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FOR ON-THE-SPHERE COMPRESSION OF 360 VIDEOS
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Inria, Univ Rennes, CNRS, IRISA, Rennes, France

ABSTRACT
On-the-sphere compression of omnidirectional videos is a
very promising approach. First, it saves computational com-
plexity as it avoids to project the sphere onto a 2D map, as
classically done. Second, and more importantly, it allows
to achieve a better rate-distortion tradeoff, since neither the
visual data nor its domain of definition are distorted. In this
paper, the on-the-sphere compression [1] for omnidirectional
still images is extended to videos. We first propose a complete
review of existing spherical motion models. Then we pro-
pose a new one called tangent-linear+t. We finally propose a
rate-distortion optimized algorithm to locally choose the best
motion model for efficient motion estimation/compensation.
For that purpose, we additionally propose a finer search pat-
tern, called spherical-uniform, for the motion parameters,
which leads to a more accurate block prediction. The novel
algorithm leads to rate-distortion gains compared to methods
based on a unique motion model.

1. INTRODUCTION
A 360◦ video is the acquisition of a natural scene in all di-
rections. There is a growing interest in using 360◦ visual
data in several fields: learning [2], astrophysics [3], aug-
mented/virtual reality [4], immersive image processing [5, 6],
cultural heritage [7]. Despite its great interest, the full field of
view representation comes at the price of a huge image size
(typically 12K) requiring very large bandwidth. At the same
time, the inherent spherical geometry makes traditional com-
pression schemes inefficient [1]. Even worse, most of them
consider the omnidirectional content as a planar 2D image
(with the help of various projection mappings) which leads to
severe problems such as non-regular sphere sampling, surface
discontinuities and radial distortions.

In order to circumvent the drawbacks of sphere map-
ping, the spherical image can be directly processed on the
sphere. This leads to two main questions: i) how to sam-
ple the sphere uniformly and 2) how to export the classical
compression tools (blocking, transforms, etc.) onto a non-
euclidean domain such as the sphere. The recent work in [1]
has proposed a first solution for still image compression on
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the sphere, based on HEALPix sampling [8] and graph-based
signal processing theory [9]. In a nutshell, the sphere is first
pixelized uniformly, and using the hierarchical structure of
HEALPix, the authors in [1] define ”spherical blocks” on
which they are able to compute inter-block predictions and
graph-based transforms. They have demonstrated that com-
pressing the 360◦ image directly one the sphere leads to better
rate-distortion performance than the existing methods based
on projection mapping.

In this paper, we propose to extend the “on-the-sphere”
still image compression method [1] to videos. More precisely,
we propose a novel motion estimation/compensation method
for omnidirectional format. The difficulties are twofold: first,
the motion needs to be characterized for an image defined
on a non-euclidean grid; second, the motion of an object re-
quires 6 degrees-of-freedom (DoF), not all of which can be
sent to the decoder, as it would significantly impact the com-
pression rate. Motion estimation/compensation have already
been studied for omnidirectional videos. First, they were de-
veloped for projected 360◦ data (either with equirectangular
[10, 11, 12, 13], cubemap [14, 15] or others [16, 17]). Second,
they propose different dimensionality reduction methods of
the motion characterization, leading to various pros and cons.
In this paper, the proposed method combines the pros of both
dimensionality reduction methods, thanks to a rate-distortion
optimization. Second, we perform the motion compensation
directly on the sphere. For doing that, we first formalize mo-
tion models for omnidirectional data and propose a high level
analysis of existing 3D transformation algorithms in this gen-
eral framework (Section 2). This analysis allows us to pro-
pose a novel motion model (called tangent-linear+t) to have
a more complete set of possible motion models. Then, we
describe the proposed rate-distortion optimized motion esti-
mation for spherical data (Section 3). Finally, the benefits of
the proposed method is evidenced in the experimental section
(Section 4). To have a fair comparison between different mo-
tion compensation methods, since all of the existing methods
are projection-independent and work with any type of projec-
tions, in our experiment, we chose a projection that we believe
is the fairest (i.e., HEALPix [8]), meaning that the distribu-
tion of pixels on the sphere surface is uniform. To neutralize
the effect of different search patterns introduced in different
models, we also propose a novel search pattern and use this
pattern for all methods.



2. MOTION MODELS

2.1. Definitions
In most video coders, the image at time t, denoted by It, is
divided into blocks. In [1], the latter are built using the hier-
archical HEALPix sampling property [8]. Let B denotes one
of these blocks and let p ∈ B be one of the pixels inside it.

The motion compensation operation consists in estimat-
ing the pixels of a block with some well-chosen pixels of the
image at time t− k (with k ≥ 1). More formally,

∀p ∈ B, Ĩt(p) = It−k(τH(p)) (1)

where Ĩt is the motion compensated image at time t (an esti-
mation of It), and τH is a function whose output is a pixel co-
ordinate on the sphere, and where H are motion parameters.
Note that unlike the classical methods on a 2D grid, where
the displacement is represented by a pixel shift p+ δ, we de-
note the displacement with the pixel coordinate τH directly
because p + δ is not defined on the non-euclidean HEALPix
domain.

The motion estimation consists in finding, for each block,
the best motion parametersH, i.e.,

H = argminH′

∑
p∈B
|It(p)− It−k(τH′(p))| . (2)

In the equations above, the function τ depends on the mo-
tion model that is adopted. This model sets the relation be-
tween the coordinate shift of a pixel between two time instants
and the motion of the corresponding object in the 3D world.
This model rules two important aspects, namely,

• the object shape: the shape in the 3D world of the ob-
ject depicted by the pixels of the block B (see Fig.1)

• the object motion: the type of motion done by the object
in the 3D world (see Fig.2)

2.2. Object shape modeling

The color of a pixel p corresponds to the color of a 3D point
that is on the line (Op), where O is the center of the sphere.
The position of the object that is actually captured at pixel
position p can thus be anywhere on this line. The object shape
modeling states how the pixels of a block B are mapped into
the 3D world. We categorize them into two types: radial (e.g.,
[12]) and tangent (e.g., [11]).

The radial object shape model maps each pixel p to a 3D
point q that is on the line (Op) at a constant distance ρ. The
exact value of ρ does not have any importance, since all pixels
of the block are mapped with the same ρ:

∀p ∈ B, q = ρp, (3)

considering that p is expressed in terms of a 3D coordinate on
the sphere (i.e., p = [px, py, pz]

>). This simple model gives
a curved shape of the object as depicted in Fig.1.

radial tangent

Fig. 1: The pixels of the spherical blocks are considered as
point in the 3D world. Two approaches exist in the litera-
ture: radial (e.g., [12]) and tangent (e.g., [11]).

The tangent object shape model maps each pixel p to a
point q belonging to the tangent plane that is orthogonal to
the line (Op0) and at a distance of h from O, where p0 is the
center of the block B. The point q is given by:

∀p ∈ B, q = h

 p′x/p
′
z

p′y/p
′
z

1

 with p′ = Rp0
p, (4)

where Rp0
is the rotation matrix to point the z axis towards

the pixel p0. As the radial shape, the distance h does not
have impact. This model gives a planar shape to the object as
depicted in Fig.1.

2.3. Object motion modeling

Once all pixels of a block have been modeled as points in the
3D world, the motion model then consists in displacing these
points. This is done using the rigid transformation model:

qmotion = Rq+ t, (5)

where R is a rotation matrix driven by three rotation angles,
(θyaw, θpitch, θroll), and where t = [tx, ty, tz]

> is a transla-
tion vector.

The parameters of the rigid transformation are denotedH
(already introduced in (1) and (2)). Depending on the type of
motion model, the transformation in (5) can be only rotational
(i.e., t = 0), or only translational (i.e., R = I3), or more
generally constrained to fewer degrees of freedom (less than
dim(H)). Indeed, the parameters of the transformation have
to be transmitted to the decoder. There is naturally a trade-off
between the accuracy of the predicted block and the number
of parameters to transmit.

Finally, the position on the sphere of the pixel correspond-
ing to the displaced object is given by

τH(p) =
qmotion

||qmotion||
. (6)

There exist two families of methods for the object motion:
circular and linear.



(a) Circular [12] (b) Circular +t [13]

(c) Linear [11] (d) Linear +t

Fig. 2: The 4 object motion models considered in this study.

The circular motion consists in rotation around the center
of the spherical camera. In the 2 DoF model in [12], the cir-
cular motion considers that the rotation is performed with the
same radius, i.e., t = 0 as illustrated in Fig. 2a. In the 3 DoF
circular model [13], a translation with an additional DoF α is
allowed. It corresponds to a change of radius in the rotational
motion, i.e, t = αRq as illustrated in Fig. 2b.

The linear motion consists in translation in the 2D plane
that is tangent to the sphere (of radius h in (4)) at the center
of the block to be displaced. In the 2DoF model [11], R =
I3 and the translation is characterized by a horizontal and a
vertical displacement in the tangent plane, see Fig. 2c. For the
sake of completeness, we consider in this paper an extended
linear motion model where a third DoF β is allowed in the
translation, namely t = βq0 the direction orthogonal to the
tangent plane, as illustrated in Fig. 2d.

3. RD-DRIVEN MOTION ESTIMATION

When looking for the best motion parameters H for a block
B as in (2), the underlying question that is raised is: what
is the best motion model? While the state-of-the-art papers
[12, 11, 13] consider a unique motion model for all the blocks,
we propose here to optimally choose among different motion
models based on a rate-distortion criterion. This is motivated
by the fact that objects’ motion in the real world are of dif-
ferent types (see Fig. 2), and considering one for the whole
frame is naturally suboptimal.

Since the different models may require a different amount
of bits to describe the motion parameters (e.g., depending on
the DoF), we rewrite (2) as the minimization of a rate term

(a) (b) (c)

Fig. 3: Search patterns from (a) [12], (b) [11], (c) our SU.

under distortion constraints to take into account the cost to
encode the model parameters. The proposed motion estima-
tion algorithm is the following:

H = argminH′∈{H1,...,HM}R(H
′)+R(Ĩt) s.t.D < Dmax,

(7)
where R(H′) is the rate needed to code the parameter H
(coded with fixed-length code in this study) and R(Ĩt) is the
rate needed to code the quantized residual Q(It(B) − Ĩt(B))
under the constraint that the resulting distortion is lower than
Dmax. In that equation, the Hm are the search spaces cor-
responding to the different motion models. In our algorithm,
we consider the following motion models:

• Radial-circular (RC) [12]: the object shape model is
radial and the considered motion is circular. In that case
dim(H) = 2.

• Radial-circular+t (RCT) [13]: the object shape model
is radial and the displacement is circular with a one de-
gree of freedom translation that is allowed. In that case
dim(H) = 3.
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(c) Teatro
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(d) UnderwaterPark

Fig. 4: Rate-distortion comparison. The BD-rate gains of our proposed approach with respect to the best of the single-model approaches are
respectively: −0.28%, −0.35%, −0.51% and 0.25% for the four test images.

• Tangent-linear (TL) [11]: the object shape model is tan-
gent and only 2D translations in the tangent plane is
allowed. In that case dim(H) = 2.

• Tangent-linear+t (TLT) (proposed here for the com-
pleteness of the study): the object shape model is
tangent and 3D translations are allowed. In that case
dim(H) = 3.

For the motion models with 2 DoF, the search space can
be described by a set of points on the sphere corresponding
to candidate positions for the center of motion compensated
block. In order to compare all the models fairly, we propose
a common search pattern, called spherical-uniform (SU) that
is presented in Fig. 3. Contrary to the patterns proposed in
[12, 11], the proposed pattern has a search window (i.e., the
external boundary of the search space) that is circular, and
that is uniformly sampled. It consists of a set of concentric
circles for which the number of candidate points at each cir-
cle is proportional to the radius. For the model with 3 DoF,
the same search pattern is used, while for each central block
position different values for the translation parameter that are
tested.

4. EXPERIMENTAL COMPARISON

In this section, we compare all motion compensation meth-
ods. For a fair comparison, the same pixelization, namely
HEALPix [8] is used in all methods. This has several advan-
tages. First, the sphere is uniformly sampled on the sphere
so neighboring pixels/blocks represent more informative data
than other projections. Second, since it is uniform, the rate-
distortion optimization for mode selection in motion estima-
tion is more accurate. Third, due to the uniformity of the pix-
elization, the PSNR calculation in rate-distortion evaluation
is closer to the Spherical PSNR [18].

Experiments have been conducted on four 360◦ video se-
quences from [19] entitled Touvet, Turtle, Teatro, Underwa-
terPark. We consider a GOP size of 4. The RD comparison
is shown in Fig. 4. We see that the proposed RD-driven ap-
proach performs better than existing motion estimation tech-

Table 1: Percentage of blocks for which each motion
model is chosen for UnderwaterPark sequence.

no motion RC RCT TL TLT
Low bitrate 82.01 0.06 0.04 17.45 0.44
High bitrate 43.01 3.4 3.12 32.99 17.48

niques consisting in choosing a unique motion model for the
whole frame. This is further confirmed by the vector field la-
bel shown in Fig. 5. In this image, we show, for each block,
which method has been chosen by our proposed approach.
We can clearly see the heterogeneity of the motion vector
field, demonstrating the interest of choosing the best motion
model locally. We also show the proportion of the chosen mo-
tion models at low and high bitrate in Table 1. This demon-
strates that complex motion models (with DoF of 3) are cho-
sen more often at high bitrate, i.e., when the additional param-
eter bit overhead becomes acceptable compared to the total bit
budget.

No motion
RC
RCT
TL
TLT

Fig. 5: Chosen motion model for each block for Underwa-
terPark sequence.

5. CONCLUSION

This paper proposed a motion compensation algorithm to
achieve on-the-sphere video compression. In particular, a
novel motion model and a novel search pattern have been
proposed to characterize a large set of motions in omnidirec-
tional data. To avoid increasing the cost to encode the motion
model, we also proposed a rate-distortion optimization of the
motion estimation.
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