
HAL Id: hal-03478172
https://hal.inria.fr/hal-03478172

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster reachability analysis for LR(1) parsers
Frédéric Bour, François Pottier

To cite this version:
Frédéric Bour, François Pottier. Faster reachability analysis for LR(1) parsers. SLE 2021 - ACM
SIGPLAN International Conference on Software Language Engineering, Oct 2021, Chicago, United
States. �10.1145/3486608.3486903�. �hal-03478172�

https://hal.inria.fr/hal-03478172
https://hal.archives-ouvertes.fr

Faster Reachability Analysis for LR(1) Parsers
Frédéric Bour
Inria & Tarides
Paris, France

frederic.bour@inria.fr

François Pottier
Inria

Paris, France
francois.pottier@inria.fr

Abstract
We present a novel algorithm for reachability in an LR(1)
automaton. For each transition in the automaton, the prob-
lem is to determine under what conditions this transition
can be taken, that is, which (minimal) input fragment and
which lookahead symbol allow taking this transition. Our
algorithm outperforms Pottier’s algorithm (2016) by up to
three orders of magnitude on real-world grammars. Among
other applications, this vastly improves the scalability of
Jeffery’s error reporting technique (2003), where a mapping
of (reachable) error states to messages must be created and
maintained.

CCS Concepts: • Theory of computation→ Grammars
and context-free languages.

Keywords: Compilers, parsing, error diagnosis, reachability

ACM Reference Format:
Frédéric Bour and François Pottier. 2021. Faster Reachability Anal-
ysis for LR(1) Parsers. In Proceedings of the 14th ACM SIGPLAN
International Conference on Software Language Engineering (SLE
’21), October 17–18, 2021, Chicago, IL, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3486608.3486903

1 Introduction
The Reachability Problem. An LR(1) automaton is a

state machine that is equipped with a stack, a sequence of
past states. The state found at the top of the stack is the
current state. At each step, the automaton’s action is deter-
mined by its current state and by the lookahead symbol, that
is, by the first unconsumed input symbol. The automaton’s
palette of actions includes consuming the first input symbol,
following a transition to a new state (which is then pushed
onto the stack), and popping a number of states off the stack
(thus changing the current state).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9111-5/21/10. . . $15.00
https://doi.org/10.1145/3486608.3486903

A pair of a state 𝑠 and a symbol 𝑧 is reachable if there exists
an input sentence that leads the automaton from its initial
configuration to a configuration where the current state is 𝑠
and the current lookahead symbol is 𝑧. In its simplest form,
the reachability problem can be formulated as follows:

Given: a state 𝑠; a terminal symbol 𝑧.
Find: whether (𝑠, 𝑧) is reachable.
The problem can also be stated under a more elaborate

form, as follows:
Given: a state 𝑠; a transition tr that leaves the state 𝑠;
two terminal symbols 𝑎 and 𝑧.
Find: whether there exists a sentence𝑤 such that:
• the first symbol of𝑤𝑧 is 𝑎, and
• whenever the automaton is in state 𝑠 and its input
begins with𝑤𝑧, the automaton consumes𝑤 , leaves 𝑧
unconsumed, and takes the transition tr .

In short, the second problem asks under what conditions
each transition can be taken. A solution of this problem
yields a solution of the first problem. Indeed, a solution of
the second problem allows constructing a directed graph 𝐺 ,
whose vertices are pairs (𝑠, 𝑧), such that the first problem
boils down to ordinary reachability in the graph 𝐺 . The role
played by the terminal symbol 𝑎 may not clearly appear to
the reader at this point; we come back to it in §3.

By an “LR(1) automaton”, we mean a state machine that is
equipped with a stack and can peek at the first input symbol.
There aremanymethods for constructing such an automaton,
including Knuth’s canonical method [15], SLR [8], LALR [6,
7], Pager’s method [24], and IELR(1) [5]. Furthermore, this
construction process can be influenced by user-provided
precedence declarations, which indicate how shift/reduce
and reduce/reduce conflicts must be resolved. Because we
state the reachability problem in terms of the automaton, not
in terms of a grammar, we do not care how the automaton is
constructed. Our reachability algorithm is compatible with
all of the construction methods cited above.

Applications. Solving the reachability problem can be
useful in a range of situations. One simple application is
error diagnosis, that is, the task of producing a diagnostic
message when a syntax error is encountered. Jeffery [14]
suggests producing a message based solely on the current
state of the automaton, while disregarding its stack. This is
done by setting up in advance a mapping of states to mes-
sages. Because state numbers are opaque and brittle, the
user is in fact expected to set up a mapping of erroneous

1

https://doi.org/10.1145/3486608.3486903
https://doi.org/10.1145/3486608.3486903

SLE ’21, October 17–18, 2021, Chicago, IL, USA Frédéric Bour and François Pottier

input sentences to messages. Pottier [27] notes that this table
must be correct (every sentence is erroneous), irredundant
(no two sentences lead to the same state), and complete (ev-
ery state where an error can be triggered corresponds to
some sentence). While correctness and irredundancy are
easy to enforce, completeness is a more challenging prop-
erty. Constructing a complete collection of erroneous input
sentences, or just checking that a collection of erroneous
input sentences is complete, requires the ability to compute
the reachable error states, that is, to determine which states 𝑠
are such that some input sentence triggers an error in state 𝑠 .
This requires solving the reachability problem.

Pottier [27] proposes a reachability algorithm and imple-
ments it in the Menhir parser generator [28]. Menhir’s sup-
port for Jeffery’s error diagnosis methodology is exploited
in production in several compilers, such as CompCert C [20]
Catala [22], and Stan 3 [31].
A reachability algorithm has applications beyond error

diagnosis. It could be used, for instance, to test an LR(1)
parser by generating a set of input sentences that reaches
every state, or one that triggers every reduction in every
state. It could also be used as a component in syntax error
recovery algorithms and in syntactic completion algorithms.

Challenges and Contributions. The reachability prob-
lem seems inherently costly. The question that appears in
the second problem statement above is parameterized with
a transition tr and with two terminal symbols 𝑎 and 𝑧. Thus,
the number of questions that may be asked is |Tr | × |𝑇 |2,
where Tr is the set of all transitions and 𝑇 is the set of all
terminal symbols. An analysis of the problem reveals that
these questions seem interdependent, so answering one of
them potentially requires answering many of them. With-
out even analyzing the cost of answering one question, this
suggests that the complexity of a reachability algorithm can
be high. We analyze the complexity of a naïve reachability
algorithm later on (§3.3).
Pottier [27] proposes a reachability algorithm whose im-

plementation in Menhir [28] has been in use for five years.
We find that, in practice, this algorithm does not scale as
graciously as one might wish. For the OCaml grammar and
parser, which involve 121 terminal symbols, 230 nonterminal
symbols, and 1672 LR(1) states, we find that this algorithm
can require over 5 gigabytes of memory and 5 minutes of
run time. Although the space requirement is tolerable, such
a time requirement is much too large to achieve a smooth
edit-compile-debug cycle.

Contribution. We present a new reachability algorithm
which we find is much more efficient in practice than Pot-
tier’s algorithm. Our algorithm processes the OCaml parser
in 50 megabytes of memory and half a second, improving
over Pottier by a factor of 102 in space and 6×102 in time (§7).
We derive this new algorithm in two main steps. First,

we propose a matrix-based formulation of the reachability

problem, which requires computing a cost matrix for every
transition. Then, we remark that cost matrices are redun-
dant in two ways: (a) they contain many identical columns;
(b) they contain many rows whose content is not relevant,
insofar as only the combination of these rows via the function
“pointwise minimum” is of interest. This suggests that it is
possible to gain space (and save time) by merging certain
rows and columns. We propose a method for determining
ahead of time (before the cost matrices are computed) which
rows and columns can be merged, as well as a direct method
for constructing compact cost matrices where these rows and
columns are merged.
These ideas, combined with a number of other optimiza-

tions, allow us to report excellent performance in practice.
The largest grammar in our test suite, a grammar for the C++
programming language [12], is processed in 2.6 gigabytes
of memory and under one minute, whereas it could not be
processed by Pottier’s algorithm.1

Outline. After introducing some notation (§2), we present
our formulation of the reachability problem in terms of cost
matrices (§3). Then (§4), we explain several ways in which
this formulation can be improved, including merging cer-
tain rows and columns. This leads to a reformulation of the
problem in terms of compact cost matrices (§5). The paper
ends with a discussion of implementation details (§6), an
experimental evaluation of the algorithm’s performance (§7),
a review of the related work (§8), and concluding words (§9).

2 Notation
We assume that a context-free grammar G has been fixed
and that an LR(1) automaton has been constructed for this
grammar. We assume that the reader is familiar with these
concepts [1, 11]. In the following, we recall some standard
notation and propose specific notation that is useful in this
paper.

LR(1) Automata. We write:
• 𝑎, 𝑏, 𝑐, 𝑧 ∈ 𝑇 for terminal symbols,
• 𝐴 ∈ 𝑁 for nonterminal symbols,
• 𝑥 ∈ 𝑋 , where 𝑋 is 𝑇 ∪ 𝑁 , for arbitrary symbols,
• 𝑍 ∈ P(𝑇) for sets of terminal symbols,
• 𝑤 ∈ ®𝑇 for sentences (sequences of terminal symbols),
• 𝛼, 𝛽 ∈ ®𝑋 for sentential forms (sequences of symbols),
• 𝑠 ∈ 𝑆 for automaton states.

A transition in the automaton is a directed edge from a
source state 𝑠 to a target state 𝑠 ′. Every transition is labeled
with a symbol 𝑥 . The “shift” transitions are the transitions
whose label is a terminal symbol; the “goto” transitions are

1Pottier’s algorithm, as implemented by him in Menhir, is limited to 256
terminal symbols. This is caused by the choice of a low-level representation
that involves packing several pieces of information in a single machine
word. Even if this limitation was removed, our performance evaluation (§7)
shows that Pottier’s algorithm would not be able to handle this grammar.

2

Faster Reachability Analysis for LR(1) Parsers SLE ’21, October 17–18, 2021, Chicago, IL, USA

those whose label is a nonterminal symbol. We write Tr for
the set of all transitions.

Because the automaton is deterministic, the target state 𝑠 ′
of a transition is determined by 𝑠 and 𝑥 . Thus, a transition
can be identified by the pair (𝑠, 𝑥), and Tr can be viewed as
a subset of 𝑆 × 𝑋 .
The target state of a transition is given by the function

target : Tr → 𝑆 , which can also be viewed as a partial
function target : 𝑆×𝑋 ⇀ 𝑆 . We generalize this function so as
to accept a state 𝑠 and a sequence of symbols 𝛼 as arguments.
Thus, target(𝑠, 𝛼) is the state that is reached by following the
path labeled 𝛼 out of the state 𝑠 , if such a path exists. We
write incoming(𝑠 ′) for the set of the transitions that enter
the state 𝑠 ′, that is, for the set {tr ∈ Tr | target(tr) = 𝑠 ′}.
We assume that the reduction actions of the automaton

are given by a function reduce, which maps a pair of a state 𝑠
and a production 𝐴 → 𝛼 to a set of terminal symbols. When
the automaton is in state 𝑠 , if the next input symbol (the
“lookahead symbol”) is a member of reduce(𝑠, 𝐴 → 𝛼), then
the automaton will reduce the production 𝐴 → 𝛼 .

Costs. A cost is either a nonnegative natural number or∞.
We write N̄ forN∪{∞}, and equip it with semiring structure.
We use the min-plus semiring (N̄, ⊕, ⊗), where:

• 𝑥 ⊕ 𝑦 =𝑚𝑖𝑛{𝑥,𝑦},
• the unit of ⊕ is +∞,
• 𝑥 ⊗ 𝑦 = 𝑥 + 𝑦,
• the unit of ⊗ is 0.

Matrices. We use “cost matrices”, that is, matrices whose
elements are costs. We write “·” for the matrix product over
the cost semiring. The rows and columns of cost matrices are
indexed with terminal symbols (§3). Later on, we introduce
“compact costmatrices” whose rows and columns are indexed
with sets of terminal symbols (§5).

Partitions. A partition of the terminal symbols is a set 𝑃
of nonempty subsets of𝑇 such that every terminal symbol is
a member of exactly one element of 𝑃 . We write Part(𝑇) for
the set of all partitions of𝑇 . We let 𝑃,𝑄 range over partitions,
and 𝑝, 𝑞 range over classes, that is, elements of a partition.
A partition 𝑃 refines a partition 𝑄 if every element of 𝑃

is a subset of some element of 𝑄 . We write 𝑃 ⪯ 𝑄 when
this is the case. Equipped with this partial order, Part(𝑇)
forms a lattice. Its bottom element ⊥ is the finest partition,
{{𝑎} | 𝑎 ∈ 𝑇 }. Its top element⊤ is the coarsest partition, {𝑇 }.
The meet of two partitions 𝑃 and 𝑄 , written 𝑃 ∧ 𝑄 , is the
coarsest partition that refines both 𝑃 and 𝑄 . The join of two
partitions 𝑃 and 𝑄 , written 𝑃 ∨𝑄 , is the finest partition that
is refined both by 𝑃 and by 𝑄 .
If 𝑍 is a set of terminal symbols, we write 𝑍? for the

partition {𝑍,𝑇 \ 𝑍 } \ {∅}. This partition has at most two
classes, namely𝑍 and𝑇 \𝑍 . If one of these sets is empty, then
it has only one class. This partition distinguishes members
versus nonmembers of 𝑍 .

We let 𝑍 ! stand for ({𝑇 \ 𝑍 } ∪ ⋃{{𝑎} | 𝑎 ∈ 𝑍 }) \ {∅}.
The classes of this partition are 𝑇 \ 𝑍 (if it is nonempty) and
the singletons {𝑎}, where 𝑎 ranges over 𝑍 . This partition
distinguishes all members of 𝑍 , and places all nonmembers
of 𝑍 in a single class. We have 𝑍 ! ⪯ 𝑍?.
Finally, if 𝑃 is a partition, we define the partition 𝑃 ↓ 𝑍 ,

pronounced “𝑃 inside 𝑍 ”, as (𝑃 ∧ 𝑍?) ∨ 𝑍 !. Taking the meet
of 𝑃 and 𝑍? refines 𝑃 by distinguishing members versus
nonmembers of 𝑍 . Then, taking a join with 𝑍 ! coarsens the
result by conflating all nonmembers of 𝑍 into a single class.
We have 𝑍 ! ⪯ 𝑃 ↓ 𝑍 ⪯ 𝑍?.

3 Problem Specification
3.1 Transition Costs
Let us briefly explain again what problem we wish to solve.
In short, for each transition in the automaton, we would like
to determine under what conditions this transition can be
taken. So, we might wish to ask:

Question 3.1. Let tr be a transition.What input sentences𝑤
allow tr to be taken, and are consumed when it is taken?

In the case of a shift transition (𝑠, 𝑎), naturally, the answer
is immediate: this transition can be takenwhen the first input
symbol is 𝑎, and this symbol is consumed in the process.
In the case of a goto transition (𝑠, 𝐴), answering is more

difficult. To take such a transition, the automaton must con-
sume a sequence 𝑤 of input symbols so as to reach a state
where one of the productions associated with the symbol 𝐴,
say 𝐴 → 𝛼 , can be reduced. There, the automaton must
reduce 𝛼 to 𝐴, which is permitted only if the input symbol
that follows𝑤 , say 𝑧, allows such a reduction. The symbol 𝑧
is known as the lookahead symbol: it is consulted before the
reduction, but not consumed.

Because the answer to the question depends on 𝑧, the first
input symbol that follows𝑤 , and because we seek a pleasant
decomposition of the main problem into subproblems, the
need naturally arises to refine our question by imposing a
constraint on the first symbol 𝑎 of the sentence𝑤𝑧.

Question 3.2. Let tr, 𝑎, 𝑧 be a transition and two terminal
symbols. What sentences𝑤 allow tr to be taken, under the
assumption that the first input symbol following𝑤 is 𝑧, and
under the constraint that the first symbol of𝑤𝑧 must be 𝑎?

For greater simplicity, instead of answering Question 3.2
with a set of sentences, we focus on computing theminimum
length of a sentence in this set, a number in N̄. Once the
cost of every transition is known, it is a routine exercise
to reconstruct a minimum-cost sentence that allows each
transition to be taken.

The answer to Question 3.2 is the cost of transition tr with
respect to the initial symbol 𝑎 and the lookahead symbol 𝑧.
We write cost(tr)𝑎,𝑧 for this cost; it is a number in N̄.

It is useful to think of transition costs as matrices. For each
transition tr , cost(tr) can be viewed as a cost matrix whose

3

SLE ’21, October 17–18, 2021, Chicago, IL, USA Frédéric Bour and François Pottier

rows are indexed by 𝑎 and whose columns are indexed by 𝑧.
This matrix can be viewed as the answer to Question 3.1.
Whereas Question 3.2 is a family of questions, indexed by 𝑎
and 𝑧, each ofwhich is answered by a single cost, Question 3.1
is a single question that is answered by a cost matrix.

3.2 A Characterization of Transition Costs
We now characterize the cost matrices cost(tr) by providing
a family of equations that these matrices satisfy.

The cost of a shift transition (𝑠, 𝑎) is easy to express. It is 1
if the constraint imposed on the initial input symbol allows
taking this transition; it is∞ otherwise. Thus:

cost(𝑠, 𝑎)𝑏,𝑧 = 1 if 𝑎 = 𝑏

cost(𝑠, 𝑎)𝑏,𝑧 = ∞ otherwise

In other words, the matrix cost(𝑠, 𝑎) contains a row of 1’s at
index 𝑎 and contains ∞ everywhere else:

...

cost(𝑠, 𝑎) = 𝑎
...

∞ . . . ∞
1 . . . 1
∞ . . . ∞

The cost of a goto transition cost(𝑠, 𝐴) is characterized by

the following equations:

cost(𝑠, 𝐴) =
⊕
𝐴→𝛼

let 𝑠 ′ = target(𝑠, 𝛼) in
cost(𝑠, 𝐴 → 𝜖•𝛼) ·
Δreduce(𝑠 ′, 𝐴 → 𝛼)

(1)

cost(𝑠, 𝐴 → 𝛼•𝑥𝛽) =
{
cost(𝑠, 𝑥) ·
cost(target(𝑠, 𝑥), 𝐴 → 𝛼𝑥•𝛽) (2)

cost(𝑠, 𝐴 → 𝛼•𝜖) = 𝐼𝑇 (3)

Figure 1. A Characterization of Transition Costs

Equation 1. Equation 1 expresses the fact that the cost
of the transition (𝑠, 𝐴) is the minimum, over all productions
𝐴 → 𝛼 , of the costs of the paths that begin in state 𝑠 , follow
a sequence of transitions labeled 𝛼 , and reach a state where
𝐴 → 𝛼 can be reduced.

Equation 1 involves the auxiliary matrix cost(𝑠, 𝐴 → 𝛼•𝛽),
defined by Equations 2 and 3, which denotes the cost of a path
that begins in state 𝑠 , is labeled 𝛽 , and reaches a state where
the production 𝐴 → 𝛼𝛽 can be reduced.
Equation 1 involves a multiplication with the matrix Δ𝑍 ,

where 𝑍 is the set of lookahead symbols that allow reducing
𝐴 → 𝛼 in state 𝑠 ′. The matrix Δ𝑍 , pronounced “filter 𝑍 ”, is
defined as follows:

(Δ𝑍)𝑎,𝑧 = 0 if 𝑎 = 𝑧 and 𝑎 ∈ 𝑍

(Δ𝑍)𝑎,𝑧 = ∞ otherwise

We note that Δ𝑇 is the identity matrix. In general, Δ𝑍 is
a variant of the identity matrix where the diagonal entries
whose index lies outside of 𝑍 are set to ∞ instead of 0.

A multiplication𝑀 · Δ𝑍 produces a copy of the matrix𝑀
where all columns whose index lies outside 𝑍 are set to∞.
The multiplication with Δ𝑍 in Equation 1 reflects the idea
that if reduction is permitted, then it has zero cost, since
no input symbol is consumed; if it is not permitted, then it
has infinite cost; and whether it is permitted depends on the
lookahead symbol.

Equations 2 and 3. Equation 2 concerns the case of a
nonempty path, labeled with the sentential form 𝑥𝛽 . The cost
matrix for the first transition, which leaves the state 𝑠 and is
labeled 𝑥 , and the cost matrix for the remaining transitions,
which begin in the state target(𝑠, 𝑥)2 and follow the path
labeled 𝛽 , are combined via matrix multiplication. Indeed,
multiplication expresses the idea that the “lookahead symbol”
that is chosen while examining the first transition must also
be the “first symbol” that is chosen while examining the
remaining transitions.
Equation 3 concerns the case of an empty path, labeled

with the sentential form 𝜖 . The cost matrix for this path is
the identity matrix 𝐼𝑇 .

Recursion. Equations 1–2 are mutually recursive. They
are monotone with respect to the ordering (N̄, ≤), lifted
pointwise to matrices. That is, when the cost matrices that
appear in the right-hand side of an equation grow, the value
of this right-hand side grows as well. This ensures that Equa-
tions 1–3 have least and greatest solutions. The desired cost
matrices form the least solution.

3.3 Computing Transition Costs
Equations 1–3 form a system of monotone equations whose
variables are matrices of costs and whose right-hand sides
involve operations on matrices, such as multiplication · and
minimum ⊕.

To solve these equations, one approach is to use a generic
least fixed point computation algorithm: see, e.g., Pottier
[26] and references therein. However, such an approach is
very naïve. Indeed, working at the level of matrices is too
coarse-grained: when a matrix is updated, every right-hand
side where this matrix appears must be re-evaluated. Thus,
even a tiny update (one that affects only a fewmatrix entries)
requires a large amount of computation.

A better approach is to work at the level of matrix entries.
Equations 1–3 can be reformulated as a system of equations
whose variables are costs and whose right-hand sides involve
operations on costs, such as minimum and addition. The ben-
efit of such a reformulation is two-fold. First, this reduces

2It may be the case that there is no transition labeled 𝑥 out of the state 𝑠 , in
which case target(𝑠, 𝑥) is undefined. Then, we consider that the right-hand
side of Equation 2 yields a matrix where every entry is ∞.

4

Faster Reachability Analysis for LR(1) Parsers SLE ’21, October 17–18, 2021, Chicago, IL, USA

the amount of computation that a generic fixed point compu-
tation algorithm must perform. Second, because addition is a
superior function,3 the reformulated problem is of a specific
form that can be efficiently solved by Knuth’s generalization
of Dijkstra’s algorithm [16]. This algorithm is potentially
more efficient than a generic fixed point algorithm, and its
worst-case time complexity is easier to analyze.

Unfortunately, this improved approach remains naïve: its
space and time complexity are quite bad.

The space complexity of this approach can be assessed as
follows. The number of matrices of the form cost(tr) is |Tr |,
the number of transitions in the automaton. The number
of matrices of the form cost(𝑠, 𝐴 → 𝛼•𝛽) is the total star
size S [27]. We believe that |Tr | ≤ S holds. Thus, the num-
ber 𝑉 of cost variables is 𝑂 (S × |𝑇 |2). This is also the space
required by the cost matrices alone.

Provided a suitable “priority queue” data structure is used,
the time complexity of Knuth’s algorithm is 𝑂 (𝑉 log𝑉 + 𝐸)
where 𝐸 is the number of dependencies between variables
that the equations exhibit. Here, some variables participate
in 𝐵 dependency relations, where 𝐵 is the maximum number
of productions associated with each nonterminal symbol;
some participate in |𝑇 | relations. Assuming that 𝐵 is smaller
than |𝑇 |, which is usually true in practice, we find that 𝐸 is
𝑂 (𝑉 × |𝑇 |). Assuming that logS is smaller than |𝑇 |, which
is usually true in practice, we find that 𝑉 log𝑉 is dominated
by 𝐸, so the time complexity of this approach is𝑂 (S × |𝑇 |3).
This analysis seems supported by our experiments (§7).

In practice, what does this mean? The largest grammar
in our test suite, a grammar for C++ [12], has 422 terminal
symbols and 755 nonterminal symbols. The LR(1) automaton
produced by the Menhir parser generator has over 104 states
and 5 × 105 transitions. Its total star size S is over 2 × 106.
This is the number of cost matrices that we wish to compute.
Since the size of a matrix is 4222 = 1.78×103, the total size of
the matrices is over 3.63×1011. Assuming that a matrix entry
occupies a 64-bit word, this requires at least 2.6 terabytes
of memory. Considering today’s economic constraints on
the price and availability of memory, this is not realistic: the
naïve algorithm does not scale well. The optimizations that
we describe reduce the space consumption of the algorithm,
in this case, by a factor of more than 104.

4 Overview of Optimizations
Fourmain ideas allow us to reduce the space and time require-
ments of the naïve algorithm, namely: merging of identical
columns, merging of peer rows, matrix chain multiplication
optimization, and maximal sharing of matrix multiplications.
These optimizations reduce the size of the cost matrices that
we wish to compute; therefore, the computation time is re-
duced as well. The computation itself is performed in the
manner that was suggested (§3.3), that is, by formulating the

3A function 𝑓 of type N̄× N̄→ N̄ is superior if 𝑓 (𝑥, 𝑦) ≥ max(𝑥, 𝑦) holds.

problem as a system of equations bearing on cost variables,
and by using Knuth’s algorithm to solve these equations.

Merging Identical Columns. In general, at each step,
the lookahead symbol determines the behavior of the LR(1)
automaton: to shift a terminal symbol, to reduce a produc-
tion, or to report a syntax error. However, it is often the case
that two distinct lookahead symbols dictate the same behav-
ior. For instance, if the terminal symbols 𝑧1 and 𝑧2 are both
members of the set reduce(𝑠 ′, 𝐴 → 𝛼), then, in state 𝑠 ′, the
distinction between these symbols is irrelevant: both allow
reducing the production 𝐴 → 𝛼 . This implies that some cost
matrices have repeated columns. Our first optimization is to
precompute which columns must be identical and merge them
ahead of time so that they are computed only once.

Merging Peer Rows. Suppose that the cost computation
involves a matrix multiplication𝑀 ·𝑀 ′, which arises as an
instance of Equation 2. Thanks to the previous optimization,
we may happen to know ahead of time that the columns
indexed by 𝑏1 and 𝑏2 in the matrix 𝑀 must be equal. This
implies that the rows indexed by 𝑏1 and 𝑏2 in the matrix𝑀 ′

participate in the multiplication as peers: they always appear
in an expression of the form (𝑀𝑎,𝑏1 ⊗𝑀 ′

𝑏1,𝑐
) ⊕ (𝑀𝑎,𝑏2 ⊗𝑀 ′

𝑏2,𝑐
),

where the equality𝑀𝑎,𝑏1 = 𝑀𝑎,𝑏2 holds, so this expression is
equal to𝑀𝑎,𝑏1 ⊗ (𝑀 ′

𝑏1,𝑐
⊕𝑀 ′

𝑏2,𝑐
). Thus, to compute the result

of the multiplication, it is not necessary to have separate
access to the rows𝑀 ′

𝑏1,_
and𝑀 ′

𝑏2,_
. Instead, it suffices to have

access to the combination of these rows by the function
“minimum”, that is, 𝑀 ′

𝑏1,_
⊕ 𝑀 ′

𝑏2,_
. This indicates that, even

though these rows are not identical, they can be merged.
Instead of allocating space for two rows, one can allocate
space for a single row and use it to store𝑀 ′

𝑏1,_
⊕ 𝑀 ′

𝑏2,_
.

This reasoning assumes that the matrix𝑀 ′ participates in
only one multiplication, namely𝑀 ·𝑀 ′. If𝑀 ′ participates in
several multiplications (a situation that typically arises when
a state has several incoming transitions) then the rows𝑀 ′

𝑏1,_
and 𝑀 ′

𝑏2,_
can be merged only if every matrix that appears

on the left-hand side of a multiplication _ ·𝑀 ′ is known to
have identical columns at indices 𝑏1 and 𝑏2.

Our second optimization, therefore, is to determine ahead
of time which rows are peers and merge them.

MatrixChainMultiplicationOptimization. Once cer-
tain columns and rows have beenmerged, as described above,
we no longer work with cost matrices whose dimensions are
|𝑇 | by |𝑇 |. Instead, we compute compact cost matrices, which
are rectangular and can have various dimensions. Therefore,
our third optimization is to identify chains of multiplications
and optimize each such chain by exploiting the associativity
of multiplication. A standard dynamic programming algo-
rithm is used to solve the Matrix Chain Ordering Problem [4,
§15.2] [34].
As a consequence of this optimization, we do not nec-

essarily compute the auxiliary matrices cost(𝑠, 𝐴 → 𝛼•𝛽)
5

SLE ’21, October 17–18, 2021, Chicago, IL, USA Frédéric Bour and François Pottier

described in the previous section. Because we optimize the
chain of multiplications expressed by Equation 2, we may
go through a different family of auxiliary matrices, while
preserving the end result of the chain, namely the matrix
cost(𝑠, 𝐴 → 𝜖•𝛼), which appears in Equation 1.

Maximal Sharing of Matrix Multiplications. Often,
two paths of interest in the automaton share a suffix. This
in turn means that two matrix multiplication chains share a
suffix.
For instance, suppose target(𝑠1, 𝛼) = target(𝑠2, 𝛼) = 𝑠 ′,

that is, the path labeled 𝛼 out of 𝑠1 and the path labeled 𝛼 out
of 𝑠2 lead to a common state 𝑠 ′. Suppose that there exists a
production 𝐴 → 𝛼𝛽 and that the states 𝑠1 and 𝑠2 have outgo-
ing transitions labeled𝐴. Then, we would like to compute the
cost matrices cost(𝑠1, 𝐴 → 𝜖•𝛼𝛽) and cost(𝑠2, 𝐴 → 𝜖•𝛼𝛽).
Each of these matrices is the result of a multiplication chain,
and these two chains share a common suffix: indeed, both of
them involve the matrix cost(𝑠 ′, 𝐴 → 𝛼•𝛽).
This raises a question: when we optimize two multipli-

cation chains that share a suffix, should we optimize each
chain separately, ignoring the presence of a shared suffix, or
should we decompose the two chains into three subchains
(two prefixes and a shared suffix) that do not overlap and can
be optimized independently? The first option yields greater
freedom in optimizing long multiplication chains, but de-
stroys sharing that is present in the initial formulation of
the problem and thereby potentially creates redundant com-
putation. The second option preserves sharing but gives up
opportunities of optimizing long chains of multiplications.

After experimenting with both options, we choose the first
one, which seems most beneficial. To make up for the loss of
sharing that it causes, we explicitly impose maximal sharing:
that is, after each multiplication chain has been separately
optimized, we use hash-consing [10, 32] to discover matrix
multiplication trees that appear several times, and share
them again. This is our fourth and last major optimization.
In the next section (§5), we describe the first two key

optimizations, namely the merging of rows and columns,
which allows us to compute compact cost matrices. Then
(§6), we describe some implementation details that lead to
increased efficiency in practice.

5 Merging Rows and Columns
The cost matrices have dimension |𝑇 | × |𝑇 |: their rows and
columns are indexed with terminal symbols. In this section,
we would like to merge certain rows and certain columns.
We wish to do so a priori: that is, before any matrices are
constructed, we wish to compute which rows and which
columns can be merged. This allows us to directly construct
compact cost matrices whose rows and columns are indexed
by equivalence classes of terminal symbols.
We proceed as follows:

1. For each transition (𝑠, 𝑥), we compute two partitions,
named first(𝑠) and follow(𝑠, 𝑥). The partition first(𝑠)
tells which rows in the cost matrix associated with this
transition can bemerged; the partition follow(𝑠, 𝑥) tells
which columns can be merged.

2. For each transition (𝑠, 𝑥), we compute a compact cost
matrix ccost(𝑠, 𝑥) whose row indices range over first(𝑠)
and whose column indices range over follow(𝑠, 𝑥). An
entry in this matrix is identified by two equivalence
classes 𝑝 ∈ first(𝑠) and 𝑞 ∈ follow(𝑠, 𝑥).

These two phases are described in the next two subsections.

5.1 Which Rows and Columns Can Be Merged?
To begin, we define the functions first : 𝑆 → Part(𝑇) and
follow : 𝑇𝑟 → Part(𝑇). These functions determine which
columns and rows we can safely merge.
As explained earlier (§4), we merge two columns when

we know ahead of time that they would be identical. Thus,
we need follow to satisfy the following soundness property:

∀𝑞 ∈ follow(tr) ∀𝑏, 𝑏 ′ ∈ 𝑞 ∀𝑎 cost(tr)𝑎,𝑏 = cost(tr)𝑎,𝑏′
That is, if the partition follow(tr) indicates that the terminal
symbols 𝑏 and 𝑏 ′ are equivalent (members of the same class),
then the columns indexed by 𝑏 and 𝑏 ′ in the matrix cost(tr)
must be identical. The reverse implication is not true: the
columns indexed by𝑏 and𝑏 ′ may happen to be identical even
when this is not predicted by the partition follow(tr), that
is, even when 𝑏 and 𝑏 ′ are not members of the same class.
Thus, the partition follow(tr) is a conservative prediction of
which columns will be identical.

Another way to think about follow(tr) is that this partition
indicates which distinctions between lookahead symbols
definitely do not influence how the transition tr can be taken.
It does not seem easy to state a soundness property that

first must satisfy. As explained earlier (§4), two rows are
merged not when they are identical, but when we know in
advance that only the combination of these rows by the func-
tion “minimum” is relevant. So, we state no such property.
The partitions first(𝑠) and follow(𝑠, 𝑥) are characterized

by a set of recursive monotone equations: they form the
greatest fixed point of these equations. Any fixed point is
sound; the greatest fixed point allows the greatest amount
of merging. The equations are as follows:

follow(𝑠, 𝑎) = ⊤ (4)

follow(𝑠, 𝐴) =
∧
𝐴→𝛼

let 𝑠 ′ = target(𝑠, 𝛼) in
let 𝑍 = reduce(𝑠 ′, 𝐴 → 𝛼) in
first(𝑠 ′) ↓ 𝑍

(5)

first(𝑠) =
∧

tr∈incoming(𝑠)
follow(tr) (6)

Figure 2.Which Rows and Columns Can Be Merged
6

Faster Reachability Analysis for LR(1) Parsers SLE ’21, October 17–18, 2021, Chicago, IL, USA

Equation 4 indicates that the partition follow(𝑠, 𝑎) is ⊤.
This is sound because all columns in the matrix cost(𝑠, 𝑎) are
identical (§3.2). An equivalent statement is that follow(tr)
is ⊤ when tr is a shift transition.

Equation 5. Equation 5 defines follow(𝑠, 𝐴), where we
assume that the state 𝑠 has an outgoing transition labeled 𝐴.
In doing so, it aims to answer the question: “which lookahead
symbols influence the manner in which this transition can
be taken?”. If two symbols 𝑏 and 𝑏 ′ lie in the same class, then
the input sentences that allow taking this transition are the
same, regardless of whether the lookahead symbol is 𝑏 or 𝑏 ′.

This transition can be taken if there is a production𝐴 → 𝛼

such that (1) the sentential form 𝛼 can be recognized, taking
the automaton from state 𝑠 to state 𝑠 ′ = target(𝑠, 𝛼), and (2)
in state 𝑠 ′, the production 𝐴 → 𝛼 can be reduced. Any such
production can be chosen, hence Equation 5 involves a meet
over all such productions. Let us now focus on one such
production and examine the right-hand side of Equation 5.

In the state 𝑠 ′, reducing the production𝐴 → 𝛼 is permitted
if and only if the lookahead symbol is a member of the set
reduce(𝑠 ′, 𝐴 → 𝛼). Let us refer to this set as 𝑍 . Then, there
definitely is no need to distinguish between nonmembers of 𝑍 :
indeed, all lookahead symbols outside 𝑍 forbid reducing the
production𝐴 → 𝛼 . This explains why a partition of the form
“. . . ↓ 𝑍 ” appears in Equation 5.

There remains to explain what partition to choose in place
of “. . .”. This determines which terminal symbols inside 𝑍
must be distinguished.

Choosing ⊥ means that all symbols inside 𝑍 must be dis-
tinguished. That would be sound but pessimistic, and would
largely prevent the merging of rows and columns.
Choosing ⊤ means that no distinction inside 𝑍 is neces-

sary. That would be unsound. Indeed, before reducing𝐴 → 𝛼 ,
the right-hand side 𝛼 must be recognized, and this process
may be influenced by the lookahead symbol.
What partition describes this influence in a sound way,

and is not as pessimistic as⊥? We remark that, in order to go
from the state 𝑠 along the path labeled 𝛼 to the state 𝑠 ′, the
automaton must (as its final step) enter the state 𝑠 ′, and to do
so, it must follow some transition tr ∈ incoming(𝑠 ′). There-
fore, two lookahead symbols must be distinguished only if
this distinction influences some transition tr ∈ incoming(𝑠 ′).
In other words, a sound choice is the meet, over all such
transitions, of the partitions follow(tr). This happens to be
precisely first(𝑠 ′).

Equation 6. Equation 6 defines the partition first(𝑠) as
themeet of the partitions follow(tr), where tr ranges over the
incoming transitions of the state 𝑠 . The reason for this is as
follows. The partition first(𝑠) is supposed to determinewhich
rows in a cost matrix cost(𝑠, 𝑥) can be merged. As explained
earlier (§4), two rows in such a matrix can be merged if
this matrix is always multiplied (on its left) with matrices
where the corresponding columns are identical. This is the

case if every incoming transition tr of state 𝑠 has a cost
matrix cost(tr) where these columns are identical. Thus, for
every tr ∈ incoming(𝑠), we need first(𝑠) ⪯ follow(tr) to hold.
This explains Equation 6.

Because all of the incoming transitions of a state 𝑠 carry the
same symbol, either all of them are shift transitions, labeled
with a terminal symbol 𝑎, or all of them are goto transitions,
labeled with a nonterminal symbol 𝐴. In the former case,
Equation 6 can be simplified: by Equation 4, every incoming
transition tr satisfies follow(tr) = ⊤, so first(𝑠) is ⊤.

5.2 A Characterization of Compact Cost Matrices
Compact Cost Matrices. For each transition (𝑠, 𝑥), we

wish to compute a compact cost matrix ccost(𝑠, 𝑥), whose row
indices are members of first(𝑠) and whose column indices
are members of follow(𝑠, 𝑥).

We now provide several equations that characterize these
matrices, and allow them to be computed. These equations
involve a family of auxiliary matrices ccost(𝑠, 𝐴 → 𝛼•𝛽) of
dimensions first(𝑠) by first(target(𝑠, 𝛽)).

The compact cost matrix ccost(𝑠, 𝑎) associated with a shift
transition is defined as follows:

ccost(𝑠, 𝑎)𝑝,𝑞 = 1 if 𝑎 ∈ 𝑝

ccost(𝑠, 𝑎)𝑝,𝑞 = ∞ otherwise

Since follow(𝑠, 𝑎) is ⊤, a one-class partition, this matrix has
width one: it is a column matrix. It has exactly one “1” entry,
found at the unique index 𝑝 such that 𝑎 ∈ 𝑝 holds, and “∞”
entries everywhere else.

The compact cost matrix ccost(𝑠, 𝐴) associated with a goto
transition and the auxiliary matrices ccost(𝑠, 𝐴 → 𝛼•𝛽) are
defined as follows:

ccost(𝑠, 𝐴) =
⊕
𝐴→𝛼

{
ccost(𝑠, 𝐴 → 𝜖•𝛼) ·
creduce(𝑠, 𝐴 → 𝛼) (7)

ccost(𝑠, 𝐴 → 𝛼•𝑥𝛽) =

let 𝑠 ′ = target(𝑠, 𝑥) in
ccost(𝑠, 𝑥) ·
coerce(follow(𝑠, 𝑥), first(𝑠 ′)) ·
ccost(𝑠 ′, 𝐴 → 𝛼𝑥•𝛽)

(8)

ccost(𝑠, 𝐴 → 𝛼•𝜖) = 𝐼first(𝑠) (9)

Figure 3. A Characterization of Compact Cost Matrices

Equation 7. Equation 7 resembles Equation 1 in Figure 1,
but the square matrix Δreduce(target(𝑠, 𝛼), 𝐴 → 𝛼) that is
visible in Equation 1 is replaced with the rectangular matrix
creduce(𝑠, 𝐴 → 𝛼), whose dimensions are first(target(𝑠, 𝛼))

7

SLE ’21, October 17–18, 2021, Chicago, IL, USA Frédéric Bour and François Pottier

by follow(𝑠, 𝐴). This matrix is defined as follows:

creduce(𝑠, 𝐴 → 𝛼)𝑝,𝑞 = 0 if 𝑞 ⊆ 𝑍 ∧ 𝑞 ⊆ 𝑝

where 𝑍 = reduce(𝑠 ′, 𝐴 → 𝛼)
and 𝑠 ′ = target(𝑠, 𝛼)

creduce(𝑠, 𝐴 → 𝛼)𝑝,𝑞 = ∞ otherwise

This generalizes the definition of the matrix Δ𝑍 to a setting
where, instead of two terminal symbols 𝑎 and 𝑧, we consider
two classes 𝑝 ∈ first(target(𝑠, 𝛼)) and 𝑞 ∈ follow(𝑠, 𝐴).
It is worth noting that, by virtue of Equation 5, we have

follow(𝑠, 𝐴) ⪯ 𝑍?. This implies that 𝑞 must lie either entirely
within 𝑍 or entirely outside of 𝑍 . Thus, the test 𝑞 ⊆ 𝑍 is
cheap: it suffices to pick an arbitrary element of 𝑞 and to test
whether it is a member of 𝑍 .

Also by virtue of Equation 5, we find that follow(𝑠, 𝐴)
refines first(target(𝑠, 𝛼)) ↓ 𝑍 , fromwhich we can deduce that
follow(𝑠, 𝐴) ↓ 𝑍 refines first(target(𝑠, 𝛼)) ↓ 𝑍 . This implies
that the condition 𝑞 ∩ 𝑍 ⊆ 𝑝 ∩ 𝑍 can be decided by picking
an arbitrary element of 𝑞 and testing whether it is a member
of 𝑝 ∩ 𝑍 . Assuming that 𝑞 ⊆ 𝑍 holds, this can be rephrased
as follows: 𝑞 ⊆ 𝑝 can be decided by picking an arbitrary
element of 𝑞 and testing whether it is a member of 𝑝 .

Equation 8. Equation 8 is analogous to Equation 2, but a
coercion matrix must be inserted in the middle of the matrix
multiplication expression, because the matrices ccost(𝑠, 𝑥)
and ccost(target(𝑠, 𝑥), 𝐴 → 𝛼𝑥•𝛽) do not have matching
numbers of columns and rows. The columns of the for-
mer matrix are indexed with classes in follow(𝑠, 𝑥), while
the rows of the latter matrix are indexed with classes in
first(target(𝑠, 𝑥)). There is a refinement relation between
these partitions: as a consequence of Equation 6, we have
first(target(𝑠, 𝑥)) ⪯ follow(𝑠, 𝑥). In such a situation, it is pos-
sible to construct a coercion matrix, whose definition and
meaning are explained next.

Coercion Matrices. Let 𝑃,𝑄 ∈ Part(𝑇) be two partitions
such that 𝑄 ⪯ 𝑃 holds, that is, 𝑄 refines 𝑃 . The matrix
coerce(𝑃,𝑄), whose rows are indexed with classes in 𝑃 and
whose columns are indexed with classes in 𝑄 , is defined as
follows:

coerce(𝑃,𝑄)𝑝,𝑞 =

{
0 if 𝑞 ⊆ 𝑝

∞ otherwise

Because 𝑄 refines 𝑃 , every class 𝑞 ∈ 𝑄 is a subset of some
class in 𝑃 . Thus, for every 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 , the class 𝑞 is a
subset of either 𝑝 or 𝑇 \ 𝑝 . Thus, the condition 𝑞 ⊆ 𝑝 can be
decided by testing an arbitrary element of 𝑞.
In the special case where 𝑃 and 𝑄 are the same partition,

the coercion matrix coerce(𝑃,𝑄) is square: it is an identity
matrix. Otherwise, the matrix coerce(𝑃,𝑄) is rectangular:
it has more columns than rows. The row identified by the
class 𝑝 has a “0” entry at each column 𝑞 such that the class 𝑞
is a piece of the class 𝑝 , and “∞” entries everywhere else.

Since every class 𝑞 ∈ 𝑄 is a subset of exactly one class in 𝑃 ,
on every column, there is exactly one “0” entry.

The matrix coerce(𝑃,𝑄) has the remarkable property that,
when used in a matrix multiplication, it serves as an adapter:
it can expand a matrix from dimension 𝑃 to dimension 𝑄

and shrink a matrix from dimension 𝑄 to dimension 𝑃 .
Indeed, the product𝑀 · coerce(𝑃,𝑄) expands the matrix𝑀

from width 𝑃 to width𝑄 by duplicating columns: the column
found at index 𝑝 in the matrix 𝑀 is copied in the matrix
𝑀 · coerce(𝑃,𝑄) at every index 𝑞 such that 𝑞 ⊆ 𝑝 holds.
In the opposite direction, the product coerce(𝑃,𝑄) · 𝑀

shrinks the matrix𝑀 from height 𝑄 to height 𝑃 by merging
rows: the row found at index 𝑝 in the product coerce(𝑃,𝑄) ·𝑀
is the pointwise minimum of the rows found in the matrix𝑀
at some index 𝑞 such that 𝑞 ⊆ 𝑝 holds.

Soundness of Compact Cost Matrices. The cost matrix
cost(𝑠, 𝑥) and the compact cost matrix ccost(𝑠, 𝑥) are related
as follows:

Claim 5.1. Let (𝑠, 𝑥) be a transition. Then, we have:
coerce(first(𝑠),⊥) · cost(𝑠, 𝑥) =

ccost(𝑠, 𝑥) · coerce(follow(𝑠, 𝑥),⊥)

Themultiplication by coerce(follow(𝑠, 𝑥),⊥) on the second
line duplicates some columns of the compact cost matrix, so
as to undo the merging of identical columns.
The multiplication by coerce(first(𝑠),⊥) on the first line

compresses some rows of the cost matrix by computing their
pointwise minimum. This reflects the fact that the compact
matrix contains less information than the cost matrix: some
information is lost when peer rows are merged.

6 Implementation Details
We now propose an overview of several implementation
details and optimizations which, together, yield significant
additional performance improvements.

6.1 Representing Partitions
The computation of first and follow partitions (§5.1) requires
an efficient representation of partitions of the set𝑇 of the ter-
minal symbols. Several options come to mind. Following Lee
[18], one could represent a partition as an array of size |𝑇 |,
where each terminal symbol is mapped to a representative el-
ement of its block. Or, following Hopcroft [13] and Paige and
Tarjan [25], one could adopt the mutable data structures used
in partition refinement algorithms, which involve doubly-
linked lists of elements and doubly-linked lists of blocks.
In our setting, a persistent and compact representation is
desirable. We represent a partition as an (unordered) linked
list of blocks, and represent a block as a sparse bit set.4 In
4Whereas an ordinary bit set would be represented as an array of machine
words and would have size𝑂 (|𝑇 |) , regardless of its cardinality, a sparse bit
set is represented as linked list of pairs of an integer offset and a machine
word, and has size𝑂 (𝑛) , where 𝑛 is the cardinality of the bit set.

8

Faster Reachability Analysis for LR(1) Parsers SLE ’21, October 17–18, 2021, Chicago, IL, USA

the worst case, a partition occupies𝑂 (|𝑇 |) space in memory;
yet, in several common cases, it can require significantly less
space. Indeed, we allow one block to be omitted from the
linked list of all blocks. This causes no loss of information:
the omitted block is the complement of the blocks that do
appear in the list. For example, in the representation of the
partitions 𝑍? and 𝑍 !, the block 𝑇 \ 𝑍 can be omitted. Thus,
these partitions occupy only 𝑂 (|𝑍 |) space.

Our implementation of sparse bit sets is able to efficiently
compute a “unique-or-shared prefix” of two nonempty bit
sets 𝑍1 and 𝑍2. Let us write 𝑍 < 𝑍 ′ when every element of 𝑍
is less than every element of 𝑍 ′, according to an arbitrary,
fixed total order on 𝑇 . Then, the unique-or-shared-prefix op-
eration produces either (a) a nonempty subset 𝑍 ′

1 of 𝑍1 such
that 𝑍 ′

1 < 𝑍1 \ 𝑍 ′
1 and 𝑍

′
1 < 𝑍2 are satisfied; or (b) symmet-

rically, a nonempty subset 𝑍 ′
2 of 𝑍2 such that 𝑍 ′

2 < 𝑍1 and
𝑍 ′

2 < 𝑍2 \𝑍 ′
2 are satisfied; or (c) a nonempty subset of 𝑍1∩𝑍2

such that 𝑍 ′
1 < 𝑍1 \ 𝑍 ′

1 and 𝑍
′
2 < 𝑍2 \ 𝑍 ′

2.
This operation is used in the construction of a carefully

optimized implementation of
∧
, the meet of a family of

𝑘 partitions. This algorithm is inspired by the standard𝑘-way
merge algorithm [33], whose main loop involves a priority
queue.
In our setting, the priority queue is populated with pairs

of a block and its provenance. The priority of such a pair
is the minimum element of the block. A provenance is a
set of identifiers, where initially each block in each of the
𝑘 partitions receives a unique identifier. Pairing a block with
a provenance allows us to record which initial blocks this
block is a subset of. When the priority queue is first popu-
lated, the provenance of each block is a singleton set, which
contains just the identifier of this block.
The algorithm’s main loop proceeds as follows. As long

as the queue has size greater than one, the two blocks with
minimum priority, say 𝑍1 and 𝑍2, are extracted, and their
unique-or-shared prefix, say 𝑍 , is computed. If it is unique,
then it is set aside, together with its provenance; if it is shared,
then it is inserted into the queue again with an updated
provenance, the union of the provenances of 𝑍1 and 𝑍2. In
either case, the remainders of the two blocks, namely 𝑍1 \ 𝑍
and 𝑍2 \𝑍 , are inserted into the queue (if they are nonempty).
Once this loop terminates, the blocks that have been set

aside are sorted according to their provenance, and those
that have the same provenance are merged. The list of blocks
thus obtained is the meet of the 𝑘 input partitions.

6.2 Approximating first and follow Partitions
We have presented the computation of first and follow as
the computation of a greatest fixed point (§5.1). A standard
fixed point computation algorithm [26], based on a chaotic
iteration scheme, can be used to compute this fixed point in
an exact way. In our experience, however, chaotic iteration
can be slow, so this computation can become a bottleneck.

To address this issue, we use a faster algorithm, which vis-
its each cost variable at most twice and computes a post
fixed point, that is, a solution of the inequations obtained
by replacing equality “=” with the refinement relation “⪯”
in Equations 7–9. Because every post fixed point refines the
greatest fixed point, the partitions that we obtain are an
under-approximation of first and follow. Such an approxi-
mation does not endanger the correctness of our approach;
it just means that we do not merge rows and columns as
aggressively as we could with the greatest fixed point.
Our algorithm examines the dependency graph formed

by all instances of Equations 7–9, computes its strongly con-
nected components, and processes one component at a time,
in topological order. Inside each component, it proceeds as
follows. By inspection of Equations 7–9, one can see that the
partition variables that belong in this component form two
families 𝑋1, . . . , 𝑋𝑚 and 𝑌1, . . . , 𝑌𝑛

5 and that the inequations
that these variables must satisfy are of four kinds:

𝑋𝑖 ⪯ 𝑃𝑖 where 𝑃𝑖 is a constant partition (𝐴)
𝑋𝑖 ⪯ 𝑌𝑗 ↓ 𝑍𝑖 𝑗 where 𝑍𝑖 𝑗 is a constant set (𝐵)
𝑌𝑗 ⪯ 𝑄 𝑗 where 𝑄 𝑗 is a constant partition (𝐶)
𝑌𝑗 ⪯ 𝑋𝑖 (𝐷)

Our algorithm solves these constraints as follows:
1. Compute 𝑃 =

∧
𝑖 𝑃𝑖 ∧

∧
𝑖 𝑗 𝑍𝑖 𝑗? ∧

∧
𝑗 𝑄 𝑗 .

2. Assign to each 𝑋𝑖 the value 𝑃𝑖 ∧
∧

𝑗 (𝑃 ↓ 𝑍𝑖 𝑗).
3. Assign to each 𝑌𝑗 the value 𝑄 𝑗 ∧

∧
𝑖 𝑋𝑖 .

It is not difficult to check that this assignment satisfies all of
the inequations 𝐴–𝐷 . The second step is where each 𝑋𝑖 is
assigned an under-approximation of its ideal value; in the
third step, each 𝑌𝑗 receives a value as accurate as possible,
considering the approximation made in the previous step.

In our experience, this approximation leads to an increase
of less than 2% in the size of the compact cost matrices, due to
the fact that the merging of rows and columns is no longer as
aggressive as it could be. This does not lead to an observable
slowdown in the computation of compact cost matrices. On
the other hand, the approximate computation of first and
follow can be 10 times faster than the exact computation. As
a result, it is no longer a bottleneck.

6.3 Replacing Knuth’s Priority Queue with a FIFO
We have indicated earlier (§3.3) that the computation of the
compact cost matrices (§5.2) can exploit Knuth’s algorithm
[16], which has known asymptotic worst-case complexity.
This is attractive, because it makes it easy to assess the time
complexity of our algorithm (§3.3). However, we find that
a FIFO queue offers similar performances in practice while
being simpler to implement. Knuth’s algorithm guarantees
that every matrix entry is visited at most once, so that, when
an entry is visited, it is assigned its final value. By using a

5The 𝑋𝑖 ’s correspond to follow partitions, while the 𝑌𝑗 ’s correspond to first
partitions.

9

SLE ’21, October 17–18, 2021, Chicago, IL, USA Frédéric Bour and François Pottier

FIFO queue instead of a priority queue, we lose this property:
an entry may be visited several times. In practice, we find
that entries are visited 1.1 times on average. This is a small
price to pay. In return, a FIFO queue is easier to implement
and can be (marginally) more compact and faster.

6.4 Representing Dependencies
During the computation of compact cost matrices (§5.2), an
efficient representation of the dependencies between matrix
entries is needed, so that, when an entry is updated, the en-
tries that depend on it can be enqueued for re-examination.
There is a space-time trade-off between an explicit repre-
sentation, where the dependency edges form a graph that is
explicitly stored in memory, and an implicit representation,
where the dependency edges are not stored in memory, but
can be computed on demand.

The number of matrix entries can be huge and and is the
dominating factor that determines the memory requirement
of this computation. Thus, we strive to maintain as little
information per matrix entry as possible, and cannot use a
fully explicit representation of dependency edges.

To every entry in every compact cost matrix, we assign a
unique number. Then, with each entry, we associate three
pieces of information, which occupy three words in memory.
One piece is the content of this matrix entry, that is, a cost,
represented as a machine integer. The second piece is a ref-
erence to the matrix to which this entry belongs. (Because
entries are numbered sequentially and because the dimen-
sions of every matrix are known, this information suffices
to also recover the coordinates of this entry within its ma-
trix.) The third and last piece is either null or the number of
another matrix entry: this way, the FIFO queue of all “dirty”
matrix entries is represented as a linked list.
To encode the dependencies between matrix entries, we

combine a coarse-grained explicit scheme and a fine-grained
implicit scheme. At the outer level, dependencies between
matrices are explicitly stored in memory. At the inner level,
dependencies between matrix entries are computed on de-
mand. Given the coordinates of an entry and the (outer-level)
dependencies of the matrix in which it appears, we are able
to enumerate the matrix entries that depend on this entry.

6.5 Representing Constant Matrices
In general, a cost matrix is represented as an array of entries.
This can be quite expensive in terms of space. We identify
several cases where a specialized representation is beneficial.

Thematrices ccost(𝑠, 𝑎) are columnmatrices where a single
row contains a “1” entry. We store just the index of this row.
The auxiliary matrices ccost(𝑠, 𝐴 → 𝛼•𝜖) need not be

represented at all. Indeed, they are identity matrices. If they
appear in a multiplication, then this multiplication can be
simplified. If they appear in a minimum ⊕, then the result
matrix is eagerly initialized with appropriate “0” entries.

The coercion matrices that appear in products of the form
𝑀1 · coerce(𝑃,𝑄) ·𝑀2 have two (redundant) representations.
One representation allows an efficient propagation of an
update in 𝑀1 to the result of the multiplication; the other
representation allows an efficient propagation of an update
in𝑀2. Both are sparse representations of the coercion matrix;
one representation offers efficient access to the “0” entries
along every row; the other offers efficient access to the “0”
entries along every column.
Because the matrices creduce(𝑠, 𝐴 → 𝛼) always appear

on the right-hand side of a matrix multiplication, a single
sparse representation, which allows efficient access to the
“0” entries along every row, suffices.

6.6 Testing Block Inclusion
The construction of the creduce and coerce matrices (§5.2)
involves many tests of the form 𝑞 ⊆ 𝑝 , where it is known
that either 𝑞 ⊆ 𝑝 or 𝑞 ∩ 𝑝 = ∅ must hold. Indeed, 𝑞 and 𝑝 are
blocks in two partitions𝑄 and 𝑃 such that𝑄 ⪯ 𝑃 . Therefore,
the condition 𝑞 ⊆ 𝑝 can be decided by picking an arbitrary
member of 𝑞 and testing whether it is a member of 𝑝 .

7 Experimental Evaluation
7.1 Comparison of Three Algorithms
We compare the performance of three algorithms, namely
Pottier’s algorithm [27], dubbed “P”, the naïve algorithm
based on cost matrices (§3), dubbed “CM”, and our opti-
mized algorithm based on compact cost matrices (§5), dubbed
“CCM”. We run each algorithm on the 394 grammars of Men-
hir’s test suite. This suite contains only a handful of small
artificial grammars; the majority of the grammars in it are
real-world grammars, ranging from small to large grammars.
The tests are run sequentially and are repeated 5 times; only
the best time is kept. We use an Intel Xeon E7-4870 machine
running at 2.4Ghz, with 1TB of RAM.

Algorithm Compact Cost (CCM) Naïve Cost (CM) Pottier's 2016 (P)

1e−01

1e+01

1e+03

1000 3000 10000 30000

Grammar size

T
im

e
(s

ec
o
n

d
s)

1e+01

1e+02

1e+03

1e+04

1e+05

1000 3000 10000 30000

Grammar size

M
em

o
ry

 (
M

B
)

0.01

0.10

1.00

10.00

1e+03 1e+04 1e+05 1e+06

T
im

e
(s

ec
o
n

d
s)

10

100

1000

1e+03 1e+04 1e+05 1e+06

M
em

o
ry

 (
M

B
)

U U

Figure 4. Performance Aspects of Reachability Algorithms
10

Faster Reachability Analysis for LR(1) Parsers SLE ’21, October 17–18, 2021, Chicago, IL, USA

Our performance results are summarized in Figure 4 in
four graphs. Each graph uses a logarithmic scale along each
axis.

The top-left and top-right graphs show the time and mem-
ory consumption of the three algorithms. To reduce the noise,
only grammars whose size6 is larger than 400 are taken into
account when an average7 is computed. A first finding is
that CM can be competitive with P: on average, it is 3 times
faster, but consumes 5 times more memory. A second finding
is that CCM is the clear winner. On average, it is 95 times
faster and uses 215 times less memory than CM. Compared
with P, it is on average 300 times faster and uses 42 times
less memory. In fact, the larger the grammar, the greater
the gain: our algorithm can be up to 2700 times faster than
Pottier’s, and can use as little as 470 times less memory.

It is worth mentioning that, as a result of its much smaller
time and space requirements, CCM is able to handle much
larger grammars than P and CM.
The bottom-left and bottom-right graphs in Figure 4 are

an attempt to predict CCM’s time and memory requirements.
We find that both are correlated8 with the parameter U,
which we define as follows:

U =
∑
𝐴

edges(𝐴) ∗ prodsize(𝐴)

where edges(𝐴) is the number of transitions labeled 𝐴 and
prodsize(𝐴) is the sum of the lengths of the productions
associated with the nonterminal symbol 𝐴.

7.2 Impact of Successive Optimizations
Table 1 shows the impact of several optimizations (§4) that
form a path from Algorithm CM to Algorithm CCM. The
three optimizations that we consider are: (1) merging rows
and columns, (2) reordering matrix products, and (3) shar-
ing common subexpressions in matrix products. Each opti-
mization requires the previous one: reordering applies after
merging; sharing applies after reordering.
As explained earlier (§4), before applying optimizations

(1), (2) and (3), we take a first step, namely: (0) abandon the
sharing of cost matrices that is inherent in Equations 1–3.
This has a negative impact in terms of space and time, but
opens the way to the steps that follow, which have positive
impact. The four lines in Table 1 show the impact of steps
(0), (1), (2), (3), respectively.

We measure the impact of each optimization on the num-
ber of matrix entries,𝑉 , and on the number of dependencies
between matrix entries, 𝐸. These quantities correspond to
the parameters𝑉 and 𝐸 that appear in the complexity analy-
sis of Knuth’s algorithm (§3.3). The parameter 𝑉 is directly
related to the memory requirement of Knuth’s algorithm,

6The size of a grammar is the sum of the lengths of its productions.
7When an “average” is mentioned, a geometric mean is meant.
8Both have a Pearson correlation coefficient of 0.998 with U.

while the parameter 𝐸 is directly related to its time require-
ment. Algorithm CM is an instance of Knuth’s algorithm,
so its space and time complexity is directly related with 𝑉
and 𝐸. Algorithm CCM consists of several pre-computation
phases (namely merging, reordering, sharing), followed with
a run of Knuth’s algorithm. The complexity of this last phase
is still directly related with𝑉 and 𝐸. We find that, in practice,
the pre-computation phases and the last phase have roughly
comparable execution time.

Table 1. Impact of Successive Optimizations

Impact on 𝑉 Impact on 𝐸

Unsharing on avg. × 1.53
up to × 2.59

on avg. × 2.08
up to × 3.72

Merging on avg. / 5.59 × 103

up to / 9.04 × 104
on avg. / 2.10 × 105

up to / 1.55 × 107

Reordering on avg. / 0.89
up to / 1.73

on avg. / 2.17
up to / 7.25

Sharing on avg. / 1.18
up to / 1.92

on avg. / 1.32
up to / 2.52

Each cell of Table 1 shows the impact of an optimization,
that is, the ratio between a quantity before applying this
optimization and this quantity after the optimization has
been applied. For instance, the top left cell shows “on avg.
× 1.53”. This cell appears in the column entitled “Impact
on 𝑉 ”. This means that, on average, the number of matrix
entries is multiplied by 1.53 when sharing is abandoned in
step (0). The cell below this one shows “on avg. / 5.59× 103”.
This means that, on average, the number of matrix entries
is divided by 5.59 × 103 when merging is applied in step (1).
This cell also contains “up to / 9.04 × 104”, which indicates
that, in some cases, the number of matrix entries is divided
by 9.04× 104. Naturally, the impact of an optimization grows
as grammars grow larger.

The second line of Table 1 shows that merging alone has
a dramatic impact. The last two lines show that reordering
and sharing both allow reaping an additional (albeit much
smaller) performance improvement. The cumulative effect
of all four steps can be computed by multiplying the factors
shown in each column.
Interestingly, reordering slightly increases the number

of matrix entries on average, as indicated by the number
“ / 0.89” in the third line of the first column. Indeed, what
is optimized is not the total size of the matrices that are
being multiplied, but the number of elementary operations
required by the multiplications. One can see, on the third
line in the second column, that reordering has a positive
impact on the parameter 𝐸.

8 Related Work
The reachability problem that we consider seems closely
related to a shortest paths problem, which, as is well-known,

11

SLE ’21, October 17–18, 2021, Chicago, IL, USA Frédéric Bour and François Pottier

can be expressed in terms of cost matrices [19]. It may be
possible to reduce our reachability problem to a shortest
paths problem in a suitably constructed graph. We have not
attempted to do so; instead, we have expressed the reach-
ability problem directly in terms of cost matrices, and we
have proved that the equations that characterize these cost
matrices (§3) can be solved by using Knuth’s generalization
[16] of Dijkstra’s algorithm.
We speed up this naïve algorithm by remarking that, in

the specific setting of the LR(1) reachability problem, many
rows and columns of the cost matrices can be merged, letting
us compute much smaller “compact cost matrices” (§4). Sev-
eral additional optimizations help improve the algorithm’s
performance in practice (§6).
Pottier’s reachability algorithm [27] seems related to the

naïve algorithm that we have described: indeed, it uses a
priority queue, very much in the same way as Knuth’s al-
gorithm [16], to compute and process a set of reachability
facts. Its presentation, however, is not matrix-based, and it
does not have the ability of handling several terminal sym-
bols together, as an equivalence class: each reachability fact
concerns just one terminal symbol.
The LR(1) reachability problem can be considered a spe-

cial case of the reachability problem for pushdown systems,
which has been thoroughly studied, as it has many applica-
tions in model-checking and in program analysis [3, 9, 17, 29,
30]. Although our merging technique is probably specific to
LR(1), it would be interesting to draw a detailed comparison
with this line of work.

Minamide and Mori [23] formalize an HTML5 parser as
a conditional pushdown system [21], that is, a pushdown
system extended with the ability to test whether the stack
matches a regular expression. They propose a new reacha-
bility algorithm, based on earlier algorithms by Bouajjani
et al. [3] and Esparza et al. [9]. They use this algorithm to
prove that certain branches in the parser’s code are dead, to
prove that the parser never attempts to pop an item off an
empty stack, and to generate a set of input sentences that
achieves good coverage of the parser’s code and can be used
for testing the HTML5 parsers found in industrial browsers.
Although their work is similar to ours in its motivation, the
HTML5 parser that they consider is different from (and more
complex than) an LR(1) parser. As a result, their algorithm is
more costly: a 438-line fragment of the HTML5 grammar is
analyzed in 82 minutes.
By speeding up the computation of the reachable states

in an LR(1) parser, our algorithm makes Jeffery’s approach
to error diagnosis [14] more scalable. Indeed, as argued by
Pottier [27], this approach requires computing which error
states are reachable and which (minimal) erroneous input
sentences lead to these states. As a grammar evolves over
time, the maintainer of the grammar must re-compute this
information over and over. In order to achieve a smooth edit-
compile-debug cycle, a fast reachability algorithm is required.

Although Pottier [27] successfully applies this technique
to the CompCert C parser, his algorithm requires several
minutes to process somewhat larger grammars, such as the
OCaml grammar, which our algorithm handles in half a
second, and is unable to process much larger grammars,
such as the C++ grammar [12] that our algorithm handles
in a little less than a minute.
A broad survey of error diagnosis techniques, and of the

quality of the diagnostic messages produced by various tech-
niques and tools, is offered by Becker et al. [2].

9 Conclusion
We present a new algorithm for the reachability problem in
LR(1) parsers. This algorithm vastly outperforms the state
of the art, which as far we know, is represented by Pottier’s
algorithm [27]. We have not proved the correctness of our
algorithm, but have implemented it in the Menhir parser
generator [28] and have experimentally verified, using a test
suite of 390 grammars, that it produces the same results as
Pottier’s earlier algorithm.

We expect our new algorithm to make Jeffery’s approach
to error diagnosis [14] more scalable. Furthermore, we be-
lieve that a fast reachability algorithm has many potential
applications beyond computing the reachable error states.
In the future, we wish to investigate its application to more
powerful error diagnosis schemes, to error recovery, and to
syntactic completion.

References
[1] Alfred V. Aho and Jeffrey D. Ullman. 1972. The theory of parsing,

translation, and compiling. Prentice Hall.
[2] Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Den-

nis J. Bouvier, Brian Harrington, Amir Kamil, Amey Karkare, Chris
McDonald, Peter-Michael Osera, Janice L. Pearce, and James Prather.
2019. Compiler Error Messages Considered Unhelpful: The Landscape
of Text-Based Programming Error Message Research. In Proceedings of
the Working Group Reports on Innovation and Technology in Computer
Science Education. 177–210.

[3] Ahmed Bouajjani, Javier Esparza, and Oded Maler. 1997. Reachability
Analysis of Pushdown Automata: Application to Model-Checking. In
International Conference on Concurrency Theory (CONCUR) (Lecture
Notes in Computer Science, Vol. 1243). Springer, 135–150.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. 2009. Introduction to Algorithms (Third Edition). MIT Press.

[5] Joel E. Denny and Brian A. Malloy. 2010. The IELR(1) algorithm for
generating minimal LR(1) parser tables for non-LR(1) grammars with
conflict resolution. Science of Computer Programming 75, 11 (2010),
943–979.

[6] Frank DeRemer and Thomas Pennello. 1982. Efficient Computation
of 𝐿𝐴𝐿𝑅 (1) Look-Ahead Sets. ACM Transactions on Programming
Languages and Systems 4, 4 (1982), 615–649.

[7] Franklin Lewis DeRemer. 1969. Practical Translators for LR(k) Lan-
guages. Technical Report MIT-LCS-TR-065. Massachusetts Institute of
Technology.

[8] Franklin L. DeRemer. 1971. Simple 𝐿𝑅 (𝑘) grammars. Commun. ACM
14, 7 (1971), 453–460.

[9] Javier Esparza, David Hansel, Peter Rossmanith, and Stefan Schwoon.
2000. Efficient Algorithms for Model Checking Pushdown Systems. In

12

http://portal.acm.org/citation.cfm?id=SERIES11430.578789
http://portal.acm.org/citation.cfm?id=SERIES11430.578789
https://web.eecs.umich.edu/~akamil/papers/iticse19.pdf
https://web.eecs.umich.edu/~akamil/papers/iticse19.pdf
http://www-verimag.imag.fr/~maler/Papers/pda.pdf
http://www-verimag.imag.fr/~maler/Papers/pda.pdf
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://dx.doi.org/10.1016/j.scico.2009.08.001
http://dx.doi.org/10.1016/j.scico.2009.08.001
http://dx.doi.org/10.1016/j.scico.2009.08.001
http://doi.acm.org/10.1145/69622.357187
http://doi.acm.org/10.1145/69622.357187
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-065.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-065.pdf
http://dx.doi.org/10.1145/362619.362625
https://www7.in.tum.de/um/bibdb/esparza/cav00.pdf

Faster Reachability Analysis for LR(1) Parsers SLE ’21, October 17–18, 2021, Chicago, IL, USA

Computer Aided Verification (CAV) (Lecture Notes in Computer Science,
Vol. 1855). Springer, 232–247.

[10] Jean-Christophe Filliâtre and Sylvain Conchon. 2006. Type-safe mod-
ular hash-consing. In ACM Workshop on ML. 12–19.

[11] Dick Grune and Ceriel J. H. Jacobs. 2008. Parsing techniques: a practical
guide, second edition. Springer.

[12] Masatomo Hashimoto. 2021. The Code Continuity Analysis Frame-
work. (2021). https://github.com/codinuum/cca.

[13] John E. Hopcroft. 1971. An 𝑛 log𝑛 algorithm for minimizing states
in a finite automaton. In Theory of Machines and Computations, Zvi
Kohavi and Azaria Paz (Eds.). Academic Press, 189–196.

[14] Clinton L. Jeffery. 2003. Generating LR syntax error messages from
examples. ACM Transactions on Programming Languages and Systems
25, 5 (2003), 631–640.

[15] Donald E. Knuth. 1965. On the translation of languages from left to
right. Information & Control 8, 6 (Dec. 1965), 607–639.

[16] Donald E. Knuth. 1977. A Generalization of Dijkstra’s Algorithm.
Inform. Process. Lett. 6, 1 (Feb. 1977), 1–5.

[17] Akash Lal and Thomas W. Reps. 2006. Improving Pushdown System
Model Checking. In Computer Aided Verification (CAV) (Lecture Notes
in Computer Science, Vol. 4144). Springer, 343–357.

[18] Tony T. Lee. 1981. Order-Preserving Representations of the Partitions
on the Finite Set. Journal of Combinatorial Theory, Series A 31, 2 (1981),
136–145.

[19] Daniel J. Lehmann. 1977. Algebraic Structures for Transitive Closure.
Theoretical Computer Science 4, 1 (1977), 59–76.

[20] Xavier Leroy. 2021. The CompCert C compiler. http://compcert.org/.
[21] Xin Li andMizuhito Ogawa. 2010. Conditional weighted pushdown sys-

tems and applications. In ACMWorkshop on Evaluation and Semantics-
Based Program Manipulation (PEPM). 141–150.

[22] Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko. 2021.
Catala: a programming language for the law. Proceedings of the ACM
on Programming Languages 5, ICFP (2021), 1–29.

[23] Yasuhiko Minamide and Shunsuke Mori. 2012. Reachability Analysis
of the HTML5 Parser Specification and Its Application to Compatibility
Testing. In Formal Methods (FM) (Lecture Notes in Computer Science,
Vol. 7436). Springer, 293–307.

[24] David Pager. 1977. A Practical General Method for Constructing 𝐿𝑅 (𝑘)
Parsers. Acta Informatica 7 (1977), 249–268.

[25] Robert Paige and Robert E. Tarjan. 1987. Three partition refinement
algorithms. SIAM J. Comput. 16, 6 (Dec. 1987), 973–989.

[26] François Pottier. 2009. Lazy Least Fixed Points in ML. (Dec. 2009).
Unpublished.

[27] François Pottier. 2016. Reachability and error diagnosis in LR(1) parsers.
In Compiler Construction (CC). 88–98.

[28] François Pottier and Yann Régis-Gianas. 2005–2021. TheMenhir parser
generator. https://gitlab.inria.fr/fpottier/menhir/.

[29] ThomasW. Reps, Stefan Schwoon, Somesh Jha, and David Melski. 2005.
Weighted pushdown systems and their application to interprocedural
dataflow analysis. Science of Computer Programming 58, 1-2 (2005),
206–263.

[30] Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. 2006.
Efficient Algorithms for Alternating Pushdown Systems with an Ap-
plication to the Computation of Certificate Chains. In Automated Tech-
nology for Verification and Analysis (ATVA) (Lecture Notes in Computer
Science, Vol. 4218). Springer, 141–153.

[31] Sean Talts. 2019. stanc3: rewriting the Stan compiler.
https://statmodeling.stat.columbia.edu/2019/03/13/stanc3-rewriting-
the-stan-compiler/.

[32] Wikipedia. 2021. Hash-consing. https://en.wikipedia.org/wiki/Hash_
consing.

[33] Wikipedia. 2021. 𝑘-way merge algorithm. https://en.wikipedia.org/
wiki/K-way_merge_algorithm.

[34] Wikipedia. 2021. Matrix chain multiplication. https://en.wikipedia.
org/wiki/Matrix_chain_multiplication.

13

https://www.lri.fr/~filliatr/ftp/publis/hash-consing2.pdf
https://www.lri.fr/~filliatr/ftp/publis/hash-consing2.pdf
https://dickgrune.com/Books/PTAPG_2nd_Edition/
https://dickgrune.com/Books/PTAPG_2nd_Edition/
https://github.com/codinuum/cca
https://www.sciencedirect.com/science/article/pii/B9780124177505500221
https://www.sciencedirect.com/science/article/pii/B9780124177505500221
http://doi.acm.org/10.1145/937563.937566
http://doi.acm.org/10.1145/937563.937566
http://www.sciencedirect.com/science/article/pii/S0019995865904262
http://www.sciencedirect.com/science/article/pii/S0019995865904262
https://doi.org/10.1016/0020-0190(77)90002-3
https://minds.wisconsin.edu/handle/1793/60484
https://minds.wisconsin.edu/handle/1793/60484
https://core.ac.uk/download/pdf/82548255.pdf
https://core.ac.uk/download/pdf/82548255.pdf
https://doi.org/10.1016/0304-3975(77)90056-1
http://compcert.org/
http://www.jaist.ac.jp/~mizuhito/papers/conference/PEPM10.pdf
http://www.jaist.ac.jp/~mizuhito/papers/conference/PEPM10.pdf
https://doi.org/10.1145/3473582
https://sv.c.titech.ac.jp/minamide/papers/minamide-FM2012.pdf
https://sv.c.titech.ac.jp/minamide/papers/minamide-FM2012.pdf
https://sv.c.titech.ac.jp/minamide/papers/minamide-FM2012.pdf
http://dx.doi.org/10.1007/BF00290336
http://dx.doi.org/10.1007/BF00290336
https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1348&context=math_stat_facwork
https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1348&context=math_stat_facwork
http://gallium.inria.fr/~fpottier/publis/fpottier-fix.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-reachability-cc2016.pdf
https://gitlab.inria.fr/fpottier/menhir/
https://doi.org/10.1016/j.scico.2005.02.009
https://doi.org/10.1016/j.scico.2005.02.009
http://www.lsv.fr/Publis/PAPERS/PDF/SSE-atva06.pdf
http://www.lsv.fr/Publis/PAPERS/PDF/SSE-atva06.pdf
https://statmodeling.stat.columbia.edu/2019/03/13/stanc3-rewriting-the-stan-compiler/
https://statmodeling.stat.columbia.edu/2019/03/13/stanc3-rewriting-the-stan-compiler/
https://en.wikipedia.org/wiki/Hash_consing
https://en.wikipedia.org/wiki/Hash_consing
https://en.wikipedia.org/wiki/K-way_merge_algorithm
https://en.wikipedia.org/wiki/K-way_merge_algorithm
https://en.wikipedia.org/wiki/Matrix_chain_multiplication
https://en.wikipedia.org/wiki/Matrix_chain_multiplication

	Abstract
	1 Introduction
	2 Notation
	3 Problem Specification
	3.1 Transition Costs
	3.2 A Characterization of Transition Costs
	3.3 Computing Transition Costs

	4 Overview of Optimizations
	5 Merging Rows and Columns
	5.1 Which Rows and Columns Can Be Merged?
	5.2 A Characterization of Compact Cost Matrices

	6 Implementation Details
	6.1 Representing Partitions
	6.2 Approximating first and follow Partitions
	6.3 Replacing Knuth's Priority Queue with a FIFO
	6.4 Representing Dependencies
	6.5 Representing Constant Matrices
	6.6 Testing Block Inclusion

	7 Experimental Evaluation
	7.1 Comparison of Three Algorithms
	7.2 Impact of Successive Optimizations

	8 Related Work
	9 Conclusion
	References

