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Abstract

Let W be a string of length n over an alphabet Σ, k be a positive integer, and S be a set
of length-k substrings of W . The ETFS problem asks us to construct a string XED such that:
(i) no string of S occurs in XED; (ii) the order of all other length-k substrings over Σ is the
same in W and in XED; and (iii) XED has minimal edit distance to W . When W represents an
individual’s data and S represents a set of confidential patterns, the ETFS problem asks for
transforming W to preserve its privacy and its utility [Bernardini et al., ECML PKDD 2019].

ETFS can be solved in O(n2k) time [Bernardini et al., CPM 2020]. The same paper shows
that ETFS cannot be solved in O(n2−δ) time, for any δ > 0, unless the Strong Exponential
Time Hypothesis (SETH) is false. Our main results can be summarized as follows:

• An O(n2 log2 k)-time algorithm to solve ETFS.

• An O(n2 log2 n)-time algorithm to solve AETFS, a generalization of ETFS in which the
elements of S can have arbitrary lengths.

Our algorithms are thus optimal up to polylogarithmic factors, unless SETH fails. Let us also
stress that our algorithms work under edit distance with arbitrary weights at no extra cost.

In order to arrive at these results, we develop new techniques for computing a variant of the
standard dynamic programming (DP) table for edit distance. In particular, we simulate the DP
table computation using a directed acyclic graph (DAG) in which every node is assigned to a
smaller DP table. We then focus on redundancy in these DP tables and exploit a tabulation
technique according to dyadic intervals to obtain an optimal alignment in Õ(n2) total time5.
As a bonus, we show how to modify some known techniques, which speed up the standard edit
distance computation, to be applied to our problems. Beyond string sanitization, our techniques
may inspire solutions to other problems related to regular expressions or context-free grammars.

∗Supported by the JSPS KAKENHI Grant Number JP20J11983.
†Supported by the Netherlands Organisation for Scientific Research (NWO) through Gravitation-grant

NETWORKS-024.002.003.
‡Supported by the Netherlands Organisation for Scientific Research (NWO) through Gravitation-grant

NETWORKS-024.002.003.
5The notation Õ(f) denotes O(f · polylog(f)).
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1 Introduction

Let us start with an example to ensure that the reader is familiar with the basic motivation behind
the computational problem investigated here. Consider a sequence W of items representing a user’s
on-line purchasing history. Further consider a fragment (or a subsequence) of W denoting that the
user has first purchased unscented lotions and zinc/magnesium supplements and then unscented
soaps and cotton balls in extra-large bags. By having access to W and to the respective domain
knowledge, one can infer that the user is probably pregnant and close to the delivery date.

Data sanitization, also known as knowledge hiding, is a privacy-preserving data mining process
aiming to prevent the mining of confidential knowledge from published datasets; it has been an
active area of research for the past 25 years [14, 34, 36, 19, 37, 20, 1, 2, 18, 21, 30, 10, 7]. Informally,
it is the process of disguising (hiding) confidential information in a given dataset. This process
typically incurs some data utility loss that should be minimized. Thus, naturally, privacy constraints
and utility objective functions lead to the formulation of combinatorial optimization problems.
From a fundamental perspective, it is thus relevant to be able to establish some formal guarantees.

A string W is a sequence of letters over some alphabet Σ. Individuals’ data, in domains ranging
from web analytics to transportation and bioinformatics, are typically represented by strings. For
example, when Σ is a set of items, W can represent a user’s purchasing history [5]; when Σ is a
set of locations, W can represent a user’s location profile [38]; and when Σ is the DNA alphabet,
W can represent a patient’s genome sequence [26]. Such strings commonly fuel up a gamut of
applications; in particular, frequent pattern mining applications [4]. For example, frequent pattern
mining from location history data facilitates route planning [13]; frequent pattern mining from
market-basket data facilitates business decision making [5]; frequent pattern mining from genome
sequences facilitates clinical diagnostics [26]. To support these applications in a privacy-preserving
manner, individual sequences are often being disseminated after they have been sanitized.

Towards this end, Bernardini et al. have recently formalized the following string sanitization
problem under edit distance [8]. Let W be a string of length n over an alphabet Σ, k be a positive
integer, and S be a set of length-k substrings of W . Set S is conceptually seen as an antidictionary:
a set of sensitive patterns modelling private or confidential information. The ETFS problem (Edit
distance, Total order, Frequency, Sanitization) asks us to construct a string XED such that: (i) no
string of S occurs in XED; (ii) the order of all other length-k substrings over Σ is the same in W
and in XED; and (iii) XED has minimal edit distance to W . In order to obtain a feasible solution
string, we may need to extend Σ to Σ# = Σ t {#}, which includes a special letter # /∈ Σ.

Example 1. Let W = ecabaaaaabbbadf over alphabet Σ = {a, b, c, d, e, f} be the input string.
Further let k = 3 and the set of sensitive patterns be S = {aba, baa, aaa, aab, bba}. Consider the
following three feasible (sanitized) strings: XTR = ecab#abb#bbb#badf, XMIN = ecabbb#badf and
XED = ecab#aa#abbb#badf. All three strings contain no sensitive pattern and preserve the total
order and thus the frequency of all non-sensitive length-3 patterns of W : XTR is the trivial solution
of interleaving the non-sensitive length-3 patterns of W with #; XMIN is the shortest possible such
string; and XED is a string closest to W in terms of edit distance.

A simple O(n2k|Σ|)-time solution [8] to ETFS can be obtained via employing approximate
regular expression matching. Consider the regular expression R that encodes all feasible solution
strings. The size of R is O(nk|Σ|). By aligning W and R using the standard quadratic-time
algorithm [32], we obtain an optimal solution XED in O(n2k|Σ|) time for ETFS. Bernardini et
al. showed that this can be improved to O(n2k) time [9]. Let us informally describe their algorithm.
(A formal description of their algorithm follows in the preliminaries section.) We use a dynamic
programming (DP) table similar to the standard edit distance algorithm. We write the letters of
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the input string W on the top of the first row. Since we do not know the exact form of the output
string XED, we write the non-sensitive length-k patterns to the left of the first column interleaved
by special # letters. We then proceed to fill this table using recursive formulae. The formulae
are more involved than the edit distance ones to account for the possibility to merge consecutive
non-sensitive patterns (e.g., eca and cab are merged to ecab in Example 1) and to expand the #’s
into longer gadgets that may contain up to k − 1 letters from Σ (e.g., #aa# in Example 1). Once
the DP table is filled, we construct an XED by tracing back an optimal alignment.

Bernardini et al. also showed, via a reduction from the weighted edit distance problem [11],
that ETFS cannot be solved in O(n2−δ) time, for any δ > 0, unless the strong exponential time
hypothesis (SETH) [22, 23] is false. We were thus also motivated to match this lower bound.

Our Results and Techniques Our first main result is the following.

Theorem 1. The ETFS problem can be solved in O(n2 log2 k) time.

We also consider a generalized version of ETFS, which we denote by AETFS (Arbitrary
lengths, Edit distance, Total order, Frequency, Sanitization). The only difference in AETFS with
respect to ETFS is that S can contain elements (sensitive patterns) of arbitrary lengths. This
generalization is evidently more useful as it drops the restriction of fixed-length sensitive patterns;
it also turns out to be algorithmically much more challenging. In both ETFS and AETFS, we
make the standard assumption that substrings of W are represented as intervals over [0, n−1], and
thus each element in S has an O(1)-sized representation. We further assume that S satisfies the
properties of closure and minimality, which in turn ensure that S has an O(n)-sized representation.

Example 2. Consider the same input string W = ecabaaaaabbbadf as in Example 1. Fur-
ther let k = 3 and the set of sensitive patterns be S = {aba, aa, abbba}. Then, string YED =
ecab#abb#bbbadf is a feasible string and is a closest to W in terms of edit distance. Notice that,
we cannot merge all of the three consecutive non-sensitive patterns abb, bbb, and bba into one
since it will result in an occurrence of the sensitive pattern abbba; we thus rather create abb#bbba.

Our second main result is the following.

Theorem 2. The AETFS problem can be solved in O(n2 log2 n) time.

Our algorithms are thus optimal up to polylogarithmic factors, unless SETH fails. Let us also
stress that our algorithms work under edit distance with arbitrary weights at no extra cost.

Let us describe the main ideas behind the new techniques we develop. As in Example 2, a
sensitive pattern of length greater than k might be generated by merging multiple non-sensitive
patterns. In AETFS, we have to consider avoiding such invalid merge operations. If we enumerate
all valid combinations of merging non-sensitive patterns, and run the DP for ETFS for all the
cases, then we can obtain an optimal solution to AETFS. Our main idea for reducing the time
complexity is to carefully maintain a directed acyclic graph (DAG) for representing all such valid
combinations. We first construct the DAG, and then plug a small DP table into each node of the
DAG. This technique gives us an O(n3)-time solution to AETFS. To achieve Õ(n2) time, we focus
on redundancy in the DP tables. When the size of the DP tables is large, there must be multiple
sub-tables corresponding to the same pair of strings. Before propagating, we precompute lookup
table structures of size O(n2 log2 n) according to dyadic intervals on [0, n − 1]. To this end, we
modify the data structure proposed in [12]. Then, we decompose the DP tables into sub-tables
according to these dyadic intervals. We compute only boundaries of such sub-tables using the
precomputed lookup table structures, and thus, we obtain an optimal alignment for AETFS in
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O(n2 log2 n) total time. By applying the same technique to ETFS, we obtain an O(n2 log2 k)-time
solution, which improves the state of the art by a factor of k/ log2 k [9]. As a bonus, we show how
to (non-trivially) modify the Four Russians [6] and the LZ78-factorization [39] techniques, which
speed up the standard edit distance computation [31, 15], to be applied to ETFS and AETFS.

In a nutshell, our main technical contribution is that we manage to align a string of length n and
a specific regular expression of size Ω(nk|Σ|) in Õ(n2) time. We can also view the solution spaces of
ETFS and AETFS as context-free languages. The main idea of our AETFS algorithm is to first
preprocess a set of non-terminals N , such that we can later use them in O(n) time each. We then
write the context-free language as a new language, which is accepted by a Deterministic Acyclic
Finite State Automaton (DASFA), taking the set N as its terminals. In this paper, we develop
several techniques to reduce the size of the DAFSA (cf. DAG) to Õ(n) and efficiently precompute
the set N (cf. lookup tables) in Õ(n2) time. Thus, beyond string sanitization, our techniques may
inspire solutions to other problems related to regular expressions or context-free grammars.

Paper Organization Section 2 introduces the basic definitions and notation used throughout,
and also provides a summary of the currently fastest algorithm for ETFS [9]. In Section 3, we
describe our lookup table structures. In Section 4, we present the O(n3)-time algorithm for solving
AETFS. This algorithm is refined to an Õ(n2)-time algorithm, which is described in Section 5.
Along the way, in Section 5, we also describe an Õ(n2)-time algorithm for ETFS. In Section 6 we
show how to utilize the Four Russians and the LZ78-factorization techniques for our problems.

2 Preliminaries

Strings An alphabet Σ is a finite set of elements called letters. Let S = S[0]S[1] . . . S[n − 1] be
a string of length |S| = n over an alphabet Σ of size σ = |Σ|. Let Γ = {	,⊕,⊗} be a set of
special letters with Γ ∩ Σ = ∅. By Σ∗ we denote the set of all strings over Σ, and by Σk the set
of all length-k strings over Σ. For two indices 0 ≤ i ≤ j ≤ n − 1, S[i . . j] = S[i] . . . S[j] is the
substring of S that starts at position i and ends at position j of S. By ε we denote the empty
string of length 0. A prefix of S is a substring of the form S[0 . . j], and a suffix of S is a substring
of the form S[i . . n − 1]. Given two strings U and V we say that U has a suffix-prefix overlap of
length ` > 0 with V if and only if the length-` suffix of U is equal to the length-` prefix of V , i.e.,
U [|U | − ` . . |U | − 1] = V [0 . . `− 1].

We fix a string W of length n over an alphabet Σ. We assume that Σ = {1, . . . , nO(1)}. If this
is not the case, we use perfect hashing [17] to hash W [i], for all i ∈ [1, n], and obtain another string
over Σ = {1, . . . , n} in O(n) time with high probability or in O(n log n) time deterministically via
sorting. We consider the obtained string to be W . We also fix an integer 0 < k < n. Unless specified
otherwise, we refer to a length-k string or a pattern interchangeably. An occurrence of a pattern is
uniquely defined by its starting position. Let Sk be the set representing the sensitive patterns as
starting positions over {0, . . . , n − k} with the following closure property: for every i ∈ Sk, any j
for which W [j . . j + k − 1] = W [i . . i+ k − 1], must also belong to Sk. That is, if an occurrence of
a pattern is in Sk, then all its occurrences are in Sk. A substring W [i . . i + k − 1] of W is called
sensitive if and only if i ∈ Sk; Sk is thus the complete set of occurrences of sensitive patterns. The
difference set I = {0, . . . , n− k} \ Sk is the set of occurrences of non-sensitive patterns.

For any substring U , we denote by IU the set of occurrences in U of non-sensitive length-k
strings over Σ. (We have that IW = I.) We call an occurrence i the t-predecessor of another
occurrence j in IU if and only if i is the largest element in IU that is less than j. This relation
induces a strict total order on the occurrences in IU . We call a subset J of IU a t-chain if for
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all elements in J except the minimum one, their t-predecessor is also in J . For two strings U
and V , chains JU and JV are equivalent, denoted by JU ≡ JV , if and only if |JU | = |JV | and
U [u . . u + k − 1] = V [v . . v + k − 1], where u is the j-th smallest element of JU and v is the j-th
smallest of JV , for all j ≤ |JU |.

Given two strings U and V the edit distance dE(U, V ) is defined as the minimum number of
elementary edit operations (letter insertion, deletion, or substitution) that transform one string
into the other. Each edit operation can also be associated with a cost: a fixed positive value. Given
two strings U and V the weighted edit distance dWE(U, V ) is defined as the minimal total cost of a
sequence of edit operations to transform one string into the other. We assume throughout that the
three edit operations all have unit weight. However, our algorithms also work for arbitrary weights
at no extra cost. The standard algorithm to compute the edit distance between two strings U and
V [29] works by creating a (|U |+1)×(|V |+1) DP table D with D[i][j] = dE(U [0 . . i−1], V [0 . . j−1]).
The sought edit distance is thus dE(U, V ) = D[|U |][|V |]. Since we compute each table entry from
the entries to the left, top and top-left in O(1) time, the algorithm runs in O(|U | · |V |) time.
Moreover, we can find an optimal (minimum cost) alignment by tracing back through the table.

The ETFS Problem We formally define ETFS, one of the problems considered in this paper.

Problem 1 (ETFS). Given a string W of length n, an integer k > 1, and a set Sk (and thus set
I), construct a string XED which is at minimal (weighted) edit distance from W and satisfies:

C1 XED does not contain any sensitive pattern.
P1 IW ≡ IXED

, i.e., the t-chains IW and IXED
are equivalent.

The AETFS Problem The length of sensitive patterns in the ETFS setting is fixed. In what
follows, we define a generalization of the ETFS problem which allows for arbitrary length sensitive
patterns. Let S be a set of intervals with the two following properties (closure property and
minimality property): (i) For every [i, j] ∈ S, any [i′, j′] for which W [i′ . . j′] = W [i . . j], must also
belong to S; and (ii) any proper sub-interval of [i, j] is not in S. It is easy to see that |S| ≤ n
from its minimality. Now, we redefine notions of sensitive and non-sensitive patterns as follows: A
sensitive pattern is an arbitrary length substring W [i . . j] of W for each [i, j] ∈ S. For a fixed k, a
non-sensitive pattern is a length-k substring of W containing no sensitive pattern as a substring.

Problem 2 (AETFS). Given a string W of length n, an integer k > 1, and a set S (and thus set
I), construct a string YED which is at minimal (weighted) edit distance from W and satisfies:

C1 YED does not contain any sensitive pattern.
P1 IW ≡ IYED

, i.e., the t-chains IW and IYED
are equivalent.

The ETFS-DP Algorithm. For independent reading we describe here ETFS-DP, the algo-
rithm from [9] that solves the ETFS problem in O(n2k) time. The output string XED is a string
that contains all non-sensitive patterns in the same order as in W . For each pair of consecutive
non-sensitive patterns, their occurrences in XED are either (i) overlapping by k − 1 letters (e.g.,
eca and cab in Example 1) or (ii) delimited by a string over Σ ∪ {#} which contains no length-k
string over Σ (e.g., #aa# in Example 1). We call such strings gadgets. For case (ii), we use the
following regular expressions:

Σ<k = (a1|a2| . . . |a|Σ||ε)k−1,
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where Σ = {a1, a2, . . . , a|Σ|}. Also, the special letters 	,⊕,⊗ ∈ Γ correspond to regular expressions

(Σ<k#)∗, #(Σ<k#)∗, and (#Σ<k)∗, respectively. Let N0, N1, . . . , N|I|−1 be the sequence of non-
sensitive patterns sorted in the order in which they occur in W . In what follows, we fix string
T = 	N0 ⊕ N1 ⊕ · · · ⊕ N|I|−1⊗ of length (k + 1)|I| + 1. String T corresponds to the regular
expression R that represents the set of all feasible solutions (feasible strings) in which all non-
sensitive patterns in the string are delimited by stings over Σ∪{#}. Moreover, we need to consider
feasible strings in which a non-sensitive pattern overlaps the next one. Let M be a binary array of
length |I| such that for each 0 ≤ i ≤ |I| − 1, M [i] = 1 if i > 0 and Ni−1 has a suffix-prefix overlap
of length k − 1 with Ni, and M [i] = 0 otherwise. Namely, M [i] = 1 implies that Ni−1 and Ni can
be merged for 0 < i ≤ |I| − 1.

Let E be a table of size ((k+ 1)|I|+ 1)× (n+ 1). The rows of E correspond to string T defined
above and the columns to string W . Note that the leftmost column corresponds to the empty
string ε as in the standard edit distance DP table. Each cell E[i][j] contains the edit distance
between the regular expression corresponding to T [0 . . i] and W [0 . . j − 1]. We classify the rows of
E into three categories: gadget rows; possibly mergeable rows; and ordinary rows. We call every row
corresponding to a special letter in Γ a gadget row. Namely, rows with index i ≡ 0 mod (k+ 1) are
gadget rows. Also, we call every row corresponding to the last letter of a non-sensitive pattern a
possibly mergeable row. Namely, rows with index i ≡ −1 mod (k+ 1) are possibly mergeable rows.
All the other rows are called ordinary rows. The recursive formula of ordinary rows is the same as
in the standard edit distance solution:

E[i][j] = min


E[i− 1][j] + 1, (insert)

E[i][j − 1] + 1, (delete)

E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute),

where I is an indicator function: I[T [i] 6= W [j − 1]] = 1 if T [i] 6= W [j − 1], and 0 otherwise. Next,
consider a possibly mergeable row E[i][·] which is the last row of the non-sensitive pattern Nh. If
M [h] = 0, then the recursive formula is the same as that of ordinary rows. Otherwise (M [h] = 1),
Nh−1 and Nh can be merged. Merging them means that the values in the previous mergeable row
E[i − k − 1][·] will be propagated to E[i][·] directly without considering the k rows below. Thus,
the recursive formula is:

E[i][j] = min



E[i− 1][j] + 1, (insert)

E[i][j − 1] + 1, (delete)

E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)

E[i− k − 1][j] + 1, if M [h] = 1 (insert and merge)

E[i− k − 1][j − 1] + I[T [i] 6= W [j − 1]], if M [h] = 1 (match or sub. and merge).

Next, consider a gadget row E[i][·] which corresponds to a special letter in Γ. Because of the
form of regular expressions corresponding to special letters, a # can either be inserted or substituted
directly after a non-sensitive pattern, or be preceded by another # no more than k positions earlier.
This results in the following recursive formula:

E[i][j] = min


E[i− 1][j] + 1, (insert)

E[i− 1][j − 1] + 1, (substitute)

E[i][j − 1] + 1, . . . , E[i][max{0, j − k}] + 1, (delete or extend gadget).

5



For completeness, we write down the recursive formula for initializing the leftmost column:

E[i][0] =

{
E[i− k − 1][0] + 1, if i ≡ −1 mod (k + 1) ∧M [h] = 1 (merge)

E[i− 1][0] + 1, otherwise (no merge).

Unlike in the standard setting [29], the edit distance between W and any string matching the
regular expression R is not necessarily found in its bottom-right entry E[|I|(k+1)][|W |]. Instead, it
is found among the rightmost k entries of the last row (in case XED ends with a string in ⊗), and the
rightmost entry of the second-last row (when XED ends with the last letter of the last non-sensitive
pattern). After computing the edit distance value, we construct an XED. To do so, when computing
each entry E[i][j], we memorize a backward-pointer to an entry from which the minimum value for
E[i][j] was obtained. We then construct XED from right to left with respect to the sequence of edit
operations corresponding to an optimal alignment obtained by the backward-pointers.

3 Compact Lookup Table Structure for Squared Blocks

In this section we consider the standard edit distance table, and propose a data structure which can
answer some queries on a b× b sub-table of the DP table, which we call a block, corresponding to
two strings of the same length. Our data structure is similar to the one proposed in [12], tailored,
however, to our needs. We next provide some further definitions about blocks. Let B be a b × b
block to be processed. The top (resp. bottom) row of B is called the input (resp. output) row of
B. Similarly, the leftmost (resp. rightmost) column of B is called the input (resp. output) column
of B. A cell in the input (resp. output) row or column is called an input (resp. output) cell.

In the following, we propose a lookup table for b× b blocks that compute all output cell values
of a block in O(b) time for any given block and input cell values of the block. We modify the
following known result to enhance it with a trace-back functionality.

Theorem 3 (Theorem 1 in [12]). Given two strings both of length b corresponding to a b× b block,
we can construct a data structure of size O(b2) in O(b2 log b) time such that given any values for
the input row and column of the block, the data structure can compute the output row and column
of the block in O(b) time.

In [12], the authors did not refer to tracing back, i.e., it is not clear how to obtain an optimal
alignment using Theorem 3. We prove that we can trace back a shortest path to an output cell in
a b× b block in O(b) time using O(b2 log b) additional space. This yields an optimal alignment. We
next briefly describe the data structure of Theorem 3, and explain how we modify it.

3.1 Constructing a Data Structure for a Pair of Strings

For constructing the data structure of Theorem 3, Brubach and Ghurye [12] utilize the result of
[35]. Instead, we use the following result by Klein [25], which is more general.

Theorem 4 ([25]). Given an N -node planar graph with non-negative edge labels, we can construct
a data structure of size O(N logN) in O(N logN) time such that given a node s in the graph and
another node t on the boundary of the infinite face, the data structure can compute the maximum (or
minimum) distance from s to t in O(logN) time. Also, if the graph has constant degree, then we
can compute the shortest s-t path in time linear in the length of the path.
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The lookup table structure for a block is constructed as follows (see [12] for details). Let B be
a b × b block to be preprocessed. First, we regard B as a grid-graph of size b × b. Namely, each
node corresponds to a cell in the block, and each edge corresponds to an edit operation. Also,
each edge is labeled by the weight of its corresponding edit operation. Then, we construct the data
structure of Theorem 4 for the grid-graph. We denote this data structure by DB. Next, for each
input cell u and each output cell v, we compute the weight of the shortest path from u to v, and
store them to table MB of size (2b − 1) × (2b − 1). Each row (resp. column) of MB corresponds
to each output (resp. input) cell of B. A table is called monotone if each row’s minimum value
occurs in a column which is equal to or greater than the column of the previous row’s minimum. It
is totally monotone if the same property is true for every sub-table defined by an arbitrary subset
of the rows and columns of the given table. It is known that we can construct MB so that it is
totally monotone [15]. We thus construct DB and MB in O(b2 log b) time and space.

By Theorem 3, the size of the final data structure (that depends on the size of MB) is O(b2).
However, O(b2 log b) working space is used for constructing DB. In our algorithm, we also use table
MB and keep the temporary data structure DB to support tracing back operations efficiently.

3.2 Answering Queries and Tracing Back

Given a query input row and column, we can compute the output row and column in O(b) time
using the SMAWK algorithm [3] for finding the minimum value in each row of an implicitly-defined
totally monotone table, since MB is totally monotone [12]. Note that, for each output cell v of B,
we can also obtain an input cell sv which is the starting cell of a shortest path ending at v from
the result of SMAWK algorithm. Thus, by using data structure DB, we can obtain a shortest sv-v
path in time linear in the length of the path. To summarize, we obtain the following lemma.

Lemma 1. Given two strings both of length b corresponding to a b × b block, we can construct a
data structure of size O(b2 log b) in O(b2 log b) time such that given any values for the input row
and column of the block, the data structure can compute the output row and column of the block in
O(b) time. Furthermore, given an output cell v and any other cell u in the block, we can compute
a shortest u-v path in time linear in the length of the path.

Note that this data structure works under edit distance with arbitrary weights at no extra cost.

4 Sensitive Patterns of Arbitrary Lengths

In this section we propose a data structure with which we can solve the AETFS problem in time
O(n3). First, let us consider whether ETFS-DP can be applied directly to the AETFS problem.
The AETFS problem is a generalization of the ETFS problem, and there are some differences
between them: if there exists a long sensitive pattern of length longer than k, then we cannot apply
the same logic for the possibly mergeable rows to the AETFS problem. This is because merging
multiple non-sensitive patterns of length k may create a long sensitive pattern, while this sensitive
pattern must be hidden. In contrast, if there exists a short sensitive pattern of length less than k,
then we cannot apply the same logic for the gadget rows to the AETFS problem, since this may
introduce a short sensitive pattern in a gadget. Thus AETFS is much more challenging.

Let L = O(n2) denote the total length of long sensitive patterns. As a first step towards our
main result, we prove the following lemma.

Lemma 2. The AETFS problem can be solved in O(k|I|n+ Ln) time.
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Figure 1: An example for pruning and merging a decision tree. The red arrow represents a
long sensitive pattern, and blue arrows represent non-sensitive patterns. The tree on the top-left
represents the decision tree after pruning or merging operations for depths b = 0, 1, 2. For b = 3,
we merge two #-nodes by Rule 3. For b = 4, we prune an m-node by Rule 2, merge three #-nodes
by Rule 3, and merge two m-nodes by Rule 4. Finally, we add the sink node at the bottom.

Note that Lemma 2 yields O(n2k) time for ETFS because in this case L = 0. Lemma 2 thus
generalizes Theorem 2 in [9]. In what follows, we propose a new data structure for solving the
AETFS problem and prove Lemma 2. The main idea is to use multiple DP tables and link them
under specific rules. Interestingly, our data structure is shaped as a DAG consisting of DP tables.

4.1 Long Sensitive Patterns

If there is a long sensitive pattern, we need to consider the case where multiple non-sensitive
patterns are contained in a single sensitive pattern. (Recall that all non-sensitive patterns have
fixed length k.) In this case, we cannot apply the ETFS-DP algorithm from [9] directly.

Let us consider the situation in which we have just finished computing a possibly mergeable
row. We may be able to choose the next move from two candidates: either go down to the next
(gadget) row or jump to the next possibly mergeable row if possible. We consider a decision
tree T that represents all combinations of such choices at all possibly mergeable rows (inspect
Figure 1). We regard T as a tree of tables, i.e., each node of T represents a small DP table.
Let E[0 . . (k + 1)|I|][0 . . n] be the DP table of the ETFS-DP algorithm described in Section 2.
There are three types of nodes in T : root, #-node, and m-node. The root represents sub-table
E[0 . . k][0 . . n]. For each depth b with 1 ≤ b ≤ |I| − 1, the #-node at depth b represents sub-
table E[b(k + 1) . . (b + 1)(k + 1) − 1][0 . . n], and each m-node at depth b represents a copy of
possibly mergeable row E[(b+ 1)(k + 1)− 1][0 . . n]. Each edge (u, v) of T means that the bottom
row values of u will be propagated to the top row of v. If there are multiple incoming edges
(u1, v), (u2, v), . . . , (up, v) of a single node v, then we virtually consider a row r[0 . . n] as the previous
possibly mergeable row of v such that r[j] is the minimum value between all j-th values in the last
rows of u1, u2, . . . , up for each 0 ≤ j ≤ n. We call a path that consists of only m-nodes an m-path.

We can solve the AETFS problem if we can simulate all valid combinations of merge operations
represented by T . However, we do not have to check all combinations explicitly. This is due to the
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Figure 2: The decision DAG for W = abaabbaababb, k = 4, and S = {[2, 7], [3, 10], [5, 11]}.

fact that we can prune branches and merge nodes in the decision tree T as follows6.
For incremental b = 1, 2, . . . , |I| − 1, we edit T according to the following four rules:

Rule 1. If M [b] = 0, then prune all edges to m-nodes at depth b.

Rule 2. If there is a path (v1, v2, . . . , vp) such that the depth of vp is b, (v2, . . . , vp) is an m-path,
and v1 and vp respectively corresponds to the length-k prefix and the length-k suffix of the
same sensitive pattern, then prune the edge (vp−1, vp).

Rule 3. If there are multiple #-nodes at depth b, then merge all of them into a single #-node.

Rule 4. If there are multiple m-nodes {v1, v2, . . .} at depth b such that each ui does not correspond
to the length-k prefix of any sensitive pattern, where ui is the parent of the starting node of
the longest m-path ending at vi, then merge such m-nodes into a single m-node.

Finally, we add the sink node under the decision tree such that the sink node corresponds to the
bottom row E[|I|(k + 1)][0 . . n], and each node at depth |I| − 1 has only one outgoing edge to the
sink node. We also rename the root to the source node.

After executing all pruning and merging operations, the decision tree becomes a DAG whose
all source-to-sink paths represent all valid choices (inspect Figure 2).

6 Once the merge operation is applied to the decision tree, it is no longer a tree. However, we continue calling it
the decision “tree” for convenience.

9



We call such DAG the decision DAG, and we denote it by G. Although the size of T can be
exponentially large, we can directly construct G in a top-down fashion from an instance of AETFS
in O(|G|) time.

Correctness We show that no valid path is eliminated and all invalid paths are eliminated while
constructing G from T . Clearly, crossing #-nodes creates no invalid path. In what follows, we
mainly focus on m-nodes that can create invalid paths.

It is easy to see that a path (v1, v2, . . . , vp) is invalid if and only if (i) there is a sub-path
(vs, . . . , vt) where vs and vt respectively correspond to the length-k prefix and suffix of the same
sensitive pattern, and vs+1, · · · , vt are all m-nodes or (ii) there is an edge (vi−1, vi) such that
M [di] = 0 where di is the depth of vi. By Rule 1, we delete all invalid paths which satisfy condition
(ii), and do not delete any valid path. By Rule 2, we delete an invalid path which satisfies condition
(i), and do not delete any valid path. By Rule 3, we merge #-nodes, however, it does not matter
since this operation does not cause deleting or creating any path. By Rule 4, we may merge m-
nodes, however, the m-nodes to be merged are carefully chosen to not interfere with Rule 2. Thus,
this also does not cause deleting or creating any path. Therefore, G is constructed correctly.

The Size of the DAG We next analyze the size of G. Clearly, the total number of #-nodes is
equal to |I|−1. Also, the source node and the sink node are unique. The number of m-nodes, each
of which is a child of some #-node, is equal to the number of #-nodes, i.e., |I| − 1. The number of
the rest of m-nodes is at most L. Also, each node has at most two outgoing edges.

Each #-node and the source node represent a sub-table of size (k + 1)× (n+ 1). Each m-node
represents a possibly mergeable row, and the sink node represents the last gadget row. Therefore,
the total size of G is O(|I|kn+ |I|n+ Ln) = O(k|I|n+ Ln).

Time Complexity The decision DAG G is computed in O(k|I|+ L) time without creating the
original decision tree T by applying the above four rules for incremental b = 1, 2, . . . , |I| − 1. Also,
we can compute each cell in G in amortized constant time [9]. Thus, the total time is O(k|I|n+Ln).

4.2 Short Sensitive Patterns

Running the ETFS-DP algorithm may introduce short sensitive patterns in its gadgets. We explain
how to modify the recursive formulae of the gadget row to account for short sensitive patterns. We
first prove that w.l.o.g. all gadgets are either a single # or can be optimally aligned such that:

1. All #’s in gadgets are substituted by letters in W ;

2. All letters in gadgets are matched with letters in W ; and

3. No further letters are inserted between letters of the same gadget.

If some extra inserted letters of W are aligned with a gadget, we can add some extra #’s to
change them into substitutions without increasing the cost, changing the number of non-sensitive
patterns or increasing the number of sensitive patterns. Similarly, if some letters of the gadget are
not matched with the same letters in W , these gadget letters can be replaced by #. Finally, if some
#’s in the gadget are not aligned with any letter in W , we can either remove them or move them
to the place of an adjacent gadget letter while deleting that letter. Inspect the following example.
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Example 3. Let the following optimal alignment from Example 1 with cost 4. Gadgets are in red.
e c a b - a a a a a b b - b a d f

e c a b # a a # a b b b # b a d f

We transform it to another optimal alignment of the same cost that respects the above conditions:
e c a b a a a a a b b - b a d f

e c a b # a # a b b b # b a d f

Let us first consider the leftmost gadget: (1) #’s are substituted by letters in W ; (2) all letters are
matched with letters in W ; and (3) no further letters are inserted between the gadget’s letters. Note
that the rightmost gadget is a single # and so the modified alignment satisfies all conditions above.

A single # cannot introduce any sensitive pattern, so just as in the ETFS-DP algorithm we
can get a cost of E[i− 1][j] + 1 corresponding to the case that a single # is inserted after W [j − 1]
or a cost of E[i− 1][j − 1] + 1 corresponding to the case that a single # is aligned with W [j − 1].
For longer gadgets the possibilities are a bit more restricted than in the ETFS-DP algorithm.
Assuming the gadget to have the structure described above, it follows that the previous # cannot
be aligned before W [F [j−1]], where F [j] is defined to be the largest integer such that W [F [j] . . j−1]
contains a sensitive or non-sensitive pattern (if it exists). More formally:

F [j] = max({i < j |W [i . . j − 1] contains a sensitive pattern} ∪ {j − k} ∪ {0}).

F can be computed in O(kn) time. We denote the point-wise minimum of the copies of the
preceding merge row with r; in the case of ETFS this is just the previous merge row. This gives
us the following formula for the gadget rows. For all 0 ≤ i ≤ (k + 1)|I| with i ≡ 0 mod k + 1,

E[i][j] = min


r[j] + 1

r[j − 1] + 1

E[i][j − 1] + 1, E[i][j − 2] + 1, . . . , E[i][F [j − 1] + 1] + 1.

(Notice that a string position and its corresponding table index differ by one.)
To conclude, we also need to consider the range in which the edit distance value lies. Since

the last row corresponds to ⊗, the value stored in E[|I|(k + 1)][j], for all 0 ≤ j ≤ n, is the
cost of an optimal alignment between W [0 . . j + ej − 1] and a string in the regular expression
whose length-(ej + 1) suffix is #W [j . . j + ej − 1], where ej = min(max{e | W [j . . j + e −
1] does not contain any sensitive or non-sensitive pattern} ∪ {n − j}). The edit distance between
W and any string matching the regular expression is found among the rightmost n − F [n] entries
of the last row or the rightmost entry of the second-last row. Thus, we obtain:

dE(YED,W ) = min

{
E[|I|(k + 1)− 1][n],

E[|I|(k + 1)][n], E[|I|(k + 1)][n− 1], . . . , E[|I|(k + 1)][F [n] + 1].

For each E[i][j] and r[j] we store a pointer to an entry which leaded to this minimum value.
We can then trace back as in ETFS-DP, taking the minimizing entry of the above equation as a
starting point, and obtain YED in an additional O(kn) time. Therefore the total time complexity
of AETFS is O(k|I|n+ Ln) and we arrive at Lemma 2.

5 Õ(n2)-Time Algorithms using Dyadic Intervals

In this section we improve ETFS-DP and the algorithm of Lemma 2. We first show an algorithm
to compute gadget rows in amortized constant time per cell in the rows. Secondly, we focus on the
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redundancy in the computation of ordinary rows, and propose an algorithm to compute them by
using the lookup table structure of Section 3 according to dyadic intervals. These two improvements
yield an Õ(n2)-time algorithm for ETFS. Finally, we employ a similar lookup table technique to
contract m-paths in the decision DAG, which yields an Õ(n2)-time algorithm for AETFS as well.

5.1 Speeding Up Gadget Rows Computation

First, we show how to speedup the gadget rows computation. For each #-node u in the decision
DAG G, we denote by du the in-degree of u. Let Gu[0 . . n] be the gadget row in u. For each
0 ≤ i ≤ du − 1, let M i

u[0 . . n] be a possibly mergeable row of a node which has an edge pointing to
u. The recursive formula for Gu[i] is as follows: Gu[0] = min{M0

u [0] + 1, . . . ,Md−1
u [0] + 1}, and

Gu[j] = min


M0
u [j − 1] + 1, . . . ,Md−1

u [j − 1] + 1,

M0
u [j] + 1, . . . ,Md−1

u [j] + 1,

Gu[j − 1] + 1, . . . , Gu[F [j − 1] + 1] + 1,

for 1 ≤ j ≤ n. We assume that M0
u , . . . ,M

d−1
u and F are given. It costs O(n(k + du)) time to

compute Gu näıvely. The next lemma states that we can actually compute Gu in O(ndu) time.

Lemma 3. Given M0
u , . . . ,M

d−1
u and F , we can compute every Gu[i] in O(du) time for incremental

i = 0, . . . , n.

Proof. Let us fix an arbitrary #-node u and omit subscripts related to u. Let rj be the index such
that G[rj ] is the rightmost minimum value in the range G[F [j − 1] + 1 . . j], and let mj = G[rj ]
be that minimum value. Then, it can be seen that G[p] = mj + 1, for any rj < p ≤ j, since
G[p] > G[rj ] and G[p] ≤ G[rj ] + 1 by the recursive formula. Clearly, r0 = 0. We assume that rj−1

is known before computing G[j]. If rj−1 < F [j−1]+1, then G[j−1] = mj−1 +1 is the minimum in
G[F [j − 1] + 1 . . j − 1], and rj = arg min{G[j − 1], G[j]}. Otherwise, F [rj−1] = mj is the minimum
in G[F [j − 1] + 1 . . j − 1], and rj = arg min{G[rj−1], G[j]}. Note that F is a non-decreasing array,
i.e., F [j] ≥ F [j − 1]. Thus, we can compute G[j] and rj in O(d) time.

By Lemma 3, we can compute all gadget rows in a total of O(n
∑

u∈G du) = O(n|I|+nL) time.

5.2 ETFS in O(n2 log2 k) Time

In this section we describe an algorithm which solves ETFS in O(n2 log2 k) time. The key to
losing the factor k is the fact that the string T on the left is highly repetitive and only consists of
substrings of the length-n string W (interleaved by some letters in Γ). Therefore we can compute
the DP table efficiently using only few precomputed sub-tables as in the Four Russians method [6].

First, we partition W into substrings of length 2i (or shorter if 2i - |W |) for each i ∈
{0, 1, 2, . . . , blog kc}. This gives a set A of at most 2n different strings. Moreover, note that each
length-k pattern in W can be written as the concatenation of at most 2blog kc+ 2 such strings.

For every pair of strings in (w1, w2) ∈ A2 with |w1| = |w2|, we precompute the lookup table
for the strings w1 and w2 according to Lemma 1. Now we can compute the non-merge case of
each possibly mergeable row using at most 2 · dn/2ie precomputed lookup tables of size 2i × 2i (or
smaller) for each i ∈ {0, 1, 2, . . . , blog kc}.
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Time Complexity Precomputing a lookup table for two strings of length up to 2i takes O(22ii)
time. In total this gives a precomputation time of

O

blog kc∑
i=0

n

2i
· n

2i
· 22ii

 = O(n2 log2 k).

Each possibly mergeable row can now be computed in O(n log k) time from the previous merge and
gadget row, since each non-sensitive length-k pattern can be partitioned into at most 2blog kc+ 2
precomputed strings. Gadget rows can be computed in O(n) time each from the preceding possibly
mergeable rows using the technique described by Lemma 3.

For the traceback, note that |XED| = O(kn), i.e., the length of an optimal alignment path over
E is O(kn). We do not know how the path behaves inside each block. However we can compute
the sub-path inside a block in time linear in the path’s length by using Lemma 1. The gadget
rows can be traced back in a further O(n) time. Thus, we can trace back in a total time of O(kn).
Therefore the total time complexity is O(n2 log2 k). We arrive at the following result.

Theorem 1. The ETFS problem can be solved in O(n2 log2 k) time.

5.3 AETFS in O(n2 log2 n) Time

In this section we describe how to further reduce the decision DAG G from Section 4 by precom-
puting parallel m-paths. First, we give some observations for m-paths. An m-path is said to be
maximal if the m-path cannot be extended either forward or backward. Any two maximal m-paths
do not share any nodes, since every m-node in G has at most one outgoing edge to m-nodes and
at most one incoming edge from m-nodes. Also, the number of maximal m-paths is at most |I|
since the parent of the first m-node of each maximal m-path is a different #-node or the source
node. In what follows, suppose G contains a total of p maximal m-paths of length `1, . . . , `p with∑p

i=1 `i ≤ n + `n, where ` is the length of the longest sensitive pattern. Recall that an m-node
represents a possibly mergeable row of size 1 × (n + 1), and thus, we will identify an m-path of
length x with a DP table of size x× (n+ 1).

Let us now describe our DAG reduction. An example of the DAG reduction is demonstrated in
Figure 3. In the prepocessing phase, we first construct a lookup table structure for all possible m-
paths corresponding to dyadic intervals of lengths at most ` over the range [1, |I|−1] of the depths
of m-paths, in a similar way as in Section 5.2. Next, for each maximal m-path in G, we decompose
it into shorter m-paths according to dyadic intervals. We then contract each such m-path into a
single node named j-node consisting of a single row, which jumps from the beginning of the m-path
to the end and represent consecutive merges. Also, we have to take into account edges leaving the
m-path. Note that paths that leave the m-path early always leave to a #-node, so we do not have
to worry about introducing any sensitive patterns. We therefore create a new copy of the m-path
preceded by an additional node named c-node consisting of a single row, which takes the point-wise
minimum of the parent nodes of the m-paths.

After finishing the DAG reduction, we fill the DP tables from top to bottom: all j-nodes are
computed by using the lookup table; all new m-paths are computed in the original fashion, including
all outgoing edges; and all the other nodes are computed as in Section 5.2. Also, we can trace back
and find the solution to AETFS by storing appropriate backward-pointers and the data structures
of Lemma 1 just as in Section 5.2.

Time Complexity Constructing the lookup tables takes O(n2 log2 `) time since there are at
most blog `c different path lengths, and for each i ∈ {0, 1, . . . , blog `c}, we preprocess at most
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Figure 3: An example of contracting a part of the decision DAG. Before contracting, there are
three parallel m-paths each of length 22 = 4. We contract each m-path to a j-node corresponding
to the case in which four consecutive non-sensitive patterns are merged. Also, we create an m-path
of length 3 preceded by a c-node corresponding to the case in which at least one gadget is inserted.

(n/2i)2 blocks of size 2i × 2i each in O(22ii) time. We can also easily contract G in O(n2) time by
traversing the DAG. Note that the number of nodes in the original DAG is O(n2) (Section 4.1).
We partition each path of length `i into at most 2(log ` + `i/`) precomputed paths: at most
`i/2

blog `c paths of length 2blog `c and at most 2 of each shorter length. Therefore the j-nodes can
be computed in O(n ·

∑p
i=1 2(log ` + `i/`)) = O(n2 log `) time. The c-nodes and the following

m-nodes can be computed in O(n2 log `) time, because there is at most one c- or m-node per depth
and per precomputed path length. The #-nodes can each be computed in O(n log2 k) time using
the method described in Section 5.2. Finally, tracing back takes only O(kn) time by using the
backward-pointers and the data structures of Lemma 1.

Summarizing this section, we have shown that the AETFS problem can be solved in time
O(n2 log2 k + min{n2 log2 `, Ln}). We arrive at the following result.

Theorem 2. The AETFS problem can be solved in O(n2 log2 n) time.

6 Applying Four Russians and LZ78-Factorization

In this section we show how to apply the Four Russians [6] and the LZ78-factorization [39] tech-
niques, which speed up the standard edit distance computation [31, 15], to the ETFS and AETFS
problems. The recursive formula of the ordinary rows is the same as that of edit distance. Thus,
it is easy to see that we can partially apply the Four Russians technique to our problems. On the
contrary, applying LZ78-factorization to our problems is nontrivial, since LZ78-factorization does
not take into account gadget rows or possibly mergeable rows. We define a new factorization, which
is an extension of LZ78, and show that we can modify the technique of [15] to ETFS and AETFS.

6.1 Applying the Four-Russians Method

We apply the Four Russians method to the ETFS problem. Let b ≤ k be the length of one side
of a squared block. First, we create a lookup table for all possible σ2b pairs of length-b strings
over Σ. Each lookup entry is a data structure of Lemma 1 whose size is O(b2 log b), and it can
be constructed in O(b2 log b) time. The total time to create the lookup table is O(σ2bb2 log b).
Next, we decompose the DP table into b × b-sized blocks except for possibly mergeable rows and
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gadget rows. Since the number of blocks is O(k|I|n/b2) and the computation time for propagation
is O(b) per block, the total time for computing all boundaries of all blocks is O(k|I|n/b). Unlike
the original Four Russians method [31], we compute all possibly mergeable rows and gadget rows
consisting of O(|I|n) cells. We can compute these rows in a total of O(|I|n) time by Lemma 3.

Theorem 5. The ETFS problem can be solved in O(n2 + n2k
logσ n

) time.

Proof. From the above discussion, we can solve the ETFS problem in O(kn|I|/b+σ2bb2 log b+|I|n)
time for b ≤ k. Then σ2bb2 log b ∈ O(n2) for b = b(logσ n)/2c yields the statement.

For the AETFS setting, we can apply the Four Russians method above to each #-node and
the source node in the decision DAG. Thus, we obtain the following corollary.

Corollary 1. The AETFS problem can be solved in O(n2 + min{n2 log2 k, n2k
logσ n

} +

min{n2 log2 `, nL}) time.

6.2 Further Speedup for Highly Repetitive Strings

For highly repetitive strings, we can obtain a faster algorithm than Theorem 5 by modifying the
method of [15]. We define the two following factorizations for a given string. A sequence of strings
(s0, . . . , st−1) is called a factorization of string S if and only if s0 · · · st−1 = S.

LZ78-factorization ([39]) A factorization LZ (W ) = (f0 = ε, f1, . . . , fz) of string W is called
the LZ78-factorization of W if and only if each fi with 1 ≤ i ≤ z is the longest prefix of
W [|f0 . . . fi−1| . . |W | − 1] such that fi = fjc for some j < i and letter c. The LZ78-trie of W
is a rooted tree such that each node represents a factor fi, and there is an edge (fj , fi) with label c
if fi = fjc. Given a string W of length n, LZ (W ) and the LZ78-trie of S can be computed in O(n)
time [33]. See Figure 4 for examples of LZ78-factorization and LZ78-trie.

G-factorization We define a new factorization based on the LZ78-factorization and the special
letters Γ as follows. Let LZ (S) = (f0, . . . , fz) be the LZ78-factorization of string S ∈ (Σ ∪ Γ)∗.
For every factor fi we check if fi = xcy for x ∈ Σ∗, c ∈ Γ, and y ∈ (Σ ∪ Γ)∗. If so, we further
factorize it into three factors (x, c, y), and continue checking y recursively. After that, we rename
the factors by (g0, . . . , g`). We call such a factorization the G-factorization of S, and we denote it
by G(S). We define the G-trie, which is a variant of LZ78-trie, w.r.t. G-factorization. The G-trie
of S is a rooted tree such that (1) each node u represents a multiset of factors {{gu1 , . . . , gut}} with
gu1 = · · · = gut , (2) gu1 6= gv1 if u 6= v, and (3) there is an edge (v, u) with label c ∈ Σ ∪ Γ if
gu1 = gv1c. Notice that, if S ∈ Σ∗, then LZ (S) = G(S) and its G-trie is the same as its LZ78-trie.
It should also be clear that |G(S)| ≤ |LZ (S)| + 2

∑
c∈Γ |occS(c)|, where occS(c) denotes the total

number of occurrences of letter c in S. See Figure 4 for examples of G-factorization and G-trie.
Also, given LZ (S), we can compute G(S) in O(|S|) time. Finally, we show that we can construct

the G-trie of S over Σ ∪ Γ from G(S) in O(|S|) time. We first construct the suffix tree of S in
O(|S|) time [16]. Next, we compute the loci of all G-factors in G(S) in the suffix tree, and make
them explicit in O(|S|+ |G(S)|) time [27], and then, we remove all the other nodes except for the
loci from the suffix tree. Thus, we can construct G-trie of S in O(|S|) time.
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Figure 4: Examples for LZ78-factorization, LZ78-trie, G-factorization, and G-trie of string T =
	aba⊕ baa⊕ baa⊕ bbb⊗. Factorizations (f0 = ε, f1, . . . , f10) and (g0 = ε, g1, . . . , g14) of T are
respectively the LZ78-factorization and the G-factorization of T . The tree on the left is the LZ78-
trie of T and the tree in the right is the G-trie of T .

Utilizing G-factorization In the rest of this section, we prove the following theorem.

Theorem 6. The ETFS problem can be solved in time O(n2 + |LZ (W )|kn+ |LZ (T )|n) ⊆ O(n2 +
n2k

logσ n
).

The following corollary immediately holds.

Corollary 2. The AETFS problem can be solved in time O(n2 + min{n2 log2 k, |LZ (W )|kn +

|LZ (T )|n}+ min{n2 log2 `, nL}) ⊆ O(n2 + min{n2 log2 k, n2k
logσ n

}+ min{n2 log2 `, nL}).

First, we provide an overview of the algorithm of [15] for the standard edit distance problem. Let
A and B be the input strings both of length n, and let za and zb be respectively the size of the LZ78-
factorization of A and B. They first partition the DP table into za × zb blocks each corresponding
to a comparison of an LZ78 factor of A with an LZ78 factor of B. Each block implicitly holds the
DIST table, which stores the minimal weights from all input cells of the block to all output cells
of the block. It is known that DIST is totally monotone [15], and thus, given values of input cells
we can compute all row and column maxima of DIST in time linear in the length of the boundary
of the block by using the SMAWK algorithm [3]. The total size of DIST tables for all blocks
is O(n2); however, each block actually stores only one column of DIST and O(bnd) pointers to
previous blocks which store all the other columns, where bnd is the length of the boundary of the
block. The total time and space complexity is O((za + zb)n) ⊆ O( n2

logσ n
). The correctness of their

algorithm can be proved by using the following property of the LZ78-factorization.

Property 1. Let LZ (S) = (f0, f1, . . . , fz) be the LZ78-factorization of string S. For each LZ78-
factor fi with 0 < i ≤ z, there exists a factor fj such that j < i and fi = fjc for a letter c. Also,
when fi is given, we can obtain such fj and c in constant time by using the LZ78-trie of S.

16



Since the G-factorization holds the same properties as the above, we can apply their method even
if we use G-factorization instead. We consider the LZ78-factorization of W and the G-factorization
of T , and then, apply their method to ETFS. Therefore, we obtain Theorem 6.

Note that Theorem 6 is at least as good as Theorem 5; and Corollary 2 is at least as good as
Corollary 1. Actually, the size of the LZ78-factorization of a string of length n is in O(hn/ logσ n)
for most strings (i.e. strings that are compressible), where 0 < h ≤ 1 is the entropy of the string [28,

39, 24, 15]. As a consequence, the ETFS problem can be solved in O(n2 + (hW+hT )n2k
logσ n

) time for
such strings, where hW and hT are, respectively, the entropy of W and the entropy of T .
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