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Abstract

We address the problem of inferring a human shape from
partial observations, such as depth images, in temporal se-
quences. Deep Neural Networks (DNN) have been shown
successful to estimate detailed shapes on a frame-by-frame
basis but consider yet little or no temporal information
over frame sequences for detailed shape estimation. Re-
cently, networks that implicitly encode shape occupancy
using MLP layers have shown very promising results for
such single-frame shape inference, with the advantage of
reducing the dimensionality of the problem and providing
continuously encoded results. In this work we propose to
generalize implicit encoding to spatio-temporal shape in-
ference with spatio-temporal implicit function networks or
STIF-Nets, where temporal redundancy and continuity is
expected to improve the shape and motion quality. To vali-
date these added benefits, we collect and train with motion
data from CAPE for dressed humans, and DFAUST for body
shapes with no clothing. We show our model’s ability to es-
timate shapes for a set of input frames, and interpolate be-
tween them. Our results show that our method outperforms
existing state of the art methods, in particular the single-
frame methods for detailed shape estimation.

1. Introduction

In this paper, we examine the problem of 3D human
shape estimation from incomplete 3D observations, e.g.
depth images, under motion obtained from a single cam-
era. This under-constrained problem requires additional in-
formation which can be provided by a learned model but
also by leveraging observations over time when consider-
ing temporal sequences. We investigate how to benefit from
both through data driven spatio-temporal modeling.

Building human shape models from incomplete 3D ob-
servations over time is a challenging task with many ap-
plications in augmented and virtual reality or telepresence
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Figure 1. Given incomplete temporal 3D observations as input,
here 4 samples, our STIF-Nets reconstruct their complete 3D
shape and provide unseen interpolated frames.

applications, among others. Part of the difficulty lies in the
choice of the shape representation, which can be global and
encode high level features of human shape such as pose,
or more local features to identify details on the surface of
observed subjects. In fact many shape models used to com-
plete partial shape data combine both aspects to leverage
both of their advantages, e.g. by constraining local shape
refinement with a global pose and body model of humans
underlying to the shape, e.g. [24, 32, 45, 3]. But how to bal-
ance those aspects is often manually hardwired in the exist-
ing methods, especially with classic pre-learning inference
and reconstruction models.

The advent of Deep neural Networks (DNN) has brought
a whole new set of possibilities to enhance inference and
tackle single-view 3D reconstruction problems with data-
driven priors, but has simultaneously made the represen-
tation problem even more open, because allowing DNNs
to account and optimally operate on 3D information has
proven to be non-trivial. This is even more prominent when
one tackles 4D space-time applications due to the added di-
mensionality, and the even more massive amount of train-
ing data needed to train models in this context. In fact this
has been such a barrier that the literature in data driven 4D



shape modeling is quite scarce at the time of this writing.
With this in mind, a particular category of implicit meth-

ods for 3D shape representation is rapidly gaining atten-
tion [28, 10]. By encoding the shape implicitly using an
indicator function parameterized by MLPs to express the
occupation at a given point in space, these methods have
succeeded in reducing the dimensionality of the network
needed for 3D shape inference problems and allowed a con-
tinuous representation of 3D shapes to be embedded in the
inference problem. Expectedly, these desirable character-
istics have translated to 3D shape inference results of very
promising quality. To our knowledge, they have yet to be
extended to spatio-temporal evolution of shapes, for which
the reduction of dimension could provide a key benefit.

Our intent is to bridge this gap, by providing a new
implicit spatio-temporal model by which better shape in-
ference and completion can be achieved, given temporal
depth sequences. In so doing, we target improved shape
and motion quality by going beyond static shape priors to
learn spatio-temporal shape-motion priors. To this goal,
our model uses a U-Net encoder to produce an image-
dimensioned feature map, similarly to [28, 31, 10, 37], but
instead of only encoding a per-pixel implicit depth indica-
tor function, our features parameterize a per-pixel implicit
space-time depth evolution indicator function. To balance
global and local temporal aspects in our model, we use the
bidirectional GRU [12] to connect latent global features en-
coded by the U-Net from previous and subsequent frames,
an architecture we coin U-GRU Encoder.

Using two databases of human motion in and without
clothing, we assess the qualitative gain of this architecture
on analysing monocular video sequences for 3D dynamic
human shape estimation, comparing with per-frame estima-
tion methods over the set of input frames, and also exam-
ining temporal densification, which can be performed by
sampling shape estimates at intermediate time stamps of the
implicit spatio-temporal function. Our experiments not only
show high quality results for the interpolation task, compa-
rable to results obtained from per-frame methods had they
been provided with intermediate inputs; but also show im-
provement of quality of the 3D models retrieved with actu-
ally observed frames, with respect to per-frame methods.

2. Related Work

In this section we focus on previous works that address
shape completion in the spatial and temporal domains.

2.1. Spatial Shape Completion

In order to complete a shape given a partial observation
at a given time, methods have been proposed that differ with
respect to the shape representations they consider. These
representations can be either discrete with e.g. point based

representations or continuous as with neural implicit func-
tions that encode occupancy.

With explicit point based representations, strategies were
explored that use prior assumptions, such as parametric or
template shape models, to guide shape completion. For
instance, [33, 7, 21] reconstruct the human body by in-
ferring the parameters of the SMPL model [24], a popu-
lar parametric model for undressed humans. In another
work, LBS-AE [23], Linear Blending Skinning parame-
ters are learned from point cloud in a self-supervised way.
Relaxing somewhat the constraints on the shape model,
other approaches use a template, for example a mesh, to
model human shapes. In this line of work approaches
such as 3D-CODED [17, 15, 18, 47] deform a template us-
ing global features extracted from partial observations with
PointNet [34]. BPS [33] learns the 3D point cloud descrip-
tor and is able to reconstruct the SMPL-topology mesh from
it. While strong prior models clearly help the completion
task they also limit its applicability to reduced shape spaces,
e.g. undressed human bodies.

Implicit representations have also been largely exploited
to model occupancy in 3D. In the discrete case of voxels, the
grid regularity allows the extension of CNN-based methods
to 3D and the ability to infer human shapes with data-driven
strategies as in [41, 46]. Voxel based representations suffer
anyway from complexity issues and recent strategies have
taken a continuous approach with implicit representations,
e.g. [28, 42, 37, 10, 38, 13]. In this case, occupancy is mod-
eled at any 3D location and learned with ground-truth ex-
amples. OccNet [28], a seminal work in this category, can
be used to complete shapes but is missing local input fea-
tures, which are crucial to preserve human shape details.
SAL [4], IGR [16] and SALD [5] learn the implicit repre-
sentation of human, but rely on optimizing the latent code to
fit the uniformly sampled dense point cloud. NASA [14] en-
codes the articulated human conditioning only on pose with
implicit function, which is identity-dependent. LEAP [29]
and SCANimate [39] learn the human implicit represen-
tation by using the Linear Blending Skinning. However,
LEAP [29] requires key joint information which is identity-
and pose-dependent. In general, optimization-based post-
processing stage in [4, 16, 5, 14, 39] could not be easily ap-
plied with partial view input. Recently, IF-Net [10], which
stacks 3D convolutions to extract features at different scales
for query points, can preserve human body details. It is in
practice compute-hungry to train, as a consequence of the
voxel representation required to perform 3D convolutions.
While we use a similar strategy, we lift the problem to the
spatio-temporal domain and reduce the complexity by bas-
ing our network in the 2D pixel domain as for [37] but with
depth-time implicit queries. We also note in this category
of work [6] which combines IF-Net and SMPL to register
shapes, with still the aforementioned limitations.



Figure 2. STIF-Nets Overview. Our architecture is articulated among three phases: (1) simultaneous encoding-decoding of input sequence
frames to a set of features using U-Nets whose latent spaces are interconnected thanks to GRU networks (§3.1); (2) Temporal interpolation
of the feature space with U-Net encoder (§3.2); (3) Occupancy decoding along the viewing line (§3.3).

2.2. Spatio-Temporal Shape Completion

Besides model based approaches that perform temporal
shape predictions using parametric representations based
on rigged skeletons e.g. [27, 48, 11, 9] or more elaborate
models such as SMPL e.g. [40, 2, 3], few works consider
spatio-temporal completion per-se. [1] can complete shape
sequences both spatially and temporally by using decom-
positions over spatio-temporal basis and by assuming tem-
porally consistent shape models, i.e. with fixed topology,
for that purpose. The approach targets more sparse miss-
ing data in temporal trajectories than large completions of
shapes with inconsistent topologies as we do. Considering
point trajectories, flow based methods have been proposed
that model spatio-temporal shape evolution and can there-
fore perform predictions, e.g. [31, 44, 20, 43]. Dynamic-
Fusion [30] reconstructs 3D information by using the fu-
sion of multiview depth image, which is not in our case of
single view completion. In this category, OccFlow [31] is
close to our objective with an approach that predicts spatial-
temporal occupancies. However, considering point trajecto-
ries implies temporal correspondences which are often dif-
ficult to obtain and also sparse missing data instead of sig-
nificant completions.

3. Method

Our goal in this paper, given a monocular sequence of
input depth frames representing incomplete shapes, is to in-
fer a set of complete and temporally densified or predicted

shapes. By incomplete inputs, we mean that frames are typ-
ically presumed to be obtained from time of flight cameras
or front scans with depth sensing technologies, with back
and occluded data missing.

Let D = {Di}i∈{1,··· ,n} be the discrete time sequence
of input depth frames of resolution res × res. As we seek
benefit from the lean and continuous parameterization an
implicit representation offers, following several similar pa-
pers [28, 10] we model the problem with a DNN repre-
senting the occupancy regression function of a query point
p = (x, y, d) with continuous pixel coordinates (x, y) ∈
[1, res]2, and continuous depth d ∈ R, and given a time
stamp in the continuous interval t ∈ [−1, 1] representing
the initial frame interval [1,n]. This function produces pre-
dictions of the occupancy Ô(p, t|D) ∈ [−1, 1] of the query
point given the input depth images D .

Note that, contrary to other similar inspirational works
which focus on 3D volumetric inference [10], we choose
a similar 2D discrete support grid similar to [37] instead,
for targeted memory and computational efficiency improve-
ments necessary to deal with the additional temporal di-
mension. We also explicitly focus our method on the out-
put surface at the zero crossing of the occupancy function
Ô(p, t|D), similar to TSDF-based methods [19], which can
be efficiently extracted using a marching cubes [25, 22] al-
gorithm, and evaluate points in the vicinity of the surface,
as opposed to volume-centric approaches [10] which tend
to infer volumetric occupancy functions in [0, 1] for regular
volumetric grids.



In order to make the problem tractable and decompose
the function according to its main factors, we build our net-
work architecture along three phases, illustrated in Fig. 2.
In the first (§3.1), we decode a set of 2D feature maps
F = {Fi}i∈{1,··· ,n} from each 2D input depth image Di
of identical resolution res × res but introduce a global cor-
relation to allow the network to learn global motion features
linking them. We input the queried continuous time variable
t in the second phase (§3.2), and jointly use it with the full
set of feature maps to decode a t-specific interpolated 2D
feature mapFt also matching the input resolution res×res.
This feature map is then used jointly with the query point p
to decode the final occupancy result Ô(p, t|D) ∈ [−1, 1],
as described in §3.3.

3.1. Globalized Latent Space Encoding

In this phase, we want to allow the network to extract
relevant feature maps Fi for each input Di that preserve
some detail, while simultaneously allowing the method to
be aware of global aspects such as the underlying subject
motion. To this goal we opt for a 2D U-Net encoder-decoder
structure [36] per-input frame, which projects its inputs on
a low dimensional latent space and lifts it back to an out-
put matching the input size, using four symmetric down-
sampling convolution and upsampling deconvolution lay-
ers. U-Net also has the property to balance global aspects of
the frame with local ones, using skip connections between
matched convolution and deconvolution layers, that allow to
preserve local and high frequency details for creation of the
feature map, while still allowing for efficient training. Ac-
counting for the expected symmetry between the features
extracted for the various input frames, we propose to train
the n U-Net instances with shared weights.

We however still need to account for shared temporal as-
pects and inter-frame motion. To this end, we link each U-
Net’s latent space vector with those of both temporally ad-
joining frames using a bidirectional Gated Recurrent Unit,
or GRU, to learn interframe residuals of the latent space.
The intent is to force interframe phenomena to be treated as
a global, transpixel phenomena. The choice of GRU is mo-
tivated by its use in Natural Language Processing, where it
was shown to perform similarly to LSTMs with fewer pa-
rameters and easier training [12]. We show the combination
of U-Net and GRU, which we coin U-GRU, to significantly
improve training results (Tab. 3). Thus phase 1 of our net-
work can be seen as a global feature decoder solution from
the input frame set to the set of intermediate feature maps,
which are all individually made aware of interframe cues:

F = U-GRU(D). (1)

3.2. Temporal Feature Interpolation

With the feature map set still global to the entire input
sequence, we propose in a second phase to extract an inter-

polated feature map Ft which is specialized for the queried
time t. We concatenate all feature maps together and add t
weighed by a constant normalization factor ct × t as an ad-
ditional constant input channel T to every pixel of the map,
and feed this aggregate to a simpler U-Net [36] with a pixel-
wise 1×1 convolution operator, two levels of downsampling
convolutions and upsampling operations, to decodeFt from
F :

Ft = U-NET(F , T ). (2)

With this architecture choice, the network can learn its tem-
poral interpolation function while automatically adjusting
between both global and local per-pixel components of the
interpolation. So the U-Net here is able to reduce the alias-
ing effect of the interpolated feature. We believe that the
Temporal Feature Interpolation could remedy the missing
information, e.g. hole, noise or occlusion, from one single
frame by considering temporal information from previous
and next frames(Fig. 3(e)(g)). Note again that the network
can be trained with any continuous t ∈ [−1, 1] where -1
stands for the first given frame and 1 represents the last
frame.

3.3. Occupancy Decoder

This third and last phase focuses on spatial decoding
of the occupancy Ô(p, t|D) of a given query point p =
(x, y, d). We bilinearly interpolate a feature Fx,y,t spe-
cific to the real-valued (x, y) from feature mapFt for query
point p. Then we associate the depth query value d weighed
by normalizing constant cd × d with Fx,y,t as the input for
an MLP regressor with the following characteristics. The
aggregate feature {Fx,y,t , d} of query point p at time t is
sent to two linear layers. The first one is activated using
the widely used RELU and second one using TANH which
conveniently produces occupancy values Ô(p, t|D) in the
target interval [−1, 1]:

Ô(p, t|D) , MLP(U-NET(U-GRU(D), T ), p). (3)

3.4. Training

The proposed network can be trained for various tasks,
i.e. shape completion of input frames, temporal interpola-
tion or densification of frames. We propose a uniform su-
pervised training procedure for all of these cases. For this
we consider that, for a given batch of ground truth training
sequences B , we are given occupancy samples Op,j with
a randomized point set p ∈ Pj and their matching inputs
D = {Dj}j∈1,··· ,m , from a set of ground truth frames with
time stamps {tj}j∈1,··· ,m . Typically this set will include
time stamps that match the input frames and some addi-
tional training examples regularly interspaced between in-
put frames. The training can then be realized by minimizing



a mean square loss over the set of network parameters θ:

θ∗ = argminθ
∑
B

∑
t∈T

∑
p∈Pj

‖Ô(p, t|D)−Op,j‖2. (4)

To account for the continuous nature of the occupancy
function Ô(p, t|D), we create more temporal samples than
given in training, by drawing t from a randomized, denser
set T within the training interval, and use j of the time
stamp closest to t in the above training procedure.

Point sampling strategy. The choice of the training point
set Pj is an important one. Naive strategies would be to
use uniformly randomized or regularly spaced samples over
the whole sequence’s bounding box to present the training
with positive and negative examples. This is however quite
inefficient as it wastes most of the advantage of modeling
the occupancy as an implicit function, the main point being
to decorrelate the training complexity from dense 3D space
sampling that would occur with regular grid CNNs. [28, 10]
use a Gaussian sampling strategy at the vicinity of the sur-
face and train with a classification loss. We propose a sim-
pler yet experimentally efficient sampling which leverages
our surface level set parameterization, by providing samples
from 3 distinct surfaces in the vicinity of the true surface:
one corresponding to the true surface location with training
label 0, the expanded and the shrunk surfaces with positive
and negative displacement along the surface normal, with
respective label sets in o ∈ {−0.5,+0.5}. The shrinking
and expansion factor along the normal we choose is the la-
bel o multiplied by a constant scale factor l. ns samples are
used for every surfaces, and we also sample ns points from
inner part of shrunk surface with o = +1 and 3× ns points
from outer part of expanded surface with o = −1 as we em-
pirically observe the need for more negative samples with
the expansion.

3.5. Implementation Details and Inference

We implement our STIF-Nets in PyTorch and train it
from scratch. In practice, we set the frame number n = 4,
the sampling number ns = 300, the expanded/shrunken
length l = 0.02 which is a ratio w.r.t. the bounding box
scale, two coefficients ct = res, cd = max(res, 256). Due
to the limitation of GPU memory for sequential data, we
set the batch size to 1 and we drop the Batch Normaliza-
tion in the original U-Net implementation. We use Adam
optimizer with the learning rate of 0.0001. During infer-
ence, we set the resolution of 3D occupancy grid to 2563

for all occupancy-based methods, except the one reported
as depth/grid resolution 512/512 in Tab. 4, which is differ-
ent from res for the depth image. Marching cubes [25, 22]
is applied to extract the zero-level set of the computed oc-
cupancy grid as a surface mesh.

4. Experimental Evaluation
In order to evaluate STIF-Nets we conducted quantita-

tive and qualitative comparisons on the shape completion
task given depth image sequences, this for both input frames
and new interpolated, focusing on body shapes in motion.
In the following we provide numerical results as well as ab-
lation studies that shed light on how the main components
of STIF-Nets impact the performance, which will be more
expansively presented in the supplementary material. We
first detail the data and metrics used in our evaluation.

4.1. Data and metric

We collected human motion data from a clothed human
dataset CAPE [26] which is based on 4D capture Cloth-
Cap [32],with two clothing styles dressed on each charac-
ter, and an undressed human dataset DFAUST [8]. Both
datasets contain real scans that were captured at 60fps and
fit with the SMPL model [24], which provides our ground
truth surface models. From the scans we created front view
depth images where the depth of a pixel is determined by
the front-facing scanned 3D point that is closest to the pixel
viewing-line. Note that we preserve the hole and noise of
real scans in our processed depth image in order to test the
robustness of our method, see Fig. 1, 2 and 7.

Training and Test Sets: The training set includes 8
characters, 2 male and 2 female from each dataset. For
each character, we selected 3 or 4 motion sequences for a
total of 28 sequences. Within each motion sequence, we
extracted 6 sub-sequences composed of 4 frames. These
sub-sequences are of 2 types: 4-interval sequences with
interframe intervals of 4 and approximately 200ms dura-
tions; and 10-interval sequences with interframe intervals
of 10 and approximately 500ms durations. In addition, 3
frames, taken randomly within each sequence were added
to the 4 frames with the objective to more robustly train in-
terpolation. Both 4 and 10-interval sequences were used in
the training for a total of 336 input sequences. Note that
we train our STIF-Nets only once across dressed and un-
dressed characters and short-term and long-term sequences.
The test set includes 9 characters, 4 from CAPE and 5 from
DFAUST, who perform 54 input sequences. 2 characters
in the test set were completely unseen during training. The
seen shape characters perform the different motion styles
from the training set.

Metric: We evaluated the completions using 2 metrics:
The volumetric intersection over union (IoU) and a surface
based Chamfer-L1 distance. Note that numerical values
were computed with the meshes obtained by the March-
ing cubes algorithm applied on the occupancies predicted
by STIF-Nets. In practice, we noticed that the IoU metric,
which is volumetric, hardly differentiates the approaches
whereas the Chamfer distance, a surface metric, provides
more insights though being more sensitive to noise.



Figure 3. Qualitative results with front-view completions. From
left to right, (a) partial scan, reconstruction of (b) 3D-
CODED [17], (c) OccNet [28], (d) IF-Net [10], (e) our static, (f)
our naive dynamic and (g) our STIF-Nets. See more results in
supplementary material.

4.2. Frame Completion

Using the data and the metrics mentioned in the previ-
ous section we conducted comparisons of STIF-Nets with
representative state of the art methods: one point based
method, 3D-CODED [17] and two recent implicit function
based methods, OccNet [28] and IF-Net [10]. We retrain
the 3D-CODED, OccNet and IF-Net on our dataset and the
numeric results with 4 frames intervals are shown in Tab. 1.

Figure 4. Sequence reconstruction. From left to right, (a) ground
truth, reconstruction of (b) OccFlow [31], (c) BPS [33] and (d) our
STIF-Nets.

Data CAPE DFAUST
Method IoU ↑ Chamfer ↓ IoU ↑ Chamfer ↓

3D-CODED [17] 0.455 0.591 0.578 0.347
OccNet [28] 0.488 0.476 0.604 0.340
IF-Net [10] 0.787 0.155 0.822 0.134
[10](×2) 0.804 0.143 0.840 0.127

OccFlow [31] - - 0.740 0.231
BPS [33] - - 0.761 0.197
Our STIF 0.822 0.123 0.858 0.111

Table 1. Spacial completion with IoU and Chamfer-L1 distances
(×10−1) for 4 interframe intervals.

Note that our models provide clearly better results with both
IoU and Chamfer distance. IF-Net processes the partial scan
data into voxel occupancy. To fairly compare with IF-Net,
we set the same total resolution of voxels as our processed
depth image, and also compare with IF-net inputting the
voxels of 2 times resolution. Note that our method out-
performs both. In addition, we evaluate OccFlow [31] and
BPS [33] on DFAUST. OccFlow is pretrained on DFAUST
dataset and BPS is pretrained on CAESAR [35] which is a
very large undressed human dataset, as supplied by authors.

Static completion comparisons are presented in Fig. 3.
They show that both 3D-CODED [17] and OccNet [28]
have difficulties preserving shape details, as a result of the
missing local features in these methods. We also prepare



Data CAPE DFAUST
Method IoU ↑ Chamfer ↓ IoU ↑ Chamfer ↓

Our Static(depth) 0.651 0.512 0.712 0.380
(neighbour) 0.753 0.158 0.777 0.154

(latent) 0.788 0.157 0.812 0.154
3D-CODED [17] 0.456 0.592 0.578 0.349

OccNet [28] 0.488 0.475 0.604 0.337
IF-Net [10] 0.791 0.158 0.826 0.143
[10](×2) 0.806 0.150 0.841 0.143
Our STIF 0.806 0.139 0.842 0.133

Table 2. Temporal interpolation with IoU and Chamfer-L1 dis-
tances (×10−1) for 4 interframe intervals.

our static model which replaces the U-GRU encoder by the
U-Net and remove the second Feature Interpolation phase.
The qualitative results in Fig. 3 show that all static ap-
proaches including ours and IF-Net [10] present artefacts,
often resulting from holes and noise in the raw input scans.
On the other hand, dynamic approaches appear more robust,
with our STIF-Nets outperforming the naive temporal base-
line. The Feature Interpolation phase is able to reduce the
aliasing effect of bilinear sampling of feature map in the Oc-
cupancy Decoder, which preserves the high frequency fea-
ture on the face, belly and even cloth.

The best comparison with OccFlow and BPS would re-
quire full scan data instead partial scans, which is signifi-
cantly less challenging than our scenario, where the perfor-
mance of these two methods degrades. In Fig. 4, OccFlow
is not able to preserve the high frequency feature on the hu-
man body and the BPS descriptor is sensitive to the noise
on the real scan data.

We also experiment the influence of interval frames on
the completion result. Note that we do not train again our
STIF-Nets for 2, 6 or 8 interframe intervals. In Fig. 5, as
can be expected the dynamic model efficiency reduces with
increasing inter frame intervals, but this gap is not large be-
tween short-term sequence and long-term sequence.

Our method outperforms the best method in the com-

Figure 5. Evaluation of our STIF-Nets with different interframe
intervals. The solid line —– stands for completion task and the
dashed one - - - stands for interpolation task.

pared baseline, IF-Net, both in speed and performance. In
our tests, the IF-Net average per-frame computation time is
4.791 s/frame, whereas our static baseline and STIF-Nets
run in 0.343 and 0.349 s/frame on a GeForce RTX 2080Ti,
using the same total input and occupancy grid resolution.
Our STIF-Nets pays only 6ms per frame penalty for using
the temporal information.

4.3. Frame Interpolation

We also experimented the ability to interpolate between
the input frames from partial data. For the interpolation
task, the evaluation is performed at the 3 middle frames
within the 4 intervals of each sequence. From the static
case, a naive interpolation baseline can be achieved using
different strategies: nearest neighbor frame, depth image
interpolation or latent representation interpolation. Numer-
ical comparisons in Tab. 2 show that the latter performs the
best and we therefore only report results with latent space
interpolation in Tab. 2 and 3 for other static methods. Tab. 2
also demonstrates that STIF-Nets outperforms static inter-
polation with both metrics. Fig. 6 illustrates frame interpo-
lation. The spatio-temporal modeling is able to preserve the
volume and the high frequency features even on the Inter-
polation task which is difficult for static models. In Fig. 5,
the interframe interval notably influences the interpolation
performance, which degrades gracefully given that we did
not increase the supervision of interpolation task during the
training of long interval.

4.4. Ablation Studies

Tab. 3 reports on two crucial elements in our method:
sampling and dynamic modeling. It shows that our pro-
posed sampling strategy benefits with respect to the Gaus-
sian sampling from surface used in the IF-Net [10]. Again
STIF-Nets quite significantly outperforms the static ap-
proach quantitatively. To illustrate the efficiency of our
dynamic modeling, we prepare a naive dynamic baseline
which drops the GRU in Encoder, considers the 4 frames
as 4 channels to extract the feature map and uses a Tem-
poral Feature Interpolation with lower dimensionality. For
both spatial completion and temporal interpolation tasks,
our STIF-Nets better preserve the reconstruction volume
(Fig. 3). The Feature Interpolation phase is able to predict
the feature map at any queried time stamp in order to fill the
gap between spatial completion and temporal interpolation.

We also experiment the STIF-Nets with different resolu-
tion of input depth image. Tab. 4 reports that increasing the
input depth image resolution could benefit the reconstruc-
tion accuracy and the 3D occupancy grid resolution, used
for the Marching cubes [25, 22] during inference, plays as
well an important role. Fig. 7 shows that more details on
the face and belly are extracted by STIF-Nets with high res-
olution depth image than the low resolution one.



Input Frame Completion Interpolation
Data CAPE(dressed) DFAUST(undressed) CAPE DFAUST

Method IoU ↑ Chamfer ↓ IoU ↑ Chamfer ↓ IoU ↑ Chamfer ↓ IoU ↑ Chamfer ↓
Our Static + basic sampling 0.788 0.143 0.829 0.129 0.784 0.178 0.825 0.176

Our Static 0.804 0.128 0.845 0.113 0.788 0.157 0.812 0.154
Our Native Dynamic 0.713 0.183 0.737 0.180 0.733 0.176 0.760 0.175

Our STIF 0.822 0.123 0.858 0.111 0.806 0.139 0.842 0.133

Table 3. Quantitative comparisons with IoU and Chamfer-L1 distances (×10−1) for 4 interframe intervals on both completion and interpo-
lation tasks.

Figure 6. Qualitative results for a 4 frame input sequence with
frame completion (Fr1, Fr2, Fr3, Fr4) and interpolation (In1, In2,
In3). From left to right, (a) Partial scan, reconstruction/heatmap
of (b) IF-Net [10], and of (c) our STIF-Nets. For the heatmap,
we compute the Chamfer-L1 distance from reconstruction to the
ground truth and we set 0.03 as the maximum error.

depth(2)/grid(3) resolution IoU ↑ Chamfer ↓
128/256 0.810 0.143
256/256 0.843 0.116
512/256 0.846 0.113
512/512 0.858 0.104

Table 4. Impact of the depth image and occupancy grid resolu-
tion for shape completion with IoU and Chamfer-L1 distances
(×10−1).

Figure 7. Qualitative results with (a) 1282-resolution depth image
and (b) 2562-resolution depth image for STIF-Nets.

5. Conclusion
We have presented STIF-Nets, a deep network architec-

ture to model shapes from incomplete observations. STIF-
Nets builds on neural implicit function representations,
which has proved efficient for shape modeling. The key
contribution with respect to existing works is to lift these
representations to the spatio-temporal domain, hence lever-
aging information over time and enabling shape comple-
tions over both the spatial and temporal domains. Exper-
iments demonstrate that STIF-Nets contributes with im-
proved robustness, shape quality and generalization abili-
ties with respect to purely spatial strategies. We believe that
STIF-Nets can trigger new research in 4D shape modeling.
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