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ABSTRACT Emerging applications such as connected farms, wildness monitoring, smart cities, and Factory
of the Future leverage emerging Low Power Wide Area Networks (LPWAN), allowing a good trade-off
between radio range, data rate, and energy consumption. However, only few theoretical studies of these
recent technologies are available to help network designers to optimize real field deployments or even achieve
real-time adaptation of transmission parameters. A new approach based on Marcum function is proposed in
this paper to estimate – in a fast and accurate manner – the performance in terms of Bit Error Rate of LoRa,
one of the most used LPWAN technologies. The method is proposed for Gaussian channels, over challenging
propagation environments, i.e., Ricean and Nakagami fadings. Simulation results show that our proposed
approximation reduces the approximation error about one order of magnitude compared to existing ones and
can be computed by classical software.

INDEX TERMS Accurate approximation, fading channels, Internet of Things, LoRa performance,
low-power wide area networks, Marcum function.

I. INTRODUCTION
In the last decade, the number of connected devices has
increased exponentially, giving birth to the Internet of Things
(IoT) [1] and its applications such as connected farms [2]–[5],
wildness monitoring, smart cities or Factory of the Future.
Most of these applications require transmission of data
over long distances at a reasonable energy cost. Emerg-
ing standards known as Low Power Wide Area Net-
works (LP-WAN) respect these requirements by proposing
trade-offs between transmission range, data rate, and energy
consumption [6]–[8].

Among all available candidates, LoRa (Long Range) tech-
nology [9], [10], has already become popular in many coun-
tries. LoRa communications can use ISM frequency bands
at 433 MHz, 868 MHz, or 915 MHz, with a data rate that
can reach up to 50 kbps. LoRa leverages Chirp Spread Spec-
trum (CSS) modulation with a linear variation of frequency
over the time [11], [12], which allows reduction of both
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interference and Doppler effects. This modulation can be
configured with three parameters: the bandwidth BW ,
the spreading factor SF , and the code rate CR.

A main challenge of IoT is to deal with a huge number
of nodes. The behavior of such a network, e.g. the network
congestion, the achieved quality of service, or the impact of
duty cycle of nodes on medium occupancy, is generally stud-
ied through simulators [13], [14]. Some studies focus on the
scalability [15] of IoT networks or the energy consumption of
IoT nodes [16], [17]. Amathematical tool for tuning the LoRa
parameters could therefore be very convenient for efficient
network design.

Although the LoRa technology is well explained in the
patent [9], rigorous theoretical studies of this technology are
still missing. In [18], a mathematical approach allowed to
rigorously study the modulation and demodulation processes
of LoRa, but it lacks a theoretical analysis of the Bit Error
Rate (BER). Previously in [19] and more recently in [20],
exact expressions of the BER of LoRa over several channels
models were presented, including Nakagami-m and Ricean
fading channels. As explained in [19], [21], computational
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issues remain with classical software (e.g. Matlab, Octave,
and Python) due to high values of binomial coefficients that
potentially lead to aberrant results.

To avoid this, authors of [12], [22] provided some LoRa
BER approximations based on Monte-Carlo simulations and
curve fitting for Gaussian channels. Further, the authors
in [23] combined theoretical results and Monte Carlo sim-
ulations for performance analysis of LoRa over Gaussian
channels. On the other hand, there exist very few works
considering the effect of fading channels on the perfor-
mance of LoRa, and only the authors in [21] proposed
an analytical BER computation approach for the analytical
error performance of LoRa over both additive Gaussian and
Rayleigh fading channels. A new approach to approximate
the BER of a LoRa transmission has been recently proposed
in [24] and [25], respectively, for additive Gaussian and
Rayleigh fading channels, and the analytical results are based
on the Marcum function [26], well known in communication
theory.

The main contributions of this work are:
• A thorough description of the approximation methodol-
ogy leveragingMarcum function to express theGaussian
noise impact.

• Accurate BER approximations for common fading
channel models, namely Nakagami and Ricean (both
including Rayleigh fading as a special case).

• Asymptotic BER expressions at high Signal-to-Noise
Ratio (SNR) giving insights into diversity order and
coding gain.

• Validations of the accuracy of the proposed expressions
through exhaustive simulations.

• A study of the impact of K and m fading parameters on
the SNR loss for a given target BER with respect to the
Additive White Gaussian Noise (AWGN) case.

The rest of the paper is organized as follows. Section II
summarizes the State of the Art (SoA) on LoRa performance
estimation and justifies the need for approximations. The
essence of this new approach based on Marcum function is
presented in Section III with first results on Gaussian and
Rayleigh channels. This idea is next generalized to various
channel fadings in Section IV, while simulation results high-
lighting the accuracy of the proposed approximations are
shown in Section V. Lastly, Section VI draws the conclusions
and future works.

II. RELATED WORKS ON LoRa PERFORMANCE
This section first introduces the demodulation principle and
then the theoretical BER expression of the CSS performance
in an AWGN environment, and the computation problem
induced. Due to this issue, several existing works on approx-
imation of the theoretical BER of LoRa will be presented in
a second paragraph.

A. LoRa MODULATOR AND DEMODULATOR
In LoRa, SF is defined as the logarithm in base 2 of
the number of chirps per symbol. LoRa operates with SF

from 7 to 12. LoRa uses three bandwidths: 125 kHz, 250 kHz
and 500 kHz. A LoRa symbol is therefore composed of
N = 2SF chirps covering the entire bandwidth, starting
with a series of upward (or downward) chirps from an initial
frequency, which represents a symbol. The frequency wraps
around to the minimum frequency (or maximum frequency
with down-chirp) when the maximum (minimum with down-
chirp) of the bandwidth is reached. A linear chirp signal is
usually defined by:

s(t) , A× e
j
(
2π
(
f0t+

µt2
2

)
+φ0

)
, (1)

where φ0 is the initial phase, A the amplitude, µ the chirp
rate, f0 = lBW/2SF is the starting frequency of chirp corre-
sponding to the symbol l, and φ(t) = 2π

(
f0t +

µt2
2

)
+ φ0 is

the instantaneous phase at time t . From (1) the corresponding
instantaneous frequency is given by:

f (t) =
dφ(t)
2πdt

= f0 + µt. (2)

Applying CSS to LoRa modulation, each frequency f0 in
the band represents a symbol. When reaching the maximum
value of the bandwidth, the instantaneous frequency falls
back to the minimum value of the bandwidth, and is therefore
expressed as follows:

f (t) = fmin + [(1f0 + µt) mod BW ] , (3)

where 1f0 = f0 − fmin and fmin is the minimum frequency of
the bandwidth.

With N chirps, a code word can contain SF information
bits. The duration Ts of a symbol is given by Ts = 2SF/BW .
For a given bandwidth, increasing the spreading factor by
one unit doubles the Time-on-Air (ToA) to transmit the same
amount of data, resulting in a decreased bit rate. The bit rate
is calculated by:

Rb = SF ×
BW
2SF

. (4)

The third parameter in the configuration of LoRa mod-
ulation is the code rate. LoRa can use Forward Error Cor-
rection (FEC) code for each block of four information bits.
The number of redundant bits for each block varies from
one to four, corresponding to CRs of 4/5, 4/6, 4/7 and 4/8.
Then, the bit stream is processed by an interleaver to make
FEC code more robust to burst errors. Additionally, a whiten-
ing structure can also be used to make the signal like white
noise, thus avoiding frequency selective channel penalties.

Fig. 1 illustrates the main steps of the non-coherent
demodulator:

1) Sampling the signal with the period Te = 1/BW .
2) Multiplying with a down chirp defined by c(t) ,

e−j2πµt
2/2

3) Performing the Fast Fourier Transform (FFT). The the-
oretical study in [18] showed that the FFT result is a
Dirac impulse centered on the starting frequency. Thus,
finding this frequency leads to the symbol value.
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FIGURE 1. Principle of LoRa demodulator with the main steps: sampling,
down chirping, FFT, and maximum rule decision.

4) Applying the maximum value criterion on the squared
modulus is the classical solution to estimate the desired
frequency.

When an independent and identically distributed (i.i.d.)
AWGN is considered, the noise after the FFT is also i.i.d.
AWGN, thus the wrong-detected symbol can be among the
N − 1 remaining symbols with the same probability. Con-
sequently, since the symbol error probability is the same for
each transmit symbol, the study can focus on only ones case.

B. LoRa BER THEORETICAL EXPRESSION AND ISSUES
Let l denote the transmit symbol index, and let Pl denote the
conditional probability of a right detection knowing the noise
realization. According to [19, p.217], [21], this probability
can be expressed as follows:

Pl = Fχ2

(
|
√
N +Wp[N − l]|2

σ 2
n

)N−1
, (5)

where N = 2SF is the number of chirps, and Wp[N − l] is a
zero mean complex Gaussian noise of variance σ 2

n . By using
the cumulative density function (cdf) of a χ2 random variable
with 2 degrees of freedom, i.e., Fχ2(x) = 1 − exp(− x

σ 2n
),

(5) can be written:

Pl =

(
1− exp

(
−
|
√
N +Wp[N − l]|2

σ 2
n

))N−1
. (6)

Let us define a new random variable:

Z , 2γ |
√
N +Wp[N − l]|2, (7)

where γ = 1/σ 2
n is the average SNR. It can be oberved

from (7) that Z follows a non-central χ2 distribution
with 2 degrees of freedom and the noncentrality parameter
λ = 2 Nγ . Its probability density function (pdf) is expressed
as:

fZ (x) =
1
2
exp

(
−
x + λ
2

)
I0
(√
λx
)
, (8)

where I0(.) is the modified Bessel function of the second kind
of order 0. Lastly, the average Symbol Error Rate (SER) is
obtained as follows:

SER(γ ) =
∫
+∞

0

(
1−

(
1− e−z/2

)N−1)
fZ (z)dz (9)

=
1
N

N−1∑
k=1

Ck+1
N (−1)k+1

∫
+∞

0
e−

kz
2 fZ (z)dz (10)

=
1
N

N−1∑
k=1

Ck+1
N (−1)k+1e−N ·γ

k
(k+1) , (11)

where (9) is obtained by marginalization of (6) over the pdf
of (8), (10) is derived by using polynomial expansion of
(1−e−z/2)N−1 in (9), and (11) is found by using the character-
istic function of a non-central χ2 distribution in (10). Further,
in (10) and (11), Ck+1

N = N !/((k + 1)!(N − k − 1)!) is the
binomial coefficient.

C. EXISTING APPROXIMATIONS OF THE BER
A relation between BER and SER of LoRa is given
by [19, p.218]:

BER(γ ) =
2SF−1

2SF − 1
SER(γ ). (12)

An approximate BER of LoRa over Gaussian channel is given
as [22, Eq.(3)]:

BER(γ ) ≈ Q
(
log12(SF)
√
2

γ

)
, (13)

where Q(x) the Gaussian q-function or the tail distribution
of the standard normal distribution. Another study in [12]
provided the following approximate expression of the BER
of LoRa over Gaussian channel that relies on numerical
fitting [12, Eq.(21)]:

BER(γ ) ≈ 0.5 · Q
(
1.28

√
SF .γ − 1.28

√
SF + 0.4

)
. (14)

Recently, the authors in [21] proposed two new accurate esti-
mations of the BER for LoRa communications in AWGN and
Rayleigh fading channels. The principle is to approximate a
Ricean distribution by a Gaussian one, and the approximate
BER expression for AWGN channel is [21, Eq.(21)]:

BER(γ )≈0.5 · Q


√
N · γ −

(
H2
N−1 −

π2

12

)1/4
√
HN−1 −

√
H2
N−1 −

π2

12 + 0.5

 , (15)

where Hk is the k th harmonic number which can be approx-
imated by log(k) + 1

2k + 0.57722. Another approximation
is obtained from the former with some simplifications and
approximations [21, Eq.(23)]:

BER(γ )≈0.5·Q
(√

2N · γ−
√
1.386·SF + 1.154

)
. (16)

In [21], the authors also extended the result to the Rayleigh
fading [21, Eq.(33)]:

BER ≈ 0.5 ·
(
Q
(
−
√
2HN−1

)
−

√
Nγ

Nγ+1
e
HN−1
Nγ+1Q

(
−

√
2HN−1

Nγ
Nγ+1

))
. (17)

III. MARCUM-FUNCTION BASED APPROXIMATION FOR
AWGN CHANNEL
In order to find a computable approximation of the SER for
various fading channels, the first step is to deal with AWGN
channel, approximating Pl instead of the pdf of the random
variable Z involved in the SER derivation.
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A. APPROXIMATION OF Pl
As discussed above, the previous works focused on approxi-
mating Chi-squared or Ricean distributions with a Gaussian
one. The novelty of the present work is to find an approx-
imation of g(z) = 1 −

(
1− e−z/2

)N−1
while keeping the

non-central Chi-squared distribution unaltered. When g(z) is
expanded as a sum, the term e−kz/2 is less significant for large
values of k and z. Thus, the sum can be limited to ε terms. It is
equivalent to find the approximation based on the Taylor’s
series of order ε for high values of z. Consequently, the first
main approximation is:

g(z) ≈ g̃(z) =
ε∑

k=1

(−1)k+1Ck
N−1e

−kz/2. (18)

Fig. 2 shows the comparison with the exact values of g(z)
and different approximation orders, ε = 1 to 7. The good
point is that binomial coefficients are limited to low values
of k , which solves one of the computational issue. Since
N is high, especially for SF = 12, the binomial coefficient
Ck
N−1 will suffer from loss of precision, typically when k is

superior to 5 for SF = 12 when using Matlab. The draw-
back is that, although the approximation is tight for large
values of z, the divergence is problematic: as z goes to zero,
the approximation tends toward infinity for odd values of ε
and toward zero for even orders. Nevertheless, a simple and
efficient approximation based on a piecewise definition is
given by:

g(z) '

{
1 if z ≤ zc
g̃(z) if z > zc,

(19)

FIGURE 2. Comparison of the exact function g(z) and approximations
with different orders, i.e., ε varying from 1 to 7 and SF = 7,12. Values
of zc are plotted with cross marker.

where zc is a threshold depending on the values of ε and SF
that will be discussed in the next paragraph. The different
values of zc are available in Fig. 2 and a first quick observation
is that the piecewise approximation should be accurate for
low values of ε. The next step is to compute the expectation

of g(z) by using the approximation (19), leading to the fol-
lowing result (proof in appendix A):

SER(γ ) = 1+
1
N

ε+1∑
k=1

Ck
N (−1)

k

× e−
N ·γ (k−1)

k Q1

(√
2N
k
γ ,
√
kzc

)
, (20)

where Q1(·, ·) denotes the Marcum function of order 1
defined by:

Q1(a, b) ,
∫
∞

b
xe−

x2+a2
2 I0(ax)dx. (21)

B. HOW TO FIND THE THRESHOLD zc?
All parameters are known for computing (20) except the
value of zc. The problem is not trivial and let us propose a
solution for low values of the order ε. Note that the results
in the next section and the above remark confirm that the
order does not need to be greater than 7. First, by applying
the variable change X = e−

z
2 in (18), solving g̃(z) = 1 is

equivalent to find the roots of a ε-order polynomial. Since
the approximation with even values of ε cannot reach the
unity value, as shown in Fig. 2, the study is limited to odd
value cases. The only known assumption is that zc is the
unique positive real root. However, we are able to obtain
the exact solutions for ε = 1, by solving the first order
polynomial, and for ε = 3, by using a symbolic computation
software. By using the notation zc(ε), those exact solutions
are expressed as:

zc(1) = 2 log(N − 1), (22)

and

zc(3) = −2 log
(
τ −

N − 4
(N − 2)(N − 3)2

1
τ
+

1
N − 3

)
. (23)

where τ =

(
(N−4)(N−5)

(N−1)(N−2)(N−3)3
+

√
2(N−4)

(N−1)(N−2)1.5(N−3)1.5

)1
3
,

zc(ε) = −2 log (Xc(ε)) and Xc(ε) is the unique real solution
of

ε∑
k=1

(−1)k+1Ck
N−1X

k
= 1. (24)

As two exact roots are available, we propose a polynomial
function of order 1 that gives the exact values of zc for
ε = 1, 3 and an approximation for higher values:

zc(ε) = −2 log (α1ε + α0) , (25)

α0 = (3e−zc(1)/2 − e−zc(3)/2)/2, (26)

α1 = (e−zc(3)/2 − e−zc(1)/2)/2. (27)

Fig. 3 shows the comparison between a numerical solving
of zc and the proposed approximation. We can observe from
the figure that the approximation is still tight to the numerical
value for ε = 5, 7. Note that the proposed approximation
is not suitable for higher values of ε. Concerning the even
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FIGURE 3. Approximation of the threshold zc : numerical solutions are
plotted with crosses and the approximation with circles.

cases, we propose to define zc as the value maximizing g̃(z),
i.e., zc is the solution to the equation ∂ g̃(z)

∂z = 0, leading also
to a polynomial root. However, polynomial coefficients are
similar but different, and the same study for odd cases can
be applied. A numerical solving of ∂ g̃(z)

∂z = 0 and a graphical
comparison from Fig. 2 shows that result for even and odd
cases are very close. For example, the cases ε = 1 and
ε = 2 lead to N −1 and N −2, respectively. For conciseness,
we propose a heuristic approximation zc(ε) = zc(ε − 1)
when ε is even, as shown in Fig. 3. When N is larger than 1,
which holds for all LoRa SF , the following simplifications
are available:

zc(1) ' 2 log(N ) = 2 log(2)SF, (28)

zc(3) ' 2 log
(
N
a

)
= zc(1)− 2 log(a), (29)

zc(ε) ' zc(1)− 2 log((
(3− a)

2
+

(a− 1)
2

ε)), (30)

with a = (1+
√
2)1/3 − 1/(1+

√
2)1/3 + 1.

IV. SER COMPUTATION OVER FADING CHANNELS
The second challenge of our work is to take into consideration
the effect of the channel. To this aim, we extend the previous
result for AWGN to Ricean, Nakagami, and Rayleigh fading
channels. The proposed results represent fast and accurate
approximations, computable with classical programming lan-
guages, such as Matlab, Python, or C.

A. PROBLEM STATEMENT
Let us assume now a fading gain associated with an AWGN.
The received signal is expressed as:

r(t) = hs(t)+ w(t), (31)

where h denotes the channel fading coefficient, s(t) is the
LoRa chirp, and w(t) is an additive Gaussian noise. The term
h is an iid complex random variable and it is assumed that the
fading channel is block fading during the LoRa transmission,

i.e., h is constant for a full LoRa symbol and will change for
the next one. After the demodulation, by using the linearity
property of the Fourier transform, the obtained signal is:

Rp[k] = h
√
Nδ(k + l − N )+Wp[k]. (32)

Thus, the probability Pl given the value h that the right
symbol is decoded is expressed as:

Pl = Pr
[
∀k 6= N-l : |Rp[k]|2 < |Rp[N − l]|2

]
=

N−1∏
k=0

k 6=N−l

Pr
[
|Wp[k]|2 < |h

√
N +Wp[N − l]|2

]

= Fχ2
2

(
|h
√
N +Wp[N − l]|2

σ 2
n

)N−1
. (33)

As described above for the Gaussian case, we obtain

Pl =

(
1− exp

(
−
|h
√
N +Wp[N − l]|2

σ 2
n

))N−1
. (34)

Let us denote the variable Z as:

Z , γ · |h
√
N +Wp[N − l]|2. (35)

The random variable Z follows a non-central chi-squared
distribution with 2 degrees of freedom with the non-central
parameter λ = γ · 2|h|2 N . The link between SER with a
fading gain and AWGN case from (20) is then SER(|h|2γ ). In
order to obtain the SER, the distribution of hmust be defined
and the average computed as follows;

SERh(γ ) =
∫
+∞

0
SER(xγ )f|h|2 (x)dx, (36)

where f|h|2 (x) is the pdf of the squared modulus of h. The
previous result based on Marcum function will be used and
the difficulty is to deal with it in the integral:

SERh(γ ) = 1+
1
N

ε+1∑
k=1

Ck
N (−1)

k

×

∫
+∞

0
e−

Nγ x(k−1)
k Q1

(√
2N
k
γ x,

√
kzc

)
× f|h|2 (x)dx. (37)

B. APPLICATION TO DIFFERENT FADING MODELS
Most fading channels can be modeled by Nakagami and
Ricean distributions (Rayleigh distribution is a special case
of both). This section aims at presenting SER approximations
for these channels, using the method described in previous
section. Only theorems are presented hereafter, all mathemat-
ical derivations can be found in appendix B.
Theorem 1: • The SER for Nakagami fading with the
real m ≥ 1/2, is approximated by (38), as shown
at the bottom of the next page, where γ = Nγ /m,
1F1(a; b; x) is the confluent hyper geometric function,
and 82(a, b; c; x, y) is the second Humbert function.
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• The SER for a Ricean fading with the positive real K
is approximated by (39), as shown at the bottom of the
page, where γ = Nγ /(1+ K ).

• The SER for a Rayleigh fading is approximated by (40),
as shown at the bottom of the page, where γ = Nγ .
Proof: see Appendix B

In order to reduce the complexity of the computation we
propose an asymptotic approximation for high values of SNR
from results in Theorem 1. This approach also gives a direct
insight into diversity order, as will be shown in Section V.
Theorem 2: • The SER under a Nakagami fading with
the parameter m is approximated at high SNR by:

SERNaka(γ ) '
ANaka

γm
, (41)

where γ = Nγ /m and ANaka is defined in (42), as
shown at the bottom of the next page.

• The SER under a Ricean fading with the parameter K is
approximated at high SNR by:

SERRice(γ ) '
ARice

γ
, (43)

where γ = Nγ /(1+ K ) and ARice is defined as:

ARice = e−K
(
zc
2
+

ε+1∑
k=2

(−1)k
Ck
N

N
k

k − 1
e−

zc
2 (k−1)

)
.

(44)

• The SER under a Rayleigh fading is approximated at
high SNR by:

SERRay(γ ) '
1
γ
ARay, (45)

where γ = Nγ and ARay is defined as

ARay=

(
zc
2
+

ε+1∑
k=2

(−1)k
Ck
N

N
k

k − 1
e−

zc
2 (k−1)

)
. (46)

Proof: see Appendix C

One should note that those expressions are easy to compute
and the binomial coefficient is not an issue thanks to the low
values of ε (between 1 and 7). It will be shown in Section V
that those approximations are accurate at high SNR whatever
the LoRa configuration and channel parameters.

V. NUMERICAL RESULTS
This section presents the results obtained with the proposed
approximations, all tested with both Matlab/Octave and
Python functions. The first subsection compares our solution
with the state of the art for available channels, i.e., AWGN
and Rayleigh fading to highlight the accuracy gain. The sec-
ond subsection validates the Nakagami and Ricean cases
thanks to simulations, and the high-SNR approximation is
also plotted. Finally we study the impact of fading channel
parameters m and K on the BER.

A. BER OVER AWGN AND RAYLEIGH FADING
Fig. 4 compares the proposed approximation (20) with the
best of the SoA [21, Eqs. (21) and (23)] and the theoretical
expression of the BER in AWGN channel (9), computed
numerically by using trapezoidal method on the integral.
Even though this method can be used in the case of AWGN
channel, it is not recommended for fading channels. Indeed,
for fading channels we need to compute two improper inte-
grals, which make the computation far more complex and less
accurate. As we can see, the proposed approximation is valid,
and is more accurate than [21, Eq. (23)].

To get a better idea of the gain on the accuracy, Fig. 5 com-
pares the approximation to theoretical BER ratio, defined by
R = SERapprox

SERtheo
, where SERapprox is the considered approxima-

tion for AWGN channel, and SERtheo is the theoretical BER,
computed by using (9) by numerically computing the integral.
It can be observed from the figure that the accuracy of the
proposed approximation is better than the existing ones for
all SNR values considered in the figure. It can be seen from
Fig. 5 that for existing approximations a divergence occurs,

SERNaka(γ ) = 1+
ε+1∑
k=1

Ck
N

N
(−1)k ×

((
γ
k − 1
k
+ 1

)−m
+ (γ + 1)−m e−

zck
2

(
1F1

(
m; 2;

zc
2

γ

γ + 1

)
−82

(
1,m; 1;

zck
2
,
zc
2

γ

γ + 1

)))
(38)

SERRice(γ ) = 1+
ε+1∑
k=1

Ck
N

N
(−1)k

(
γ
k − 1
k
+ 1

)−1
e
−K

γ k−1k
γ k−1k +1Q1

√2K
k

γ

(γ k−1
k + 1)(γ + 1)

,

√
kzc
γ k−1

k + 1

γ + 1

 (39)

SERRay(γ ) = 1+
ε+1∑
k=1

Ck
N

N
(−1)k

(
γ
k − 1
k
+ 1

)−1
e−

kzc(γ (k−1)/k+1)
2(γ+1) (40)
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FIGURE 4. Comparison of (20) with [21, Eq. (21)], [21, Eq. (23)] and the
theorical expression, computed numerically by using trapezoidal method
on the integral of (9) for SF ∈ {7,12}, over AWGN channel.

FIGURE 5. Comparison of the approximation to theoretical SER ratio of
the proposed approximation for AWGN channel with the best of the SoA.
The theoretical SER was computed by using trapezoidal method on the
integral of (9).

for lower SNR when SF increases, but the robustness of the
proposed approximation is better than SoA. For example,
with SF = 12, the gain is about 5 dB.

Fig. 6 compares the proposed approximation for a Rayleigh
fading channel with [21, Eq. (33)], Monte-Carlo simulations
and the high-SNR approximations for SF ∈ {7, 12}. The pro-
posed approximation is validated by simulations in the figure.
Moreover, it can be seen from the figure that the high-SNR
case with ε = 1 provides a good approximation with a very
simple expression. For this case, the approximation has the
same diversity order, i.e., the high SNR expression in (45)
shows a diversity of 1.

FIGURE 6. Comparison of (40) with [21, Eq.(33)] and Monte-Carlo
simulations for SF ∈ {7,12}, over Rayleigh fading channel.

FIGURE 7. Comparison of (38) with Monte-Carlo simulations for SF = 12,
over Nakagami fading channel with m ∈ {0.5,0.6,0.75,1,1.5,3}.

B. BER OVER NAKAGAMI AND RICEAN FADINGS
The proposed expression (38) is given for an arbitrary real
value of m and the main computation difficulties are about
the confluent hypergeometric function and the second Hum-
bert function. However, most of classical software languages
provide libraries that include those functions. Moreover,
the authors in [27] offered a computation solution to this
problem. Fig. 7 shows the BER of LoRa by using the pro-
posed approximation and simulations for different values of
m (0.5, 0.6, 0.75, 1, 1.5, 3). It can be seen from the fig-
ure that the simulations fit well with the derived expression
for Nakagami fading channel. Further, it can be seen from
the figure that the proposed high SNR approximation accu-
rately indicates a diversity order of m. Fig. 8 compares the

ANaka =

ε+1∑
k=2

Ck
N

N
(−1)k

(
k

k − 1

)m
+ 1F1

(
m; 2;

zc
2

) ε+1∑
k=1

Ck
N

N
(−1)ke−

zc
2 k −

ε+1∑
k=1

Ck
N

N
(−1)ke−

zc
2 k82

(
1,m; 1;

zck
2
,
zc
2

)
(42)
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FIGURE 8. Comparison of (39) with Monte-Carlo simulations for SF = 12,
over Ricean fading channel with K ∈ {0,4,7,10,100}.

FIGURE 9. Minimum required SNR in dB for a targeted BER of 10−4,
under various Ricean or Nakagami fading channels.

proposed approximation (39) and the high SNR approxima-
tion (43) with Monte-Carlo simulations for different values
of K (0, 4, 7, 10, 100) for SF = 12. As it can be seen on the
figure, (39) fits well with the Monte-Carlo simulations. Note
that for K = 0, Rayleigh fading is observed and for K →∞,
it results into AWGN channel. Consequently, the AWGN and
Rayleigh cases are lower and upper bounds, respectively, and
the BER has therefore two behaviors: an AWGN-like at low
SNR and a Rayleigh one at high SNR. It explains why the
high SNR approximation gives a diversity order equal to 1 and
the low accuracy of the high SNR approximation (43) when
K increases.

C. USECASE: REQUIRED SNR FOR A GIVEN QUALITY OF
SERVICE
The quality of service and SNR are linked and the idea of this
usecase is to obtain the required SNR for a targeted quality
of service over various fading channels. Fig. 9 presents the
needed SNR in dB to achieve a BER of 10−4 in a Nakagami or

a Ricean fading channel. The SNR was found with a straight-
forward numerical search by using (38) and (39) with ε = 3.
As we can see on this figure, independently of the channel
configuration, increasing the SF enhances the performance,
i.e the required SNR is decreasing. The curves also highlight
the impact of the channel parameters K and m.

VI. CONCLUSION
While LoRa standard is now well known and defined in
the patent, theoretical studies about performance are not so
simple when real propagation environment is considered.
Some works are available in the literature but the results are
not tractable and cannot be computed with software such as
Matlab, Octave or Python. In this paper, we have introduced a
new approximation based onMarcum function for an AWGN
channel, and we have derived Bit Error Probabilities of LoRa
for various fading channels, namely Rayleigh, Ricean or
Nakagami. The obtained expressions have been validated by
simulations, and comparisons with existing solutions have
proved that the proposed solution is more accurate, while
being computable on Matlab, Octave and Python. These
expressions are very useful to obtain performance estimation
of LoRa communications, e.g. varying the spreading factor,
over different fading channels. This fast and accurate perfor-
mance estimation could be associated with network simula-
tors to help network designers before deployment. We have
therefore proposed a usecase corresponding to the required
SNR for a desired QoS as a function of key-parameters of the
channel fading. A next step of this work could be the deriva-
tion of the performance in terms of BER for non-Gaussian
noises such as α-stable, generalized Gaussian or Middleton
noises and then include fading channels.

APPENDIX A
PROOF OF THE Marcum−Q FUNCTION BASED
APPROXIMATION FOR AWGN CHANNEL (18)
To find the result (20), we need to compute the expectation
of the approximation of g(z) (19) as follows:

SER(γ ) =
∫ zc

0
fZ (z)dz

+

∫
+∞

zc

(
1−

ε∑
k=0

Ck
N−1(−1)

ke−kz/2
)
fZ (z)dz

= 1+
ε+1∑
k=1

Ck−1
N−1(−1)

k

×

∫
+∞

zc
e−

(k−1)z
2

1
2
e−

z+λ
2 I0(
√
λz)dz

= 1+
ε+1∑
k=1

Ck−1
N−1

(−1)k

2

∫
+∞

zc
e−

zk+λ
2 I0(
√
λz)dz.

(47)
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The following variable change x =
√
zk gives:

SER(γ ) = 1+
ε+1∑
k=1

Ck−1
N−1

(−1)k

k

×

∫
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zc
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(
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)
xdx

= 1+
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k=1

Ck
N
(−1)k

N

×

∫
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x2+ λk −
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k +λ
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(
x

√
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)
xdx

= 1+
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k=1

Ck
N
(−1)k

N
e−

(k+1)λ
2k Q1

(√
λ

k
,
√
kzc

)
. (48)

And by replacing λ by his value we get the wanted result.

APPENDIX B
PROOF OF THEOREM 1
A. NAKAGAMI FADING
The Nakagami fading is defined with a single parameter m
corresponding to the available diversity, which is a real value
superior to 0.5. The pdf of the fading is given by [28]:

f|h|2 (x) =
mm

0(m)
xm−1e−mx , (49)

where 0(x) is the gamma function. Reusing the expression of
f|h|2 (x) in (37), we have to deal with the expression:

SERNaka(γ )

= 1+
mm

0(m)

ε+1∑
k=1

Ck
N (−1)

k

×

∫
∞

0
e
−

(
N ·γ (k−1)

k +m
)
x
Q1

(√
2N
k
xγ ,

√
kzc

)
xm−1dx.

(50)

This integral form including the Marcum function and an
exponential was studied in previous works and [29] gives
some solutions of the integral defined by:

F(k, l, a, b, p) =
∫
∞

0
e−pxQl

(
a
√
x, b

)
xk−1dx. (51)

Then, applying this result to our case, i.e., when k is the real
Nakagami parameter and l is equal to 1, the solution is given
by:

F(m, 1, a, b, p)

=
0(m)
pm
+

2m0(m)e−
b2
2

p̃

×

(
1F1

(
m; 2;

a2b2

2p̃

)
−82

(
1,m, 1;
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2
,
a2b2

2p̃

))
.

(52)

with the following parameters:

a =

√
2N
k
γ , b =

√
kzc, p = Nγ

k − 1
k
+ m, p̃ = a2 + 2p.

(53)

Combining this result with (50),

SERNaka(γ )

= 1+ mm
ε+1∑
k=1

Ck
N

N
(−1)k

1
pm
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2me−
b2
2
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)
−82
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2
,
a2b2

2p̃

))
.

(54)

The last step is to replace the parameters a, b, p, and p̃, and
simplify to obtain (38).

B. RICEAN FADING
The Ricean fading considers line of sight and multipaths
of the main signal, and is defined by the parameter K
representing the power ratio of those two parts [28]. The
distribution of |h/σ |2 follows a noncentral chi-squared law
with 2 degrees of freedom, thus pdf of |h|2 is expressed as
follows:

f|h|2 (x) = (1+ K )e−K e−(1+K )xI0
(
2
√
K (1+ K )x

)
, (55)

with I0(.) the modified Bessel function of the second kind of
order 0. The expression of the average SER over a Ricean
fading is given by:

SERRice(γ )

= 1+
(1+ K )e−K

N
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k=1

Ck
N (−1)
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×

∫
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×Q1
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√
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I0(2

√
K (K + 1)x)dx. (56)

Previous interesting results can be found in [30] about
integrals involving Marcum and Modified Bessel func-
tions. The authors defined the function In(α, β, c, p, µ1, µ2)
as [30, eq.(1)]:

In(a, b, c, p, µ1, µ2)

=

∫
+∞

0
e−ptQµ1 (a

√
t, b)t

µ2−1
2 Iµ2−1(c

√
t)dt. (57)

The expression of SERRice can be expressed as:

SERRice(γ ) = 1+
(1+ K )e−K

N

×

ε+1∑
k=1

Ck
N (−1)

k In (a, b, c, p, 1, 1) , (58)
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with the following parameters:

a =

√
2N
k
γ , b =

√
kzc, p = Nγ

k − 1
k
+ (1+ κ), (59)

c = 2
√
κ(κ + 1). (60)

The special case µ1 = µ2 = 1 leads to some simplifications
and thanks to [30, eq.(22)]:

In(a, b, c, p, 1, 1)

=
1
p
e
c2
4pQ1

(
ac√

2p(2p+ a2)
, b

√
2p

2p+ a2

)
. (61)

Replacing the expressions of a, b, c, and p defined just above
leads to the solution.

C. RAYLEIGH FADING
The Rayleigh fading is equivalent to a Nakagami special case
with m = 1, therefore from (38) we get:

SERRay(γ ) = 1+
1
N

ε+1∑
k=1

Ck
N (−1)

k

×F
(
1, 1,

√
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k
γ ,
√
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k
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)
,

(62)

The expression of F(k, l, a, b, p) is available for k = 1 and
l = 1 [29, eq.(22)]:

F(1, 1, a, b, p) =
e
−

pb2

a2+2p

p
. (63)

The last step is to replace expressions of the parameters and
the final equation is achieved.

APPENDIX C
PROOF OF THEOREM 2: HIGH-SNR SER APPROXIMATION
A. NAKAGAMI FADING
From (38), replacing γ /(γ + 1) by 1 and reorganizing the
sums leads to the wanted result.

B. RICEAN FADING
Considering the result (39) and applying γ � 1, we obtain
by separating the term where k = 1:

SERRice(γ ) ' 1− Q1

(
√
2K ,

√
zc
γ

)
+

ε+1∑
k=2
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)
, (64)

As Q1(0, b) = e−
b2
2 and for small values of b:

Q1(a, b) ' 1− e−
a2
2

(
1− e−

b2

2

)
(65)

' 1− e−
a2
2
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2
, (66)

the SER can be approximated by:

SERRay(γ ) ' e−K e−
zc
2γ

+

ε+1∑
k=2

Ck
N

N
(−1)k

(
γ
k − 1
k

)−1
e−K e−

zc
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(67)

C. RAYLEIGH FADING
The Rayleigh fading is just a special case of Ricean one
with K = 0.
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