
HAL Id: hal-03485044
https://hal.inria.fr/hal-03485044

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

rmftool - A library to Compute (Refined) Mean Field
Approximation(s)

Sebastian Allmeier, Nicolas Gast

To cite this version:
Sebastian Allmeier, Nicolas Gast. rmftool - A library to Compute (Refined) Mean Field Approxima-
tion(s). TOSME 2021, Nov 2021, Online conference, France. �hal-03485044�

https://hal.inria.fr/hal-03485044
https://hal.archives-ouvertes.fr


rmf tool – A library to Compute (Refined) Mean Field
Approximation(s)

Sebastian Allmeier
Univ. Grenoble Alpes

Inria
Grenoble, France

sebastian.allmeier@inria.fr

Nicolas Gast
Univ. Grenoble Alpes

Inria
Grenoble, France

nicolas.gast@inria.fr

ABSTRACT
Mean field approximation is a powerful technique to study
the performance of large stochastic systems represented as
systems of interacting objects. Applications include load
balancing models, epidemic spreading, cache replacement
policies, or large-scale data centers, for which mean field
approximation gives very accurate estimates of the transient
or steady-state behaviors. In a series of recent papers [9, 7],
a new and more accurate approximation, called the refined
mean field approximation is presented. Yet, computing this
new approximation can be cumbersome. The purpose of
this paper is to present a tool, called rmf tool, that takes
the description of a mean field model, and can numerically
compute its mean field approximations and refinement.

1. INTRODUCTION
Mean field approximation is widely applied to analyze the

behavior of large stochastic systems. It applies to systems
composed of n interacting objects. The idea of the ap-
proximation is to consider that objects within the system
evolve independently. This transforms the study of a multi-
dimensional stochastic process into much smaller stochastic
processes that are weakly coupled. Under mild conditions,
the mean field approximation is described by a finite set
of deterministic ordinary differential equations (ODEs). As
such, it can be simulated at low computational cost. Mean
field approximation finds widespread use in fields such as
epidemic spreading [14, 3], load balancing strategies [15, 12],
the study of cache replacement strategies [8] or SSDs [17].

Classical models to which mean field approximation ap-
plies are the class of density dependent population processes
(DDPPs, [11]), whose definition is recalled in Section 2 –
epidemic spreading or load balancing models are typical ex-
amples of DDPPs. If X is a density dependent population
process in d dimensions, its mean field approximation is the
solution of a system of non-linear ODEs ẋ = f(x) where
f : Rd → Rd is called the drift of the system. Computing
the mean field approximation can be easily automated, as
the drift f can be expressed easily from the model’s defi-
nition. Our tool incorporates this but, more importantly,
allows going further.

Building on mean field approximation, the authors of [6,
7] introduce the notion of refined mean field approximation.
This approximation consists in adding an expansion term to

TOSME 2021 Online Conference
Copyright is held by author/owner(s).

the original approximation. Denoting by x the value of the
mean field approximation, it is shown in [5] that there exists
a deterministic quantity v(t) such that:

E [X(t)] = x(t) +
1

n
v(t)︸ ︷︷ ︸

refined m.f. approx.

+O(
1

n2
).

The quantity v(t) is the solution of a time-inhomogeneous
linear ODE. As shown in the aforementioned papers, the
construction of this set of ODEs is direct from the model
description but involves computing the derivatives of the
drift, which can be cumbersome.

The purpose of rmf tool – the refined mean field tool –
is to make mean field and refined mean field approximation
easily computable. Our tool is composed of a Python li-
brary. The tool takes as input a description of the system,
which can be either a density dependent population process
or a heterogeneous population model, and can be used to
compute the mean field and refined mean field approxima-
tions numerically. The tool relies on standard libraries (like
numpy and scipy) to construct and solve the correspond-
ing ODEs. The tool is provided with a series of examples
to demonstrate its expressiveness and the accuracy of the
various approximations.

Related tools. There exist a large number of tools that
provide methods to construct and simulate stochastic pop-
ulation models. Yet, to the best of our knowledge, the only
tool that provides a way to analyze size expansion methods
(which are essentially equivalent to our refined mean field
approximation) is the iNA software of [16]. The iNA is a
complete simulation toolbox (that includes its own graphi-
cal interface). Compared to this software, we use a more
lightweight approach by providing a pure python library
that can be easily integrated.

Roadmap. The paper is centered around the tool. We first
describe the set of models to which the tool applies in Sec-
tion 2, along with examples on how they can be defined
within the tool. We then describe what are the mean field
and refined mean field approximation, and how one can use
the tool to compute them in Section 3. We detail some
technical challenges in Section 4 and conclude in Section 5.

Reproducibility. Our tool is provided as an open-source
software at https://github.com/ngast/rmf_tool. The code
to reproduce the current paper along with all figures is avail-
able at https://gitlab.inria.fr/gast/toolpaper_rmf.

https://github.com/ngast/rmf_tool
https://gitlab.inria.fr/gast/toolpaper_rmf


2. MODELS
The tool that we develop accepts three kinds of models:

homogeneous population processes (HomPP), density de-
pendent population processes (DDPPs) and heterogeneous
population models (HetPP). First, we describe the notion of
the HomPP of which DDPP and HetPP are generalizations.

2.1 Homogeneous population process
Population Processes are widely used to describe the evo-

lution of a number of interacting objects (or individuals).
A homogeneous population model consists of n interacting
objects that each evolves in a finite state space {1 . . . d}.
All objects have similar transition rates which are a com-
bination of unilateral and pairwise interactions, i.e. objects
can change their state with or without interacting with one
other member of the population. Let Xs(t) be the fraction
of objects that are in state s at time t. We assume that
X = (X1 . . . Xd) is a continuous time Markov chain whose
transitions are such that for all state s, s′, s̃, s̃′:

(Uni.) An object in state s moves to state s′ at rate as,s′ .

(Pair.) A pair of objects in state (s, s̃) moves to state s′, s̃′ at
rate bs,s̃,s′,s̃′/n.

Note that for pairwise interactions, the rate is scaled by 1/n
as the number of pairs of objects is n times larger than the
number of objects.

Example: the SIS model. One of the simplest examples
of population process is the epidemic model called the SIS
model. In an SIS model, each object can be in one of the
two states S (susceptible) or I (infected). Susceptible ob-
jects can become infected from an external source (unilateral
transition) or when meeting an infected individual (pairwise
transition). An infected individual can recover and become
susceptible again (unilateral transition). We assume that an
individual becomes infected at rate α by an external source,
and recovers at rate β. Moreover, assume that the rate at
which two individuals meet is γ/n and that when a sus-
ceptible meets an infected individual, the susceptible gets
infected.

With our tool, we define a class called HomPP for which
we specify the transition rates and an initial state. For the
SIS model above, with α, β, γ = 1, we write:

import rmf tool as rmf

model = rmf.HomPP()

d, S, I = 2, 0, 1

A, B = np.zeros((d, d)), np.zeros((d, d, d, d))

A[S, I] = 1 # \alpha
A[I, S] = 1 # \beta
B[S, I, I, I] = 1 # \gamma
model.add rate tensors(A, B)

The specified model can be used to simulate stochastic tra-
jectories of the underlying process for various population
sizes. It can also be used to compute the mean field approx-
imation and the refinements (see Section 3). For instance,
if one wants to simulate a trajectory for a population of size
n = 1000, where all individuals are susceptible in the initial
state, one would write:

model.set initial state([1,0])

t, X = model.simulate(N=1000, time=2)

State representation. Recall that Xs(t) is the fraction of
objects in state s at time t. The transitions of such a model
can be expressed1 as:

(Uni.) When an object moves from s to s′, this changes X into
X + 1

n
(es′ − es). As nXs(t) is the number of objects

in state s, this transition occurs at rate nas,s′Xs(t).

(Pair.) When a pair moves from (s, s̃) to (s′, s̃′), this changes
X into X + 1

n
(es′ + es̃′ − es̃ − es). This transition

occurs at rate nbs,s̃,s′,s̃′Xs(t)Xs̃(t).

Written in a compact way, those transitions are:

x→ x +
1

n
(es′ − es) at rate nas,s′xs (1)

x→ x +
1

n
(es′+es̃′−es̃−es) at rate nbs,s̃,s′,s̃′xsxs̃. (2)

2.2 Density dependent populations process
The class of homogeneous population model that we de-

fine is a subclass of density dependent population processes
(DDPPs) that are introduced by Kurtz in the 70s [11]. For
a given n, a DDPP defines a stochastic process X ∈ Rd.
The transitions of the process are specified by a finite set of
vectors L ⊂ Rd, and a set of corresponding rate functions
β` : Rd → R+ for all ` ∈ L. The process X jumps from x to
x + `/n at rate nβ`(x).

It should be clear from Equation (1)-(2) that HomPP is
a special case of DDPP. DDPPs generalize HomPP since
they allow to choose arbitrary transition rates as opposed
to combinations of unilateral and pairwise transition. In
the case where nXs(t) denotes the number of individuals
in state s at time t, the vector ` ∈ L indicates how many
individuals are created or destroyed by a transition. For
instance, if d = 3, ` = (1,−1, 0) corresponds to having one
additional individual in state 1 and one less in state 2 (this
occurs typically when one individual moves from state 2 to
state 1), ` = (0, 0, 2) corresponds to the creation of two
additional individuals in state 3.

The SIS model as a DDPP. To illustrate the relation be-
tween DDPPs and HomPP, consider the SIS model defined
in the previous section and recall that (XS(t), XI(t)) is the
fraction of susceptible and of infected individuals. The tran-
sitions ` ∈ L and their corresponding rates β` are:

Event Transition ` Rate β`(x)
infection from ext. source (-1,1) αxS

recovery (1,-1) βxI

infection from a meeting (-1,1) γxSxI

Within our tool, we define a class called DDPP that can
be used to define DDPPs directly from their mathematical
definition. For the above SIS example, we would write:

import rmf tool as rmf

model = rmf.DDPP()

alpha, beta, gamma = 1,1,1

model.add transition([−1,1], lambda x: alpha∗x[0])
model.add transition([1,−1], lambda x: beta∗x[1])
model.add transition([−1,1], lambda x: gamma∗x[0]∗x[1])

1The notation es ∈ {0, 1}d correspond to a vector of size d
whose s entry is equal to 1, all others being 0.



As for the HomPP, the model can then be used to simulate
the stochastic process, to compute the mean field approxi-
mation and the refinements. The syntax is identical. If one
wants to run a simulation with a population of n = 1000
where at the beginning all individuals are in the first state
(susceptible), one would write:

model.set initial state([1,0])

t, X = model.simulate(N=1000, time=2)

2.3 Heterogeneous population process
In [1], the authors extend the notion of the HomPPs to

deal with populations of heterogeneous objects. As before,
the heterogeneous population model consists of n interact-
ing objects which each evolve in a finite state space {1 . . . d}.
Each object has a specific transition rate which is a combi-
nation of unilateral or pairwise interactions. In contrast to
the HomPP, transition rates are object dependent:

• The object k moves from state s to state s′ at rate
ak,s,s′ .

• The pair (k, k′) moves from states (s, s̃) to states (s′, s̃′)
at rate bk,k′,s,s̃,s′,s̃′/n.

Note that the difference between a homogeneous population
process and a heterogeneous population process is that the
rate tensors a and b depend on the object id k. As a result,
the process X = (X1 . . . Xd) where Xs(t) is the fraction of
objects in state s is not a Markov process. Let the stochastic
process Z ∈ {0, 1}n×d describe the evolution of the popu-
lation where Zk,s = 1 indicates that object k is in state s
and Zk,s = 0 if it is not. The process Z is a Markov process
whose transitions are:

z 7→ z 9 ek,s + ek,s′ at rate ak,s,s′zk,s

z 7→ z9ek,s+ek,s′9ek̃,s̃+ek̃,s̃′ at rate
1

n
bk,k̃,s,s̃,s′,s̃′zk,szk̃,s̃.

These transitions generalize (1)-(2).

Example: Heterogeneous SIS model. To set up a hetero-
geneous version of the previous SIS model we use the HetPP
class of the toolbox. In contrast to the HomPP and DDPP
class, the model can not be defined independent of the sys-
tem size, i.e., n and d have to be defined to initialize the
model. For instance, to set up a SIS model where objects
are almost identical but some recover slower than others, we
can use the code:

import rmf tool.src.heterogeneous rmf tool as hrmf

model = hrmf.HetPP()

N, d = 20, 2

S, I = 0, 1

A, B = np.zeros((N, d, d)), np.zeros((N, N, d, d, d, d))

A[:, S, I] = np.ones((N))

A[:, I, S] = np.random.rand(N) # Hetero. recovery rates
B[:, :, S, I, I, I] = (1/N) ∗ np.ones((N, N))
model.add rate tensors(A, B)

Here, the tensor A and B specify the transition rates where
A[k,s,s’] = ak,s,s′ and B[k,k̃,s,s̃,s’,s̃’] = 1

n
bk,k̃,s,s̃,s′,s̃′ . The

corresponding transition vectors of the model are derived
from the non zero rates of the tensors. The methods of the
HetPP class are coherent to the HomPP and DDPP class.

3. MEAN FIELD APPROXIMATIONS AND
REFINEMENTS

3.1 Mean field approximation (homogeneous)
For a given DDPP, and a given state x ∈ Rd, we define

the drift in state x as

f(x) =
∑
`∈L

`β`(x).

The drift corresponds to the average variation of the model,
as it is the sum of state changes (`) weighted by the rate at
which these changes occur.

For a given initial condition x(0), the mean field approx-
imation of a DDPP is the solution of the ODE:

ẋ = f(x).

The same holds true for any HomPP since the class of DDPP
is essentially a scaled generalization of the former. Thus, all
methods which are available for DDPPs are available for
HomPP as well. Within our tool, the mean field approxi-
mation can be easily computed with:

t, X = model.ode(time=2)

It is known from [11] that under very general conditions
(essentially that f is Lipschitz-continuous), the stochastic
trajectories of X converge to the mean field approximation
x as the scaling parameter n goes to infinity. We illustrate
the accuracy of the mean field approximation in Figure 1,
where we compare two stochastic trajectories of the system
for populations of n = 100 and n = 1000 individuals, with
the mean field approximation.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

St
at

e 
Y s

(t)

Simulation, n=100
Simulation, n=1000
Mean field approximation

Figure 1: Example: Simulation of the SIS (DDPP model)

3.2 The refined mean field approximation
It is shown in [6, 7] that when the drift of the DDPP is

twice differentiable, there exists a time varying vector v and
a time varying matrix w such that:

E [X(t)] = x(t) +
1

n
v(t) +O(

1

n2
);

Var [X(t)] =
1

n
w(t) +O(

1

n2
),

where Var [X(t)] is the covariance matrix of the stochastic
process X.

The above equation holds for any finite time. It is shown
in [7] that, for the transient regime, v and w satisfy a time-
inhomogeneous linear ODEs. If there exists a point x(∞)



such that for all initial condition x(0) ∈ Rd, the solution
of the ODE converges to x(∞) exponentially fast, then this
equation holds uniformly in time and in particular is also
true for the steady-state t = +∞. In the latter case, the fol-
lowing linear equation (that is called a Lyapunov equation)
is satisfied:

wJ + JTw + q = 0, (3)

where J is the Jacobian of the drift f evaluated at x(∞)
and q =

∑
` `⊗ `β`(x(∞)). The vector v(∞) = J−1(D ·w),

where D is the second derivative of f evaluated at x(∞)
and · denotes a tensor product: (D · w)i =

∑
jkDi,jkwjk

and Di,jk = (∂2f/∂xj∂xk) evaluated in x(∞).
This means that they can be easily solved numerically.

The tool provides methods to automatically compute these
constants for the transient or the steady-state regime. These
functions rely on scipy’s functions: for the transient regime
it uses the solve ivp from scipy and for the steady-state
the function solve continuous lyapunov. An example of
the tool is:

t, x, v, =\
model.meanFieldExpansionTransient(order=1,time=2)

x inf , v inf , =\
model.meanFieldExpansionSteadyState(order=1)

x simu , = ddpp.steady state simulation(N=n, time=20000)

where the last line estimates E [X(∞)] by simulating a tra-
jectory of 20000 events and computes the average over the
end of the trajectory.

This result is illustrated in Table 1, where we compare
the mean field approximation, the refined mean field ap-
proximation and an estimation of the steady-state probabil-
ity E [Xs(∞)] computed by simulation. We observe that if
the mean field approximation is already very accurate, its
refined version is close to being exact.

n M-f x(∞) Refined x(∞) + 1
n
x(∞) Simulation

10 0.382 0.394 0.394± 0.004
20 0.382 0.388 0.389± 0.003
30 0.382 0.386 0.386± 0.002

Table 1: SIS model: Illustration of the accuracy of the mean
field and refined mean field approximations for steady-state.

Note that the tool also allows to compute the second or-
der refinement term as defined in [7]. This can be done by
changing the order=1 into order=2 in the code. The time
to compute this approximation is much larger than the time
to compute the refined mean field approximation (that cor-
responds to a first order expansion).

3.3 Heterogeneous mean field approximation
and refinements

The heterogeneous mean field approximation and its re-
finement differs from the homogeneous case in the sense that
transitions are dependent on the state of single objects. For
the stochastic process this is taking into account by consid-
ering an object dependent representation. The intuition of
the mean field approximation is as before, for the drift we
consider the sum over all transitions weighted by their tran-
sition rate. Let the drift in state z be denoted by fhet(z),
then, the mean field approximation is again the solution to

the ode having fhet as drift with initial condition z(0). If
both, ak,s,s′ and bk,k̃,s,s̃,s′,s̃′ are uniformly bounded, it holds,
as shown in [1] that the adapted mean field and refined mean
field approximation capture the probability of the objects to
be in a state with an accuracy of O(1/n) and O(1/n2), i.e.

E[Zk,s(t)] = P(Zk,s(t) = 1) = zk,s(t) +O(1/n), (4)

E[Zk,s(t)] = P(Zk,s(t) = 1) = zk,s(t) + vk,s(t) +O(1/n2).

The term vk,s(t) refers to the adapted refinement term whose
precise definition can be found in [1, Appendix B].

Simulations of stochastic trajectories, mean field and the
refinement methods can be calculated by calling the same
functions as for the homogeneous case. Note that second
order refinement methods are note available for the current
version since they are computationally too expensive.

Due to the setup of the heterogeneous population process,
single simulation trajectories are not close to the mean field
approximation but close to the sample mean of the stochas-
tic system, that is, (4) holds but Zk,s(t) does not converge
to zk,s(t) as n goes to infinity (contrary to what appends to
the DDPP case for which one can show [11] that Xs(t) con-
verges in probability to its mean field approximation xs(t),
which is what is observed in Figure 1). Hence, to study the
accuracy of the mean field and refined mean field approxima-
tion in the heterogeneous context, we provide the additional
methods sampleMean, sampleMeanVariance with which the
sample mean and sample variance can be calculated. To cal-
culate an approximated mean with 100 samples, we set the
initial state to have only susceptible objects and write:

model.set initial state(np.ones((N,d))∗np.array([1,0]))
t mean , mean, var =\

model.sampleMeanVariance(time=2, samples=100)

In order to compare the results to a one of the homogeneous
models one should consider the sum Ys(t) = 1

n

∑n
k=1 Z(k,s)(t),

which is a density representation of the heterogeneous popu-
lation process. It can be shown that Ys(t) converges in prob-
ability to its mean field approximation ys(t), as the number
of objects grows.

4. IMPLEMENTATION CHALLENGES
Most of the toolbox functionality is a direct implemen-

tation of the equations defined in [10, 7], with the use of
functions from numpy or scipy to integrate differential equa-
tions or solve linear equations. Yet, there are some imple-
mentation challenges among which we list two here: how to
automatically compute the drift’s derivatives (Section 4.1),
and how to deal with model that do not satisfy the exact
assumptions of [10] needed for the steady-state (Section 4.2).

4.1 Automatic differentiation
To compute the refined mean field approximation, one

needs to compute the first and second derivatives of the
drift function f . We implement three different methods.
The first is to use a finite difference method. ∂fi(x)/∂xj ≈
(fi(x + εej) − fi(x))/ε. This is the most robust method
but is relatively slow and has a limited precision due to the
choice of ε. The second method that we implement is to
use the package simpy that allows for symbolic computation
and can be used to compute derivatives. The third method
is a method based on autograd from jax that uses automatic
differentiation. These two methods are both faster and more



accurate than finite difference methods. Yet, they cannot
differentiate all functions. For instance, if the drift involves
a sinus function and if the DDPP model is defined using
the numpy.sin function, then the simpy will not be able
to differentiate this function as it does not understand the
numpy function. Here, autograd will work.

4.2 Dimension reduction
In order for the equation (3) to have a unique solution,

the assumption used in [10] is that all solutions of the mean
field ODE ẋ = f(x) converge to the same fixed point x(∞),
regardless of the initial condition x(0) ∈ Rd. Yet, in prac-
tice, many models are naturally described as d-dimensional
DDPP but evolve in a smaller dimensional space X ⊂ Rd.
This is for instance the case for the SIS model of Section 2
that evolves in a space of dimension 1 because xS + xI = 1.
It further implies that the Lyapunov equation (3) does not
have a unique solution. As such, one cannot apply directly
the theorem of [10] to this SIS model.

A mathematical solution to this is to redefine our SIS
model to obtain a model in dimension 1. By replacing the
occurrences of xI by 1 − xS in all equations. Yet, if this is
easily done for reducing a 2D model to a 1D model, it can be
cumbersome when going from a 20D to a 15D model. Our
tool allows doing this automatically. This is how we can
obtain Table 1 while using the DDPP defined in Section 2.

Our approach to this problem is to compute the rank of
the set of transitions L. If this rank is d′ < d, this means
that the model evolves in a d′-dimensional state space. In
particular, the jacobian A used in Equation (3) has dimen-
sion at most d′. Our code uses the SVD decomposition of A
to transform the d-dimensional Lyapunov equation (3) into
d′-dimensional equation. This is particularly useful for het-
erogeneous models composed of n objects that each evolve
in a S dimensional state: a natural description of the model
is to construct a nS-dimensional DDPP, but that evolves in
a subset of dimension n(S−1) or even smaller. For instance,
the cache replacement policy studied in [1, 2, 8] with n ob-
jects and S lists is naturally described as a n(S+ 1) process
but evolves in fact in a nS − S state space. Using the auto-
mated dimension reduction greatly simplifies the definition
of the model in the tool.

5. CONCLUSION AND DISCUSSION
In this paper, we present a tool, called rmf tool, that can

be used to define and study mean field interaction mod-
els. The tool is build-in with a stochastic simulator, and
methods to compute the mean field approximation and re-
fined approximation of a given model. The tool consists on
a Python library and models can be directly be defined as
python objects. In the present paper, we illustrate how the
tool can be used by using a simple SIS model. Below, we
discuss in more detail the applicability of the tool by giving
a few examples of application, and by analyzing the compu-
tation time.

5.1 To which model does this apply?
The tool is provided with a number of examples that

demonstrates the use of the tool and the accuracy of the
approximation. These examples include:

• The power of two choice model of [13]. This example
models a simple, yet powerful, load balancing strategy
in a system composed of n servers.

• The bike-sharing model of [4]. It models a city where
Cn bikes moves in a city composed of n stations.

• A epidemic model called the SIR model (that is a gen-
eralization of the SIS model presented in the paper).

Although they are not directly provided as examples in
the repository, the tool is also used in [1, 2] to analyze the
performance of cache replacement policies. These cache re-
placement policies are examples of non-homogeneous popu-
lation models.

5.2 Analysis of the computation time
To give an idea of the time needed to compute the refined

approximation, we report in Figure 2 the time taken by the
tool to compute the refined mean field approximation as a
function of the system size. The first line corresponds to
a homogeneous model of dimension d: in this model, we
consider the power of two choice model of [13] where we
bound the queue length by d. We report the numbers of [7].
We observe that for this model, we can solve the problem
for a few hundreds of dimension in less than a few tens of
seconds. Note that for this example, the jacobian and the
second derivative can be computed in close form. Hence,
the reported time does not include the time that would be
taken if one were to use symbolic differentiation.

In the second line of Figure 2, we report the time taken
to solve the heterogeneous SIS model defined in Section 2.3
with n different objects. For this example, we use the HetPP

class. Note that this class does not use symbolic differentia-
tion since the derivative can be directly computed by using
the A and B tensors. The model here is a 2n dimensional
model. We observe that the time taken here for a model
with 2n dimension is larger than the time for a homoge-
neous model of dimension 2n. We believe that the run time
could be improved by using sparse tensor multiplications
and will consider this question for future work.

50 100 150 200
Number of dimensions (d)

0

2

4

6

8

10

Co
m

ut
at

io
n 

Ti
m

e 
(in

 se
co

nd
s)

100 200 300 400 500
Number of dimensions (d)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
m

ut
at

io
n 

Ti
m

e 
(in

 se
co

nd
s)

(a) Homogeneous transient (b) Homogeneous steady-state

20 40 60 80 100
Number of items (n)

0

50

100

150

200

Co
m

pu
ta

tio
n 

Ti
m

e 
(in

 se
co

nd
s)

20 40 60 80 100
Number of items (n)

0

50

100

150

200

250

300

350

400

Co
m

pu
ta

tio
n 

Ti
m

e 
(in

 se
co

nd
s)

(c) Heterogeneous transient (d) Heterogeneous steady-state

Figure 2: Analysis of the computation time: for the tran-
sient regime, we compute v(t) for t ∈ [0, 10]. For the steady-
state, we compute v(∞).



Acknowledgments
This work is supported by the French National Research
Agency (ANR) through REFINO Project under Grant ANR-
19-CE23-0015.

6. REFERENCES
[1] Sebastian Allmeier and Nicolas Gast. Mean field and

refined mean field approximations for heterogeneous
systems: It works!, 2021.

[2] Giuliano Casale and Nicolas Gast. Performance
analysis methods for list-based caches with
non-uniform access. IEEE/ACM Transactions on
Networking, 2020.

[3] Guilherme Ferraz de Arruda, Francisco A. Rodrigues,
and Yamir Moreno. Fundamentals of spreading
processes in single and multilayer complex networks.
Physics Reports, 756:1–59, October 2018.

[4] Christine Fricker and Nicolas Gast. Incentives and
redistribution in homogeneous bike-sharing systems
with stations of finite capacity. Euro journal on
transportation and logistics, 5(3):261–291, 2016.

[5] Nicolas Gast. Expected values estimated via
mean-field approximation are 1/n-accurate.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 1(1):17, 2017.

[6] Nicolas Gast. Refined Mean Field Tool. 2018.

[7] Nicolas Gast, Luca Bortolussi, and Mirco Tribastone.
Size expansions of mean field approximation:
Transient and steady-state analysis. Performance
Evaluation, 129:60–80, February 2019.

[8] Nicolas Gast and Benny Van Houdt. Transient and
Steady-state Regime of a Family of List-based Cache
Replacement Algorithms. In Proceedings of the 2015
ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems -
SIGMETRICS ’15, pages 123–136, Portland, Oregon,
USA, 2015. ACM Press.

[9] Nicolas Gast and Benny Van Houdt. A Refined Mean
Field Approximation. Proceedings of the ACM on
Measurement and Analysis of Computing Systems,
1(2):33:1–33:28, December 2017.

[10] Nicolas Gast and Benny Van Houdt. A refined mean
field approximation. Proc. ACM Meas. Anal. Comput.
Syst, 1, 2017.

[11] Thomas G Kurtz. Strong approximation theorems for
density dependent markov chains. Stochastic Processes
and Their Applications, 6(3):223–240, 1978.

[12] M. Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on
Parallel and Distributed Systems, 12(10):1094–1104,
Oct./2001.

[13] Michael David Mitzenmacher. The Power of Two
Random Choices in Randomized Load Balancing. PhD
thesis, PhD thesis, Graduate Division of the
University of California at Berkley, 1996.

[14] Antonio Montalbán, Rodrigo M. Corder, and
M. Gabriela M. Gomes. Herd immunity under
individual variation and reinfection. arXiv:2008.00098,
November 2020.

[15] Arpan Mukhopadhyay and Ravi R. Mazumdar.
Analysis of Load Balancing in Large Heterogeneous

Processor Sharing Systems. arXiv:1311.5806,
February 2015.

[16] Philipp Thomas, Hannes Matuschek, and Ramon
Grima. Intrinsic noise analyzer: a software package for
the exploration of stochastic biochemical kinetics
using the system size expansion. PloS one,
7(6):e38518, 2012.

[17] Benny Van Houdt. A mean field model for a class of
garbage collection algorithms in flash-based solid state
drives. ACM SIGMETRICS Performance Evaluation
Review, 41(1):191–202, June 2013.


	Introduction
	Models
	Homogeneous population process
	Density dependent populations process
	Heterogeneous population process

	Mean field approximations and refinements
	Mean field approximation (homogeneous)
	The refined mean field approximation
	Heterogeneous mean field approximation and refinements

	Implementation challenges
	Automatic differentiation
	Dimension reduction

	Conclusion and Discussion
	To which model does this apply?
	Analysis of the computation time

	References

