such that rg is
a direct and strict subterm of t1, i.e. t1 = f(t11, . . . , t

k
1) with

f ∈ Σc, and rg = tj
′

1 for some j′ ∈ {1, . . . k}. In this case,
lg → rg is a rule of Rd.

Lastly, we assume the existence of at least one non linear
rule in R. This last assumption is needed for the typing result
stated and proved in [14], and is satisfied as soon as a rewriting
rule modeling e.g. symmetric (or asymmetric) encryption is
present in R. A rewriting system satisfying our conditions is
called a shaped rewriting system. In what follows, we only
consider shaped rewriting systems.

All standard primitives such as symmetric and asymmetric
encryption, signatures, mac, hash, can be modeled as shaped
rewriting systems. We can also consider a few more primitives.



Example 8. The rewriting system given in Example 3 is a
shaped rewriting system. We can also consider encryption
schemes where 1 out of n keys suffices to decrypt, with
rewriting rules of the form:

adec1(aenc(y, pk(x), pk(x′)), x) → y
adec2(aenc(y, pk(x′), pk(x)), x) → y

However, adding a rewriting rule:

samekey(aenc(x1, pk(x)), aenc(x2, pk(x)))→ ok

allowing one to check whether two ciphertexts have been
produced relying on the same key does not satisfy our
requirements since the left-hand-side is not linear, and
aenc(x2, pk(x)) is not of the form f(x).

B. Type compliance

Intuitively, types allow us to specify the expected structure
of a message.

Definition 3. A (structure-preserving) typing system is a pair
(∆init, δ) where ∆init is a set of elements called initial types,
and δ is a function mapping data in Σ0 ] N ] X to types τ
generated using the following grammar:

τ, τ1, . . . , τn = τ0 | f(τ1, . . . , τn) with f ∈ Σc and τ0 ∈ ∆init

Then, δ is extended to constructor terms as follows:

δ(f(t1, . . . , tn)) = f(δ(t1), . . . , δ(tn)) with f ∈ Σc.

Example 9. We consider the typing system (∆DS, δDS) gener-
ated from the set ∆DS = {τska, τekb, τekc, τk} of initial types,
and such that:
• δDS(k) = δDS(k′) = δDS(x) = δDS(x′) = τk, and
• δDS(xx) = τxx for xx ∈ {ska, ekb, ekc}.

Consider a configuration K and a typing system (∆init, δ),
an execution K tr

==⇒ (P;φ;σ; i) is well-typed if σ is a well-
typed substitution, i.e. every variable of its domain has the
same type as its image.

In [14], protocols are defined to be type-compliant if any
two unifiable encrypted subterms are of the same type. “En-
crypted” means any term headed by a constructor symbol that
cannot be opened freely, such as encryption. Conversely, some
constructors are transparent in the sense that they can be
opened without any extra information, such as pairs, tuples, or
lists. Formally, a constructor symbol f of arity n is transparent
if there exists a term f(Rf

1, . . . , R
f
n) ∈ T (Σ,�) such that for

any term t ∈ T0(Σ,Σ0 ] N ] X ) such that root(t) = f, we
have that f(Rf

1, . . . , R
f
n){�→ t}↓ = t.

We write ESt(t) for the set of encrypted subterms of t,
i.e. the set of subterms that are not headed by a transparent
function.

ESt(t) = {u ∈ St(t) | u is of the form f(u1, . . . , un)

and f is not transparent}

Since replicated processes can produce several messages
with a similar structure, we define the k-unfolding unfoldk(P )
of the replicated process P as a finite version of P such
that each replication has been unfolded exactly k times. For
instance, we have that unfold1(P ) is the process obtained
from P by simply removing the ! operator whereas unfold0(P )
is the process obtained from P by removing parts of the
process under a replication.

Example 10. The encrypted subterms occurring in the 2-
unfolding of P ′DS are:
• pk(ekb), vk(ska);
• sign(ki, ska), aenc(sign(ki, ska), pk(ekb));
• sign(xi, ska), aenc(sign(xi, ska), pk(ekb));
• sign(k′i, ska), aenc(sign(k′i, ska), pk(ekc));
• sign(x′i, ska), aenc(sign(x′i, ska), pk(ekc))

where indices i ∈ {1, 2} are used to distinguish
names/variables coming from different unfoldings. They are
given the same type: δDS(k1) = δDS(k2), etc

Definition 4. A protocol P is type-compliant w.r.t. a typing
system (∆init, δ) if
• for every t, t′ ∈ ESt(unfold2(P )) we have that t and t′

unifiable implies that δ(t) = δ(t′).
• for every construction matchxwith (u1 → P1 | . . . |
uj → Pj) occurring in P , we have that δ(x) = δ(u1) =
. . . = δ(uj).

Example 11. Continuing our running example, we have
that P ′DS (and PDS as well) is type-compliant w.r.t. (TDS, δDS)
given in Example 9. Indeed, since ki, k′i, and xi, x′i (with
i ∈ {1, 2}) are given the same type, we have that any two
unifiable encrypted subterms occurring in unfold2(P ′DS) (those
terms are listed in Example 10) have the same type.

Compared to [14], we have generalized the definition to the
match construct (see item 2 - Definition 4). We give here an
example showing that it was necessary to obtain a typing result
for reachability.

Example 12. Consider the process P introduced in Exam-
ple 5. Obviously, it is possible to reach out(c, ok) with the
trace tr = in(c, f(a)). Assume δ(x) = δ(y) = δ(y′) =
τ0 ∈ ∆init. As there is only one encrypted subterm in P , the
typing system satisfies the first item of Definition 4. However,
tr is not well-typed for P . More importantly, any trace that
allows to reach out(c, ok) must unify x and f(y). Thus, it
will only be well-typed if δ(x) = δ(f(y)). For a (structure-
preserving) typing system, it implies that δ(x) = f(δ(y)). In
particular, there is no well-typed attack trace for the typing
system we have defined. Note that the condition δ(x) = f(δ(y))
is guaranteed by the second item of Definition 4.

Extending the result of [14], we obtain that for any type-
compliant protocol, we can restrict our attention to well-typed
traces. We define tr obtained from tr by replacing any action
inα(c,R) by inα(c, _), any outα(c,w) by outα(c, _), while
phase i and out(c, c′) actions are left unchanged. Intuitively,
we only keep the type of actions, and the channels.



Theorem 1. Let P be a protocol type-compliant w.r.t.
(∆0, δ0). If P tr

==⇒ (P;φ;σ; i) then there exists a well-typed

execution P tr′
==⇒ (P;φ′;σ′; i) such that tr′ = tr.

Of course, this theorem will have more effect when the type
system is as precise as possible, for example distinguishing
between several classes of constants or stating that some
variables can be typed as atomic constants.

Example 13. The execution corresponding to the trace given
in Example 7 is well-typed. Indeed, the resulting substitution
is σ = {x 7→ k} and we have that δDS(x) = δDS(k) = τk.

IV. COMPUTATION OF A TIGHT BOUND

Our main contribution is a procedure that, given a proto-
col, computes a (tight) over-approximation of the number of
sessions that need to be considered to find an attack. More
precisely, to each trace corresponds a multiset of labels. Our
procedure computes (an over-approximation of) the possible
multisets of actions that can occur in minimal attack traces.

A. Dependencies

Message dependencies. One key step of our procedure con-
sists in inspecting, for each term output by the protocol,
what are the type of the terms that can be deduced from it.
More formally, given a type τ , we compute a set of tuples
(τ ′, p)#S. Intuitively, each tuple (τ ′, p)#S indicates that a
term of type τ ′ may be deduced, at position p, from terms of
type τ , provided the attacker knows some terms whose types
are contained in S (as multiset inclusion).

Definition 5. Given a type τ , we define ρ(τ) to be ρ(τ, ε, ∅)
where ρ(τ, p, S) is recursively defined as the set {(τ, p)#S}∪
E where E = ∅ when τ is an initial type. Otherwise, τ =
f(τ1, . . . , τk) and E is defined as:

E =
⋃

g(`1, . . . , `n) → rg ∈ Rd

θ = mgu(`1, f(τ1, . . . , τk))
i0 ∈ {1, . . . , k} is such that rg = `1|i0

ρ(τi0 , p.i0, S ] {`2θ, . . . , `nθ})

Example 14. Let τmsg
def
= aenc(sign(τk, τska), pk(τekb)).

First the element (τmsg, ε)#∅ is in ρ(τmsg), and we are
left to compute ρ(sign(τk, τska), 1, {τekb}) since the rule
adec(aenc(y, pk(x)), x) → y is the only one that can be
applied to extract a message from a ciphertext. Then, we have
that:

ρ(sign(τk, τska), 1, {τekb}) =

{
(sign(τk, τska), 1)#{τekb}
(τk, 1.1)#{τekb}

}
This last element represents the fact that a message of type τk
can be extracted from a signature at position 1 using the rule
getmsg(sign(x, y))→ x, and this does not require additional
knowledge. The set ρ(τmsg) contains 3 elements.

In order to compute a tighter bound, we will sometimes
skip the computation of some dependencies, for some marked
position. A marked position of a protocol P w.r.t. a typing
system (∆0, δ0) is a pair (α, p) where outα(c, u) is an output

action occurring in P , and p is a position of the term δ0(u).
For the rest of this section, we will assume given a set of
marked position and we will explain later on how to soundly
mark positions. By default, the reader may simply assume that
no position is marked.

Sequential dependencies. Another, simpler, type of depen-
dencies is sequential dependency: some action may occur
only if the previous steps of the same process have been
executed. We let pred(α) be the first visible action that occurs
before the action labeled by α. More formally, a process P
can be seen as a tree whose nodes are actions in(c, u),
out(c, u), new n, |, etc, and vertices are there to indicate the
continuation of the process. For instance, a node labeled with
the action “match x with” will have j sons representing the j
branches of the match construct. Then, given an action of the
form inα(c, u) (resp. outα(c, u′)), we denote pred(α) its first
predecessor that corresponds to an input/output of a message
(not a channel name). We have that pred(α) = ⊥ if there is
no such predecessor in the tree.

We also introduce the notion of cv-alien types, that are types
that do not appear as type of the constants and variables in
the protocol under study.

Definition 6. Consider a protocol P and a typing system
(∆0, δ0). A type τh is cv-alien for P if τh is a type alien
w.r.t. the constants and variables of P , that is, τh 6= δ0(a) for
any constant/variable a ∈ Σ0 ∪ X occurring in P .

We say that a term is cv-alien-free if it does not contain
any constant from Σ0 of cv-alien type. This notion is lifted to
traces, frames, configurations and executions as expected.

We will show that the attacker may only use cv-alien-free
terms since it is not useful to introduce constants whose type
does not appear in the protocol.

Example 15. Continuing our running example, we have that
τska and τekb are cv-alien type. Actually, we have that any type
but τk and τekc is a cv-alien type. Regarding τk, this comes
from the fact that δDS(x) = δDS(x′) = τk (see Example 9).

B. Main procedure

We assume given a protocol P type-compliant w.r.t. a typing
system. We propose a procedure, denoted dep, that, given a
label α occurring in P , computes dep(α), a set of multisets
of labels. Each multiset of labels represents the sessions that
may be needed to reach label α.

We first introduce the operation ⊗ to compute some kind of
“cartesian product” on two sets of multisets. The result is not
a pair of multisets but instead we merge the two components
of each pair to obtain a multiset. Formally,

{a1, . . . , ak} ⊗ {b1, . . . , bl}
def
={

a1 ] b1, a1 ] b2, . . . , a1 ] bl,
a2 ] b1, a2 ] b2, . . . , a2 ] bl,

...
ak ] b1, ak ] b2, . . . , ak ] bl

}



where a1, . . . , ak, b1, . . . , bl are multisets of labels. Note that
given a multiset set S, we have that: S⊗{∅} = {∅}⊗S = S,
and S ⊗ ∅ = ∅ ⊗ S = ∅.

We define inductively a family of functions depi on labels
and types as follows: depi(⊥) = {∅}; and

If α is an output, i > 0,
• dep0(α) = ∅,
• depi(α) = {{α}} ⊗ depi−1(pred(α)).

If α is an input of type τ , i > 0,
• dep0(α) = ∅,
• depi(α) = {{α}} ⊗ depi−1(pred(α))⊗ depi−1(τ).

The definition of depi is extended as expected to multisets:

depi(S) =
⋃
α∈S

depi(α)

When depi is applied to a type, we need a family of auxiliary
functions Siout, inductively defined as follows, i ≥ 0:

Siout(τ) =
⋃

outα(c, u) occurring in P
(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))

(α, p) not marked

(
depi(α)⊗ depi(τ1)⊗ . . .⊗ depi(τn)

)

Intuitively, Siout(τ) explores all the possibilities to extract a
term of type τ . Then, we define dep0(τ) = ∅ when τ is a
cv-alien type; dep0(τ) = {∅} otherwise. The reason is that if
there is an attack trace, then there is one which is well-typed
and which does not involve any constant of cv-alien type.
Thus, there is no need to consider this case when exploring
all the possibilities to build a term having such a type, and thus
dep0(τ) = ∅. Otherwise, we have to consider the case where
the term of type τ is a constant known by the attacker, and this
does not lead to further dependencies, thus dep0(τ) = {∅}.
Finally, for any i > 0, we let:

• depi(τ) = dep0(τ) ∪ Si−1out (τ) for an initial type τ ,
• depi(τ) = dep0(τ) ∪ Si−1out (τ)∪(

{∅}⊗depi−1(τ1)⊗ . . .⊗ depi−1(τk)
)

for a non-initial type τ of the form f(τ1, . . . , τk).

Note that a set depi(α) can only increase with i. More
formally, for any type τ and any label α, we have that:

depi(τ) ⊆ depi+1(τ) depi(α) ⊆ depi+1(α)

Siout(τ) ⊆ Si+1
out (τ)

since A1 ⊗ · · · ⊗An ⊆ B1 ⊗ · · · ⊗Bn when Ai ⊆ Bi.

Hence we define dep(τ) (resp. Sout(τ)) as the limit of the
depi(τ) (resp. Siout(τ)), that is,

dep(τ) =

∞⋃
i=0

depi(τ) Sout(τ) =

∞⋃
i=0

Siout(τ)

We see the interest of cv-alien type in the definition of dep0:
dep0(τ) = ∅ if τ is a cv-alien type. Hence, if no term of
type τ can be extracted from the outputs of the protocol (i.e.

β2 {β2, β1, α1}

β1 {β1, α1}

τk {∅}

α1{α1} τekb ∅

τmsg {α1}

α1{α1}

α1

sign(τk, τska)∅

...
pk(τekb)

τekb ∅

...
τk τska ∅

τk

τekbα1

τk τskaα1 τekb

τmsg

pk(τekb)sign(τk, τska)

τ dep0(τ) = ∅

pruning of the graph

x Set dep(x) = {Set}
... does not need to be computed

Fig. 2. Computation of dep(β2).

Sout(τ) = ∅), we have that dep(τ) = ∅, and simplifications
arise since S ⊗ ∅ = ∅.

Example 16. Continuing our running example, we may want
to consider the secrecy of the key k as received by B. To
encode this property, we add an action at the end of process
PB , that checks whether the key can transit in clear on the
network, yielding process

P+
B = inβ1(c, aenc(sign(x, ska), pk(ekb))).inβ2(c, x).

We modify PDS accordingly (with P+
B ), yielding P+

DS. Note
that, even if P+

DS does not involve the dishonest agent c, the
protocol features replication, and thus the question of deciding
whether an action labelled β2 is reachable is not trivial.

In order to compute dep(β2), we first remark that τska and
τekb are cv-alien types, as explained in Example 15. Therefore,
since Sout(τska) = Sout(τekb) = ∅, we have that dep(τska) =
dep(τekb) = ∅. Then, we have that Sout(sign(τk, τska)) = ∅,
and thus dep(sign(τk, τska)) = ∅.

We now follow the dep algorithm step by step, as illustrated



in Figure 2.

dep(β2) = {{β2}} ⊗ dep(β1)⊗ dep(τk)
= {{β2, β1}} ⊗ dep(τmsg)⊗ dep(τk)

Actually Sout(τk) = ∅, and thus dep(τk) = {∅}. We have
seen in Example 15 that τk is not of cv-alien type, and thus
dep0(τk) = {∅}.

We have also that:

dep(τmsg) = {∅} ⊗ dep(sign(τk, τska))⊗ dep(pk(τekb))
∪ Sout(τmsg).

To conclude, it is sufficient to see that:
• Sout(τmsg) = dep(α1) = {{α1}}; and
• dep(sign(τk, τska)) = {∅} ⊗ dep(τk)⊗ dep(τska)

∪ Sout(sign(τk, τska))
= ∅

Hence, finally, we have that dep(β2) = {{β2, β1, α1}}.

C. Correctness of the bound

We denote Label(tr) the multiset of labels (from L) occur-
ring in tr. The algorithm dep(α) computes an upper bound
of the actions/labels that need to be considered to reach some
action labeled α.

Theorem 2. Let P be a protocol type-compliant w.r.t. some
typing system (∆0, δ0). Let α be a label of P and as-
sume (tr.`, φ) ∈ trace(P ) for some tr, `, φ such that
Label(`) = {α}. Then there exists tr′, `′, φ′, and A ∈ dep(α)
such that (tr′.`′, φ′) ∈ trace(P ) with Label(`′) = {α}; and
Label(tr′.`′) ⊆ A.

This theorem shows that it is sufficient to consider traces
with labels in dep(α) to access an action labeled by α. Secrecy
can easily be encoded with such an accessibility property,
introducing some special action α0 that can be reached only
if the secret is known to the attacker.

Example 17. Continuing our running example, and thanks to
Theorem 2, it is sufficient to consider one instance of PA, and
one instance of P+

B when looking for an attack on the secrecy
in P+

DS. In particular, no need to unfold replications more than
once, and no need to consider process PK .

Let us now consider a modified process P ′DS, that now
includes a session between the server, the initiator, and a
dishonest agent c. After applying dep recursively, we get:

dep(β2) =

{
{β2, β1, α1, α

′
1},

{β2, β1, α′1, α′1, γ1}

}
In other words, to analyze secrecy of k in this richer scenario,
we can restrict ourselves to two simple scenarios. The first
one requires only one instance of the roles P+

B , PA and P ′A.
The second one involves half of the process PK (only the
first action can be triggered), one instance of P+

B , and two
instances of P ′A (initiator role played by a with the dishonest
agent c).

We prove our Theorem 2 in two main steps.

(i) We first rely on type-compliance and the typing result
given in [14], extended here to deal with processes with match
construct. As stated in Theorem 1, this allows us to restrict
our attention to well-typed traces. Actually, we further show
that traces can be assumed to be cv-alien-free, and to only
involve simple recipes (some constructors are applied on top
of recipes that are almost destructor-only)1. Lastly, we show
that each message of such traces can be computed as soon as
possible (asap). Intuitively, recipes should refer to the earliest
occurrence of a message. More formally, we have that:

Definition 7. Let φ be a frame with a total ordering < on
dom(φ), and m be a message such that Rφ↓ = m. We say
that R is an asap recipe of m if R is minimal among the
recipes {R′ | R′φ↓ = m} for the following measure: for
any two recipes R and R′, we have R < R′ if, and only
if, vars#(R) <mul vars

#(R′), where vars#(R) denotes the
multiset of variables occurring in R, and <mul is the multiset
extension of <.

(ii) Second, our procedure dep is used to consider all the
possible ways of deducing a term of a certain type τ (or reach-
ing a specific action α). This is done by considering all the
sequential dependencies, and all the message dependencies.
For this, we heavily rely on the fact that our witness only
involves simple recipes. We thus know the shape of these
recipes, and compliance with types also imposes us some
restrictions that are exploited in our procedure.

D. Marking criteria

We mainly consider two marking criteria. First, we mark any
position p occurring in an output out(c, u) such that δ0(u)|p
is a public type.

Definition 8. Given a protocol P and a typing system
(∆0, δ0). A type τp is public if for any name n occurring
in P , we have that δ0(n) 6∈ St(τp).

Actually, a public type is a type for which all the terms
of this type are known by the attacker from the beginning
(in a well-typed cv-alien-free execution). Thus, we can safely
ignore those terms when computing dep.

Second, we also mark any position p occurring in an output
out(c, u) when an occurrence of u|p already occurs in the
process (before the output under consideration) and it was
less protected. The intuition is that an attacker who will try to
deduce each term as soon as possible, will never use this output
out(c, u) to extract u|p. We illustrate this second criterion
through an example.

Example 18. Consider the following process:

P = inα(c, senc(〈req, x〉, k)).outβ(c, senc(〈rep, x〉, k)).

We can safely mark (β, 1.2) corresponding to the term x which
is protected by k.

1A formal defintion is given in Appendix



We formally show that our two marking criteria are sound,
namely that we can safely ignore marked positions in dep. In
other words, we show that Theorem 2 still holds with these
two criteria.

V. EXTENSION TO EQUIVALENCE PROPERTIES

We can also bound the number of sessions in case of
equivalence properties. We however consider a more restricted
class of protocols, without the match construct (hence without
else branches) and with a simple structure: each process emits
on a distinct channel. This corresponds to the case, common
in practice, where sessions can be identified, for example with
session identifiers. More formally, we consider the class of
simple protocols.

Definition 9. A simple protocol P is a protocol of the form

!new c′1.out(c1, c
′
1).B1 | . . . | !new c′m.out(cm, c

′
m).Bm

| Bm+1 | . . . | Bm+n

where the channel names c1, . . . , cn, cn+1, . . . , cn+m are pair-
wise distinct, and each Bi with 1 ≤ i ≤ m (resp. m < i ≤
m+n) is a ground process on channel c′i (resp. ci) built using
the following grammar:

B := 0 | inα(c′i, u).B | outα(c′i, u).B | new n.B | j : B

where u ∈ T0(Σc,Σ0 ∪N ∪ X ), α ∈ L, and j ∈ N.

Note that our definition of simple protocol assumes a fresh,
distinct channel for each session. In particular, two sessions of
the same process will use different channels. Hence our model
does not assume that the attacker can identify an agent across
different sessions, this will depend on the protocol. Therefore
simple processes can still be used to model anonymity or
unlinkability properties.

A. Our procedure

The computation of dep for reachability properties no longer
suffices for equivalence properties. Indeed, the attacker not
only may need several sessions to reach some interesting
step of the protocol, but may also need to deduce auxiliary
information to mount a test that allows her to distinguish
between two protocols. Hence, the computation of dep will
now also depend on the rewriting rules in Rtest.

Formally, we keep our definition of dep on labels and types
and we extend it to protocols. We define:

dep(P ) = {∅} ∪ Sreach(P ) ∪ Stest(P ) ∪ Scheck(P )

where Sreach, Stest, and Scheck are given in Figure 3.

Intuitively, dep(P ) explores the different cases where trace
inclusion of P in some protocol Q may fail. The first case
is when some action can be reached in P but not in Q. The
corresponding sets of labels are computed by Sreach(P ). A
second case is when some equality holds in P and not in Q.
We rely here on a precise characterization of static inclusion,
where we show that it is possible to consider tests of the
form M = N where N only contains destructors. This case is

Sreach(P ) =
⋃

α∈Label(P )

dep(α)

Stest(P ) =
⋃

τ∈St(δ0(P ))

dep(τ)⊗ S+
out(τ)

Scheck(P ) =
⋃

τ ∈ St(δ0(P ))
` = g(t1, . . . , tn) → r

θ = mgu(t1, τ)

Sout(τ)⊗ dep(t2θ)⊗ . . .⊗ dep(tnθ)

S+
out(τ) =

⋃
outα(c, u) occurring in P

(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))
(α, p) not marked or p = ε

dep(α)⊗ dep(τ1)⊗ . . .⊗ dep(τn)

Fig. 3. Definitions of Sreach, Stest, and Scheck.

explored by Stest(P ) where the possible types of a destructor-
only recipe is computed by S+

out. Finally, the last relevant
case is when a term can be reduced in P (according to the
equational theory) and not in Q. This corresponds to Scheck.
Note that Sout coincides with S+

out except that marked positions
(α, p) are no longer ignored when p = ε. The reason is that
even if a position is marked and hence the corresponding term
could be obtained earlier, it may be necessary to consider the
position in order to check its equality with an earlier term.
In other words, when looking for a test M = N , we can no
longer consider that both M , and N are asap recipes. However,
we have shown that we can safely consider that at least one
of them is asap, whereas the other one can be assumed to be
subterm asap, meaning that all its direct subterms are asap
(but not necessarily the term itself).

B. Correctness

When searching for an attack against an equivalence prop-
erty specified as P ≈t Q, it is sufficient to consider sessions
as prescribed by dep(P ) and dep(Q).

Theorem 3. Let P be a simple protocol type-compliant w.r.t.
some typing system (∆0, δ0). Let Q be another simple protocol
such that P 6vt Q. There exists a trace (tr, φ) ∈ trace(P )
witnessing this non-inclusion such that Label(tr) ⊆ A for
some A ∈ dep(P ).

The proof of this theorem follows the same lines as the
one for reachability. Additional difficulties arise due to the
fact that we also need to provide a bound regarding static
inclusion. Considering an equality test R1 = R2 that witnesses
non static inclusion, we show that R1 and R2 can be chosen
with a specific shape that allows one to precisely characterize
the actions that may be involved in such a test.

VI. EXPERIMENTS

We have implemented our procedure into a tool HowMany,
that we run on several protocols of the literature, studying
both reachability and equivalence properties. When the tool



returns a list of (finite) scenarios, we can then use two existing
tools, SAT-Equiv and DeepSec, developed for a bounded
number of sessions, and directly conclude that security holds
in the unbounded case (unless the tools find an attack). The
specifications of all protocols, as well as the files to reproduce
the experiments, can be found in [20].

A. HowMany

The function dep may return infinite sets, hence does not
directly yield a terminating algorithm. Therefore, we define
dep′, a terminating algorithm that returns the same result than
dep whenever it is finite, and returns ⊥ otherwise.

The main idea is to first decide whether a given type τ (resp.
label α) is such that dep(τ) = ∅. In this case, since ∅ is an
absorbing element w.r.t. ⊗, we may conclude that, e.g.

dep(τ)⊗ dep(τ1)⊗ . . .⊗ dep(τn) = ∅

without computing dep(τ1), . . . , dep(τn). Once empty ele-
ments have been identified, relations can be simplified, and it
is relatively easy to identify a loop and to return ⊥ to indicate
that one of the resulting multisets will be infinite.

The algorithm dep′ has been implemented in the tool
HowMany. It will either return ⊥ or a set of multisets of labels.
Each element in the set corresponds to a finite scenario that
needs to be analyzed. Thanks to Theorems 2 and 3, we can
conclude that the protocol is secure if it is secure in all the
scenarios identified by HowMany. A multiset of labels tells
us the maximal number of sessions that may be involved in a
minimal attack. Actually, it is even more precise than that since
our algorithm gives us a list of scenarios, and each scenario
corresponds to a precise number of unfolding of a replication,
possibly truncated.

B. Security properties

We have considered three types of security properties,
depending on the protocol under study.

The first one is weak secrecy (WSEC), a reachability prop-
erty. We always consider secrecy of the key (sometimes the
nonce) as received by the responder. This is done by adding
an instruction of the form inα(c, k) at the end of the responder
role. Then, we ask for reachability of the label α.

The second one is key privacy (KPRIV). Intuitively, a key k
is secure if an attacker cannot learn any information on
messages that are encrypted by k. We model this by adding
at the end of the responder’ role senc(m1, k) on the left, and
senc(m2, k

′) on the right, where k′ is fresh, and m1, m2 are
two public constants.

For these two security properties, we consider a process
where each role is instantiated (arbitrarily many times) by all
possible players among 2 honest agents and a dishonest one.

Lastly, we analyzed some protocols from the e-passport
application, and we consider the unlinkability property
(UNLINK). This property is modeled relying on phases. In
a first phase, the attacker interacts with two passports and two
readers possibly many times. In a second phase, the attacker
interacts with either one instance of the first passport (and

a reader) or the second one. The protocol is linkable if the
attacker is able to distinguish between the two cases.

C. Outcome of Howmany

HowMany computes a set of scenarios, and each scenario
involves several sessions of the protocol. When more than one
scenario is returned, HowMany also computes a unique sce-
nario that over-approximates all the other ones. Indeed, there
is trade-off between considering multiple simple scenarios or
a unique but more complex one corresponding to the over-
approximation of all the simple ones. Depending on the tool
and the protocol, one approach may be more efficient than
the other, hence we consider both cases (multiple and unique
scenarios).

On all the examples mentioned in this section, HowMany
concludes in few seconds on a standard laptop but the Kao-
Chow example for KPRIV, which takes around 2 min. The
detailed outcome of our experiments is displayed in Table I
and Table II and we further comment them below. Compared
with [21], this shows a significant improvement. For the simple
Denning-Sacco protocol, in the case of reachability, [21] yields
a bound of at least 1019 and the bound would be even larger
in the other cases.

Reachability. The results regarding the weak secrecy property
WSEC are reported in the right part of Table I. The table
can be read as follows. For instance, for the Yahalom-Paulson
protocol, HowMany states that we may either consider 25
scenarios among which the biggest one is made up of 19
sessions in parallel and 35 actions in total; or we can decide
to analyze directly the more complex one which features 30
sessions in parallel for a total of 56 actions.

Equivalence. Actually, when analyzing KPRIV, we may re-
strict our attention to consider one inclusion. Indeed, in case
P 6≈t Q, we necessarily have that P 6vt Q since there are more
equalities on P side. To study this inclusion, we only need to
compute dep(P ). Regarding the property UNLINK, we focus
again on one inclusion due to the symmetry of the relation
under study. Moreover, we consider a simplified variant of the
protocols, without else branches, since else branches are not
supported by our approach.

Our experiments show that for all these protocols, a small
number of sessions is sufficient, up to 55 sessions in parallel
for the Kao-Chow protocol if one wishes to analyze a unique
(big) scenario only. The only cases where HowMany cannot
conclude are the Yahalom-Lowe protocol and the (flawed)
Needham-Schroeder protocol. For several protocols such as
Denning-Sacco or Wide-Mouth Frog, we even retrieve that 2-
3 sessions are sufficient, which corresponds to a very simple
scenario where one honest instance of each role is considered.

D. SAT-Equiv, DeepSec

Even if our first and main contribution is theoretical, our
result shows that it is possible to find a reasonable bound on
the number of sessions on several protocols of the literature.
Actually, thanks to the recent advances of the verification



Reachability (WSEC) Equivalence (KPRIV)
HowMany SAT-Equiv DeepSec HowMany SAT-Equiv DeepSec

nb size mult. unique mult. unique nb size mult. unique mult. unique
Symmetric protocols
Denning-Sacco 1 3 (8) <1s <1s 5 5 (12) 14 (31) <1s <1s <1s <1s
Needham-Schroeder 16 20 (45) 28 (63) 12s 5s 32s 18m 83 33 (72) 47 (107) 6m 1m TO TO
Otway-Rees? 4 12 (20) 16 (28) 2s 1s < 1s 1s 22 15 (23) 27 (48) 8s 7s 1s 48m
Wide-Mouth-Frog? 1 3 (6) <1s <1s 4 5 (8) 12 (20) <1s <1s <1s <1s
Kao-Chow (variant)? 48 15 (27) 28 (47) 4m 1m 3s 2m 385 29 (48) 55 (91) 10h 2h TO TO
Yahalom-Paulson? 25 19 (35) 30 (56) 2m 44s 4h TO 147 29 (50) 45 (85) 45m 8m TO TO
Yahalom-Lowe? - - - - - - - - - - - - - -
Asymmetric protocols
Denning-Sacco 1 2 (4) <1s <1s 5 3 (4) 8 (11) <1s <1s <1s <1s
Needham-Schroeder? - - - - - - - - - - - - - -
NS-Lowe? 2 7 (16) 8 (18) <1s <1s < 1s <1s 20 9 (19) 14 (31) <1s <1s <1s <1s

?: the tagged version of the protocol has been considered to ensure type-compliance.
nb columns: number of scenarios returned by HowMany.
“size” columns (white): maximal number of sessions involved in the multiple scenarios, and in parentheses, the number of protocol actions.
“size” columns (gray): idem but for the unique, aggregated scenario given by HowMany.

mult.: time for the analysis of all the multiple scenarios. unique: time for the analysis of the unique, aggregated scenario. TO: time out (>24h).

TABLE I
ANALYSIS FOR WSEC AND KPRIV

Equivalence (UNLINK)
HowMany SAT-Equiv

nb size mult. unique

BAC 23 12 (34) 26 (76) 10s 5s
PA 6 7 (10) 31 (45) <1s <1s
AA 6 7 (10) 31 (46) <1s <1s

Columns are organized as explained in Table I. Since DeepSec does not handle
phases, we could not use it for these protocols.

TABLE II
ANALYSIS FOR UNLINK

tools dedicated to a bounded number of sessions, our ap-
proach extends the scope of existing tools such as Avispa [4],
DeepSec [12], or SAT-Equiv [19] to an unbounded number of
sessions. We consider two of them, namely DeepSec and SAT-
Equiv, based on different verification techniques. We selected
them because they are known for their efficiency, they are
suitable for the class of protocols we consider in this paper, and
they are able to deal with both reachability and equivalence
properties.

DeepSec. DeepSec is based on constraint solving. As any other
tool based on this approach, it suffers from a combinatorial ex-
plosion when the number of sessions increases. To tackle this
issue partial-order reductions (POR) techniques that eliminate
redundant interleavings have been implemented and provide
a significant speedup. This is only possible for the class of
determinate processes, but this assumption is actually satisfied
by our case studies.

SAT-Equiv. SAT-Equiv proceeds by reduction to planning
problem and SAT-formula, and is quite efficient on the specific
class of protocols that it handles. This class is similar to the
one considered in this paper. This approach is less impacted
by the state-space explosion problem when the number of
sessions increases.

We used both tools to analyze all the scenarios returned by

HowMany. Even if parallelism is available in DeepSec, we
do not rely on this feature, and we consider a timeout of 24h.
SAT-Equiv concludes on all the scenarios and is more efficient
when analyzing the unique, aggregated scenario than all the
small ones. Regarding DeepSec, when more than 40 sessions
are involved, the tool is not able to conclude within 24h. It
is interesting to note that, contrary to SAT-Equiv, DeepSec
is more efficient when analyzing many small scenarios rather
than the unique aggregated one.

VII. CONCLUSION

We have proposed an algorithm that soundly bounds the
number of sessions needed for an attack, both for reachability
and equivalence properties. This provides some insights on
why, in practice, attacks require only a small number of
sessions. Note that dep(P ) may potentially be infinite. In that
case, our theorem does not provide any concrete bound but
may be of theoretical interest.

In our experiments, we have assumed a finite number
of agents (two honest agents and a dishonest one). Agents
can soundly be bounded for reachability properties [17] and
equivalence [18] when there is no else branches. Alternatively,
an additional process can be considered in the model, that
creates agents and keys, and distributes them to the other roles.
It then remains to check whether HowMany can still bound the
number of sessions in this setting. Further experiments would
need to be conducted.

We could extend our approach to deal with correspondence
properties, for example simple authentication properties of
the form end(x) → start(x). We could indeed exploit our
extension of the typing result that preserves a certain number
of disequalities. An other interesting direction for future work
could be to extend our class of protocols and to consider e.g.
private channels. This requires first to extend the underlying
typing result but seems to be doable. Regarding reachability



properties, our dep algorithm will require some small adapta-
tions. The case of equivalence properties appears to be more
difficult since the addition of private channels takes us away
from the class of simple protocols.

While HowMany provides a small bound in many cases
(smaller than 15 sessions), the bound can be quite big in
some cases. We plan to further refine our bound by identifying
spurious scenarios, for example exploiting further dependen-
cies in the case of phases. Lastly, there is a trade-off between
analyzing many simple scenarios and a big one. Whereas it
makes sense to put together simple scenarios when the overlap
is important, we should not gather scenarios that are almost
disjoint. Providing a clever way to group scenarios could
simplify the security analysis.
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APPENDIX A
TYPING RESULTS

A. Typing result for reachability

In [14], the existence of a well-typed witness for processes
which do not feature the match construction is established.
This result is stated for processes without replication, and
then lifted to configuration which feature replication. The way



this result is proved allows one to derive an extra property
regarding the shape of the resulting well-typed witness. This
result (stated and proved in [14] in a slightly different version
as Theorem 3.8) is recalled below. Note that in this version, the
protocol can contain new n and new c.out(c, c′) instructions
(as it is not hard to add them when there is no replication).

Theorem 4. Let P be a protocol type-compliant w.r.t. (∆0, δ0)
which does not feature replication, nor match constructions
and S be a set of pairs of terms.

If P tr
==⇒ (P;φ;σ; i), then there exists a well-typed execu-

tion P tr′
==⇒ (P;φ′;σ′; i) w.r.t. such that tr′ = tr.

Moreover, w.l.o.g. we can assume that the substitution σ′ is
such that uσ′ and vσ′ are not unifiable for any u = v ∈ S
such that uσ and vσ are not unifiable.

Proof. (sketch of proof) The main part of the theorem (without
the consideration of the set S) has been proved in [14].
Actually, it has been shown that the substitution σ′ is directly
derived from σ as follows: We have that σ′ = ρ ◦ σS where:
• σS = mgu(Γ) and Γ = {(u, v) | u, v ∈

ESt(P ) such that uσ = vσ}; and
• ρ is a bijective renaming from variables in dom(σ) r

dom(mgu(Γ)) to fresh constants (in particular those
constants do not occur in S).

Moreover, the existence of a substitution λ whose domain
is dom(λ) = dom(ρ) and which satisfies λ ◦ σS = σ is
established.

Let u = v ∈ S. We have to establish that, if uσ and vσ are
not unifiable, then uσ′ and vσ′ are not unifiable either. We
proceed by contraposition: we assume that uσ′ and vσ′ are
unifiable, and we want to prove that uσ and vσ are unifiable
too. As uσ′ and vσ′ are unifiable, there exists γ such that
(uσ′)γ = (vσ′)γ and since img(σ′) only contains ground
terms, we actually have that:

u(σ′ ] γ) = v(σ′ ] γ).

Since ρ is a bijective renaming and fresh constants in img(ρ)
does not occur in u and v, we have that:

u(σ′ρ−1 ] γρ−1) = v(σ′ρ−1 ] γρ−1).

This allows us to conclude that:

u(σS ] γρ−1) = v(σS ] γρ−1).

Then, applying λ, we obtain that:

[u(σS ] γρ−1)]λ = [v(σS ] γρ−1)]λ.

Therefore, we have that:

[(uσS)λ](γρ−1λ) = [(vσS)λ](γρ−1λ).

This allows us to conclude that uσ and vσ are unifiable. This
concludes the proof.

Then, the idea is to show how relying on Theorem 4, we can
establish a similar result for protocols which feature replication
and match constructions.

Theorem 1. Let P be a protocol type-compliant w.r.t.
(∆0, δ0). If P tr

==⇒ (P;φ;σ; i) then there exists a well-typed

execution P tr′
==⇒ (P;φ′;σ′; i) such that tr′ = tr.

Proof. (sketch of proof) First, we make the observation that
every attack trace is an attack trace against a finite execution.
More formally, we have that if there exists an execution of P
of length at most `, then a similar execution can be done
starting from unfold`(P ). Conversely, any execution obtained
starting from unfold`(P ) can be done starting from P itself.

Now, we are able to establish our typing result for reach-
ability in presence of replication and match constructions.
Assuming we have a trace tr starting from the configuration
P , we have that this trace can be performed starting from
P ′ = unfold`(P ) for some `.

Along this execution, we consider all equalities Γtr
match

coming from the execution of a match construction, i.e.
Γtr
match gathers all the pair (x, ui) corresponding to an ex-

ecution of the ith branch of a match construction of the
form matchxwith (u1 → P1 | . . . | uj → Pj). Then,
we consider σtr

match = mgu(Γtr
match), and we denote P ′′ the

process obtained from P ′ by replacing each match instruction
match x with(u1 → P1| . . . |uj → Pj) directly by its
continuation Pi (the one used in the execution trace tr), and
we apply the substitution σtr

match. The resulting configuration
P ′′ does not feature match construction anymore, and we have
that ESt(P ′′) ⊆ ESt(P ′σtr

match).
Now, Theorem 4 applies on P ′′. First, let us show that

type-compliance is satisfied on configuration P ′′. Let u1, u2 ∈
ESt(P ′′) such that u1 and u2 are unifiable. Up to a bijective
renaming of names and variables, we have that u1, u2 ∈
ESt(unfold2(P )) are two unifiable terms, and thus by defi-
nition of type-compliance as stated in Definition 4, we know
that δ(u1) = δ(u2). Thus, type-compliance is satisfied by P ′′.
Second, for S, we consider the set of all the pairs of terms
corresponding to match that did not pass. In other words, for
each match instruction match x with (u1 → P1| . . . |uj → Pj)
that executes its ith branch in tr, we add (x, u1), . . . , (x, ui−1)
in S. Theorem 4 gives us the existence of a well-typed exe-
cution P ′′

tr′′
==⇒ (P;φ′′;σ′′; i) such that tr′′ = tr. Moreover,

w.l.o.g. we can assume that the substitution σ′′ is such that
uσ′′ and vσ′′ are not unifable for any u = v ∈ S such that
uσ = vσ were not unifiable.

Therefore, we have that P ′ can execute tr′′ leading to a
configuration with subsitution σtr

matchσ
′′ ∪ σ′′. Thus we have:

σ′ = σtr
matchσ

′′ ∪ σ′′ (1)

Both substitutions being well-typed, we have that
σtr
matchσ

′′ ∪ σ′′ is well-typed too. Then, it is easy to see that
this well-typed execution starting from P ′ (a finite version
of P ) can be mimicked starting from P . This concludes the
proof.

B. Some extra properties

In addition to consider a well-typed witness, we want a
witness that involes simple asap recipes, and the witness has



also to be cv-alien-free. The first property (simple asap) is
easy to establish.

We rely on the notion of forced normal form as introduced
in [14] and denoted u

�

. This is the normal form obtained when
applying rewrite rules as soon as the symbol in Σd]Σtest and
the constructor match. Formally, we reuse the definition as
stated in [14]:

Definition 10. Given a rewriting rule `g → rg as defined in
Section III-A, its associated forced rewriting rule is `′g → rg
where `′g is obtained from `g by keeping only the path to rg
in `g. Formally, `′g is defined as follows:

1) `′g = g(x1, . . . , xn) when g ∈ Σtest;
2) otherwise denoting p0 = 1.j the unique position of `g

such that `g|p0 = rg, we have that `′g is the linear term
such that:
• root(`′g|ε) = root(`g|ε), root(`′g|1) = root(`g|1);

and `′g|p0 = rg;
• for any other position p′ of `′g, we have that `′g|p′

is a variable.

Note that the forced rewriting system associated to a rewrit-
ing system is well-defined. In particular, the position of rg in
`g is uniquely defined. In particular, the position of rg in `g|1
is uniquely defined since `g|1 is a linear term and rg contains
a variable when g ∈ Σd.

Given a rewriting system R = Rdes ]Rtest, we define Rf
the set of forced rewriting rules associated to R. A term u
can be rewritten to v using Rf if there is a position p in
u, and a rewriting rule g(t1, . . . , tn) � t in Rf such that
u|p = g(t1, . . . , tn)θ for some substitution θ, and v = u[tθ]p.
We denote �∗ the reflexive and transitive closure of �, and
u

�

the normal form of u.
As established in [14] (in a slightly more general setting),

we may restrict our attention to recipes in forced normal form.

Lemma 1. Let φ be a frame and u be a message deducible
from φ, i.e. such that Rφ↓ = u for some R. We have that
R

�

φ↓ = u.

We say that a recipe R is almost destructor-only when R
is in forced normal form and root(R|p) ∈ Σd ∪ W for any
position p of the form 1 . . . 1 in R.

A recipe R is simple when R = C[R1, . . . , Rn] for some
context C built using symbols in Σc∪Σ0, and each Ri is
almost destructor-only. Note that C can be empty, and thus
an almost destructor-only recipe is also a simple recipe.

Lemma 2. Let R be a recipe in forced normal form such
that root(R) ∈ Σd ∪ W , and φ be a frame such that Rφ↓
is a message. We have that R is almost destructor-only and
R|pφ↓ ∈ St(φ) for any position p of the form 1 . . . 1 in R.

Proof. We show this result by structural induction on R.

Base case: We have that R ∈ W , and we easily conclude.

Induction case: We have that R = f(R1, . . . , Rk) for some
f ∈ Σd, and we know that R1, . . . , Rk are in forced nor-
mal form. Let `f → rf be the rule in R associated to

f, and `′f → rf its associated forced rewriting rule. We
have that `f = f(g(t11, . . . , t

p
1), t2, . . . , tk) for some g ∈ Σc

and rf = tj1 for some j. Since Rφ↓ is a message, we
know that root(R1φ↓) = g. Assume by contradiction that
root(R1) ∈ Σc, then root(R1) = g. Now, since R is in forced
normal form, we know that root(R1) 6= g. So we deduce
that root(R1) 6∈ Σc. Therefore, R1 is in forced normal form,
root(R1) ∈ Σd∪W , R1φ↓ is a message. We conclude relying
on our induction hypothesis.

Lemma 3. Let R be a recipe in forced normal form and φ
be a frame such that Rφ↓ is a message. We have that R is a
simple recipe.

Proof. We prove this result by structural induction on R.
Base case: In case root(R) ∈ Σd ∪ W , we conclude relying
on Lemma 2.
Induction case: We have that either R ∈ Σ0 or R =
f(R1, . . . , Rk) for some f ∈ Σc ∪ Σtest. In case R ∈ Σ0,
we have that R is simple by definition. Otherwise, applying
our induction hypothesis on R1, . . . , Rn, we deduce that
R1, . . . , Rn are simple recipes, and thus R is simple too.
It remains the case where f ∈ Σtest. Actually, this case is
impossible since R is in forced normal form.

To justify marking, we have to restrict to witnesses relying
on asap recipes (see Definition 7). Whenever a message is
deducible, we can also find an asap recipe of the message
which is also simple.

Lemma 4. Let φ be a frame (with a total ordering on dom(φ))
and u be a message deducible from φ, i.e. such that Rφ↓ = u
for some R. We have that there exists R′ a simple asap recipe
such that R′φ↓ = u.

Proof. We first chose among all the recipes {R′ | R′φ↓ = u},
one that is minimal. Let R0 be such a recipe, and then we
consider R0

�

. Thanks to Lemma 1, we have that R0

�

is a
recipe for u. Thanks to Lemma 3, we have that R0

�

is imple.
It is also asap since R1 � R2 implies R2 ≤ R1. This allows
us to conclude.

Let Cst(u) be the set of constants from Σ0 occurring in u.
We have the following result.

Lemma 5. Let φ be a frame and R be a simple recipe such
that Rφ↓ is a message. We have that Cst(R) ⊆ Cst(φ) ∪
Cst(Rφ↓).

Proof. We prove this result by structural induction on R.
Base case: R ∈ W ∪ Σ0. In such a case, the result trivially
holds.
Induction case: R = f(R1, . . . , Rk) for some f ∈ Σc ∪ Σd.
• Case f ∈ Σc. In such a case, we have that Rφ↓ =

f(R1φ↓, . . . , Rkφ↓), and we easily conclude relying on
our induction hypothesis.

• Case f ∈ Σd. In such a case, we have that R =
g(R1, . . . , Rk), and thanks to Lemma 2, we know that
R1φ↓ ∈ St(φ). Regarding R2, . . . , Rk, we have that



Cst(R2φ↓) ∪ . . . ∪ Cst(Rkφ↓) ⊆ Cst(R1φ↓). Therefore,
applying our induction hypothesis on Ri that are simple,
we have that:

Cst(R) = Cst(R1) ∪ . . . ∪ Cst(Rk)
⊆ Cst(φ) ∪ Cst(R1φ↓) ∪ . . . ∪ Cst(Rkφ↓))
⊆ Cst(φ) ∪ Cst(R1φ↓)
⊆ Cst(φ)

This concludes the proof.

Lemma 6. Let K0 be a configuration of the form
(P0;φ0; ∅; 0). Let σ be a mgu of terms of P0. We have that
St(K0σ) ⊆ St(K0)σ.

Proof. We consider σ the mgu between pairs of terms occur-
ring in St(K0), and we show that St(K0σ) ⊆ St(K0)σ.

Let Γ be the set of pairs of terms such that σ = mgu(Γ). Let
t ∈ St(K0σ) be such that t 6∈ St(K0)σ. Therefore, we have
that t ∈ St(img(σ)). As the mgu does not create variables, if
t is a variable then t ∈ St(Γ) ⊆ St(K0), so we assume t is
not a variable.

Let σ = σδ where δ replaces any occurrence of t in img(σ)
by a fresh variable x. We have that:
• uσ = vσ for any equation u = v ∈ Γ. Indeed, we know

that uσ = vσ for any such u = v, and thus (uσ)δ =
(vσ)δ. Since t 6∈ ESt(K0)σ, and u, v ∈ ESt(K0), we
deduce that uδ = u and:

(uσ)δ = u(σδ ∪ δ) = uσ

and similarly (vσ)δ = vσ.
• σ is strictly more general that σ. Indeed, we have that
σ = στ considering τ = {x 7→ t} and t is not a variable.

This leads to a contradiction since σ = mgu(Γ) and concludes
the proof.

We denote by Terms(φ) the set of terms occurring in
img(φ). This notation is also used to denote the set of terms
occurring in a trace, e.g. Terms(trφ↓) denotes the set of terms
occurring in the trace trφ↓.

We are now able to state and prove a stronger version of
Theorem 1 in which the resulting witness tr′ satisfied some
additional properties.

Theorem 5. Let P be a protocol type-compliant w.r.t. (∆0, δ0)
(which may feature replication and match constructions).

If P tr
==⇒ (P;φ;σ; i) then there exists a well-typed execution

P
tr′
==⇒ (P;φ′;σ′; i) involving only simple asap recipes such

that tr′ = tr.
Moreover, we may assume that tr′ and φ′ are cv-alien-free.

Proof. (sketch of proof) The first part of the theorem is a direct
consequence of Theorem 1. Then, the fact that we can consider
simple asap recipes is an easy consequence of Lemma 4. It
remains to establish that we can consider tr′ and φ′ to be
cv-alien-free. We have seen in the proof of Theorem 1 (see
Equation (1)) that the well-typed substitution σ′ is of the form
σ′ = σtr

matchσ
′′ ∪ σ′′ where σ′′ = ρ ◦ σS where:

• σtr
match is the most general unifier of Γtr

match the set of
pairs (x, ui) corresponding to match instructions that are
executed along tr;

• σS is the most general unifier of Γ where:

Γ =

{
(u, v) | u, v ∈ ESt(Pσtr

match)
such that uσ = vσ

}
• ρ is a bijective renaming from variables in dom(σ) r

dom(σS) to some fresh constants preserving type.
We have that St((Pσtr

match)σS) ⊆ St(Pσtr
match)σS since σS

is a mgu between subterms occurring in P by Lemma 6.
Then, since ρ is a renaming, we deduce that St(Pσ′) ⊆
St(Pσtr

match)σ
′′. Similarly, we have that: St(Pσtr

match) ⊆
St(P )σtr

match since σtr
match is a mgu between subterms occur-

ring in P . Therefore, we deduce that:

St(Pσ′) ⊆ (St(P )σtr
match)σ

′′ = St(P )σ′ (2)

We now show that tr′φ′↓ is cv-alien-free. Assume by
contradiction that there exists a constant ch from Σ0 of cv-
alien type occurring in tr′φ′↓. In other words, ch occurs in an
instantatiation by σ′ of an input or output action of the initial
processes, possibly after renaming names and variables (due to
some unfolding). Thus, we have that ch ∈ St(Pσ′). Thanks
to the property 2, we deduce that ch ∈ St(P )σ′, and since
ch does not occur in St(P ) (as any constant from Σ0 of cv-
alien type), we deduce that there exists x ∈ St(P ) such that
xσ′ = ch. However, this is impossible too since no variable
having such a type can occur in P . This allows us to conclude
that tr′φ′↓ is cv-alien-free.

We have that Terms(φ′) ⊆ Terms(tr′φ′↓), and thus we
easily deduce that φ′ is cv-alien-free. Now, regarding recipes
occurring in tr′, we know that they are simple, and thanks to
Lemma 5, we have that Cst(R) ⊆ Cst(φ′)∪Cst(Rφ′↓) for any
recipe R occurring in tr′. We have that constants occurring in
R already occur in φ′ or tr′φ′↓, and since we have seen that
no constant from Σ0 of cv-alien type occurs in φ′ and tr′φ↓,
we are done.

APPENDIX B
COMPUTATION OF THE BOUND

A. Preliminaries

We consider that a marking is appropriate if it indicates
subterms that, whenever deducible in a well-typed execution,
are deducible earlier in any well-typed execution. This will
guarantee that it is sound to not to take into account this
subterm during the computation of dep.

An almost destructor-only recipe R such that Rφ↓ is a
message, intuitively tries to dig in a term u. Such a recipe
deconstructs the term u to extract its subterm at position
target(R) in u, where target(R) is defined as follows:
• ε if R is a variable w
• target(R|1).i0 if root(R) = g ∈ Σd and g(t1, . . . , tn)→
rg ∈ Rd with t1|i0 = rg.

Note that the operation target defined above is well-defined
for any almost destructor-only recipe.



Definition 11. Let P be a protocol. A marked position
(α, p) of P w.r.t. (∆0, δ0) is appropriate if for any well-typed
execution P

tr
==⇒ (P;φ;σ; j) for any outα(c,w) occurring

in tr, for any almost destructor-only recipe R with w at its
leftmost position and such that target(R) = p and Rφ↓ = m
is a message, we have that R is not an asap recipe of m
(considering the frame φ and the ordering induced by tr).

B. Properties of dep

Now, we show that dep satisfies the properties stated in
Figure 4. These properties will be used in the following section
to establish our main result. As an illustrative example, we
detailed below the proof of Property 5. The other ones can be
established in a similar way.
Proof of Property 5. Let τ be an initial type. For any i > 0,
we have that:

dep(τ) ⊇ depi(τ) = dep0(τ) ∪ Si−1out (τ)

We are going to show first that dep(τ) ⊇ dep0(τ) ∪ Sout(τ).
To establish this, let e ∈ dep0(τ) ∪ Sout(τ). Since dep0(τ) ⊆
dep(τ), in case e ∈ dep0(τ), we easily conclude. Otherwise,
we have that e ∈ Sout(τ), and thus e ∈ Siout(τ) for some i > 0
by definition of Sout(τ), and this allows us to conclude that
e ∈ dep(τ).

Conversely, let e ∈ dep(τ). Then, we have that e ∈ depi(τ)
for some i > 0. Hence, we have that: e ∈ dep0(τ)∪Si−1out (τ) ⊆
dep0(τ) ∪ Sout(τ) which allows us to conclude.

When considering recipes for a witness of non static inclu-
sion, we can not asume anymore that these recipes are all asap,
and thus marking is not justified. However, we can assume they
are subterm asap, and this is the reason why we still consider
a bit of marking.

The definition of S+
out(τ) is given in Section V. In addition,

we define

dep+(τ) = dep0(τ)∪({∅}⊗dep(τ1)⊗ . . .⊗dep(τk))∪S+
out(τ)

for any non-initial type τ such that τ = f(τ1, . . . , τk).

C. Main result

To prove our main result, we need to define ρ on terms.
The definition is similar to the one for types.

Definition 12. Given a term t, we define ρ(t) to be ρ(t, ε, ∅)
where ρ(t, p, S) is recursively defined as the set {(t, p)#S}∪E
where E = ∅ when t is an atom (e.g. a constant or a name).
Otherwise, we have that t = f(t1, . . . , tk) and E is defined
as:

E =
⋃

g(`1, . . . , `n)→ rg ∈ Rd

θ = mgu(`1, f(t1, . . . , tk))
i0 ∈ {1, . . . , k} is such that rg = `1|i0

ρ(ti0 , p.i0, S ] {`2θ, . . . , `nθ})

In the definition, S is a multiset of terms.

Of course, there is a link between the definition of ρ on
types and the one on terms.

Lemma 7. Let (∆0, δ0) be a typing system, and u be a term.
We have that:

(v, p)#S ∈ ρ(u) implies (δ0(v), p)#δ0(S) ∈ ρ(δ0(u)).

Proof. We establish the following result by structural induc-
tion on u.

(v, p)#S ∈ ρ(u, p0, S0) implies
(δ0(v), p)#δ0(S) ∈ ρ(δ0(u), p0, δ0(S0)).

The result is a direct consequence of this property.

Note that the implication from types to terms does not hold
since the structure of a type may be finer than the structure of
the term. For instance, we may have δ(c) = 〈τ1, τ2〉.

Lemma 8. Let φ be a frame and R be an almost destructor-
only recipe such that Rφ↓ is a message. We have that
(Rφ↓, target(R))#S ∈ ρ(wφ) where S = {R|pφ↓ | p =
1 . . . 1.i with i ≥ 2 and p a position in R}, and w is the
variable occurring in R at its leftmost position.

Proof. We establish the following result by structural induc-
tion on R:

ρ(Rφ↓, target(R), S) ⊆ ρ(wφ)

where S = {R|pφ↓ | p = 1 . . . 1.i with i ≥
2 and p a position in R}, and w is the variable occurring in
R at its leftmost position. Note that the result stated in the
lemma is a direct consequence of the property stated above.

Base case: R ∈ W . In such a case, we have that Rφ↓ = wφ.
We have that target(R) = ε, and S = ∅. By definition, we
have that ρ(wφ) = ρ(wφ, ε, ∅). Thus the result holds.

Induction case: root(R) ∈ Σd. In such a case, we have that
R = g(R1, . . . , Rn) for some g ∈ Σd. By induction hypothesis
we have that ρ((R1φ↓, target(R1), S1) ⊆ ρ(wφ) where

S1 =

{
R1|pφ↓ | p = 1 . . . 1.i with i ≥ 2

and p a position in R1

}
.

We also know that t = R1φ↓ = f(t1, . . . , tk) for some
t1, . . . , tk and some f, and we consider the rule ` → r ∈
Rd that is applied to lead to a message. We have that
` = g(f(`11, . . . , `

1
k), `2, . . . , `n), and r = `1i0 for some

i0 ∈ {1, . . . , k}.
According to the definition of ρ(t, target(R1), S1), we

have that it contains ρ(ti0 , target(R1).i0, S1∪{`2θ, . . . , `nθ})
where θ = mgu(`1, f(t1, . . . , tk)). Thus, we have
that ρ(ti0 , target(R1).i0, S1 ∪ {`2θ, . . . , `nθ}) ⊆
ρ(t, target(R1), S1). We have that:

ρ(Rφ↓, target(R), S)
= ρ(ti0 , target(R1).i0, S1 ∪ {R2φ↓, . . . , Rnφ↓})
= ρ(ti0 , target(R1).i0, S1 ∪ {`2θ, . . . , `nθ})
⊆ ρ(t, target(R1), S1)
⊆ ρ(wφ)

This allows us to conclude this case.



1) dep(⊥) = {∅};
2) In case α is an output, we have that: dep(α) = {{α}} ⊗ dep(pred(α)).
3) In case α is an input of type τ , we have that: dep(α) = {{α}} ⊗ dep(pred(α))⊗ dep(τ).
4) for any type τ , we have that

Sout(τ) =
⋃

outα(c, u) occurring in P
(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))

(α, p) not marked

(
dep(α)⊗ dep(τ1)⊗ . . .⊗ dep(τn)

)
.

5) for an initial type τ , we have that dep(τ) = dep0(τ) ∪ Sout(τ);
6) for a non-initial type τ such that τ = f(τ1, . . . , τk), we have that:

dep(τ) = dep0(τ) ∪ ({∅} ⊗ dep(τ1)⊗ . . .⊗ dep(τk)) ∪ Sout(τ)

where dep0(τ) = ∅ when τ is an cv-alien type; and dep0(τ) = {∅} otherwise.

Fig. 4. Properties of dep

An execution K0
tr
==⇒ (P;φ;σ; i) of a protocol P can be

seen as a dag D whose vertices are actions of tr with their
label, and edges represent sequential and data dependencies.

Definition 13. Given a dag D = (V,E) and a set of nodes
N ⊆ V , we define the pruning DN = (VN , EN ) of D w.r.t.
N as follows:

• VN = {v ∈ V | ∃ r ∈ N, r →∗ v};
• EN = {(u, v) ∈ E | u, v ∈ VN}

where→∗ denotes the transitive closure of the relation induced
by E.

When we consider an execution and its associated dag, we
can decide to prune the dag w.r.t. a given set of nodes N , then
the resulting dag corresponds also to an execution of P .

Given an execution exec and its associated dag D, we
denote exec|v the execution obtained by pruning D w.r.t.
the set of nodes {v}, and given a recipe R such that
vars(R) = {wi1 , . . . ,wik}, we denote exec|R the execution
obtained by pruning D w.r.t. {v1, . . . , vk} where vj is the
node corresponding to the output wij .

We denote Label(tr) (resp. Label(exec)) the multiset of
labels (from L) occurring in tr (resp. exec), and given a node v
of a dag (coming from an execution trace), we denote Label(v)
its label.

A simple recipe is subterm asap w.r.t. φ if all its direct
subterms are asap w.r.t. φ. Note that this implies that all its
strict subterms are asap too.

Then, we are able to establish this key result by induction
on the length of the trace.

Proposition 1. Let P be a protocol type-compliant w.r.t. some
typing systems (∆0, δ0). We consider a well-typed and cv-
alien-free execution exec : P

tr
==⇒ (P;φ;σ; i) involving only

simple asap recipes. We consider the dag D corresponding to
this execution. We have that:

1) for any node v of D, we have that there exists a multiset
A ∈ dep(Label(v)) such that Label(exec|v) ⊆ A;

2) for any almost destructor-only receipe R which is also
asap (resp. subterm asap), and cv-alien-free, and such
that Rφ↓ is a message of type τ , we have that there
exists a multiset A ∈ Sout(τ) (resp. S+

out(τ)) such that
Label(exec|R) ⊆ A.

3) for any simple asap (resp. subterm asap), cv-alien-free
recipe R such that Rφ↓ is a message of type τ , we have
that there exists a multiset A ∈ dep(τ) (resp. dep+(τ))
such that Label(exec|R) ⊆ A.

Proof. We prove these results by induction on the length of tr.

Base case: tr is empty. In such a case, we have that there is no
node v in D, and therefore item 1 trivially holds. Regarding
item 2, since dom(φ) = ∅ there is no recipe satisfying the
condition. Regarding item 3, we have Rφ↓ = R↓ = R,
and R is cv-alien-free. We show by induction on |R| that
dep(τ) 6= ∅ (where τ is the type of R). In case |R| = 1, we
have that either R ∈ Σc, and thus τ = R, and ∅ ∈ dep(τ); or
R ∈ Σ0. In this case, we have that τ is not an cv-alien type,
and thus ∅ ∈ dep(τ). Now, in case R − f(R1, . . . , Rn) with
f ∈ Σc, by induction hypothesis, we have that R1, . . . , Rn
are cv-alien-free, and thus for any i ∈ {1, . . . , n}, we have
that dep(τi) 6= ∅ where τi is the type of Ri. This allows us
to conclude that dep(τ) = dep(f(τ1, . . . , τn)) 6= ∅. Therefore,
we have that dep(τ) 6= ∅ (resp. dep+(τ) 6= ∅). We have that
Label(exec|R) = ∅, and thus the result holds.

Inductive case: tr = tr′.α. We denote exec′ the prefix of exec
corresponding to the trace tr′. We distinguish several cases
depending on the type of the action α.

Case of an output. We assume that tr = tr′.(α : out(c,w))
or tr = tr′.(α : out(c, c′)), and we establish the two items.

1) Let v be a node of D. In case α does not corre-
spond to the node v, we have that Label(exec|v) =
Label(exec′|v). Relying on our induction hypothesis, we
know that there exists A ∈ dep(Label(v)) such that
Label(exec′|v) ⊆ A. This allows us to conclude.



Now, we assume that α corresponds to the node v.
In case pred(α) = ⊥, then dep(exec|v) = {α} and
dep(Label(v)) = {{α}}, thus the result holds. Other-
wise, we have that pred(α) = α′ for some α′, and
we denote v′ the node corresponding to this action in
our dag D. Relying on our induction hypothesis, we
have that there exists A′ ∈ dep(Label(v′)) such that
Label(exec′|v′) ⊆ A′.
By definition of dep, we have that dep(Label(v)) =
{{α}}⊗ dep(Label(v′)), and by definition of Label, we
have that Label(exec|v) = Label(exec′|v′) ] {α}. It is
easy to see that A = A′ ]{α} satisfies the requirement.

2) Let R be an almost destructor-only recipe which is also
asap (resp. subterm asap), and cv-alien-free, and such
that Rφ↓ is a message of type τ . In case w 6∈ vars(R),
we have that Label(exec|R) = Label(exec′|R). Rely-
ing on our induction hypothesis, we know that there
exists a multiset A ∈ Sout(τ) (resp. S+

out(τ)) such that
Label(exec′|R) ⊆ A. This allows us to conclude.
Now, we assume that w ∈ vars(R). We establish the
existence of A ∈ Sout(τ) (resp. S+

out(τ) in case R is
subterm asap) such that Label(exec|R) ⊆ A. We show
this result by induction on the size of the asap (resp.
subtem asap) recipe R. We have that Rφ↓ is a message
and R is an almost destructor-only recipe.. We denote
p = target(R), w0 the variable at the leftmost position
in R (i.e. at position 1 . . . 1), and R1, . . . , Rk the recipes
at position 1 . . . 1.i with i ≥ 2 in R for any such
position which is well-defined. First, we may note that,
for any i ∈ {1, . . . , k}, we have that Riφ↓ is a message,
Ri is in forced normal form, asap and cv-alien-free,
and thus, thanks to Lemma 3, we know that for any
i ∈ {1, . . . , k}, Ri is simple. Actually, we have that R1

is an almost destructor-only recipe. Therefore, we can
apply our induction hypothesis (item 3), and denoting
τ1, . . . , τk the types of R1φ↓, . . . , Rkφ↓, we obtain that
there exists Ai ∈ dep(τi) such that Label(exec|Ri) ⊆ Ai
for each i ∈ {1, . . . , k}.
Applying Lemma 8 on φ and R, we have that
(Rφ↓, p)#{R1, . . . , Rk} ∈ ρ(wφ). Then, thanks to
Lemma 7, we deduce that (τ, p)#{τ1, . . . , τk} ∈ ρ(β)
where β is the label associated to the output w0, and
τ1, . . . , τk are the types of R1φ↓, . . . , Rkφ↓. By defini-
tion of Sout(τ), we have that:

dep(β)⊗ dep(τ1)⊗ . . .⊗ dep(τk) ∈ Sout(τ).

Note that by definition of a marked position to be
appropriate, we know that (β, p) is not marked. Indeed,
otherwise, this would contradict the fact that R is asap.
Now, in case we only know that R is subterm asap, it
remains to establish that (β, p) is not marked or p = ε.
Assume that p 6= ε. We thus have that p = p′.i0 for some
i0, and we therefore know that R 6∈ W . We have that
R = g(R1, . . . , Rn) for some g ∈ Σd. We have that R1

is cv-alien-free, target(R1) = p′, w0 is the variable at
the leftmost position in R1, and R1φ↓ = w0φ|p′ . Since

R1 is asap and almost destructor-only, by definition of
an appropriate marking, we deduce that (β, p) is not
marked.
Now, relying again on our induction hypothesis, we have
that there exists A0 ∈ dep(Label(v0)) = dep(β) such
that Label(exec|v0) ⊆ A0 where v0 is the node associ-
ated to out(c,w0). Note that this has been established in
item 1 above in case α = β. To conclude, it is easy to
see that A = A0]A1]. . .]Ak satisfies the requirement.

3) Let R be a simple asap (resp. subterm asap) and cv-
alien-free recipe such that Rφ↓ is a message of type
τ . In case w 6∈ vars(R), we have that Label(exec|R) =
Label(exec′|R). Relying on our induction hypothesis, we
know that there exists a multiset A ∈ dep(τ) (resp.
dep+(τ)) such that Label(exec′|R) ⊆ A. This allows
us to conclude.
Now, we assume that w ∈ vars(R). We establish the
existence of A ∈ dep(τ) (resp. dep+(τ) in case R is
subterm asap) such that Label(exec|R) ⊆ A. We show
this result by induction on the size of the asap (resp.
subtem asap) recipe R.
In case R is an almost destructor-only recipe, we con-
clude relying on item 2. Note that Sout(τ) ⊆ dep(τ) and
S+
out(τ) ⊆ dep+(τ).

Thus, we now consider the case where R =
f(R1, . . . , Rk) (with k ≥ 1), and f ∈ Σc or R ∈ Σ0.
In case R = c0 ∈ Σ0, we know that τ is not cv-alien
(since R is cv-alien-free), and therefore we have that
∅ ∈ dep(τ), and dep(exec|R) = {∅}, and the result
holds. Note that dep(τ) ⊆ dep+(τ).
Otherwise, we have that R = f(R1, . . . , Rk), and
R1, . . . , Rk are simple, asap, and cv-alien-free. Note
that, Ri not asap will contradict the fact that R is asap
or subterm asap. Relying on our induction hypothesis,
we have that, for each i ∈ {1, . . . , k}, there exists
Ai ∈ dep(τi) such that Label(exec|Ri) ⊆ Ai, and we
have that dep(τ1)⊗ . . .⊗ dep(τk) ∈ dep(τ) ⊆ dep+(τ).
It is therefore easy to see that A = A1]. . .]Ak satisfies
the requirement.

Case of an input. Now, we assume that tr = tr′.(α :
in(c,Rin)) and we establish the two items.

1) Let v be a node in D. In case α does not corre-
spond to the node v, we have that Label(exec|v) =
Label(exec′|v). Relying on our induction hypothesis, we
know that there exists A ∈ dep(Label(v)) such that
Label(exec′|v) ⊆ A. This allows us to conclude.
Now, we assume that α corresponds to the node v.
We establish the existence of A ∈ dep(Label(v)) with
Label(exec|v) ⊆ A.
In case pred(α) = ⊥, then Label(exec|v) =
Label(exec′|Rin) ] {v}. Applying our induction hypoth-
esis on tr′ (item 3) with Rin, we deduce that there exists
A′0 ∈ dep(τ) such that Label(exec′|Rin) ⊆ A′0.
By definition, we have that {{α}} ⊗ dep(τ) =
dep(Label(v)). It is easy to see that A = A′0 ] {α}



satisfies the requirement.
Now, in case pred(α) = α′ for some α′. We denote v′

the node corresponding to this action in our execution
dag. Relying on our induction hypothesis, we know that
there exists A′ ∈ dep(Label(v′)) = dep(α′) such that
Label(exec′|v′) ⊆ A′. We have that

Label(exec|v) = Label(exec′|Rin)]Label(exec′|v′)]{v}.

Applying our induction hypothesis on tr′ (item 3)
with Rin we deduce that there exists A′0 ∈ dep(τ) such
that Label(exec′|Rin) ⊆ A′0. By definition, we have that
{{α}} ⊗ dep(α′) ⊗ dep(τ) = dep(Label(v)). It is easy
to see that A = A′0]A′]{α} satisfies the requirement.

2) Let R be an almost destructor-only asap (resp. sub-
term asap), cv-alien-free recipe such that Rφ↓ is a
message of type τ . Since α is an input, we have that
Label(exec|R) = Label(exec′|R). Relying on our induc-
tion hypothesis, we know that there exists a multiset A ∈
Sout(τ) (resp. S+

out(τ)) such that Label(exec′|R) ⊆ A.
This allows us to conclude.

3) Let R be a simple asap (resp. subterm asap), cv-alien-
free recipe such that Rφ↓ is a message of type τ .
Since α is an input, we have that Label(exec|R) =
Label(exec′|R). Relying on our induction hypothesis,
we know that there exists a multiset A ∈ dep(τ) (resp.
dep+(τ)) such that Label(exec′|R) ⊆ A. This allows us
to conclude.

This concludes the proof of this result.

D. Proof of Theorem 2

We are now able to prove our main result regarding reach-
ability.

Theorem 2. Let P be a protocol type-compliant w.r.t. some
typing system (∆0, δ0). Let α be a label of P and as-
sume (tr.`, φ) ∈ trace(P ) for some tr, `, φ such that
Label(`) = {α}. Then there exists tr′, `′, φ′, and A ∈ dep(α)
such that (tr′.`′, φ′) ∈ trace(P ) with Label(`′) = {α}; and
Label(tr′.`′) ⊆ A.

Proof. By hypothesis, we have that (tr.`, φ) ∈ trace(P ), and
thus there is an execution exec witnessing this fact. Thanks to
Theorem 5, we can assume that this execution is well-typed,
and involves simple asap recipes. Moreover, we can assume
that tr.` and φ are cv-alien-free. Thus, this execution is cv-
alien-free.

We consider the dag D corresponding to this execution, and
we denote v the node corresponding to the action `. Thanks
to Proposition 1 (item 1), we have that there exists a multiset
A ∈ dep(Label(v)) such that Label(exec|v) ⊆ A. Note that
Label(v) = Label(`) = {α}, and thus if we denote tr′′ the
trace underlying the execution exec|v , we have that tr′′ = tr′.`′

for some tr′ and `′ such that Label(`′) = {α}. Moreover,
we have that (tr′.`′, φ′) ∈ trace(P ) for some φ′ (indeed by
definition of exec|v we keep all the dependencies, and thus
exec|v is an execution of P ). Thus, we deduce the existence

of tr′, `′, φ′, and A ∈ dep(α) such that (tr′.`′, φ′) ∈ trace(P )
with Label(`′) = {α}, and Label(tr′.`′) ⊆ A.

E. Marking criteria

We now establish the following result regarding terms with
a public type (see Definition 8).

Lemma 9. Let P be a protocol, (∆0, δ0) be a typing system,
and u be a term having a public type. Let P tr

==⇒ (P;φ;σ; i) be
a well-typed execution such that Rφ↓ = u for some recipe R,
then u ∈ T (Σc,Σ0).

Proof. Let τp be the type of u. To show the result, we establish
that each leaf of u is either a constant in Σ0 or a constant
in Σc. Let l be a leaf of u. We have that l is either a name
or a constant. In case l is a constant, we are done. Otherwise,
we have that l ∈ N , and we have that δ0(l) ∈ St(τp). Since
Rφ↓ = u for some recipe R, we have that l occurs somewhere
in φ, and thus a name n such that δ0(n) = δ0(l) occurs in P .
Therefore, we have that δ0(n) ∈ St(τp) for some name n
occurring in P . This contradicts the fact that τp is a public
type, and allows us to conclude the proof.

We conclude that marking a position that has a public type
is appropriate.

Lemma 10. Let (α, p) be a marked position of a protocol P
w.r.t. a typing system (∆0, δ0). Let u be the term such that
outα(c, u) occurs in P . If δ0(u)|p has a public type then (α, p)
is appropriate.

Proof. We consider a well-typed execution P tr
==⇒ (P;φ;σ; i)

and outα(c,w) occurring in tr. Let R be a recipe in forced
normal form such that root(R) ∈ Σd∪W with w at its leftmost
position, and such that target(R) = p and Rφ↓ = m is a mes-
sage. By definition of target(R), we have that Rφ↓ = wφ|p,
and since we are considering a well-typed execution, we know
that δ0(wφ|p) = δ0(wφ)|p has public type. Thus, we have that
wφ|p ∈ T (Σc,Σ0) thanks to Lemma 9, and therefore R (which
contains w) is not an asap recipe for Rφ↓ = m = wφ|p.

Our second criterion is a precedence criterion. We extend
the criterion proposed in [16], [21] in order to make it
applicable in presence of match constructions.

Example 19. Consider the following process P modelling
a simple challenge response exchange relying on a match
construction:

P = inα(c, y).match ywith
senc(〈req, x〉, k)→ outβ(c, senc(〈rep, x〉, k))

Type-compliance is satisfied considering δ0(y) =
δ0(senc(〈req, x〉, k)). Clearly, we have that (β, 1.2) is
an appropriate marked position, Indeed, extracting the value
corresponding to x from the output β is actually useless since
this value was accessible before through the input α under
the exact same protection (here the key k). Any asap recipe
will favour the use of the recipe used in input rather than the
one which digs into the output.



Given a protocol P , we say that the action labeled β follows
the action labeled α in P if β is sequentially after α, i.e. in
case α is an output, we have that outα(c, ·).Q is a subprocess
of P and β occurs in Q. Given an action labeled α occurring in
a protocol P , we denote by σαmatch the mgu of all the equations
u = v corresponding to an instruction match u with v → _
encountered from the root of P to its action labeled α. Note
that for a protocol P that does not feature match construction,
we have that σαmatch = ∅ for any label α occurring in it.

Example 20. Going back to Example 19, we have that β
follows α in P , and σβmatch = {y 7→ senc(〈req, x〉, k)}.

The inclusion S ⊆# S′ denotes the fact that for any element
e ∈ S, the multiplicity of e in S is smaller than the multiplicity
of e in S′.

Lemma 11. Let (β, p) be a marked position of a protocol P
w.r.t. a typing system (∆0, δ0) and α a label of an action in P
involving term v such that:
• outβ(c, u) follows the action α in P ;
• ((uσβmatch)|p, p)#S ∈ ρ(uσβmatch) for some S;
• ((uσβmatch)|p, q)#S′ ∈ ρ(vσβmatch) for some q, S′ such

that S′ ⊆# S.
We have that (β, p.p′) is appropriate for any p′ such that
δ0(u)|p.p′ is well-defined.

Proof. We consider a well-typed execution P tr
==⇒ (P;φ;σ; i)

and outβ(c,w) occurring in tr. Let R be a recipe in forced
normal form such that root(R) ∈ Σd∪W with w at its leftmost
position, and such that target(R) = p.p′ and Rφ↓ is a mes-
sage. By definition of target(R), we have that Rφ↓ = wφ|p.p′ .
In order to conclude, we want to show that R is not an asap
recipe for Rφ↓ = wφ|p.p′ .

Let η = 1 . . . 1 be a sequence of 1 and R0 = R|η be such
that target(R0) = p. We have that R0φ↓ = wφ|p, and we
denote by {R1

key, . . . , R
j
key} the multiset of recipes occurring

at position of the form η.k with k ≥ 2 in R0.
According to our hypothesis, we know that there exist

inα(_, Rin) (resp. outα(_,w′)) occurring before outβ(c,w)
in tr, and a substitution τ such that wφ = uσβmatchτ and
Rinφ↓ = vσβmatchτ in case α corresponds to an input (resp.
w′φ = vσβmatchτ in case α corresponds to an output). We
know that p is a position that exists in uσβmatch and similarly
the position q exists in vσβmatch. Moreover, thanks to our
hypothesis, we have that (vσβmatch)|q = (uσβmatch)|p. Thus, we
have that Rinφ↓|q = wφ|p in case α corresponds to an input
(resp. w′φ|q = wφ|p in case α corresponds to an output).

Now, reusing some elements of the multiset
{R1

key, ..., R
j
key}, we can build a recipe starting from

Rin (resp. w′) and adding destructors in order to extract the
subterm at position q in Rinφ↓ (resp. w′φ) using elements
of the multiset {R1

key, ..., R
j
key}. We denote R0 such a recipe.

We have that R0 is smaller than R0 since we replace one
occurrence of w (the one occurring at the leftmost position
in R0) by a smaller recipe (Rin or w′), and regarding recipes
occurring at position 1...1.k with k ≥ 2 in R0, they form a

submultiset of those occurring at position 1...1.k with k ≥ 2
in R0. Note that R0φ↓ = R0φ↓ = wφ|p. Thus, we have that
R0 is not an asap recipe for wφ|p (R0 being smaller), and
therefore R (recipe which contains R0 as a subterm) is not
an asap recipe for Rφ↓ = wφ|p.p′ . Indeed R[R0]η is smaller
than R0 and deduce the same term wφ|p.p′ .

C TERMINATION

In the previous sections, we considered a mathematical
function dep. This function maps labels and types on sets of
multisets. It may happen that the multisets are infinite, and
in this case it becomes impossible to bound the number of
sessions. The purpose of this section is to define a terminating
algorithm dep′, which computes the function dep whenever its
result is finite, and which returns ⊥ when it is infinite.

For the sake of clarity, we remark the equations satisfied by
dep can be rewritten as:

dep(α) = A(α) ∪
⋃
i

[
B(α)⊗

(
⊗kij=0 dep(βji )

)]
where α is a label or a type, A(α) and B(α) are sets depending
only on α (without any call to dep) and βji are labels or types.
More precisely, A(α) ∈ {∅; {∅}} for any label and type α
(and A(α) = dep0(α)), B(α) = {{α}} for any label α, and
B(τ) = {∅} for any type τ . Those definitions can be rewritten
as:

dep(α) = A(α) ∪
[
B(α)⊗

⋃
i

⊗kij=0dep(βji )
)]

Later on, it will be convenient to consider

next(α) = {βji | ∀i, j}.

Example 21. For example, when τ is an initial type, we have:

dep(τ) = dep0(τ) ∪
⋃

outα(c, u) occurring in P
(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))

(α, p) not marked

(
dep(α)⊗dep(τ1)⊗. . .⊗dep(τn)

)

We have A(τ) = dep0(τ), and if we denote {β1
i , . . . , β

ki
i | i}

the set of the α, τ1, . . . , τn such that outα(c, u) occurs in P ,
(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u)), (α, p) is not marked, and
B(τ) = {∅} we have:

dep(τ) = A(τ) ∪ [B(τ)⊗
⋃
i

⊗kij=0dep(βji )]

A path of labels and types is a sequence α1. . . . .αn where
each αi is a type or a label. We denote |p| the length of the
path p (number of types or labels occuring in p). Our goal is
to define a practical dep′ that terminates and computes dep,
but before doing that we need to identify all the labels and
types α such that dep(α) = ∅.



A. How to compute the empty dependencies

We start with an example showing that this task it is not
obvious.

Example 22. Let P = new s.inα(c, s).outβ(c, s). We have
that dep(δ0(s)) = ∅. Indeed, consider the equations for dep
(note that δ0(s) is a cv-alien type as there are no variables
or constants in P ) with i > 0.

depi(δ0(s)) = depi−1(β)

depi(β) = {{β}} ⊗ depi−1(α)

depi(α) = {{α}} ⊗ depi−1(δ0(s))⊗ depi−1(⊥)

We have that depi−1(⊥) = {∅} and that dep0(δ0(s)) =
dep0(α) = dep0(β) = ∅. Thus, depi(δ0(s)) = ∅ for each
i. We can check that it is a solution of the following equation
(resulting from the defining equations above).

dep(δ0(s)) = {{β}} ⊗ {{α}} ⊗ dep(δ0(s))

It confirms that it is a correct solution. So, there is a type
δ0(s) such that the recursive calls defined by the equations
loop, but dep(δ0(s)) = ∅.

To find the labels and types α such that dep(α) = ∅, we
define the algorithm Empty. This algorithm takes (α, p) as
input, where α is a label or type and p is a path (actually a
sequence of labels), and returns b ∈ {True,False}. Intuitively,
Empty(α, p) is used to know if dep(α) is empty. We also
define auxiliary functions Paths and m(α, p). We want to
prove that Empty(α, p) tells if dep(α) = ∅. Paths(α, ε)
represents the set of paths explored during the execution
of Empty(α, ε) while m(α, p) is the number of remaining
(inductive) steps required to reach a result. They are defined
as:

• If A(α) 6= ∅ then Empty(α, p) returns False, Paths(α, p)
returns {p.α} and m(α, p) = 0.

• Else, if α ∈ p then Empty(α, p) returns True, Paths(α, p)
returns {p.α}, and m(α, p) = 0.

• Else set b as the evaluation of formula ∧i ∨kij=0

Empty(βji , p.α) for βji ∈ next(α), set E as E = {p.α}∪
∪i,j(Paths(βji , p.α)). Empty(α, p) returns b, Paths(α, p)
returns E, and m(α, p) = 1 + maxi,j(m(βji , p.α)).

Note that, as there are only a finite number of labels and
types, and as the paths cannot contain twice the same label
and type, those algorithms terminate. Note that all elements of
Paths(α, p) are of length at least 1. We prove the following
lemma.

Lemma 12. For any label or type α and any path p, we have
Empty(α, p) = True iff depi(α) = ∅ for any i ≤ m(α, p).

Proof. We do the proof by induction on m(α, p).

Base case. If m(α, p) = 0, then either dep0(α) = A(α) 6=
∅, and in this case Empty(α, p) = False, or A(α) = ∅ and
thus dep0(α) = ∅ and Empty(α, p) = True. It proves the base
case.

Inductive case. Let n be an integer. Assume that the result
is true for any α, p such that m(α, p) ≤ n. Let α, p be such
that m(α, p) = n+ 1. Then (as m(α, p) = n+ 1 > 0):

Empty(α, p) = ∧i(∨jEmpty(βji , p.α)) (3)

for βji ∈ next(α) and we have (as A(α) = ∅ since m(α, p) >
0):

depn+1(α) = B(α)⊗
⋃
i

⊗jdepn(βji )

But B(α) 6= ∅, so depn+1(α) = ∅ if the following formula φ
evaluates as True.

φ = ∧i ∨j [depn(βji ) = ∅]

By induction hypothesis, we have that depn(βji ) = ∅ iff
Empty(βji , p.α) = True. Thus formula (3) evaluates as
True iff φ evaluates as True. Thus depn+1(α) = ∅ iff
Empty(α, p) = True. As depi(α) ⊆ depn+1(α) for any
i ≤ n+ 1, it concludes the proof.

Lemma 13. Let α be a label or type. If p ∈ Paths(α, ε) then
for any prefix q 6= ε of p we have q ∈ Paths(α, ε).

Proof. We prove the following result by induction on
m(α, p0): if p ∈ Paths(α, p0), then p = p0.α.q, and for any
prefix q′ of q, we have p0.α.q′ ∈ Paths(α, p0).

Base case. Assume m(α, p0) = 0. Then Paths(α, p0) =
{p0.α}. Let p ∈ Paths(α, p0). We have p = p0.α (so q = ε).
For any prefix q′ of q, we have q′ = ε and p0.α.q

′ = p ∈
Paths(α, p0).

Inductive case. Assume the result is true for any α, p0
such that m(α, p0) ≤ n. Let α, p0 be such that m(α, p0) =
n + 1 > 0. So we have that Paths(α, p0) = {p0.α} ∪
∪i,jPaths(βji , p0.α) for βji ∈ next(α). Let p ∈ Paths(α, p0).
Either p = p0.α, and the proof of the base case applies; or
p ∈ Paths(βji , p0.α) for some βji ∈ next(α). We have that
m(βji , p0.α) < m(α, p0) = n + 1 thus m(βji , p0.α) ≤ n and
induction hypothesis applies. So p = p0.α.β

j
i .q and for any

prefix q′ of q, we have:

p = p0.α.β
j
i .q
′ ∈ Paths(βji , p0.α)

Let q′ be a prefix of βji .q. Either q′ = βji .q
′′ and we get:

p = p0.α.q
′ ∈ Paths(βji , p0.α) ⊆ Paths(α, p0)

Or q′ = ε and p = p0.α which has been handled before. This
concludes the inductive case.

If we apply the above result to p ∈ Paths(α, ε), we get that
p = α.q and that for any prefix q′ of q, α.q′ ∈ Paths(α, p0).
As α is a prefix of any non-empty prefix of p, we get the
result.

The following lemma aims to help us proving that
there Empty has the expected property of indicating the
empty results. However, it is not always true: for example,
Empty(α, α) = True just by definition of Empty, and even
if dep(α) 6= ∅. So, we have to restrict ourselves to paths



that actually occur inside a computation, that is elements
of Paths(α, ε). But even for those paths, it might be that
Empty(α, ε) = True, but that Empty(α, p) = False for some
path p, as examplified below.

Example 23. Consider equations dep(α) = dep(γ), dep(γ) =
dep(α) ∪ dep(β) and dep(β) 6= ∅ (e.g. dep(β) = {∅}), The
corresponding set of paths is:

Paths(α, ε) = {α, α.γ, α.γ.β, α.γ.α}

We have that Empty(α, α.γ) = True but Empty(α, ε) = False
and we get that dep(α) 6= ∅ as it contains dep(β).

Thus, we have to handle the case where Empty(α, p) is true,
but some other computations will make that Empty(α, ε) is
false, or more generally Empty(α, q) = False for some prefix
q of p. This is done by possible conclusion (b) in the following
lemma. This possible conclusion will be impossible anyway
when the lemma is called in Proposition 2 with p = ε.

Lemma 14. Let α be a label or a type. Let p.β ∈ Paths(α, ε).
If Empty(β, p) = True, then (a) dep(β) = ∅ or (b) p =
p0.γ.p1 for some p0, γ, p1 such that Empty(γ, p0) = False.

Proof. First, we prove the following result by induction on
k0: Let p.β ∈ Paths(α, ε). If Empty(β, p) = True, then (a)
depk(β) = ∅ for any k such that k + |p| ≤ k0 or (b) p =
p0.γ.p1 for some p0, γ, p1 such that Empty(γ, p0) = False.

Base case. Let k0 = 1 and p.β ∈ Paths(α, ε). Let k such
that k + |p| ≤ k0. Either k = k0, or k < k0.
• If k = k0, then |p| = 0 hence p = ε. So by hypothesis

Empty(β, ε) = True, and as β /∈ ε, by definition of
m(β, ε), we must have m(β, ε) ≥ 1. Lemma 12 applies
and we get that depk(β) = ∅ as k = k0 = 1 ≤ m(β, ∅).

• If k < k0, then k = 0 hence k ≤ m(β, p). Thus by
Lemma 12, we have that depk(β, p) = ∅.

Thus condition (a) is satisfied.

Inductive case. Let k0 be such that the result is true for
k0. Assume toward contradiction that the result is not true for
k0 + 1. We can consider a minimal k such that there is a
p.β ∈ Paths(α, ε) for which k+ |p| = k0 + 1, Empty(β, p) =
True but depk(β) 6= ∅ and there is no p0, γ, p1 such that
p = p0.γ.p1 and Empty(γ, p0) = False. We consider the cases
in the computation of Empty(β, p).
• If A(β) 6= ∅, then Empty(β, p) = False so it is

impossible.
• If A(β) = ∅ and β ∈ p, then Empty(β, p) = True

and p = p0.β.p1. Either Empty(β, p0) = True, and
by Lemma 13 induction hypothesis applies. Property (a)
gives us a contradiction as k+|p0| < k+|p| ≤ k0+1 (thus
k + |p0| ≤ k0) and property (b) gives us a contradiction
as p0 = q0.γ.q1 implies that p = q0.γ.q1.p1, and we
have Empty(γ, q0) = False; or Empty(β, p0) = False
and there is a contradiction.

• If A(β) = ∅ and β /∈ p, then for βji ∈ next(α):

Empty(β, p) = ∧i(∨iEmpty(βji , p.β))

By hypothesis, we have Empty(β, p) = True. Assume
that one of the Empty(βji , p.β) = True and has property
(b), that is there is a γ, a p0 and a p1 such that
p.β = p0.γ.p1 and Empty(γ, p0) = False. We know that
(γ, p0) 6= (β, p) as Empty(β, p) = True. So p = p0.γ.p

′
1

and p1 = p′1.β, so we get property (b) which is a
contradiction.
So from now we can assume (?) that for each βji ∈
next(β), either Empty(βji , p.β) = False or property (b)
is false.
We also have (as k > 0 and A(α) = ∅):

depk(β) = B(β) ∪i ⊗jdepk−1(βji , p.β)

So depk(β) = ∅ iff the following formula φ evaluates as
True.

φ = ∧i(∨j(depk−1(βji ) = ∅))

But by minimality of k and by our assumption (?), for
each βji such that Empty(βji , p.β) = True, we have that
depk(β) = ∅ as k − 1 + |p.β| = k + |p| = k0 + 1. As
Empty(β, p) = True, we have that for each i there exists
a j such that Empty(βji , p.β) = True. It implies that for
each i there exists a j such that dep(βji ) = ∅ and thus
that φ is true, so depk(β) = ∅.

It concludes the proof of the inductive case.
Now remark that dep(β) = ∪kdepk(β) so case (a) rewrites

as dep(β) = ∅ as it is true for any k0.

We prove the expected result that the Empty algorithm
determines the α such that dep(α) = ∅.

Proposition 2. Let α be a label or a type. Then dep(α) = ∅
iff Empty(α, ε) = True.

Proof. If dep(α) = ∅, then depk(α) = ∅ for any k by
definition of dep, and thus Empty(α, ε) = True by Lemma 12,
as m(α, ε) is finite.

Conversely, remark that α ∈ Paths(α, ε) by definition of
Paths (more generally, p.α ∈ Paths(α, p) for each α,p). By
hypothesis, we have Empty(α, ε) = True. Thus Lemma 14
applies and we have (a) dep(α) = ∅, as (b) is impossible.

B. How to compute dep in practice (dep′)

In this section, we define algorithm dep′ and we prove it
coincides with dep. More precisely, dep′ always terminates,
and it returns either ⊥ when dep contains an infinite multiset;
or the same result as dep when it is a finite set of finite
multisets. Algorithm dep′ uses Empty to avoid looping on
empty dependencies.

Algorithm dep′.: We define two operators ⊗̃ and ∪̃ such
that:
• E⊗̃F = E ⊗ F when E and F are sets.
• E∪̃F = E ∪ F when E and F are sets.
• ∅⊗̃⊥ = ⊥⊗̃∅ = ∅
• E⊗̃⊥ = ⊥⊗̃E = ⊥ when E is a set and E 6=.
• E∪̃⊥ = ⊥∪̃E = ⊥ when E is a set (even if E = ∅).

Intuitively, ⊥ represents a set that has an infinite multiset as
an element.



Then, for α a label or a type, we define dep′(α, p) and
m′(α, p) as:
• dep′(α, p) = ∅, m′(α, p) = 0 if Empty(α, ε) = True;
• dep′(α, p) = ⊥, m′(α, p) = 0 if α occurs in p and

Empty(α, ε) = False;
• Otherwise, as:

dep′(α, p) = A(α)∪̃
[
B(α)⊗̃

⋃̃
i

(
⊗̃kij=0dep

′(βji , p.α)
)]

and m′(α, p) = 1 + maxi,jm
′(βji , p.α).

The computation of dep′ terminates as there are only a
finite number of labels and types, so the length of the paths
p is bounded (there can be no repetition in p). Moreover, if
dep′(α, ∅) 6= ⊥, it is finite and each of the multisets included
in dep′(α, ∅) are finite as they are computed in a finite number
of steps.

Our goal is to prove that dep′(α, ∅) = dep(α) if dep(α) is
finite, and dep′(α, ∅) = ⊥ if dep(α) is infinite (for any type
or label α).

Lemma 15. For any label or type α, for any path p, if
dep′(α, p) = ∅ then Empty(α, p) = True.

Proof. We prove the result by induction on m(α, p).

Base case. m(α, p) = 0. If α /∈ p, we have A(α) 6= ∅
by definition of m(α, p) and as A(α) ⊆ dep′(α, p), it
implies dep′(α, p) 6= ∅ which is impossible. So α ∈ p and
Empty(α, p) = True.

Inductive case. We assume that the result is true for any
m(α, p) ≤ n and we want to prove it is true for m(α, p) =
n+1. Let α, p be such that m(α, p) = n+1 > 0. By definition
of m(α, p), we know that (with next(β) = {βji | i, j}):

Empty(α, p) = ∧i ∨j Empty(βji , p.β)

Moreover, as dep′(α, p) = ∅, we have either α ∈ p and
Empty(α, p) = True (which is the result); or:

dep′(α, p) = A(α)∪̃
[
B(α)⊗̃

⋃̃
i

(
⊗̃kij=0dep

′(βji , p.α)
)]

As dep′(α, p) = ∅, A(α) = ∅, and:

Empty(α, p) = ∧i ∨j Empty(βji , p.β)

For each i, j, we have that m(βji , p.β) < m(α, p) =
n + 1. Therefore induction hypothesis applies and for each
dep′(βji , p.α) = ∅ we have Empty(βji , p.α) = True.
As dep′(α, p) = ∅, for each i there is a j such that
dep′(βji , p.α) = ∅. Thus for each i there is a j such that
Empty(βji , p.α) = True. It implies that Empty(α, p) =
True.

From this, we can deduce the following lemma.

Lemma 16. Let α be a label or a type. We have that
dep′(α, ε) = ∅ iff Empty(α, ε) = True iff dep(α) = ∅.

Proof. By Proposition 2, we have that dep(α) = ∅ iff
Empty(α, ε) = True. By Lemma 15, we have that dep′(α, ε) =
∅ implies Empty(α, ε) = True. By definition of dep′, we have

that Empty(α, ε) = True implies dep′(α, ε) = ∅. It concludes
the proof.

Lemma 17. If p is a suffix of q, then m′(α, p) ≥ m′(α, q).

Proof. We do the proof by induction on m′(α, p). If
m′(α, p) = 0, then either Empty(α, ε) = True or α ∈ p and
thus α ∈ q. Thus m′(α, q) = 0 in both cases.

Now, assume the result is true for any α, p such that
m′(α, p) ≤ k for some k ≥ 0. Let α, p such that m′(α, p) =
k + 1 and q such that p is a suffix of q. As m′(α, p) =
k + 1 > 1, we have m′(α, p) = 1 + maxi,jm

′(βji , p.α).
Either m′(α, q) = 0 and thus m′(α, q) ≤ m′(α, p) or
m′(α, q) > 0 and m′(α, q) = 1+maxi,jm

′(βji , q.α). We have
that m′(βji , p.α) ≤ k for each i, j, and p.α is a suffix of q.α so
induction hypothesis applies and m′(βji , p.α) ≥ m′(βji , q.α)
for each i, j. We conclude that m′(α, q) ≤ m′(α, p).

Proposition 3. Let α be a label or a type. If dep′(α, ε) 6= ⊥,
we have that dep′(α, ε) = dep(α).

Proof. We prove that dep′(α, p) = dep(α) for any p such that
dep′(α, p) 6= ⊥ by induction on m′(α, p).

Base case: m′(α, p) = 0. In this case, by definition of
m′(α, p) we have Empty(α, ε) = True as dep′(α, p) 6= ⊥.
Hence dep′(α, ε) = ∅. By Lemma 16, we get dep(α) = ∅.
By definition of dep′(α, p), we also get that dep′(α, p) = ∅.
It proves the result in this case.

Inductive case. Now, assume we have the result for any
α such that m′(α, p) ≤ k for some k. Then, let α such
that m′(α, p) = k + 1. We have that m′(α, ε) ≥ m′(α, p)
by Lemma 17. Hence, m′(α, ε) 6= 0. We deduce that
Empty(α, ε) = False by definition of m′(α, ε). Moreover, let
p be such that dep′(α, p) 6= ⊥. As Empty(α, ε) = False, we
have:

dep′(α, p) = A(α)∪̃
[
B(α)⊗̃

⋃̃
i

(
⊗̃kij=0dep

′(βji , p.α)
)]

We have m′(βji , α.p) < m′(α, p) = k + 1 for every i, j by
definition of m′. So induction hypothesis applies and for any
i, j, dep′(βji , p.α) = dep(βji ) if dep′(βji , p.α) 6= ⊥.

As dep′(α, p) 6= ⊥, for each i0, j0 such that
dep′(βj0i0 , p.α) = ⊥, there must be a j1 such that
dep′(βj1i0 , p.α) = ∅. As ∅ 6= ⊥, it implies by induction
hypothesis that dep(βj1i0 ) = ∅ and thus that ⊗jdep(βji0) = ∅.
We deduce:

⊗jdep(βji0) = ⊗jdep′(βji0 , p.α)

Given i1 such that there is no j0 such that dep′(βji0 , p.α) = ⊥,
we also have (as the factors are equal):

⊗jdep(βji1) = ⊗jdep′(βji1 , p.α)

Thus we deduce dep(α) = dep′(α, p). It concludes the
inductive case.

Conclusion. We have proved that for any α,p such that
dep′(α, p) 6= ⊥, we have dep′(α, p) = dep(α). The result
is the case where p = ε.



It remains to prove that if dep′(α, ε) = ⊥, dep(α) is infinite.
It is quite intuitive to remark that any ⊥ returned by dep′

corresponds to a loop in the computation of dep. However, the
converse is not always true, as some of those loops can result
in an empty result. To prove the converse of Proposition 3, we
need to define loops that do not result in ∅. To do that, we intro-
duce next′ as next′(α) = {βji ∈ next(α) | ∀k,Empty(βki , ε) =
False}, that is those elements in next(α) that occur in a non-
empty product dep(β1

i ) ⊗ · · · ⊗ dep(βkii ) 6= ∅. We can also
remark that the definitions of dep and dep′ can be rewritten
with βji ∈ next′(α) as:

dep(α) = A(α) ∪
[
B(α)⊗

(⋃
i

dep(βji )
)]

and (when α /∈ p and Empty(α, ∅) = False):

dep′(α, p) = A(α) ∪
[
B(α)⊗

(⋃
i

dep′(βji , p.α)
)]

Now, we can prove that each step of the computation of
dep is non-decreasing in some way.

Lemma 18. If β ∈ next′(α) for some types or labels α and
β, there is a set E(α.β) 6= ∅ such that E(α.β) ⊗ dep(β) ⊆
dep(α).

Proof. If β ∈ next′(α), there is an equation:

dep(α) = A(α) ∪
[
B(α)⊗

⋃
i

(
⊗kij=0 dep(βji )

)]
where β is among the βji , say β = β0

0 . Then we have:

dep(α) = A(α) ∪B(α)⊗
[
⋃
i>0(⊗kij=0dep(βji ))] ∪ [dep(β)⊗ (⊗k0j=1dep(βj0))]

If we write E(α.β) = B(α) ⊗ (⊗k0j=1dep(βj0)), we have
E(α.β) ⊗ dep(β) ⊆ dep(α). As the only types or labels τ
such that dep(τ) = ∅ are those such that Empty(τ, ε) = True
by Proposition 2, and as they do not occur in the equation by
definition of next′, we have that E(α.β) 6= ∅.

When E(α.β) = {∅}, we have only proved that dep(α) =
dep(β), which is not very helpful (recall that ultimately, we
want to prove that a cycle in the computation means that the
result must be infinite). Thus, we want to know exactly when
this occurs.

Lemma 19. If τ is a label or a type, and β a type or a label,
E(τ.β) = {∅} only if τ is a type and:

• either β is a type τ ′, and τ ′ is a direct subtype of τ ;
• or β is an output label.

Proof. If E(τ.β) = {∅}, then it means that:

{∅} = E(τ.β) = B(τ)⊗⊗kj=1dep(βj)

for some β1, . . . βk. Thus in particular B(τ) = {∅} which
means that τ is a type (as we have B(α) = {α} for any label

α and B(τ) = {∅} for any type τ ). So the associated equation
is either (if τ is an initial type):

dep(τ) = dep0(τ) ∪
⋃

outγ(c, u) occurring in P
(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))

(γ, p) not marked

(
dep(γ)⊗dep(τ1)⊗. . .⊗dep(τn)

)

or (if τ = f(τ1, . . . , τn)):

dep(τ) =dep0(τ) ∪ ({∅} ⊗ dep(τ1)⊗ · · · ⊗ dep(τn))

∪
⋃

outγ(c, u) occurring in P
(τ, p)#{τ1, . . . , τn} ∈ ρ(δ0(u))

(γ, p) not marked

(
dep(γ)⊗ dep(τ1)⊗ . . .⊗ dep(τn)

)

We have that dep(β) occurs in a product ⊗ where all the other
elements (denoted above as βj0) satisfy dep(βj0) = {∅}. But
for the label γ of an output, we have dep(γ) = ({γ}⊗D)∪C
for some sets of multisets C 6= ∅, D 6= ∅. Thus dep(γ) 6= {∅}.
So β does not appear in a product where there is a label of
an output. So either β is a direct subtype of τ , or β is itself
the label of the output.

We can extend inductively E to paths through E(α.β.p) =
E(α.β) ⊗ E(β.p) for any labels or types α, β ∈ next′(α)
and any path p = p1. . . . .pk where p1 ∈ next′(β) and pi+1 ∈
next(pi) for each i with 1 ≤ i < k. We are now ready to
prove the main theorem of this section.

Theorem 6. Let α be a label or a type. Let p be a path of label
and types. Then, dep′(α, ε) terminates. Moreover, dep′(α, ε) 6=
⊥ iff dep(α) is finite, and in this case dep(α, ε) = dep(α).

Proof. The termination of dep′ has been proved when dep′

has been defined. It follows directly from the finiteness of the
set of labels and types. The case where dep(α, ε) 6= ⊥ has
been handled by Proposition 3.

It remains to prove that, when dep′(α, ε) = ⊥, the set
dep(α) is infinite. Let α be a label or a type. Assume that
dep′(α, ε) = ⊥. Then there is a minimal path p and a β such
that dep′(α, ε) has called dep′(β, p) = ⊥ with β occuring in
p (only the calls to dep′ on an already-explored type or label
can create ⊥ elements).

By Lemma 18 (applied inductively), we have that dep(α) =
E(α.p.β) ⊗ dep(β). Moreover, as β occurs inside p, we can
write p = p1.β.p2 and by Lemma 18 (applied inductively):

E(β.p2.β)⊗ dep(β) ⊆ dep(β)

We have to prove that E(β.p2.β) 6= {∅}. It will prove
that dep(β) contains an infinite multiset. It is sufficient to
prove that there are two successive elements e1.e2 in the
sequence β.p2.β, such that E(e1.e2) 6= {∅}. Assume toward
contradiction that there are no such two successive elements in
β.p2.β. By Lemma 19, it means that for any e1.e2 in β.p2.β,
we have that e1 is a type τ , and:
• either e2 is a type τ ′, and τ ′ is a direct subtype of τ ;
• or e2 is an output label.



However, either e2 = β (it is the last element of the sequence),
or (it is not the last element) there is an element e3 such that
e2.e3 occurs in β.p2.β. In the second case, e2 is a type. In the
first case, e2 = β, which is a type as it is the first element of
the sequence. So in both cases, e2 is a type, and we deduce it is
a direct subtype of e1. Thus β.p2.β is a sequence where each
element is a direct subtype of the previous one. It implies that
β is a strict subtype of itself, which is a contradiction. Thus,
there are two successive elements e1.e2 in β.p2.β such that
E(e1.e2) 6= {∅}. It implies that dep(β) contains an infinite
element, and thus as dep(α) = E(α.p⊥(α)) ⊗ dep(β), that
α contains an infinite element. It is the result we wanted to
prove.

D THE CASE OF EQUIVALENCE

Regarding the class of protocols, we consider protocols
without else branches and we consider processes in simple
form. This corresponds to protocols that do not feature match
constructions. The main reason for this restriction is the fact
that despite our effort, we do not succeed to establish a
typing result with else branch. Thus, this result for equivalence
only deal with protocols without else branch. Since we are
considering protocols without else branch, we can directly
built on top of the typing result stated and proved in [14].

Then, following the proof done in [14], we establish our
small bound in 2 main steps:

1) We first show that if P is not trace included in Q then
there exists a witness of non inclusion that is well-typed,
cv-alien-free, and involves only simple asap recipes.

2) We then compute a bound regarding the size of a well-
typed attack of minimal size. We need for that to estab-
lish a new characterization regarding static inclusion.

A. A well-tped witness

As for the reachability case, we first show that we can focus
on witnesses of non trace inclusion that have a particular
form. A similar result has already been established in [21]
considering a fixed set of primitives. The sketch of proof given
below follows the exact same lines.

Theorem 7. Let KP be an initial configuration type-compliant
w.r.t. (∆0, δ0) and KQ be another configuration. We have
that KP 6vt KQ if, and only if, there exists a well-typed
execution KP

tr
==⇒ (P;φ;σ; i) involving only simple asap

recipes witnessing this fact. Moreover, we may assume that
tr and φ are cv-alien- free.

Proof. The first part of this theorem is actually a consequence
of the typing result that has been established in [14] (The-
orem 3.9). Indeed, let KP , and KQ be two configurations
as described in the theorem, and consider a witness tr of
non-inclusion of minimal length. Thanks to Theorem 3.9
([14]), we know that there exists a well-typed execution
KP

tr
==⇒ (P;φ;σ; i) witnessing this non-inclusion and we have

that tr and tr have the same length. It thus remains to establish
that we can consider such an execution which only involves

simple asap recipes, and that we can assume that tr, and φ are
cv-alien-free.

We first establish that we can consider a witness involving
simple asap recipes. We denote i0 the first step in the execution
that involves a recipe that is not a simple asap one. In case
such a i0 does not exist, we are done. Otherwise, we consider
a well-typed witness of non-inclusion such that |tr| − i0 is
minimal. We have that the i0th step is an input of the form
in(c,R) and R is not simple asap. Let tri0 be the prefix
of tr until the i0

th step. We denote φi0 the frame such
that (tri0 , φi0) ∈ trace(KP ), and ψi0 the frame such that
(tri0 , ψi0) ∈ trace(KQ). Note that these frames are uniquely
defined as we consider simple protocols.

Let R′ be a simple asap recipe such that R′φi0↓ = Rφi0↓.
Note that such a recipe exists thanks to Lemma 4. Since we
consider a witness of non-inclusion of minimal length, we
know that φi0 vs ψi0 , and thus we have that Rψi0↓ = R′ψi0↓.
We consider the trace tr′ which is equal to tr replacing at
the i0

th step, the recipe R with the recipe R′. We obtain a
witness of non-inclusion which contradicts the minimality of
the trace tr. Hence, we are done, and we can consider that
KP

tr
==⇒ (P;φ;σ; i) is a well-typed execution involving only

simple asap recipes witnessing the non-inclusion.
It remains to establish that we can assume that tr and φ are

cv-alien-free. Actually, considering KP
tr
==⇒ K′P = (P;φ;σ; i)

a witness of non-inclusion, according to Proposition 5.4 stated
and proved in [14], we know that the well-typed substitution
σ is such that σ = σSρ where:
• σS is the most general unifier (denoted mgu) of Γ =
{(u, v) | u, v ∈ ESt(K0) such that uσ = vσ}; and

• ρ is a bijective renaming from variables in dom(σ) r
dom(σS) to some fresh constants preserving type.

We have that St(KPσS) ⊆ St(KP )σS since σS is a mgu
between subterms occurring in KP by Lemma 6. Then, since ρ
is a renaming, we deduce that St(KPσ) ⊆ St(KP )σ.

In order to conclude, we apply the same reasoning as in
the case of reachability, as done e.g. at the end of Theo-
rem 5. We first show that trφ↓ is cv-alien-free. Assume by
contradiction that there exists a constant ch from Σ0 of cv-
alien type occurring in trφ↓. In other words, ch occurs in
an instantatiation by σ of an input or output action of the
initial processes, possibly after renaming names and variables
(due to some unfolding). Thus, we have that ch ∈ St(KPσ).
Thanks to the inclusion St(KPσ) ⊆ St(KP )σ, we deduce that
ch ∈ St(KP )σ, and since ch does not occur in St(KP ) (as any
constant from Σ0 of cv-alien type), we deduce that there exists
x ∈ St(KP ) such that xσ = ch. However, this is impossible
too since no variable having such a type can occur in KP .
This allows us to conclude that trφ↓ is cv-alien-free.

We have that Terms(φ) ⊆ Terms(trφ↓), and thus we
easily deduce that φ is cv-alien-free. Now, regarding recipes
occurring in tr, we know that they are simple, and thanks to
Lemma 5, we have that Cst(R) ⊆ Cst(φ)∪Cst(Rφ↓) for any
recipe R occurring in tr. We have that constants occurring in
R already occur in φ or trφ↓, and since we have seen that no



constant from Σ0 of cv-alien type occurs in φ and trφ↓, we
are done.

B. Bounding the length of a minimal witness

We have to explain how to bound the size of a (minimal)
witness of trace inclusion, that is well-typed, cv-alien-free, and
that only involve simple asap recipes. One additional difficulty
is to establish a bound regarding static inclusion. For this, we
characterize the form of the test involved in such a witness,
and we rely on an alternative definition of static inclusion.

Definition 14. Let φ, ψ be such that dom(φ) = dom(ψ). We
write φ vsimple

s ψ if:
1) For each almost destructor-only and asap recipe R such

that Rφ↓ is a (resp. atomic) message, Rψ↓ is a (resp.
atomic) message.

2) For each C[x1, . . . , xn] a strict/direct subterm of a
shape shf with f ∈ Σc, for each almost destructor-
only and asap recipe R such that Rφ↓ is a message.
If Rφ↓ = C[x1, . . . , xn]θ for some θ, then Rψ↓ =
C[x1, . . . , xn]θ′ for some θ′.

3) For each simple recipe R and each almost destructor-
only recipe R′ such that Rφ↓, R′φ↓ are messages, if
Rφ↓ = R′φ↓, then we have that Rψ↓ = R′ψ↓. Actually,
we can assume in addition that one recipe is asap, and
the other one is subterm asap w.r.t. φ.

4) For each rule g(t1, . . . , tn)→ r in Rtest ∪Rd, for each
almost destructor-only and asap recipe R1, and simple
asap recipes R2, . . . , Rn such that R1φ↓, . . . , Rnφ↓
are messages, if (R1φ↓, . . . , Rnφ↓) = (t1, . . . , tn)θ for
some θ, then (R1ψ↓, . . . , Rnψ↓) = (t1, . . . , tn)θ′ for
some θ′.

This notion of static inclusion is equivalent to the original
one.

Lemma 20. Let φ and ψ be two frames having the same
domain. We have that:

φ vs ψ ⇔ φ vsimple
s ψ.

Proof. It is easy to see that φ vs ψ ⇒ φ vsimple
s ψ. Indeed,

item 1 and item 3 are straightforward. Note that atomicity
can be ckecked using the non-linear rule we have at our
disposal. Given recipes R1, . . . , Rn satisfying the assumptions
of item 4, we have g(R1, . . . , , Rn) being a message is a
test that holds φ, and thus it also holds for ψ thanks to our
hypothesis, hence the result. Then, given a recipe R satisfying
the assumptions of item 2, we can easily build a recipe R′

applying f on top of R such that Rφ↓ is a message. By
hypothesis, we have that Rψ↓ is a message too, and thus
R′ψ↓ = C[x1, . . . , xn]θ′ since to be a message Rψ↓ has to
be compliant with the shape of f.

Thus, we only consider the other implication. To establish
the other implication, we consider another alternative defini-
tion of static inclusion, denoted by v′s. This notion is the same
than the one given in Definition 14 but considering arbitrary
recipes instead of simple/almost destructor-only/asap/subterm

asap recipes. Clearly, we have that φ v′s ψ ⇒ φ vs ψ, and
thus to conclude, it remains to establish

φ vsimple
s ψ ⇒ φ v′s ψ.

So, we now assume φ vsimple
s ψ and we show φ v′s ψ by

induction on the size of the tests, i.e. the recipes involved in the
test. More precisely, given an arbitrary test T that holds in φ
w.r.t. the notion v′s, we show that T also holds in ψ assuming
that any test smaller than T have already been transferred
from φ to ψ. Given a test T , we denote R1, . . . , Rn the recipes
that are used in that test T . We consider the measure µ(T ) =
(M, n) where:

1) M is the multiset of variables occurring in recipes
R1, . . . Rn but we do not count recipes that are asap
and simple;

2) n = |R1|+ . . .+ |Rn| where |R| is simply the size of R,
i.e. the number of function symbols occurring in it.

We consider the lexicographic ordering. We now show that
the four items of the definition of v′s are satisfied.

The test T is a recipe R such that Rφ↓ is a message (resp.
atomic message).
• Case where R is not in forced normal form. Consider
R′ such that R� R′. We assume that the rewriting step
has been done at the innermost position p in R. We
have that R′φ↓ is a message (Lemma 1). By induction
hypothesis R′ψ↓ is a message too. It remains to show
that Rψ↓ is a message. To show this, we will show that
the same rewriting rule applies at root position on R|pφ
and R|pψ. We have that R|p = g(R1, . . . , Rn) for some
g ∈ Σtest ∪ Σd. Since Rφ↓ is a message, we know that
R|pφ↓ = g(R1φ↓, . . . , Rnφ↓)↓ is a message too, and
we know that a rewriting has occurred at root position,
and thus atomicity conditions and equality conditions
imposed by the rule were satisfied. In order to conclude,
we apply the induction hypothesis (item 4) on recipes
R1, . . . , Rn, we deduce that the same rewriting rule can
be applied on the ψ side, and this allows us to conclude.

• Case where R is in normal form w.r.t. �. Thanks to
Lemma 3, we know that R is simple. Either R is almost
destructor-only or R = C[R1, . . . , Rk] with C a non-
empty context built using symbols in Σc, and R1, . . . , Rk
almost destructor-only for any 1 ≤ i ≤ k. In the latter
case, we easily conclude relying on our induction hy-
pothesis (item 1 and also item 2 for the shape restriction)
applied on R1, . . . , Rk. In the former case, we know that
R is almost destructor-only. We first assume that R is not
subterm asap, meaning that there exists 1 ≤ i ≤ k such
that Ri is not asap. Let R′i be the asap recipe w.r.t. φ
allowing us to deduce Riφ↓. We have that (Ri = R′i)φ↓,
i.e. the test Ri = R′i holds in φ, and relying on our
induction hypothesis, we deduce that Ri = R′i holds in
ψ. Consider the recipe R′ = R[R′i]i. We deduce that
R = R′ holds in ψ. Applying our induction hypothesis
on R′, we deduce that R′ψ↓ is a message which is atomic
in case R′φ↓ is atomic, and thus we deduce that Rψ↓ is



a message which is atomic in case Rφ↓ is atomic too.
Now, we asssume that R is subterm asap. First, in case
R is asap, we are done. Thus, we know that R is an
almost destructor-only recipe which is subterm asap but
not asap. Let R′ be a simple asap recipe w.r.t. φ such
that R′ = R holds in φ. Thus by hypothesis we have
that R′ = R which holds in φ also holds in ψ. Then,
applying our induction hypothesis on R′ (item 1), we
deduce that R′ψ↓ is a message (which is atomic in case
R′φ↓ is atomic), and thus we easily conclude that Rψ↓
is a message which is atomic in case Rφ↓ is atomic too.

The test T is of the form R such that R is a recipe, Rφ↓ =
C[x1, . . . , xn]θ where C[x1, . . . , xn] is a strict direct subterm
of a shape shf .
• Case R is not in normal form w.r.t. �. Let R′ = R

�

.
Since Rφ↓ is a message, we deduce that R′φ↓ = Rφ↓
(Lemma 1). We have already seen (item 1) that Rψ↓ is a
message too and thus we have that R′ψ↓ = Rψ↓. Since
R holds in φ, i.e. Rφ↓ = C[x1, . . . , xn]θ for some θ,
we have that R′ holds in φ, i.e. R′φ↓ = C[x1, . . . , xn]θ
for the same θ. Relying on our induction hypothesis
applied on test R′ we deduce that the test R′ holds in
ψ, i.e. R′ψ↓ = C[x1, . . . , xn]θ′ for some θ′, and thus we
conclude that R holds in ψ, i.e. Rψ↓ = C[x1, . . . , xn]θ′.

• Otherwise, as in the previous case, thanks to Lemma 3,
we deduce that R is a simple recipe. In case R =
f(R1, . . . , Rn) for some f ∈ Σc, then we have that C =
f(C1, . . . , Cn). Applying our induction hypothesis on
each Ri with term Ci[_] which is also a strict direct sub-
term of a shape, we have that Riφ↓ = Ci[x1, . . . , xn]θ,
and thus we deduce that Riψ↓ = Ci[x1, . . . , xn]θ′i for
each i, and since a subterm of a shape is a linear term,
we get the result by considering θ′ the union of the θ′i.
Otherwise, we have that R is an almost destructor-only
recipe. As in the previous case (see the test T is a recipe
R such that Rφ↓ is a message - item 2), we can show
that R is subterm asap. In case R is asap, we are done.
Thus, it remains the case where R is subterm asap but not
asap. We know that there exists an asap simple recipe R′

w.r.t. φ such that R = R′ holds in φ. By hypothesis,
we know that φ vsimple

s ψ, and thus by definition of
vsimple
s , we have that R = R′ holds in ψ. We have that the

test R′ is compliant with shape C[x1, . . . , xn] in φ, and
thus by induction hypothesis R′ is compliant with shapre
C[x1, . . . , xn] in ψ, and thus this also holds for R. This
allows us to conclude.

The test T is of the form R = R′ such that R and R′ are
recipes, Rφ↓, R′φ↓ are messages, and Rφ↓ = R′φ↓.
• Case R (resp. R′) is not in normal form w.r.t. �. Let
R′′ = R

�

. Since Rφ↓ is a message, we deduce that
R′′φ↓ = Rφ↓ (Lemma 1). We have shown that Rψ↓ is
a message, and thus R′′ψ↓ = Rψ↓ thanks to Lemma 1.
We have that R′′φ↓ = Rφ↓ = R′φ↓. Relying on our
induction hypothesis applied on the test R′′ = R′, we
deduce that R′′ψ↓ = R′ψ↓, and thus Rψ↓ = R′ψ↓.

• Otherwise, as in the previous cases, thanks to Lemma 3,
we know that R and R′ are simple, i.e. R =
C[R1, . . . , Rk] and R′ = C ′[R′1, . . . , R

′
`], where C,C ′

are constructor contexts and Ri (1 ≤ i ≤ k) as well as
R′j (1 ≤ j ≤ `) are almost destructor-only recipes. If
neither C nor C ′ is empty (that is, neither R nor R′ is
almost destructor-only) then root(R) = root(R′), and
thus we conclude relying on our induction hypothesis
applied on direct subterms of R and R′. Otherwise, we
assume w.l.o.g. that R is an almost destructor-only recipe,
and R′ is simple. In case R is not subterm asap, it means
that there exists 1 ≤ i0 ≤ k such that R|i0 is not asap. Let
Ri0 be an asap recipe w.r.t. φ such that R|i0φ↓ = Ri0φ↓.
We have that R|i0 = Ri0 holds in φ, and relying on our
induction hypothesis, we deduce that R|i0 = Ri0 holds
in ψ. Consider R′′ = R[Ri0 ]i0 . We deduce that R = R′′

holds in ψ. Relying on our induction hypothesis applied
on R′′ = R′ which holds in φ, we deduce that R′′ = R′

holds in ψ, and this allows us to conclude that R = R′

holds in ψ. Now, we can assume that R is subterm asap.
Regarding the recipe R′, we have that R′ =
f(R′1, . . . , R

′
`). We would like to show that R′ is sub-

term asap. Indeed, assume w.l.o.g. that R′1 is not asap
and let R′′1 be an asap recipe w.r.t. φ. We have that
R′1 = R′′1 holds in φ, and relying on our induction
hypothesis, we have that R′1 = R′′1 holds in ψ. Consider
R′′ = f(R′′1 , . . . , R

′
`). We have that R = R′′ holds in φ

and ψ. Thus, we have that R′′ = R holds in φ and relying
on our induction hypothesis, we deduce that R′′ = R
holds in ψ. This allows us to conclude that R = R′ holds
in ψ.
Now, it remains to show that R or R′ is asap. Assume
w.l.o.g. that both are not asap. Let R′′ be an asap recipe
w.r.t. φ such that R′′φ↓ = Rφ↓ = R′φ↓. Relying on our
induction hypothesis, we can transfer the tests R = R′′

and R′′ = R′ that both holds in φ, and thus we deduce
that these tests also hold in ψ, and thus we conclude that
R = R′ holds in ψ.

The test T is of the form (R1, . . . , Rn) such that R1, . . . , Rn
are recipes, (R1φ↓, . . . , Rnφ↓) = (t1, . . . , tn)θ for some θ
and a rule g(t1, . . . , tn)→ r ∈ Rtest ∪Rd.
• Case R1 (resp. R2, . . . , Rn) is not in normal form w.r.t.

�. Let R′1 = R1

�

. Since R1φ↓ is a message, we deduce
that R′1φ↓ = R1φ↓ (Lemma 1). We have shown that
R1ψ↓ is a message too, and thus thanks to Lemma 1,
we have that R′1ψ↓ = R1ψ↓. Relying on our induction
hypothesis applied on the test R′1, R2, . . . , Rn, we deduce
that the test R′1, R2, . . . , Rn holds in ψ, and thus we
conclude that the test R1, R2, . . . , Rn holds in ψ.

• Otherwise, as in the previous cases, thanks to Lemma 3,
we know that R1, . . . , Rn are simple. In case, one of them
is not asap, e.g. Ri, we can consider R′i an asap simple
recipe such that R1 = R′1 holds in φ, and thus in ψ rely-
ing on our induction hypothesis (item 3 we have already
proved), and this allows us to conclude. Thus, we can



now assume that R1, . . . , Rn are simple and asap. In case
R1 is almost destructor-only, we conclude relying on our
hypothesis. Otherwise, we have that R1 = f(R1

1, . . . , R
k
1)

for some f ∈ Σc. We distinguish two cases.

Case 1: ` = g(t1, . . . , tn) is linear. We thus only have
to ensure that, for each 1 ≤ i ≤ n such that ti is not
a variable, Riψ↓ complies with the shape of shroot(ti)
knowing that it is the case for Riφ↓. This is actually an
easy consequence of our induction hypothesis. Note that
item 2 has already been proved, and thus we can rely on it
even if our measure has not strictly decreased.Therefore,
we are done for this case.

Case 2: ` = g(t1, . . . , tn) is not a linear term. In such
a case, we necessarily have that t1 = f(t11, . . . , t

k
1) for

some f ∈ Σc. We know that t1 is linear and contains
exactly one occurrence of the non-linear variable x. Let
j ∈ {1, . . . , k} be such that x occurs in tj1. By hypothesis
we have that:

{x} ⊆ {tj1, t2, . . . , tn} ⊆ {x} ∪ {h(x) | h ∈ Σc}

Let Rx be a recipe among {Rj1, R2, . . . , Rn} such that
the term tx among {tj1, t2, . . . , tn} associated to it is the
variable x. By hypothesis, we know that there exists u
(of sort atom) such that:

for all p such that `|p = x, we have that
g(f(R1

1φ↓, . . . , Rk1φ↓), R2φ↓, . . . , Rnφ↓)|p = u.
To conclude, it remains to show that there exists v (of
sort atom) such that:

for all p such that `|p = x, we have that
g(f(R1

1ψ↓, . . . , Rk1ψ↓), R2ψ↓, . . . , Rnψ↓)|p = v.
It is easy to see that using Rx (almost destructor-only
and asap recipe) or h(Rx) (simple and subterm asap
recipe), we can transfer the required equalities from φ
to ψ. For instance, assume that t2 = h(x), and also that
root(R2) 6= h. We know that R2 is almost destructor-only
and asap. Consider the test h(Rx) = R2. We have that
it holds in φ, and thus by hypothesis it also holds in
ψ. A similar reasoning allows us to conclude for each
occurrence of x in `, and this allows us to conclude.

We are now able to prove our main theorem regarding trace
equivalence.

Theorem 3. Let P be a simple protocol type-compliant w.r.t.
some typing system (∆0, δ0). Let Q be another simple protocol
such that P 6vt Q. There exists a trace (tr, φ) ∈ trace(P )
witnessing this non-inclusion such that Label(tr) ⊆ A for
some A ∈ dep(P ).

Proof. Thanks to Theorem 7, we know the existence of a
well-typed, cv-alien-free witness of non-inclusion which only
involves simple asap recipes. We choose one having a minimal
length. We denote D the execution graph associated to the
execution exec corresponding to this witness (tr, φ) w.r.t. P .

Relying on the fact that P and Q are simple protocols, we
distinguish the two following cases.

There does not exist ψ such that (tr, ψ) ∈ trace(Q). In such a
case, we have that tr = tr′ ·`. This last action ` is necessarily a
visible action. In case, it corresponds to an input (resp. output)
of a message (not a channel name), then we prune D w.r.t.
this single action. We denote exec′ the resulting execution,
D′ its execution graph, and (tr0, φ0) the corresponding trace
of P . Actually, by definition of pruning, we have that tr0 =
tr′0 · ` where tr′0 is the trace obtained by pruning D w.r.t. the
set of nodes N` corresponding to all the dependencies of `.
We have that tr′0 passes in P and also in Q by minimality
of the witness tr. Assume now that tr′0.` does not pass in
Q. Then, we have built a smaller witness of non inclusion
(contradiction), unless D = D′. In the latter case, let v be the
node corresponding to the action `. We are done since, thanks
to Proposition 1, we have that Label(exec|v) ⊆ A for some
A ∈ dep(Label(v)). Since D′ = D, we have that exec′ =
exec|v = exec. Moreover, by definition of dep(P ), we have
that dep(Label(v)) ⊆ dep(P ), and this allows us to conclude
in the case where D = D′.

Otherwise, we have that tr′0.` passes in Q meaning that `
is available after the execution of tr′0 and we can show that
this action is still there after the execution of tr′. Thus,
contradiction.

In case, this last action corresponds to an output of a channel
name then we have that out(c, c′′) is available in P and not
in Q, and due to the form of our processes (they are simple),
we have that (tr, φ) = (out(c, c′′), ∅) is a witness of non-
inclusion that satisfies our requirement.

There exists ψ such that (tr, ψ) ∈ trace(Q) but φ 6vs ψ. From
Lemma 20, we can consider distinguishing tests that satisfy
Definition 14. Let W ⊆ W be the set of variables involved
in such a test. In case exec|W is indeed smaller in length
than exec, then to conclude, it remains to establish that exec|W
is indeed a witness of non-inclusion. We have that exec|W is an
execution of P (since we keep all the necessary dependencies),
and since we are considering simple protocols, we know that
the corresponding trace tr′ leads to a frame φ′ such that
φ′ = φ|W. Similarly, we have that tr′ can be executed starting
from Q and this leads to a frame ψ′ such that ψ′ = ψ|W. The
witness of non-inclusion we considered is therefore still valid
on this smaller witness, and this allows us to conclude in case
exec|W 6= exec. Now, we assume that exec|W = exec, and we
show that the result holds, i.e. there exists A ∈ dep(P ) such
that Label(exec) ⊆ A. We distinguish several cases depending
on the form of the test.

1) There exists an almost destructor-only and asap recipe
R such that Rφ↓ is a (resp. atomic) message. Thanks to
Lemma 2, we have that Rφ↓ ∈ St(φ). Then, thanks to
Lemma 5, we have that Cst(R) ⊆ Cst(φ) ∪ Cst(Rφ↓),
and thus Cst(R) ⊆ Cst(φ), and since φ is cv-alien-free,
we have that R is cv-alien-free too. Thanks to Proposi-
tion 1, we know that there exists A ∈ Sout(τ) such that
Label(exec|R) ⊆ A where τ = δ0(Rφ↓). We have seen



that Rφ↓ ∈ St(φ), and since we are considernig well-
typed execution, we have that τ ∈ St(δ0(P )). Since
there exists A ∈ Sout(τ), we have that dep(τ) 6= ∅.
Moreover, we have that Sout(τ) ⊆ S+

out(τ), and thus
we deduce that A ∈ Sout(τ) implies that there exists
A′ ∈ Stest(P ) such that A ⊆ A′.

2) There exists C[x1, . . . , xn] a strict/direct substerm of a
shape shf with f ∈ Σc, and an almost destructor-only
and asap recipe R such that Rφ↓ is a message of the
form C[x1θ, . . . , xnθ]. The reasoning is similar to the
one done in the previous item. We have that there exists
A ∈ dep(P ) such that Label(exec|R) = Label(exec) ⊆
A.

3) There exist a simple recipe R and an almost destructor-
only recipe R′ such that Rφ↓ = R′φ↓ (is a message).
In addition, one recipe is asap, and the other is subterm
asap w.r.t. φ. Thanks to Lemma 2, we have that Rφ↓ =
R′φ↓ ∈ St(φ). Then, thanks to Lemma 5, and since φ is
cv-alien-free, we have that both R and R′ are cv-alien-
free. Let τ = δ0(Rφ↓). We have seen that Rφ↓ ∈ St(φ),
and since we are considernig well-typed execution, we
have that τ ∈ St(δ0(P )).
First, we assume that R is asap and R′ is only subterm
asap. Thanks to Proposition 1, we know that:
• there exists A ∈ dep(τ) such that Label(exec|R) ⊆
A; and

• there exists A′ ∈ S+
out(τ) such that

Label(exec|R′) ⊆ A′.
Therefore, we deduce that there exists A0 ∈ dep(τ) ⊗
§+out(τ) such that Label(exec|{R,R′}) ⊆ A0. We thus
have that A0 ∈ Stest(P ) and this allows us to conclude.
Now, we assume that R is subterm asap, and R′ is asap.
Thanks to Proposition 1, we know that:
• there exists A ∈ Sout(τ) such that Label(exec|R) ⊆
A; and

• there exists A′ ∈ dep+(τ) such that
Label(exec|R′) ⊆ A′.

Therefore, we deduce that there exists A0 ∈ dep+(τ)⊗
Sout(τ) such that Label(exec|{R,R′}) ⊆ A0. Actually,
we have that:

dep+(τ)⊗ Sout(τ)

=
(
dep0(τ) ∪ S+

out(τ)
)
⊗ Sout(τ)

=
(
dep0(τ)⊗ Sout(τ)

)
∪
(
S+
out(τ)⊗ Sout(τ)

)
⊆ dep(τ)⊗ S+

out(τ)

We thus have that there exists A0 ∈ Stest(P ) such that
Label(exec) = Label(exec|{R,R′}) ⊆ A0.

4) There exists a rule g(t1, . . . , tn) → r ∈ Rtest ∪ Rd,
an almost destructor-only and asap recipe R1,
and some simple asap recipes R2, . . . , Rn
such that R1φ↓, . . . , Rnφ↓ are messages and
(R1φ↓, . . . , Rnφ↓) = (t1, . . . , tn)θ for some θ.
Thanks to Lemma 2, we have that R1φ↓ ∈ St(φ).
Then, thanks to Lemma 5, and since φ is cv-alien-free,
we have that R1 is cv-alien-free. This allows us to

deduce that R2φ↓, . . . Rnφ↓ are also cv-alien-free since
those terms only involve constants occurring in R1φ↓
or in l = g(t1, . . . , tn) (left-hand side of a rewriting
rule). In this latter case, those constants are constants
from Σc and do not have an cv-alien-type by definition
of cv-alien-type. Let τ = δ0(R1φ↓). We have seen
that R1φ↓ ∈ St(φ), and since we are considering
well-typed execution, we have that τ ∈ St(δ0(P )). For
any i ∈ {2, . . . , n}, we have that δ(tiθ) = tiδ0(θ). Let
τi = tiδ0(θ) for any i ∈ {2, . . . , n}.
Thanks to Proposition 1, we know that:
• there exists A1 ∈ Sout(τ) such that

Label(exec|R1
) ⊆ A1; and

• for any i ∈ {2, . . . , n}, there exists Ai ∈ dep(τi)
such that Label(exec|Ri) ⊆ Ai.

Therefore, we deduce that there exists A ∈ Scheck(P )
such that Label(exec) = Label(exec|W) ⊆ A.

Let W be the set of all the variables occurring in the test
witnessing the non-inclusion. We have seen that there exists
A ∈ dep(P ) such that Label(exec) = Label(exec|W) ⊆ A,
and this allows us to conclude.


