
HAL Id: hal-03474045
https://hal.inria.fr/hal-03474045

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Submodular Maximization subject to a Knapsack
Constraint: Combinatorial Algorithms with

Near-optimal Adaptive Complexity *
Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, Alberto

Marchetti-Spaccamela, Rebecca Reiffenhäuser

To cite this version:
Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi, Alberto Marchetti-Spaccamela,
et al.. Submodular Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with
Near-optimal Adaptive Complexity *. ICML 2021 - 38th International Conference on Machine Learn-
ing, Jul 2021, Lugano, Italy. pp.1-25. �hal-03474045�

https://hal.inria.fr/hal-03474045
https://hal.archives-ouvertes.fr

Submodular Maximization subject to a Knapsack Constraint:
Combinatorial Algorithms with Near-optimal Adaptive Complexity∗

Georgios Amanatidis† Federico Fusco‡ Philip Lazos‡ Stefano Leonardi‡

Alberto Marchetti Spaccamela‡ Rebecca Reiffenhäuser‡

February 17, 2021

Abstract

The growing need to deal with massive instances motivates the design of algorithms balancing
the quality of the solution with applicability. For the latter, an important measure is the adaptive
complexity, capturing the number of sequential rounds of parallel computation needed. In this
work we obtain the first constant factor approximation algorithm for non-monotone submodular
maximization subject to a knapsack constraint with near-optimal O(logn) adaptive complexity.
Low adaptivity by itself, however, is not enough: one needs to account for the total number
of function evaluations (or value queries) as well. Our algorithm asks Õ(n2) value queries, but
can be modified to run with only Õ(n) instead, while retaining a low adaptive complexity of
O(log2 n). Besides the above improvement in adaptivity, this is also the first combinatorial
approach with sublinear adaptive complexity for the problem and yields algorithms comparable
to the state-of-the-art even for the special cases of cardinality constraints or monotone objectives.
Finally, we showcase our algorithms’ applicability on real-world datasets.

1 Introduction
Submodular optimization is a very popular topic relevant to various research areas as it captures the
natural notion of diminishing returns. Its numerous applications include viral marketing [27, 29],
data summarization [39, 35], feature selection [13, 14, 36] and clustering [34]. Prominent examples
from combinatorial optimization are cut functions in graphs and coverage functions.

Submodularity is often implicitly associated with monotonicity, and many results rely on that
assumption. However, non-monotone submodular functions do naturally arise in applications,
either directly or from combining monotone submodular objectives and modular penalization or
regularization terms [27, 39, 35, 6, 1]. Additional constraints, like cardinality, matroid, knapsack,
covering, and packing constraints, are prevalent in applications and have been extensively studied.
In this list, knapsack constraints are among the most natural, as they capture limitations on budget,
time, or size of the elements. Like matroid constraints, they generalize cardinality constraints, yet
they are not captured by the former.

∗This work was supported by the ERC Advanced Grant 788893 AMDROMA “Algorithmic and Mechanism Design
Research in Online Markets”, the MIUR PRIN project ALGADIMAR “Algorithms, Games, and Digital Markets”,
and the NWO Veni project No. VI.Veni.192.153.

†Department of Mathematical Sciences, University of Essex, UK, and Institute for Logic, Language and Computation,
University of Amsterdam, The Netherlands. Email: georgios.amanatidis@essex.ac.uk

‡Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of
Rome, Italy. Email: {fuscof, lazos, leonardi, alberto, rebeccar}@diag.uniroma1.it

1

ar
X

iv
:2

10
2.

08
32

7v
1

 [
cs

.D
S]

 1
6

Fe
b

20
21

mailto:georgios.amanatidis@essex.ac.uk
mailto:fuscof@diag.uniroma1.it
mailto:lazos@diag.uniroma1.it
mailto:leonardi@diag.uniroma1.it
mailto:alberto@diag.uniroma1.it
mailto:rebeccar@diag.uniroma1.it

The main computational bottleneck in submodular optimization comes from the necessity to
repeatedly evaluate the objective function for various candidate sets. These so-called value queries
are often notoriously heavy to compute, e.g., for exemplar-based clustering [15], log-determinant of
submatrices [28], and accuracy of ML models [13, 30]. With real-world instances of these problems
growing to enormous sizes, simply reducing the number of queries is not always sufficient and
parallelisation has become an increasingly central paradigm. However, classic results in the area,
often based on the greedy method, are inherently sequential: the intuitive approach of building a
solution element-by-element contradicts the requirement of running independent computations on
many machines in parallel. The degree to which an algorithm can be parallelized is measured by the
notion of adaptive complexity, or adaptivity, introduced in Balkanski et al. [3]. It is defined as the
number of sequential rounds of parallel computation needed to terminate. In each of these rounds,
polynomially many value queries may be asked, but they can only depend on the answers to queries
issued in past rounds.

Contribution. We design the first combinatorial randomized algorithms for maximizing a (possi-
bly) non-monotone submodular function subject to a knapsack constraint that combine constant
approximation, low adaptive complexity, and a small number of queries. In particular, we obtain

• a 9.465-approximation algorithm, ParKnapsack, that has O(logn) adaptivity and uses
O(n2 log2 n) value queries. This is the first constant factor approximation to the problem with
optimal adaptive complexity up to a O(log logn) factor (Theorem 1).

• a variant of our algorithm with the same approximation, near-optimal O(n log3 n) query com-
plexity, and O(log2 n) adaptivity (Theorem 2). This is the first constant factor approximation
algorithm that uses only Õ(n) queries and has sublinear adaptivity.

• 3-approximation algorithms for monotone objectives that combine O(logn) adaptivity with
O(n2 log2 n) total queries, and O(log2 n) adaptivity with O(n log3 n) queries, respectively
(Theorem 3). Even in the monotone setting, the latter is the first O(1)-approximation
algorithm combining Õ(n) queries and sublinear adaptivity.

• 5.83-approximation algorithms for cardinality constraints that match or surpass the state-
of-the-art when it comes to the combination of approximation, adaptivity and total queries
(Theorem 4).

See Table 1 for an overview of our results.

Technical Challenges. Like existing work for cardinality or matroid constraints, e.g., [5, 6], in
order to reduce the adaptive complexity we iteratively sample sequences of feasible elements and
add large chunks of them to our solution. However, knapsack constraints do not allow for the
elegant counting arguments used in the case of cardinality or matroid constraints. The reason is
that while the latter can be interpreted as a 1-independence system, a knapsack constraint induces
a Θ(n)-independence system, leading to poor results when naively adjusting existing approaches.
A natural and very successful way of circumventing the resulting difficulties is to turn towards a
continuous version of the problem. This, however requires evaluating the objective function also for
fractional sets, i.e., such algorithms require access to an oracle for the multilinear relaxation and its
gradient. Typically, these values are estimated by sampling, requiring Θ̃(n2) samples (see Chekuri
and Quanrud [9]). Our choice to avoid the resulting increase in query complexity and deal directly
with the discreteness of the problem calls for specifically tailored algorithmic approaches. Most

2

Reference Objective Constraint Approx. Adaptivity Queries
Ene et al. [19] General Knapsack e + ε O(log2 n) Õ(n2)
Theorem 1 (this work) General Knapsack 9.465 + ε O(log n) Õ(n2)
Theorem 2 (this work) General Knapsack 9.465 + ε O(log2 n) Õ(n)
Ene et al. [19] Monotone Knapsack e

e−1 + ε O(log n) Õ(n2)
Chekuri and Quanrud [9] Monotone Knapsack e

e−1 + ε O(log n) Õ(n2)
Theorem 3 (this work) Monotone Knapsack 3 + ε O(log n) Õ(n2)
Theorem 3 (this work) Monotone Knapsack 3 + ε O(log2 n) Õ(n)
Ene and Nguyen [17] General k-Cardinality e + ε O(log n) Õ(nk2)
Kuhnle [31] General k-Cardinality 6 + ε O(log n) Õ(n)
Kuhnle [31] General k-Cardinality 5.18 + ε O(log2 n) Õ(n)
Theorem 4 (this work) General k-Cardinality 5.83 + ε O(log n) Õ(nk)
Theorem 4 (this work) General k-Cardinality 5.83 + ε O(logn log k) Õ(n)

Table 1: Our results—main result highlighted—compared to the state-of-the-art for low-adaptivity. Bold
indicates the best result(s) in each setting. In the last two columns the dependence on ε is omitted; in the
last column only the leading terms are stated.

crucially, our main subroutine ThreshSeq needs to balance a suitable definition of good quality
candidates with a way to also reduce the size (not simply by cardinality, but a combination of overall
cost and absolute marginal values) of the candidate set by a constant factor in each adaptive round.

Both these goals are further hindered by our second main challenge, non-monotonicity. In
presence of elements with negative marginals, not only is it harder to maintain a good quality of our
solution, but size measures like the overall absolute marginals of our candidate sets are no longer
inclusion-monotone. In fact, even one such element can arbitrarily deteriorate intuitive quality
measures like the overall marginal density of the candidate set, causing a new adaptive round. Our
approach combines carefully designed stopping times in ThreshSeq with a separate handling of
the elements responsible for most of the above mentioned discreteness issues, i.e., elements with
cost less than 1/n of the budget and elements of maximum value.

Related Work. Submodular maximization has been studied extensively since the seminal work
of Nemhauser et al. [37]. For monotone submodular objectives subject to a knapsack constraint
the e

e−1 -approximation algorithm of Sviridenko [38] is best-possible, unless P = NP [22]. For the
non-monotone case, a number of continuous greedy approaches [24, 32, 11] led to the current
best factor of e when a knapsack, or any downward closed, constraint is involved. Combinatorial
approaches [25, 1] achieve somewhat worse approximation, but are often significantly faster and
thus relevant in practice.

Adaptive complexity for submodular maximization was introduced by Balkanski and Singer [2] for
monotone objectives and a cardinality constraint, where they achieved an O(1) approximation with
O(logn) adaptivity, along with an almost matching lower bound: to get an o(logn) approximation,
adaptivity must be Ω

(logn
log logn

)
. This result has been then improved [4, 16, 20] and recently

Breuer et al. [6] achieved an optimal e
e−1 -approximation in O(logn log2 log k) adaptive rounds and

O(n log log k) query complexity, where k is the cardinality constraint.
The study of adaptivity for non-monotone objectives was initiated by Balkanski et al. [3] again

for a cardinality constraint, showing a constant approximation in O(log2 n) adaptive rounds, later
improved by [21, 17, 31]. Non-monotone maximization is also interesting in the unconstrained

3

scenario. Recently, Ene et al. [18] and Chen et al. [12] achieved a 2 + ε approximation with constant
adaptivity depending only on ε. Note that the algorithm of Chen et al. [12] needs only Õ(n) value
queries, where the Õ hides terms poly-logarithmic in ε−1 and n.

Richer constraints, e.g., matroids and multiple packing constraints, have also been studied
[5, 19, 10, 9]. For knapsack constraints (as a special case of packing constraints) Ene et al. [19]
and Chekuri and Quanrud [9] provide low adaptivity results—O(log2 n) for non-monotone and
O(logn) for monotone—via continuous approaches (see Table 1; notice that the query complexity
of these algorithms is stated with respect to queries to f and not to its multilinear extension).
Chekuri and Quanrud [9] also provide two combinatorial algorithms for the monotone case: one
with optimal approximation and adaptivity but O(n4) value queries, and one with linear query
complexity, optimal adaptivity but an approximation factor parameterized by maxx∈N c(x) which
can be arbitrarily bad.

2 Preliminaries
Let f : 2N → R be a set function over a ground set N of n elements. For S, T ⊆ N , f(S |T)
denotes the marginal value of S with respect to T , i.e., f(S ∪ T)− f(T). To ease notation, we write
f(x |T) instead of f({x} |T). The function f is non-negative if f(S) ≥ 0, ∀S ⊆ N , monotone if
f(S) ≤ f(T), ∀S, T ⊆ N , and submodular if f(x |T) ≤ f(x |S), ∀S, T ⊆ N with S ⊆ T and x /∈ T .

We study non-negative, possibly non-monotone, submodular maximization under a knapsack
constraint. Formally, we are given a budget B > 0, a non-negative submodular function f and a
non-negative additive cost function c : 2N → R>0. The goal is to find O∗ ∈ arg maxT⊆N :c(T)≤B f(T).
Let OPT = f(O∗) denote the value of such an optimal set. Given a (randomized) algorithm for
the problem, let ALG denote the expected value of its output. We say that the algorithm is a
β-approximation algorithm if ALG · β ≥ OPT . Throughout this work, we assume, without loss of
generality, that maxx∈N c(x) ≤ B.

We assume access to f through value queries, i.e., for each S ⊆ N , an oracle returns f(S) in
constant time. Given such an oracle for f , the adaptive complexity or adaptivity of an algorithm
is the minimum number of rounds in which the algorithm makes O(poly(n)) independent queries
to the evaluation oracle. In each adaptive round the queries may only depend on the answers to
queries from past rounds. With respect to the same oracle, the query complexity of an algorithm is
the total number of value queries it makes.

We finally state some widely known properties of submodular functions that are extensively
used in the rest of the paper. The first lemma summarizes two equivalent definitions of submodular
functions shown by Nemhauser et al. [37].

Lemma 1. Let f : 2N → R be a submodular function and S, T, U be any subsets of N , with S ⊆ T .
Then i) f(U |T) ≤ f(U |S), ii) f(S |T) ≤∑x∈S f(x |T).

The second lemma, Lemma 2.2 of Buchbinder et al. [7], is an important tool for tackling
non-monotonicity.

Lemma 2 (Sampling Lemma). Let f : 2N → R be a submodular function, X ⊆ N and Xp be
a random subset of X, where each element of X is contained with probability at most p. Then
E [f(Xp)] ≥ (1− p)f(∅).

Finally, we assume access to SubmodMax, an unconstrained submodular maximization oracle.
For instance, this can be implemented via the combinatorial algorithm of Chen et al. [12], which
outputs a (2 + ε)-approximation of maxT⊆N f(T) for a given precision ε in O(1

ε log 1
ε) adaptive

4

rounds and linear query complexity. For our experiments, we use the much simpler 4-approximation
of Feige et al. [23], which has adaptive complexity 1.

3 Non-Monotone Submodular Maximization
To achieve sublinear adaptivity we need to add large chunks of elements to the solution without
using intermediate value queries. The sequence of elements that are candidates to be added to the
current solution is randomly drawn in SampleSeq. This subroutine receives as input a partial
solution S, a set of feasible elements X and a budget, and outputs a sequence A each element of
which is sequentially drawn uniformly at random among the remaining elements of X that do not
cause S ∪ A to exceed the budget. We do, however, need to restrict ourselves to only adding a
suitable prefix of A; with each element added, the original “good” quality of the leftover candidates
in X can quickly deteriorate.

The selection of the prefix of the sequence A = [a1, . . . , ad] to be added to the current solution
S is then done by ThreshSeq. Given a threshold τ , we add to S a prefix Ai = [a1, . . . , ai] such
that for all j < i the average contribution to S ∪Aj of the elements in X \Aj is comparable to τ .
Then the expected value of f(Ai |S) should be comparable to τE [c(Ai)]. In order to compute Ai in
one single parallel round, one can a posteriori compute for each prefix Aj of A the a priori (with
respect to the uniform samples) expected marginal value of aj+1; with aj+1 drawn uniformly at
random from the elements in X \Aj still fitting the budget, this means simply averaging over their
marginal densities. Since all the value queries depend only on S and A, finding the prefix needs
only a single adaptive round.

The crucial difficulty lies in the fact that limiting the expected marginal density is insufficient
to bound the number of adaptive steps. In the worst case, a single very negative element could
trigger this condition. We circumvent the resulting adaptive complexity of up to n by imposing
two different stopping conditions, corresponding to i∗ and j∗ in ThreshSeq. The cost condition is
triggered once an ε-fraction of all remaining candidates’ cost is due to elements that are no longer
good, i.e., they now have marginal density below τ . The value condition is triggered at most ` times,
which happens whenever the elements with negative marginal value make up an ε-fraction of the
entire leftover marginal value. Now, in each adaptive step, either the overall cost or the summed-up
marginal contributions of the candidate set decrease by a factor of (1− ε). These observations are
formalized below.

Algorithm 1: SampleSeq(S,X,B)
1: Input: current solution S, set X of remaining elements and budget B > 0
2: A← [], i← 1
3: while X 6= ∅ do
4: Draw ai uniformly at random from X

5: A← [a1, . . . , ai−1, ai]
6: X ← {x ∈ X \ {ai} : c(x) + c(A) + c(S) ≤ B}
7: i← i+ 1
8: return A = [a1, a2, . . . , ad]

Lemma 3. Let κ(X) = maxx,y∈X c(x)/c(y). Then ThreshSeq runs in O
(

1
ε log(nκ(X)) + `

)
adaptive rounds and issues O

(
n2
(

1
ε lognκ(X) + `

))
value queries.

5

Proof. The adaptive rounds correspond to iterations of the while loop. In fact, once a new sequence
is drawn by SampleSeq, all the value queries needed are deterministically induced by it and hence
can be assigned to different independent machines. Gathering this information we can determine k∗
and start another iteration of the while loop. Bounding the number of such iterations where the
value condition is triggered is easy, since it is forced to be at most `. For the cost condition we use
the geometric decrease in the total cost of X: every time it is triggered, the total cost of the feasible
elements X is decreased by at least a (1− ε) factor. At the beginning of the algorithm, that cost is
at most Cn, with C = maxx∈X c(x), and it needs to decrease below c = minx∈X c(x) to ensure that
X = ∅. Call r the number of such rounds. In the worst case we need Cn(1− ε)r < c, meaning that
the adaptivity is upper bounded by 1

ε log (nκ(X)) + `. Finally, notice that the query complexity
is just a n2 factor greater than the adaptivity: each adaptive round contains O(n2) value queries,
since the length of the sequence output by SampleSeq may be linear in n and for each prefix the
value of the marginals of all the remaining elements has to be considered.

Having settled the adaptive and query complexity of ThreshSeq, we move to proving that our
conditions ensure good expected marginal density.

Algorithm 2: ThreshSeq(X, τ, ε, `, B)
1: Input: set X of elements, threshold τ > 0, precision ε ∈ (0, 1), parameter ` and budget B
2: S ← ∅, ctr← 0
3: X ← {x ∈ X : f(x) ≥ τc(x)}
4: while X 6= ∅ and ctr < ` do
5: [a1, a2, . . . , ad]← SampleSeq(S,X,B);
6: for i = 1, . . . , d do
7: Ai ← {a1, a2, . . . , ai}
8: Xi ← {a ∈ X \Ai : c(a) + c(S ∪Ai) ≤ B};
9: Gi ← {a ∈ Xi : f(a |S ∪Ai) ≥ τ · c(a)}

10: Ei ← {a ∈ Xi : f(a |S ∪Ai) < 0}
11: i∗ ← min{i : c(Gi) ≤ (1− ε)c(X)}
12: j∗ ← min

{
j :

∑
x∈Gj

εf(x |S ∪Aj) ≤
∑
x∈Ej

|f(x |S ∪Aj)|
}

13: k∗ ← min{i∗, j∗}
14: S ← S ∪Ak∗

15: X ← Gk∗

16: if j∗ < i∗ then
17: ctr← ctr + 1
18: return S

Lemma 4. For any X, τ , ε ∈ (0, 1), ` and b, the random set S output by ThreshSeq is such that
E [f(S)] ≥ (1− ε)2τE [c(S)] and c(S) ≤ B.

Proof. We first note that c(S) ≤ B with probability 1 since SampleSeq always returns feasible
sequences. The algorithm adds a chunk of elements to the solution in each iteration of the while
loop. This, along with the fact that each of these chunks is an ordered prefix of a sequence output
by SampleSeq, induces a total ordering on the elements in S. To facilitate the presentation of this
proof, we imagine that the elements of S are added one after the other, according to this total order.

6

Let us call the t-th such element st, and let Ft denote the filtration capturing the randomness of
the algorithm up to, but excluding, the adding of st to its chunk’s random sequence. We show that
whenever any st is added, its expected marginal density is at least (1− ε)2τ .

Fix some st and consider the iteration of the while loop in which it is added to the solution.
We denote with Sold the partial solution at the beginning of that while loop, with X the candidate
set {x ∈ N : f(x |Sold) ≥ τ · c(x), c(x) + c(Sold) ≤ B} at that point, and with A the sequence
drawn in that iteration by SampleSeq. Let A(t) be the prefix of A up to, and excluding, st.
Then St = Sold ∪ A(t) is the set of all elements added to the solution before st. Note that, given
Ft, the sets X, Sold and A(t) are deterministic, while the rest of A is random. Recall that st
is drawn uniformly at random from X(t) = {x ∈ X \ A(t)|c(St) + c(x) ≤ B}. We need to show
that E [f(st |St) | Ft] ≥ (1− ε)2τE [c(st) | Ft], where the randomness is with respect to the uniform
sampling in X(t).

If st is the first element in A, this holds since all the elements in X exhibit a marginal density
greater that τ . If st is not the first element, it means that the value and cost condition were not
triggered for the previous one. Call G and E the sets of the good and negative elements with respect
to St, i.e., G = {x ∈ X(t) : f(x |St) ≥ τc(x)} and E = {x ∈ X(t) : f(x |St) < 0}, which are also
deterministically defined by Ft. Finally, let px be P (st = x | Ft) which is equal to |X(t)|−1 for all
x ∈ X(t) and zero otherwise, then

E[f(st |St) | Ft]− (1− ε)2τE [c(st) | Ft] =
=
∑
x∈X

pxf(x |St)− (1− ε)2τ
∑
x∈X

pxc(x)

≥
∑

x∈G∪E
pxf(x |St)− (1− ε)2τ

∑
x∈X

pxc(x)

= ε
∑
x∈G

pxf(x |St)−
∑
x∈E

px|f(x |St)| (1)

+ (1− ε)τ
[∑
x∈G

pxc(x)− (1− ε)
∑
x∈X

pxc(x)
]

(2)

+ (1− ε)
∑
x∈G

px
[
f(x |St)− τc(x)

]
≥ 0 . (3)

Expressions (1) and (2) are nonnegative since the value and cost conditions were not triggered
before adding st. Expression (3) is nonnegative by the definition of G.

We have shown for all t and Ft, the expected marginal density of the t-th element (if any)
added by our algorithm is large enough. Next we carefully apply conditional expectations to get the
desired bound. We have already argued how the algorithm induces an ordering on the elements it
adds to the solution, so that they can be pictured as being added one after the other. To avoid
complication in the analysis we suppose that after the algorithm stops it keeps on adding dummy
elements of no cost and no value, so that in total it runs for n time steps. Consider the filtration
{Ft}nt=1 generated by the stochastic process associated to the algorithm, where Ft narrates what
happens up to the point when element st is considered. So that F1 is empty and Fn contains all
the story of the algorithm except for the last—possibly dummy—added element. From the above
analysis we know that for each time t ∈ {1, . . . , n} and any possible story Ft of the algorithm it
holds

E [f(st |St) | Ft] ≥ (1− ε)2τE [c(st) | Ft] . (4)

Note that this claim holds also if one considers the dummy elements after the actual termination of

7

the algorithm.

E [f(S)] = E
[
n∑
t=1

f(st |St)
]

=
n∑
t=1

E [f(st |St)] =
n∑
t=1

E [E [f(st |St) | Ft]]

= E
[
n∑
t=1

E [f(st |St) | Ft]
]
≥ (1− ε)2τE

[
n∑
t=1

E [c(st) | Ft]
]

= (1− ε)2τE
[
n∑
t=1

c(st)
]

= (1− ε)2τE [c(S)] .

The second and fourth equalities hold by linearity of expectation, the third and fifth equalities hold
by the law of total expectation. Finally, the inequality follows from monotonicity of the conditional
expectation and inequality (4).

Having established that S has expected density comparable to our threshold τ , we move on
to showing that when ThreshSeq terminates, either a large portion of the budget is used up in
expectation, or we can bound the value of good candidates that are left outside the solution.

Lemma 5. When ThreshSeq terminates we have f(S) ≥ ε`∑x∈G f(x |S), where G = {x ∈ X \S :
f(x |S) ≥ τc(x), c(x) + c(S) ≤ B}.

Proof. ThreshSeq terminates in one of two cases. Either X is empty, meaning that there are no
elements still fitting in the budget whose marginal density is greater than τ—and in that case the
inequality we want to prove trivially holds—or the value condition has been triggered ` times.

For the latter, suppose that the value condition was triggered for the ith time during iteration
ti of the while loop. Denote by Sti the solution at the end of that iteration. We are interested in
the sets Xj∗ , Gj∗ , Ej∗ of that particular iteration of the while loop. In order to be consistent across
iterations, we use X(i), G(i), and E(i) to denote these sets for iteration ti. Since the value condition
was triggered during ti, we have ε∑x∈G(i)

f(x |Sti) ≤
∑
x∈E(i)

|f(x |Sti)|. Clearly, G(`) is what we
denoted by G in the statement and St` is S. Also notice that E(j) ∩ E(k) = ∅ for j 6= k.

Now, by non-negativity of f and Lemma 1, we have

0 ≤ f
(
St` ∪

⋃̀
i=1
E(i)

)
≤ f(St`) +

∑̀
i=1

∑
x∈E(i)

f(x |Sti) .

Rearranging the terms and using the value condition, we get

f(St`) ≥
∑̀
i=1

∑
x∈E(i)

|f(x |Sti)| ≥
∑̀
i=1

ε
∑

x∈G(i)

f(x |Sti) ≥ `ε
∑

x∈G(`)

f(x |St`) .

The last inequality follows from the submodularity of f and the fact that that G(1) ⊇ G(2) ⊇ . . . ⊇
G(`).

Lemma 5 still leaves a gap: how can we account for the elements which have marginal density
greater than τ but are not considered due to the budget constraint? It can be the case that due to
some poor random choices we initially filled the solution with low quality elements, preventing the
algorithm at later stages to consider good elements with large costs. To handle this, we need the
following simple lemma.

8

Lemma 6. Suppose that E [c(S)] < B
2 (1 − ε). Then, running ThreshSeq 1

ε log(1
ε) times, with

probability at least (1− ε), there is at least one run where c(S) < B
2 .

Proof. Let E be the event {c(S) ≥ B
2 }, then

(1− ε)B2 > E [c(S)] ≥ E [c(S) | E]P (E) ≥ P (E) B2 .

Hence P
(
EC
)
> ε > 0, so repeating the experiment 1

ε log(1
ε) independent times is enough to have a

probability at least 1− ε of observing at least once EC .

We can now present the full parallel algorithm ParKnapsack for the non-monotone case.
It considers separately the set N− of “small” elements, each with cost smaller than B/n, and
the set of “large” elements N+ = N \ N−. The set N− is fed to the low adaptive complexity
unconstrained maximization routine SubmodMax as discussed in Section 2. For the large elements,
ParKnapsack samples each element of N+ with probability p to get a random subset H, and
then it runs ThreshSeq a logarithmic number of times on H, in parallel, for different guesses of
the “right” threshold. The partition between N+ and N− is critical in bounding the adaptivity of
ThreshSeq, as κ(N+) ≤ n.

Algorithm 3: ParKnapsack(N , f, ε, α, p,B)
1: Input: Ground set N , submodular function f , budget B, precision ε, parameter α and

sampling probability p
2: N− ← {x ∈ N : c(x) < B

n } ; N+ ← N \N−
3: x∗ ← maxx∈N+ f(x) ; τ̂ ← αnf(x∗)

B

4: ε̂← ε/125 ; `← ε̂−2 ; k ← ε̂−1 log(n)
5: S− ← SubmodMax(N−, ε̂)
6: H ← sample each element in N+ independently at random with probability p
7: for i = 0, 1, . . . , k in parallel do
8: τi ← τ̂ · (1− ε̂)i

9: for j = 1, 2, . . . , ε̂−1 log(ε̂−1) in parallel do
10: Sij ←ThreshSeq(H, τi, ε̂, `, B)
11: return T ∈ arg maxi,j{f(Sij), f(x∗), f(S−)}

Theorem 1. For α = 2−
√

3, p = 1−α
2 and ε < 1

3 , ParKnapsack is a (9.465 + ε)-approximation
algorithm with O(1

ε logn) adaptivity and O(n2

ε3 log2n log 1
ε) total queries.

Proof. Excluding the call to SubmodMax, the claim on the adaptivity follows directly from
Lemma 3 with ` = O(ε−2), and the observation that κ(N+) ≤ n. The adaptivity is indeed only due
to ThreshSeq, since the guessing of the threshold, as well as the multiple runs of ThreshSeq,
happen independently in parallel. Relative to the query complexity, we have the bound in Lemma 3
multiplied by an extra O(logn

ε2 log 1
ε) factor caused by the two for loops. SubmodMax does not

affect these asymptotics since it has adaptivity bounded by O(1
ε) and linear query complexity.

Consider now the approximation guarantee. Call O∗ the optimal solution, and O+, O− its
intersections with N+ and N− respectively. We can upper bound f(O−) with the unconstrained max

9

on N−, since there are at most n elements in N− whose cost is at most B
n . Using the combinatorial

algorithm of Chen et al. [12], we get

f(O−) ≤ (2 + ε̂) · f(S−) ≤ (2 + ε̂) ·ALG (5)

Let O ∈ arg max{f(T) : T ⊆ N+, c(T) ≤ B}, i.e., O is an optimal solution in N+. Clearly
f(O+) ≤ f(O), so we will upper bound the latter. Let OH = O ∩ H. By submodularity and
monotonicity of f(· ∩O), we have pf(O) ≤ E [f(OH)]. OutsideO, the function may be non-monotone,
so we need Lemma 2. In particular, we apply it on the submodular function g(·) = f(· ∪O). Since
elements belong to H with probability p, for S ⊆ H we get

p(1− p)f(O) ≤ (1− p)E [f(OH)] ≤ E [E [f(S ∪OH) |OH]] = E [f(S ∪OH)] . (6)

Let τ∗ = αf(O)/B. By the parallel guesses we have that there exists τ = τi such that (1−ε̂)τ∗ ≤ τ <
τ∗. This directly follows from the definitions of τ∗ and τ̂ and the fact that nf(x∗) ≥ f(O) ≥ f(x∗).
We focus only on this particular τ and consider two cases, depending on E [c(S)], where S is the set
outputted by ThreshSeq for τ . If E [c(S)] ≥ (1− ε̂)B2 , then, from Lemma 4 we have

ALG ≥ E [f(S)] ≥ (1− ε̂)2τE [c(S)] ≥ (1− ε̂)3αf(O)E [c(S)]
B

≥ (1− ε̂)4α

2 f(O) . (7)

If E [c(S)] < (1− ε̂)B2 we need a more careful analysis, via Lemmata 5 and 6. Consider the multiple
runs of ThreshSeq corresponding to τ . Let G be the event that at least one of those runs outputs
S with c(S) < B

2 and consider that solution; recall that P (G) ≥ (1− ε̂) from Lemma 6. What we
want to bound is the total value of the elements of OH which are not in S. The ones retaining
a good marginal density with respect to S can be divided into two categories, depending on the
reason why they were not added to S:

G = {x ∈ H : f(x |S) ≥ τc(x), c(x) + c(S) ≤ B} ,
G̃ = {x ∈ H : f(x |S) ≥ τc(x), c(x) + c(S) > B} .

The total contribution of the elements in G can be bounded applying Lemma 5. For G̃ ∩OH we
know that it contains at most one element x̃, since we are conditioning on G and thus, if such x̃
exists, c(x̃) > B

2 . Moreover, f(x̃) ≤ f(x∗). Finally, we know that the marginal density of all the
other elements in OH \ S is at most τ . Let E be the event that G̃ ∩ OH 6= ∅ given G and q its
probability. We have

f(S ∪OH) ≤ f(S) + 1E · f(x̃ |S) +
∑
x∈G

f(x |S) +
∑

x∈OH\(G∪G̃)

f(x |S)

≤ f(S)(1 + ε̂) + 1E · (f(x̃ |S)− τc(x̃)) + τc(OH)
≤ f(S)(1 + ε̂) + 1E · (f(x∗)− τ B2) + τc(OH) .

Keeping fixed H, let’s apply the expectation on the randomness in ThreshSeq, conditioning on G
and recalling that both f(S) and f(x∗) are upper bounded by ALG:

E [f(S ∪OH) | G] ≤ (1 + ε̂+ q)ALG+ τc(OH)− qτ B2 ,

Now move on to the expectation with respect to H. Note that by submodularity f(S∪OH) ≤ 2f(O).
We have

E [f(S ∪OH)] = E [f(S ∪OH) | G]P (G) + E
[
f(S ∪OH) | GC

]
P
(
GC
)

10

≤ E [f(S ∪OH) | G] + 2ε̂f(O) .

Putting together the last two inequalities and recalling that E [c(OH)] = pc(O) ≤ pB, we have

E [f(S ∪OH)] ≤ (2ε̂+ α− qα2)f(O) + (1 + ε̂+ q)ALG.

Combining that with (6), we finally obtain

f(O) ≤ (1 + q + ε̂)[
p(1− p)− αp+ αq

2 − 2ε̂
]ALG (8)

At this point we need to optimize the constants in (5), (6), (8), also using that

OPT ≤ f(O+) + f(O−) ≤ f(O) + f(O−) .

Setting p = 1
2(
√

3− 1), α = 2−
√

3 and rescaling ε̂ = ε
125 we get, for small enough ε̂ and for any

value of q ∈ (0, 1) the desired bound: OPT ≤ (2(3 +
√

3) + ε)ALG.

3.1 Variants and Implications

As mentioned already, an interesting feature of our approach is that—with few modifications—
yields a number of algorithms that match or improve the state-of-the-art. We only sketch these
modifications here and we defer the details to the appendix.

We begin with a discussion on the possible trade-offs between adaptivity and query complexity.
ThreshSeq can be adapted to spare Θ(n

logn) value queries at the cost of O(logn) extra adaptive
rounds. The idea is to use binary search to locate k∗ in the while loop of ThreshSeq. Only
a logarithmic number of prefixes needs to be sequentially considered, instead of all of them in
parallel. To be able to binary search k∗, though, a carefully modified version of the value condition
is implemented, since the one used in ThreshSeq exhibits a multi-modal behaviour.

Theorem 2. For ε ∈ (0, 1/3), it is possible to achieve a (9.465 + ε)-approximation in O(1
ε log2 n)

adaptive rounds and O(n
ε3 log3 n log 1

ε) queries.

3.1.1 Monotone Submodular Functions

For monotone objectives, the approximation ratio of ParKnapsack can be significantly improved.
In particular, in ThreshSeq, we do not need to address the value condition any more. Moreover,
the small elements can be accounted for without any extra loss in the approximation. As in the
case of Theorems 1 and 2, it is possible to trade a logarithmic loss in adaptivity for an almost linear
gain in query complexity.

Theorem 3. For ε ∈ (0, 1) it is possible to achieve a 3 + ε approximation in O(1
ε logn) adaptive

rounds and O(n2

ε3 log2 n log 1
ε) queries or in O(1

ε log2 n) adaptive rounds and O(n
ε3 log3 n log 1

ε) queries.

Note that the variant using Õ(n) queries is the first O(1)-approximation algorithm for the
problem combining this few queries with sublinear adaptivity.

11

3.1.2 Cardinality constraints

ParKnapsack can be directly applied to cardinality constraints for (possibly) non-monotone objec-
tives. Again with some simple modifications, it is possible to achieve a much better approximation.

Theorem 4. For ε ∈ (0, 2/5) it is possible to achieve a 5.83 + ε approximation, in O(1
ε logn)

adaptive rounds and O(nk
ε3 logn log k log 1

ε) queries, or in O(1
ε logn log k) adaptive rounds and

O(n
ε3 logn log2 k log(1

ε)) queries.

Although we do not heavily adjust our algorithms to cardinality constraints, Theorem 4 is
directly comparable to the very recent results of Ene and Nguyen [17] and Kuhnle [31] which are
tailored for the problem.

4 Experiments
We evaluate the performance of ParKnapsack on real datasets and real-world applications,
as is often the case in the related literature [35, 21, 1, 6, 31]. All three objectives we use are
non-monotone submodular. We compare against the state-of-the-art of fast algorithms for non-
monotone submodular maximization subject to a knapsack constraint, in order to demonstrate that
ParKnapsack produces almost equally good solutions with an exponential improvement on the
adaptivity. We provide two kinds of figures: objective versus budget (or instance size) and objective
versus adaptive steps, for a given instance, as in Balkanski et al. [3] and Fahrbach et al. [21]. Note
that we use the version of ParKnapsack from Theorem 2 to ensure Õ(n) query complexity. The
benchmarks we use are plain Greedy, Fantom of Mirzasoleiman et al. [35] and SampleGreedy of
Amanatidis et al. [1]. The last two have the state-of-the-art performance in terms of objective value
for knapsack constraints among algorithms with practical running times, i.e., among algorithms
with subquadratic query complexity. On the other hand, these algorithms are not designed for
low adaptivity but, the only alternative, i.e. continuous methods, are impractical for the instance
sizes we consider. The Greedy algorithm builds a solution step by step by adding the element
with the highest marginal value, until the budget is exhausted. While this naive approach has no
theoretical guarantees, it is very fast and often has acceptable performance in practice. Fantom
builds on Greedy and is robust for intersecting p-systems and knapsack constraints providing a
10(1+ε)-approximation for our setting. Finally, SampleGreedy greedily selects elements according
to their marginal value per cost ratio, but only adds them to the solution with some probability.
This leads to a 5.83-approximation. These algorithms need O(n logn) queries and adaptive steps,
when implemented using with lazy evaluations [33].

Apart from Greedy, all other algorithms need some constant parameters as part of the input,
in addition to the submodular instance. For SampleGreedy and ParKnapsack, we set p = 0.9,
without further optimizing it for each problem. Although this is not the theoretical optimal,
the instances in question come from real-world datasets, which typically are not arbitrarily non-
monotone. As a result the algorithm can afford to discard elements at a lower rate, as it is less
likely that these will hurt the objective in the long run. Moreover, we set ε = 1/8 for Fantom and
ε = 1/8, α = 2−

√
3 for ParKnapsack balancing performance and running time. Each experiment

on the top row was repeated 3 times, to gain an estimate of the variance. In total, the whole array
of tests ran on four t2.micro instances on the Amazon Elastic Compute Cloud (EC2), which is
part of Amazon Web Services (AWS).

Movie Recommendation. Given a set of moviesA, a list of genres Ci such that C1∪C2∪. . .∪Ck =
A and a list of user generated keyword tags tiu and ratings riu, where i ∈ A and u is the id of a

12

0.02 0.04 0.06 0.08 0.10
Budget

0.0

0.5

1.0

1.5

2.0

2.5

O
bj

ec
ti

ve
F

un
ct

io
n

×106

Fantom

SampleGreedy

ParKnapsack

Greedy

(a) Movie Recommendation (b) Movie Recommendation

0.01 0.02 0.03 0.04 0.05 0.06
Budget

0.5

1.0

1.5

2.0

2.5

3.0

O
bj

ec
ti

ve
F

un
ct

io
n

×104

Fantom

SampleGreedy

ParKnapsack

Greedy

(c) Revenue Maximization (d) Revenue Maximization

0 1000 2000 3000 4000 5000
Number of Vertices

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
bj

ec
ti

ve
F

un
ct

io
n

×105

Fantom

SampleGreedy

ParKnapsack

Greedy

(e) Graph Cut on G(n, 0.1) (f) Graph Cut on G(n, 0.1)

Figure 1: Each row contains two plots, corresponding to the same submodular problem. The left column
contains the objective function value for different budget or instance sizes. The right column focuses on
one vertical slice of the top one: for a specific budget and instance size, the objective value is presented as
a function of the number of adaptive rounds, indicating that if we required to stop after a small number
of rounds all other algorithms would perform extremely poorly. In all cases, the results are consistent:
ParKnapsack has comparable performance, with drastically improved adaptivity.

user, a movie recommendation system aims to use this information to provide a short list of diverse
options that match certain preferences. The MovieLens dataset [26] provides a very large set of
movies that include user generated tags and ratings. We calculate the similarity between two movies
(following the procedure of Amanatidis et al. [1]; see below) and produce a weighted complete graph,
where each vertex is a movie. For i, j ∈ A the weight wij represents their similarity. In addition,

13

https://grouplens.org/datasets/movielens/25m/

we use χij to indicate if the two movies share a genre. Putting everything together, the objective
function is: v(S) = α

∑
i∈S ri+β(∑i∈S

∑
j∈Awij−

∑
i∈S

∑
j∈S(λ+χijµ)wij) for λ, µ, α, β ≥ 0 where

ri represents the average rating of movie i. This is a weighted average of the ratings of the movies
in S and a modified maximal marginal relevance [8]. The second part is similar to a max cut (in
fact it is a max cut for λ = 1 and µ = 0), but allows the internal edges to be penalized differently,
depending on whether the movies are similar or belong to the same genre. For the experiments we
consider a subset of 5000 movies and set α = β = 0.5, λ = 3 and µ = 7. Each movie is assigned a
cost sampled uniformly from [0, 1] and the total budget ranges from 0.01 to 0.1 of the total cost.

We outline how the weights wij are created, given the MovieLens dataset. Each movie i is
associated with a tag vector ti ∈ [0, 1]1128, which encodes how much each tag applies to it. The tags
are user generated. For example, a movie like “Titanic” could have a score of 0.9 for “ships”, 0.8
for “romance” and 0 for “talking animals”. These tag vectors are not normalized. Given those, we
compute the similarities as:

wij =

√√√√1128∑
k=1

(
min{tik, t

j
k}
)2
. (9)

This approach ensures that movies with tag vectors that are close appear more similar. There are
various trade-offs in the selection of the similarity metric. For instance, if one defined wij = ti · tj ,
then a movie with all tags set to 1 would appear more similar to any other movie, even when
comparing a movie with itself! Going to the other extreme, if wij = ti · tj/(|ti||tj |) this issue would
be avoided, but some information would be lost as every movie would have a normalised tag vector,
even though having a high score on one tag should not impact the score on other tags. Ultimately,
using (9) appears to be a reasonable compromise between the two. We stress that our experimental
findings about the performance of each algorithm remain qualitatively the same for any sensible
choice of wij .

Revenue Maximization. Representing a social network as a weighted graph, where each edge
signifies how much one user is influenced by another, our goal is to select a subset S of users who
are given a product to advertise, in order to maximize the revenue from sales. We use the YouTube
Network [40], and consider the subgraph induced by selecting its Top 5000 communities, which
has 39841 vertices and 224235 edges. We assign edge weights wij sampled uniformly in [0, 1] and
each user i ∈ V has a suggestibility parameter αi drawn from a Pareto Type II distribution with
λ = 1, α = 2. The objective to maximize is: v(S) = ∑

i∈V \S αi
√∑

j∈S wij . Each user is assigned a
cost proportional to their incident edges, with the budget ranging from 0.01 to 0.1 of the total cost.

Maximum Weighted Cut. Given an Erdős–Rényi graph G(n, p) where n is the number of
vertices and p the probability of including each edge, the objective is to find a cut of maximum
weight. Fixing p = 0.1, we let n ∈ {30, . . . , 5000} (with an exponential step) and assign random edge
weights and costs sampled uniformly from [0, 1], while the budget is fixed at 15% of the total cost.

5 Conclusions
In this paper we close the gap for the adaptive complexity of non-monotone submodular maximization
subject to a knapsack constraint, up to a O(log logn) factor. Our algorithm, ParKnapsack, is
combinatorial and can be modified to achieve trade-offs between adaptivity and query complexity.
In particular, it may use nearly linear queries, while achieving an exponential improvement on
adaptivity compared to existing algorithms with subquadratic query complexity.

14

https://snap.stanford.edu/data/com-Youtube.html
https://snap.stanford.edu/data/com-Youtube.html

A Adapting ParKnapsack to Use Binary Search
This appendix addresses the adaptivity versus queries trade-off mentioned in Section 3.1 which leads
to Theorem 2 and, implicitly, to Theorems 3 and 4. The algorithms and the proofs of these two
theorems are presented in Appendices B and C, respectively.

As already pointed out in the main text, the value condition in ThreshSeq may exhibit a
multi-modal behaviour along a single iteration of the while loop. In order to enable binary search
for k∗, we want to tweak the value condition so that if it is triggered for a certain prefix Ai, it
remains activated for all Aj for j ≥ i in the specific while loop iteration.

So, fix an arbitrary iteration of the while loop. Call S the initial solution and A the sequence
drawn by SampleSeq, {Xi}i the sequence of the sets of elements still fitting into the budget relative
to each prefix Ai and with Gi and Ei the subsets of Xi containing the good, i.e., marginal density
greater than τ , and bad, i.e., negative marginal density, elements, respectively. First, note that the
cost condition is clearly unimodal: the {Xi}i is a decreasing sequence of sets and hence c(Xi) is
a non-increasing sequence of costs, while c(X) stays fixed: as soon as the cost of Xi drops below
(1− ε)c(X) it stays there for all the prefixes longer than Ai.

For the value condition we need a bit more work; if for some j it holds that ε∑x∈Gj
f(x |S∪Aj) ≤∑

x∈Ej
|f(x |S ∪ Aj)|, it may be the case that the inequality switches direction later in the same

iteration of the while loop. Notice that it can happen for one of two reasons: either elements with
negative marginals are added to the solution or they are thrown away due to budget constraint.
We want a modification which is robust to these corner cases. To this end, we add to the value
condition the absolute contribution of two sets of items.

First, we redefine the set Ei to contain also all the bad elements considered in that while loop,
regardless of the budget condition, i.e., Ei ← {a ∈ X : f(a |S ∪Ai) < 0}. Moreover for each prefix
Ai, we define Ei as the set of all the items in the prefix Ai which added negative marginal when
inserted in the solution. i.e., Ei = {at ∈ Ai : f(at |S ∪At−1) < 0}.

The new value condition then reads:

ε
∑
x∈Gi

f(x |S ∪Ai) ≤
∑
x∈Ei

|f(x |S ∪Ai)|+
∑
aj∈Ei

|f(aj |S ∪Aj)| .

Notice that now everything works out just fine: the left hand side of the condition is monotonically
decreasing in i, while the right hand side is monotonically increasing, by submodularity and the
fact that now {Et ∪ Et}t is an increasing set sequence.

Given the new algorithm, ThreshBin, we need to show that it retains the right properties of
ThreshSeq and argue about its adaptive and query complexity.

Lemma 7. Consider a run of ThreshBin and denote with S and S̄ the preliminary and final
solution as in the algorithm. Then the following properties hold:

• c(S̄) ≤ c(S) ≤ B

• f(S̄) ≥ f(S)

• E [f(S)] ≥ τ(1− ε)2E [c(S)]

• Call G the set of elements still fitting in the budget after S, whose marginal density with
respect to S is greater than τ . Then f(S̄) ≥ ε`∑x∈G f(x |S).

ThreshBin needs O
(
logn

(
lognκ(X)

ε + `
))

adaptive rounds and O
(
n logn

(
lognκ(X)

ε + `
))

value
queries.

15

Algorithm 4: ThreshBin(X, τ, ε, `, B)
Variant of ThreshSeq that utilises binary search

1: Input: set X of elements, threshold τ > 0, precision ε ∈ (0, 1), parameter ` and budget B
2: S ← ∅; ctr← 0; flag← 0
3: X ← {x ∈ X : f(x) ≥ τc(x)}
4: while X 6= ∅ and ctr < ` do
5: [a1, a2, . . . , ad]← SampleSeq(S,X,B);
6: bl ← 1, br ← d;
7: while bl < br do
8: i = b(br + bl)/2c ;
9: Ai ← {a1, a2, . . . , ai}

10: Xi ← {a ∈ X \Ai : c(a) + c(S ∪Ai) ≤ B};
11: Gi ← {a ∈ Xi : f(a | S ∪Ai) ≥ τ · c(a)}
12: Ei ← {a ∈ X : f(a |S ∪Ai) < 0}
13: Ei ← {as ∈ Ai : f(as |S ∪As) < 0}
14: c1 ← c(Gi) ≤ (1− ε)c(X) ;
15: c2 ←

∑
x∈Gi

εf(x |S ∪Ai) ≤
∑
x∈Ei

|f(x |S ∪Ai)|+
∑
aj∈Ei

|f(aj |S ∪Aj)| ;

16: if c1 or c2 then
17: br ← i

18: else
19: bl ← i+ 1
20: if c2 and not c1 then
21: flag← 1 ;
22: else
23: flag← 0 ;
24: k∗ = br ;
25: S ← S ∪Ak∗ ;
26: X ← Gk∗

27: ctr← ctr + flag
28: Suppose S = {s1, s2, . . . , s|S|}, where the indices imply the total ordering from the proof of

Lemma 4
29: S̄ ← ∅
30: for t = 1, . . . , |S| do
31: if f(st | {s1, . . . , st−1}) > 0 then
32: S̄ ← S̄ ∪ {st}
33: return S̄

16

Proof. The proof of this Lemma is quite similar to the one for ThreshSeq, so we just highlight the
differences.

First, the new value condition is stricter than the old one, so the E[f(st |St) | Ft] ≥ τ(1− ε)2

E [c(st) | Ft] inequality holds as well, where St and Ft are as in the proof of Lemma 4. This implies
that

E [f(S)] ≥ τ(1− ε)2E [c(S)] .

The bounds on adaptivity and query complexity follow easily from the binary search and the
analysis of Lemma 3. Further, the first and second bullets follow directly from S̄ ⊆ S and the fact
that we only filter out from S elements with negative contribution.

Consider now the last remaining statement to prove (the analog of Lemma 5). For all real
numbers a we denote with a+ = max{a, 0} its positive part and with a− = max{−a, 0} the negative
one. Clearly a = a+ − a−.

f(S) =
T∑
t=1

(f(st |St)+ − f(st |St)−) ≤
T∑
t=1

f(st |St)+ ≤
∑
st∈S̄

f(st | S̄t) = f(S̄) ,

where in the last inequality we used submodularity.
Similarly to the proof for ThreshSeq, consider t1, . . . , t`, E(1), . . . , E(`), G(1), . . . , G(`), and E(1),

. . . , E(`). Notice that they are all disjoint. Like before, for si ∈ S, Si denotes {s1, . . . , si−1}, but we
slightly abuse the notation and have Stj denote the set S at the end of the iteration of the outer
while loop where ctr is increased for the `th time. We have

0 ≤ f
(
St` ∪

⋃̀
j=1

E(j)
)
≤ f(St`) + f

(⋃̀
j=1

E(j) |St`
)

≤
∑
si∈St`

(f(si |Si)+ − f(si |Si)−) +
∑̀
j=1

f(E(j) |Stj)

≤
∑
si∈St`

(f(si |Si)+ − f(si |Si)−) +
∑̀
j=1

∑
x∈E(j)

f(x |Stj) .

Rearranging terms, and using the value condition, we get

f(S̄) ≥
∑
si∈St`

f(si |Si)+ ≥
∑
si∈St`

f(si |Si)− +
∑̀
j=1

∑
x∈E(j)

|f(x |Stj)|

≥
∑̀
j=1

 ∑
x∈E(j)

|f(x |Stj)|+
∑

si∈E(j)

|f(si |Si)|

 ≥
≥ ε

∑̀
j=1

 ∑
x∈G(j)

f(x |Stj)

 ≥ `ε ∑
x∈G(`)

f(x |St`) .

Observing that St` = S concludes the proof.

Theorem 5. For ε ∈ (0, 1/3), it is possible to achieve a (9.465 + ε)-approximation in O(1
ε log2 n)

adaptive rounds and O(n
ε3 log3 n log 1

ε) queries.

Proof. A large part of this proof is very similar to the proof of Theorem 1. Hence, we only highlight
the differences, while retaining the same notation. Note that now S is no more the output of the

17

algorithm, but the non-filtered output of ThreshBin (the filtered version being S̄). The two cases
in the analysis are similar.

If E [c(S)] ≥ (1− ε)B2 , then we have a result analogous to (7) in the main text:

ALG ≥ E
[
f(S̄)

]
≥ E [f(S)] ≥ τ(1− ε)2E [c(S)] ≥ 1

2α(1− ε)4f(O) .

Otherwise, we can repeat the algorithm 1
ε log(1

ε) times to be sure that, with probability at least
1− ε, we observe B

2 > c(S) > c(S̄). From this we can infer that at most one element is contained
in G̃ ∩OH . Notice however a difference here: G and G̃ are the elements with good marginal with
respect to S, not with respect to S̄.

f(S ∪OH) ≤ f(S) + 1E · f(x̃ |S) +
∑
x∈G

f(x |S) +
∑

x∈OH\(G∪G̃)

f(x |S)

≤ f(S̄)(1 + ε̂) + 1E · (f(x̃ |S)− τc(x̃)) + τc(OH)
≤ f(S̄)(1 + ε̂) + 1E · (f(x∗)− τ B2) + τc(OH) ,

where E is the event that G̃ ∩OH is not empty given that c(S) < B
2 . Proceeding as in the proof of

Theorem 1 and noting that f(S) ≤ f(S̄) ≤ ALG we arrive at the same inequality as in (8) in the
main text:

f(O) ≤ (1 + q + ε̂)[
p(1− p)− αp+ αq

2 − 2ε̂
]ALG.

The rest of the proof is essentially the same with the proof of Theorem 1.

B Monotone Objectives and a Knapsack Constraint
For monotone objectives we can improve the approximation factor by slightly modifying the main
algorithm. Notice, moreover, that in ThreshSeq the only relevant condition is the cost condition
since no element can have a negative marginal value.

Lemma 8. For any set X, threshold τ , precision ε ∈ (0, 1), parameter ` and budget B, the random
set S output by ThreshSeq is such that

E [f(S)] ≥ τ(1− ε)E [c(S)] .

The random set S is always a feasible solution and if c(S) < B, then all the elements in X \ S
have either marginal density with respect to S smaller than τ or there is no room for them in the
budget. Finally, the adaptivity is upperbounded by 1

ε log (nκ(X)), while the query complexity by
n2

ε log (nκ(X)).

Proof. Again the proof is similar to the one for the non-monotone case in the main text. There are
three main differences. First, the adaptive complexity is given only by the number of times the cost
condition is triggered, hence an upper bound is given by 1

ε log (nκ(X)). The query complexity is
simply obtained multiplying that by a n2 factor as in the proof of Theorem 1.

Second, the algorithm can now only stop if the budget is exhausted or there are no good elements
fitting within the budget; the while loop terminates only in those two cases. Finally, the main chain
of inequalities is simply

E[f(st |St) | Ft] =
∑
x∈X

pxf(x |St) ≥ τ
∑
x∈G

pxc(x) ≥ τ(1− ε)
∑
x∈X

pxc(x) = (1− ε)τE [c(st) | Ft] ,

18

where in the second inequality we used the fact that the cost condition is not triggered. Taking
the expectation on the whole process and reasoning as in the proof of Lemma 4, we conclude the
proof.

We are ready to present the full algorithm for the monotone case. There are two main differences
to the non-monotone case. First, there is no need to sample a subset H and use the Sampling
Lemma, since f(S) ≤ f(S ∪O). Second, if one defines the small elements to be the ones with cost
smaller than εBn it is possible to account for them by simply adding all of them to the solution at
the cost of filling an ε fraction of the budget. Notice that this can be done while keeping κ(N+)
linear in n. The remaining (1− ε) fraction of the budget is then filled via ThreshSeq on the large
elements. The pseudocode is given in Algorithm 5 below.

Algorithm 5: ParKnapsackMonotone(N , f, ε, α,B)
Full algorithm for monotone objectives and a knapsack constraint

1: Input: Ground set N , monotone submodular function f , budget B, precision ε ∈ (0, 1) and
parameter α ∈ (0, 1)

2: N− ← {x ∈ N : c(x) < εBn }
3: N+ ← N \N−
4: x∗ ← maxx∈N f(x), τ̂ ← αnf(x∗)

B

5: ε̂← 1
10ε, k ← 1

ε̂ log(n)
6: for i = 0, . . . , k in parallel do
7: τi ← τ̂ · (1− ε̂)i

8: for j = 1, . . . , 1
ε̂ log(1

ε̂) in parallel do
9: Sij ←ThreshSeq(N+, τi, ε̂, (1− ε̂)B)

10: T ij ← Sij ∪N−
11: T ← arg max{f(T ji), f(x∗)}
12: Return T

Theorem 6. For ε ∈ (0, 1) it is possible to achieve a 3 + ε approximation in O(1
ε logn) adaptive

rounds and O(n2

ε3 log2 n log 1
ε) queries or in O(1

ε log2 n) adaptive rounds and O(n
ε3 log3 n log 1

ε) queries.

Proof. We show that ParKnapsackMonotone with parameters α = 2
3 and any ε ∈ (0, 1) satisfies

the statement of the theorem. We start by noting that the adaptivity bound is given by combining
Lemma 8, the fact that the thresholds are guessed in parallel, and the fact that κ(N+) ∈ O(nε). We
remark that now, since the cost condition is unimodal, binary search in ThreshSeq works without
any major adjustment.

Let O∗ be the optimal solution and let τ∗ = α f(O∗)
B . By the parallel guesses we have that

there exists a τ = τi such that (1− ε̂)τ∗ ≤ τ < τ∗. As in the non-monotone case, this is because
f(x∗) ≥ f(O∗) ≥ f(x∗). Let S be the random set outputted by ThreshSeqfor that τ . Also, let
T = S ∪N− and notice that c(S ∪N−) ≤ B.

We can distinguish two cases. First, if E [c(S)] ≥ B
2 (1− 2ε̂)(1− ε̂), then we apply Lemma 8 and

we have
f(O∗) ≤ 2

α(1− ε̂)3(1− 2ε̂)f(S) ≤ 2
α(1− ε̂)3(1− 2ε̂)f(T) . (10)

Let’s now address the other case. We can argue as we did in the monotone case: if we run
1
ε̂ log(1

ε̂) independent times the algorithm, at least one of them respects c(S) < B(1
2 − ε̂), with

19

probability at least (1− ε̂) (the proof of this fact is practically the same as the one of Lemma 6).
Let’s call G that event, similarly to what we have done in the main text. Focus on that run and call
E the event that in that run there is a good element with respect to the solution not fitting in the
budget. Clearly there may be at most one such item which belongs to the optimal solution O∗; we
call such element x̃. If x̃ exists, then c(x̃) ≥ B

2 . This is because in the budget of ThreshSeq, i.e.,
B(1− ε̂), at least B

2 budget is empty, under G.

f(O∗) ≤ f(S ∪O∗) = f(T ∪ (O∗ \ N−)) ≤ f(T) + 1Ef(x̃ |T) +
∑

x∈O∗\{x̃}
f(x |T)

≤ f(T) + 1Ef(x∗) +
∑

x∈O∗\{x̃}
f(x |S) ≤ f(T) + 1E(f(x∗)− α f(O∗)

2) + αf(O∗) .

Passing to the expectation and calling q the conditioned probability of the event E given G we have,
similarly to the main text:

f(O∗) ≤ E [f(O∗ ∪ S)] = E [f(O∗ ∪ S) | G]P (G) + E
[
f(O∗ ∪ S) | GC

]
P
(
GC
)

≤ E [f(O∗ ∪ S) | G] (1− ε̂) + ε̂2f(O∗)
≤ (1 + q)(1− ε̂)ALG+ (2ε̂+ α(1− ε̂)(1− q

2))f(O) .

Notice we used the bound f(S ∪O∗) ≤ 2f(O∗) which is universal as long as c(S) ≤ B. Rearranging
the terms we have

f(O∗) ≤ (1 + q)(1− ε̂)
1− 2ε̂− α(1− ε̂)(1− q

2)ALG . (11)

Putting together (10) and (11) and setting α = 2
3 , we have

OPT ≤ (3 + 10ε̂)ALG ,

for any value of q. Rescaling ε̂ by a factor of 10 one yields the desired result.

C Non-Monotone Objectives and a Cardinality Constraint
In presence of cardinality constraints, there is no need to address separately small and large elements.
Moreover, when bounding the elements of the solution whose marginal density is greater than τ but
do not fit in the budget, we just need to consider the case E [c(S)] > (1− ε̂)k instead of considering
half of the “budget”.

If E [|S|] ≥ (1− ε̂)k we have immediately a good bound in expectation. Otherwise, if we run it
at least 1

ε̂ log(1
ε̂) independent times, we have that, with probability at least (1− ε̂) the cardinality

constraint k is not met, meaning that all the good elements belong to the set G, as defined in the
main text. The full algorithm, ParCardinal, is presented in Algorithm 6 below.

Theorem 7. For ε ∈ (0, 2/5) it is possible to achieve a 5.83+ε approximation, in O(1
ε logn) adaptive

rounds and O(nk
ε3 logn log k log 1

ε) queries, or in O(1
ε logn log k) adaptive rounds and O(n

ε3 logn
log2 k log(1

ε)) queries.

Proof. ParCardinal with parameters α = 3 − 2
√

2, p = (1 − α)/2 and ε ∈ (0, 2
5) does the job.

The adaptive and query complexity are as in the knapsack case. The only difference is that now
each sequence drawn from SampleSeq has at most length k. For the approximation guarantees, we
consider two cases, this time depending on the relative ordering of E [|S|] and (1− ε̂)k.

20

Algorithm 6: ParCardinal(N , f, ε, α,B)
Full algorithm for non-monotone and a cardinality constraint

1: Input: Ground set N ,submodular function f , cardinality k, precision ε ∈ (0, 1), parameter
α ∈ (0, 1) and sampling probability p

2: x∗ ← maxx∈N f(x), τ̂ ← αnf(x∗)
k

3: ε̂← 1
70ε, `← 1

ε̂2 , k ← 1
ε̂ log(n)

4: H ← sample each element in N independently at random with probability p
5: for i = 0, . . . , k in parallel do
6: τi ← τ̂ · (1− ε̂)i

7: for j = 1, . . . , 1
ε̂ log(1

ε̂) in parallel do
8: Sij ←ThreshSeq(H, τi, ε̂, `, k)
9: T ← arg max{f(Sji), f(x∗)}

10: Return T

If E [|S|] ≥ (1− ε̂)k, then, by Lemma 4, we have

f(O∗) ≤ 1
α(1− ε̂)4E [f(S)] . (12)

Otherwise, with probability at least ε, each run of the algorithm does not fill all the cardinality
constraint, meaning that with 1

ε̂ log(1
ε̂) independent rounds one has that |S| < k in at least one

round with probability at least 1− ε̂; as usual we call G that event. Focus on that round and recall
the definition of G from Lemma 5: G contains the good elements still fitting in the cardinality
constraint. We have

f(S ∪OH) ≤ f(S) +
∑
x∈G

f(x |S) +
∑

x∈OH\(S∪G)
f(x |S) ≤ f(S)(1 + ε̂) + τc(OH) .

Passing to the conditional expectation with respect to G and using f(S ∪OH) ≤ 2f(O∗) we have

p(1− p)f(O∗) ≤ E [f(S ∪OH)] ≤ E [f(S ∪OH) | G] (1− ε̂) + 2ε̂f(O∗)
≤ E [f(S)] (1 + ε̂)(1− ε̂) + αp(1− ε̂)f(O∗) + 2ε̂f(O∗) .

By rearranging the terms, we get

f(O∗) ≤ (1 + ε̂)(1− ε̂)
p(1− p− (1− ε̂)α− 2 ε̂p)

E [f(S)] , (13)

Plugging α = 3− 2
√

2 and p = 1−α
2 in (12) and (13) one gets

OPT ≤ (3 + 2
√

2 + 70ε̂)ALG .

If we rescale ε̂ = ε
70 , we have the desired result.

21

References
[1] G. Amanatidis, F. Fusco, P. Lazos, S. Leonardi, and R. Reiffenhäuser. Fast adaptive non-

monotone submodular maximization subject to a knapsack constraint. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[2] E. Balkanski and Y. Singer. The adaptive complexity of maximizing a submodular function.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1138–1151. ACM, 2018.

[3] E. Balkanski, A. Breuer, and Y. Singer. Non-monotone submodular maximization in expo-
nentially fewer iterations. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pages 2359–2370, 2018.

[4] E. Balkanski, A. Rubinstein, and Y. Singer. An exponential speedup in parallel running time
for submodular maximization without loss in approximation. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 283–302. SIAM, 2019.

[5] E. Balkanski, A. Rubinstein, and Y. Singer. An optimal approximation for submodular
maximization under a matroid constraint in the adaptive complexity model. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 66–77. ACM, 2019.

[6] A. Breuer, E. Balkanski, and Y. Singer. The FAST algorithm for submodular maximization.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
1134–1143. PMLR, 2020.

[7] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. Submodular maximization with
cardinality constraints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1433–1452.
SIAM, 2014.

[8] J. Carbinell and J. Goldstein. The use of MMR, diversity-based reranking for reordering
documents and producing summaries. SIGIR Forum, 51(2):209–210, 2017.

[9] C. Chekuri and K. Quanrud. Submodular function maximization in parallel via the multilinear
relaxation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 303–322. SIAM,
2019.

[10] C. Chekuri and K. Quanrud. Parallelizing greedy for submodular set function maximization in
matroids and beyond. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 78–89. ACM, 2019.

[11] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the
multilinear relaxation and contention resolution schemes. SIAM J. Comput., 43(6):1831–1879,
2014.

22

[12] L. Chen, M. Feldman, and A. Karbasi. Unconstrained submodular maximization with constant
adaptive complexity. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 102–113. ACM, 2019.

[13] A. Das and D. Kempe. Algorithms for subset selection in linear regression. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 45–54. ACM, 2008.

[14] A. Das and D. Kempe. Approximate submodularity and its applications: Subset selection,
sparse approximation and dictionary selection. J. Mach. Learn. Res., 19:3:1–3:34, 2018.

[15] D. Dueck and B. J. Frey. Non-metric affinity propagation for unsupervised image categorization.
In IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro,
Brazil, October 14-20, 2007, pages 1–8. IEEE Computer Society, 2007.

[16] A. Ene and H. L. Nguyen. Submodular maximization with nearly-optimal approximation and
adaptivity in nearly-linear time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
274–282. SIAM, 2019.

[17] A. Ene and H. L. Nguyen. Parallel algorithm for non-monotone DR-submodular maximization.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
2902–2911. PMLR, 2020.

[18] A. Ene, H. L. Nguyen, and A. Vladu. A parallel double greedy algorithm for submodular
maximization. CoRR, abs/1812.01591, 2018.

[19] A. Ene, H. L. Nguyen, and A. Vladu. Submodular maximization with matroid and packing
constraints in parallel. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 90–101. ACM, 2019.

[20] M. Fahrbach, V. S. Mirrokni, and M. Zadimoghaddam. Submodular maximization with nearly
optimal approximation, adaptivity and query complexity. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 255–273. SIAM, 2019.

[21] M. Fahrbach, V. S. Mirrokni, and M. Zadimoghaddam. Non-monotone submodular maxi-
mization with nearly optimal adaptivity and query complexity. In Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 1833–1842.
PMLR, 2019.

[22] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.

[23] U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular functions.
SIAM J. Comput., 40(4):1133–1153, 2011.

[24] M. Feldman, J. Naor, and R. Schwartz. A unified continuous greedy algorithm for submodular
maximization. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 570–579. IEEE Computer Society,
2011.

23

[25] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained non-monotone submodular
maximization: Offline and secretary algorithms. In Internet and Network Economics - 6th
International Workshop, WINE 2010, Stanford, CA, USA, December 13-17, 2010. Proceedings,
volume 6484 of Lecture Notes in Computer Science, pages 246–257. Springer, 2010.

[26] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4):19:1–19:19, 2016.

[27] J. D. Hartline, V. S. Mirrokni, and M. Sundararajan. Optimal marketing strategies over social
networks. In Proceedings of the 17th International Conference on World Wide Web, WWW
2008, Beijing, China, April 21-25, 2008, pages 189–198. ACM, 2008.

[28] E. Kazemi, M. Zadimoghaddam, and A. Karbasi. Scalable deletion-robust submodular maxi-
mization: Data summarization with privacy and fairness constraints. In Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
2549–2558. PMLR, 2018.

[29] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. Theory Comput., 11:105–147, 2015.

[30] R. Khanna, E. R. Elenberg, A. G. Dimakis, S. N. Negahban, and J. Ghosh. Scalable greedy
feature selection via weak submodularity. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL,
USA, volume 54 of Proceedings of Machine Learning Research, pages 1560–1568. PMLR, 2017.

[31] A. Kuhnle. Nearly linear-time, parallelizable algorithms for non-monotone submodular maxi-
mization. To appear in AAAI, abs/2009.01947, 2021.

[32] A. Kulik, H. Shachnai, and T. Tamir. Approximations for monotone and nonmonotone
submodular maximization with knapsack constraints. Math. Oper. Res., 38(4):729–739, 2013.

[33] M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization Techniques, pages 234–243, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[34] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed submodular maximization:
Identifying representative elements in massive data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States,
pages 2049–2057, 2013.

[35] B. Mirzasoleiman, A. Badanidiyuru, and A. Karbasi. Fast constrained submodular maximization:
Personalized data summarization. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of
JMLR Workshop and Conference Proceedings, pages 1358–1367. JMLR.org, 2016.

[36] B. Mirzasoleiman, J. A. Bilmes, and J. Leskovec. Coresets for data-efficient training of machine
learning models. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 6950–6960. PMLR, 2020.

[37] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions - I. Math. Program., 14(1):265–294, 1978.

24

[38] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, 2004.

[39] S. Tschiatschek, R. K. Iyer, H. Wei, and J. A. Bilmes. Learning mixtures of submodular
functions for image collection summarization. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 1413–1421, 2014.

[40] J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 42(1):181–213, 2015.

25

	1 Introduction
	2 Preliminaries
	3 Non-Monotone Submodular Maximization
	3.1 Variants and Implications
	3.1.1 Monotone Submodular Functions
	3.1.2 Cardinality constraints

	4 Experiments
	5 Conclusions
	A Adapting ParKnapsack to Use Binary Search
	B Monotone Objectives and a Knapsack Constraint
	C Non-Monotone Objectives and a Cardinality Constraint

