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Abstract—Optimized SAT solvers not only preprocess the
clause set, they also transform it during solving as inprocessing.
Some preprocessing techniques have been generalized to first-
order logic with equality. In this paper, we port inprocessing
techniques to work with superposition, and we strengthen prepro-
cessing. Specifically, we look into elimination of hidden literals,
variables (predicates), and blocked clauses. Our evaluation using
the Zipperposition prover confirms that the new techniques
usefully supplement the existing superposition machinery.

I. INTRODUCTION

Automated reasoning tools have become much more pow-
erful in the last few decades thanks to procedures such as
conflict-driven clause learning (CDCL) [1] for propositional
logic and superposition [2] for first-order logic with equality.
However, the effectiveness of these procedures crucially de-
pends on how the input problem is represented as a clause set.
The clause set can be optimized beforehand (preprocessing)
or during the execution of the procedure (inprocessing). In
this paper, we lift several preprocessing and inprocessing
techniques from propositional logic to clausal first-order logic
and demonstrate their usefulness in a superposition prover.

For many years, SAT solvers have used inexpensive clause
simplification techniques such as hidden literal and hidden
tautology elimination [3], [4] and failed literal detection [5,
Sect. 1.6]. We generalize these techniques to first-order logic
with equality (Sect. III). Since the generalization involves
reasoning about infinite sets of literals, we propose restrictions
to make them usable.

Variable elimination, based on Davis–Putnam resolution [6],
has been studied in the context of both propositional logic
[7], [8] and quantified Boolean formulas (QBFs) [9]. The
basic idea is to resolve all clauses with negative occurrences
of a propositional variable (i.e., a nullary predicate symbol)
against clauses with positive occurrences and delete the parent
clauses. Eén and Biere [10] refined the technique to identify a
subset of clauses that effectively define a variable and use it to
further optimize the clause set. This latter technique, variable
elimination by substitution, has been an important preprocessor
component in many SAT solvers since its introduction in 2004.

Specializing second-order quantifier elimination [11], [12],
Khasidashvili and Korovin [13] generalized variable elimina-
tion to preprocess first-order problems, yielding a technique
we call singular predicate elimination. We extend their work
along two axes (Sect. IV): We generalize Eén and Biere’s
refinement to first-order logic, resulting in defined predicate

elimination, and explain how both types of predicate elimina-
tion can be used during saturation.

The last technique we study is blocked clause elimination
(Sect. V). It is used in both SAT [14] and QBF solvers [15].
Its generalization to first-order logic has produced good results
when used as a preprocessor, especially on satisfiable problems
[16]. We explore more ways to use blocked clause elimination
on satisfiable problems, including using it to establish equi-
satisfiability with an empty clause set or as an inprocessing
rule. Unfortunately, we find that its use as inprocessing can
compromise the refutational completeness of superposition.

All techniques are implemented in the Zipperposition prover
(Sect. VI), allowing us to ascertain their usefulness (Sect. VII).
The best configuration solves 160 additional problems on
benchmarks consisting of all 13 495 first-order TPTP theorems
[17]. The raw experimental data are publicly available.1 More
details, including all the proofs, can be found in a technical
report [18].

II. PRELIMINARIES

A. Clausal First-Order Logic

Our setting is many-sorted, or many-typed, first-order logic
[19] with interpreted equality and a distinguished type o. Each
variable x is assigned a non-Boolean type, and each symbol
f is assigned a tuple (τ1, . . . , τn, τ) where n ≥ 0, τi are non-
Boolean types, and τ is the result type. We distinguish between
predicate symbols, with o as the result type, and function
symbols. Nullary function symbols are called constants. Terms
are either variables x or well-typed applications f(t1, . . . , tn), or
f if n= 0. A term is ground if it contains no variables. We write
~an or ~a to abbreviate (a1, . . . ,an), and f i(s) to abbreviate i-fold
application of unary symbol f: f3(x) abbreviates f(f(f(x))).

An atom is an unoriented equation. A literal is an equation
s≈ t or a disequation s 6≈ t. For every predicate symbol p,
p(~s) abbreviates p(~s)≈>, and ¬p(~s) abbreviates p(~s) 6≈>,
where > is a distinguished constant of type o. We distinguish
between predicate literals (¬)p(~s) and functional literals s≈ t
for which s and t are not of type o. Given a literal L, we write
¬L to denote its complement. A clause C is a multiset of
literals, written as L1 ∨ ·· · ∨ Ln and interpreted disjunctively.
Clauses are often defined as sets of literals, but superposition
needs multisets. Given a clause set N, N↓2 denotes the subset
of its binary clauses: N↓2 = {L1 ∨ L2 | L1 ∨ L2 ∈ N}.
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B. Superposition Provers

Superposition [2] is a calculus for clausal first-order logic
that extends ordered resolution [20] with equality reasoning. It
is refutationally complete: Given a finite, unsatisfiable clause
set, it will eventually derive the empty clause. It is parameter-
ized by a selection function that influences which of a clause’s
literals are eligible as the target of inferences. Moreover, it is
compatible with the standard redundancy criterion, which can
be used to delete a clause C while preserving completeness of
the calculus.

The redundancy criterion relies on a well-founded order �
that compares terms, literals, or clauses. If N is ground, we can
delete C if it is entailed by ≺-smaller clauses in N. In general,
we can delete C if all of its ground instances are entailed by ≺-
smaller ground instances of other clauses in N. The criterion
can be used to delete a clause that is subsumed by another
clause (e.g., p(a)∨ q by p(x)) or to simplify a clause C into C′,
which amounts to adding C′ and then deleting C by appealing
to redundancy with respect to N ∪ {C′}. Subsumption and
simplification are the main inprocessing mechanisms available
to superposition provers. Some systems also implement clause
splitting [21]–[23].

Superposition provers saturate the input problem with re-
spect to the calculus’s inference rules using the given clause
procedure [24], [25]. It partitions the proof state into a passive
set P and an active set A . All clauses start in P . At each
iteration of the procedure’s main loop, the prover chooses a
clause C from P , simplifies it, and moves it to A . Then all
inferences between C and active clauses are performed. The
resulting clauses are again simplified and put in P .

III. HIDDEN-LITERAL-BASED ELIMINATION

In propositional logic, binary clauses from a clause set N
can be used to efficiently discover literals L,L′ for which the
implication L′ −�→ L is entailed by N’s binary clauses—i.e.,
N↓2 |= L′ −�→ L. Heule et al. [4] introduced the concept of
hidden literals to capture such implications.

Definition 1: Given a propositional literal L and a proposi-
tional clause set N, the set of propositional hidden literals for
L and N is HLp(L,N) = {L′ | L′ ↪→∗p L} \ {L}, where ↪→p is
defined such that ¬L′ ↪→p L whenever L′ ∨ L ∈ N. Moreover,
HLp(L1 ∨ ·· · ∨ Ln,N) =

⋃n
i=1 HLp(Li,N).

Heule et al. used a fixpoint computation, but our definition
based on the reflexive transitive closure is equivalent. Intu-
itively, a hidden literal can be added to or removed from a
clause without affecting its semantics in models of N. By
eliminating hidden literals from C, we simplify it. By adding
hidden literals to C, we might get a tautology C′ (i.e., a valid
clause: |= C′), meaning that N↓2 |= C, thereby enabling us to
delete C. Note that HLp(L,N) is finite for a finite N.

Definition 2: Given L′ ∨ L ∨ C ∈ N, if L′ ∈ HLp(L,N),
hidden literal elimination (HLE) replaces N by (N \{L′ ∨ L ∨
C})∪{L ∨ C}. Given C ∈ N, {L1, . . . ,Ln} = HLp(C,N), and
C′ = C ∨ L1 ∨ ·· · ∨ Ln, if C′ is a tautology, hidden tautology
elimination (HTE) replaces N by N \{C}.

We generalize hidden literals to first-order logic with equal-
ity by considering substitutivity of variables as well as con-
gruence of equality.

Definition 3: Given a literal L and a clause set N, the set
of hidden literals for L and N is HL(L,N) = {L′ | L′ ↪→∗ L}\
{L}, where ↪→ is defined so that (1) ¬L′σ ↪→ Lσ if L′ ∨
L ∈ N and σ is a substitution; (2) s≈ t ↪→ u[s]≈ u[t] for all
terms s, t and contexts u[ ]; and (3) u[s] 6≈u[t] ↪→ s 6≈ t for all
terms s, t and contexts u[ ]. Moreover, HL(L1 ∨ ·· · ∨ Ln,N) =⋃n

i=1 HL(Li,N).

The generalized definition also enjoys the key property that
L′ ∈ HL(L,N) implies N↓2 |= L′ −�→ L. However, HL(L,N)
may be infinite even for predicate literals; for example,
p(f i(x)) ∈ HL(p(x),{p(x) ∨ ¬p(f(x))}) for every i.

Based on Definition 3, we can generalize hidden literal
elimination and support a related technique:

L′ ∨ L ∨C
HLE

L ∨C
if L′ ∈ HL(L,N)

L ∨C
FLE

C
if L′,¬L′ ∈ HL(¬L,N)

Double lines denote simplification rules: When the premises
appear in the clause set, the prover can use the redundancy
criterion to replace them by the conclusions. The second rule is
called failed literal elimination, inspired by the SAT technique
of asserting ¬L if L is a failed literal [5]. Both rules are sound.

Example 4: Consider the clause set N = {p(x) ∨
¬p(f(x)), p(f(f(x))) ∨ a ≈ b} and the clause C = f(a) 6≈
f(b) ∨ p(x). The first clause in N induces p(f(x)) ↪→ p(x),
p(f(f(x))) ↪→ p(f(x)), and hence p(f(f(x))) ↪→∗ p(x). Together
with the second clause in N, it can be used to derive
a 6≈b ↪→∗ p(x). Finally, using rule (3) of Definition 3, we derive
f(a) 6≈ f(b) ↪→∗ p(x)—that is, f(a) 6≈ f(b) ∈ HL(p(x),N). This
allows us to remove C’s first literal using HLE.

Hidden literals can be combined with unit clauses L′ to
remove more literals:

L′ L ∨C
UNITHLE if L′σ ∈ HL(¬L,N)

L′ C

Given a unit clause L′ ∈ N, the rule uses it to discharge L′σ
in N |= L′σ−�→¬L. As a result, we have N |= ¬L, making it
possible to remove L from L ∨C.

Example 5: Consider the clause set N = {p(x) ∨
q(f(x)), ¬q(f(a)) ∨ f(b) ≈ g(c), f(x) 6≈ g(y)} and the
clause C = ¬p(a) ∨ ¬q(b). The first clause in N induces
¬q(f(a)) ↪→ p(a), whereas the second one induces
f(b) 6≈g(c) ↪→¬q(f(a)). Thus, we have f(b) 6≈g(c) ↪→∗ p(a)—
that is, f(b) 6≈ f(c)∈HL(p(a),N). By applying the substitution
{x 7→ b, y 7→ c} to the third clause in N, we can fulfill the
conditions of UNITHLE and remove C’s first literal.

Next, we generalize hidden tautologies to first-order logic.



Definition 6: A clause C is a hidden tautology for a clause
set N if there exists a finite set {L1, . . . ,Ln} ⊆ HL(C,N) such
that C ∨ L1 ∨ ·· · ∨ Ln is a tautology.

Example 7: In general, hidden tautologies are not redundant
and cannot be deleted during saturation. Consider the unsatis-
fiable set N = {¬a,¬b, a∨ c, b∨¬c}, the order a≺ b≺ c, and
the empty selection function. The only possible superposition
inference from N is between the last two clauses, yielding
the hidden tautology a ∨ b (after simplifying away > 6≈>),
which is entailed by the larger clauses a ∨ c and b ∨ ¬c. If
this clause is removed, the prover could enter an infinite loop,
forever generating and deleting the hidden tautology.

To delete hidden tautologies during saturation, the prover
could check that all the relevant clause instances encountered
along the computation of HL are ≺-smaller than a given hid-
den tautology. However, this would be expensive and seldom
succeed, given that superposition creates lots of nonredundant
hidden tautologies. Instead, we propose to simplify hidden
tautologies using the following rules:

L ∨ L′ ∨C
HTR

L ∨ L′
if ¬L′ ∈ HL(L,N)

L ∨C
FLR

L
if L′,¬L′ ∈ HL(L,N)

We call these techniques hidden tautology reduction and
failed literal reduction. Both rules are sound. As with hidden
literals, unit clauses L′ can be exploited:

L′ L ∨C
UNITHTR if L′σ ∈ HL(L,N)

L′ L

We give the simplification rules above the collective name of
hidden-literal-based elimination (HLBE). Yet another use of
hidden literals is for equivalent literal substitution [3]: If both
L′ ∈ HL(L,N) and L ∈ HL(L′,N), we can often simplify L′σ
to Lσ in N if L′σ� Lσ. We want to investigate this further.

IV. PREDICATE ELIMINATION

For propositional logic, variable elimination [10] is one
of the main preprocessing and inprocessing techniques. Fol-
lowing the ideas of Gabbay and Ohlbach [11], Khasidashvili
and Korovin [13] generalized variable elimination to first-
order logic with equality and demonstrated that it is effective
as a preprocessor. We propose an improvement that makes
this applicable in more cases and show that, with a minor
restriction, it can be integrated in a superposition prover
without compromising its refutational completeness.

Definition 8: A predicate symbol is called singular (or “non-
self-referential”) for a clause set N if it occurs at most once
in every clause contained in N.

Definition 9: Let C = p(~sn) ∨ C′ and D = ¬p(~tn) ∨ D′ be
clauses with no variables in common. The clause s1 6≈ t1 ∨
·· · ∨ sn 6≈ tn ∨C′ ∨ D′ is a flat resolvent of C and D on p.

Given two clause sets M,N, predicate elimination iteratively
replaces clauses from N containing the symbol p with all flat
resolvents against clauses in M. Eventually, it yields a set with
no occurrences of p.

Definition 10: Let M,N be clause sets and p be a singular
predicate for M. Let be the following relation on clause set
pairs and clause sets:

1) (M, {(¬)p(~s) ∨ C′}]N) (M, N′ ∪N) if N′ is the set
that consists of all clauses (up to variable renaming) that
are flat resolvents with (¬)p(~s) ∨ C′ on p and a clause
from M as premises. The premises’ variables are renamed
apart.

2) (M,N) N if N has no occurrences of p.

The resolved set Mop N is the clause set N′ such that
(M,N) ∗ N′.

The relation is confluent up to variable renaming. Thanks
to the singularity constraint on M, it also terminates on
finite sets because the following ordinal measure decreases:
ν({D1, . . . ,Dn}) =ων(D1)⊕·· ·⊕ων(Dn), where ν(D) counts the
occurrences of p in D and⊕ is the Hessenberg, or natural, sum,
which is commutative. For every transition (M,{C}∪N) 
(M,N′∪N), we have ν({C}) =ων(C) >ων(C)−1 · |N′|= ν(N′).

Definition 11: Let N be a clause set and p be a singular
predicate for N. Let N+

p consist of all clauses of the form
p(~s) ∨ C′ ∈ N, let N−p consist of all clauses of the form
¬p(~s) ∨C′ ∈ N, let Np = N+

p ∪N−p , and let Np = N \Np.

Definition 12: Let N be a clause set and p be a singular
predicate for N. Singular predicate elimination (SPE) of p in
N replaces N by Np∪ (N+

p op N−p ).

The result of SPE is satisfiable if and only if N is satisfiable
[13, Theorem 1], justifying SPE’s use in a preprocessor.
However, eliminating singular predicates aggressively can
dramatically increase the number of clauses. To prevent this,
Khasidashvili and Korovin suggested to replace N by N′ only
if λ(N′)≤ λ(N) and µ(N′)≤ µ(N), where λ(N) is the number
of literals in N and µ(N) is the sum for all clauses C ∈ N of
the square of the number of distinct variables in C.

Compared with what modern SAT solvers use, this criterion
is fairly restrictive. We relax it to make it possible to eliminate
more predicates, within reason. Let Ktol ∈N be a tolerance pa-
rameter. A predicate elimination step from N to N′ is allowed
if λ(N′) < λ(N)+Ktol or µ(N′) < µ(N) or |N′| < |N|+Ktol.

SPE is effective, but an important refinement has not yet
been adapted to first-order logic: variable elimination by
substitution. Eén and Biere [10] discovered that a propositional
variable x can be eliminated without computing all resolvents
if it is expressible as an equivalence x←→ ϕ, where ϕ, the
“gate,” is an arbitrary formula that does not reference x.
They partition a set N into a definition set G, essentially
the clausification of x←→ ϕ, and R = Np \G, the remaining
clauses containing p. To eliminate x from N while preserving
satisfiability, it suffices to resolve clauses from G against
clauses from R, effectively substituting ϕ for x in R. Crucially,



we do not need to resolve pairs of clauses from G or pairs of
clauses from R. We generalize this idea to first-order logic.

Definition 13: Let G be a clause set, p be a predicate symbol,
and ~x be distinct variables. The set G is a definition set for p
if (1) p is singular for G, (2) G consists of clauses of the form
(¬)p(~x)∨C′ (up to variable renaming), (3) the variables in C′

are all among ~x, (4) all clauses in G+
p op G−p are tautologies,

and (5) E(~c) is unsatisfiable, where the environment E(~x)
consists of all subclauses C′ of any (¬)p(~x)∨C′ ∈ G and ~c
is a tuple of distinct fresh constants substituted in for ~x.

A definition set G corresponds intuitively to a definition by
cases—e.g.,

p(~x) =
{
> if ϕ(~x)
⊥ if ψ(~x)

Part (4) states that the case conditions are mutually exclusive
(e.g., ¬ϕ(~x)∨¬ψ(~x)), and part (5) states that they are exhaus-
tive (e.g., @~c. ¬ϕ(~c)∧¬ψ(~c)). Given a quantifier-free formula
p(~x)←→ ϕ(~x) with distinct variables ~x such that ϕ(~x) does
not contain p, any reasonable clausification algorithm would
produce a definition set for p.

Example 14: Given the formula p(x)←→ q(x)∧(r(x)∨ s(x)),
a standard clausification algorithm [26] produces {¬p(x) ∨
q(x), ¬p(x) ∨ r(x) ∨ s(x), p(x) ∨ ¬q(x) ∨ ¬r(x), p(x) ∨
¬q(x) ∨ ¬s(x)}, which qualifies as a definition set for p.

Definition sets gracefully generalize gates. They can be
recognized syntactically for formulas such as p(~x)←→

∨
i qi(~si)

or p(~x)←→
∧

i qi(~si), or semantically: Condition (4) can be
checked using the congruence closure algorithm, and condi-
tion (5) amounts to a propositional unsatisfiability check.

The key result about gates carries over to definition sets.
Definition 15: Let N be a clause set, p be a predicate

symbol, G ⊆ N be a definition set for p, and R = Np \G.
Defined predicate elimination (DPE) of p in N replaces N by
Np∪ (Gpop Rp).

Theorem 16: The result of applying DPE to a clause set N
is satisfiable if and only if N is satisfiable.

Since there will typically be at most only a few defined
predicates in the problem, it makes sense to fall back on SPE
when no definition is found.

Definition 17: Let N be a clause set and p be a predicate
symbol. If there exists a definition set G ⊆ N for p, portfolio
predicate elimination (PPE) on p in N replaces N with
Np∪(Gpop Rp), where R = Np \G. Otherwise, if p is singular
in N, it results in Np ∪ (N+

p op N−p ). In all other cases, it is
not applicable.

Hidden-literal-based techniques fit within the traditional
framework of saturation, because they delete or reduce a clause
based on the presence of other clauses. In contrast, predicate
elimination relies on the absence of clauses from the proof
state. We can still integrate it with superposition as follows:
At every kth iteration of the given clause procedure, perform
predicate elimination on A ∪P , and add all new clauses to P .

One may wonder whether such an approach preserves the
refutational completeness of the calculus. The answer is no.

To see why, consider a binary splitting (BS) rule [21] that
replaces the premise C ∨ D with the conclusions p ∨ C
and ¬p ∨ D, where C and D share no free variables, p is
fresh, and p≺C,D. This simplification rule can be repeatedly
undone by predicate elimination, leading to troublesome loops:
BS,SPE,BS,SPE, . . . . This breaks completeness.

Our solution is to curtail the entailment relation used by the
redundancy criterion to disallow splitting-like simplifications.
Weak entailment |=[ is defined via an ad hoc nonclassical
logic so that {p ∨ C, ¬p ∨ C} 6|=[ {C} and yet |=[ {p ∨ ¬p}.
More precisely, this logic is defined via an encoding: M |=[ N
if and only if M[ |= N[, where p(~t)[ = p(~t) 6≈ ⊥, ¬p(~t)[ =
p(~t) 6≈>, and L[ = L otherwise. Moreover, the type o may be
interpreted as any set of cardinality at least 2, and ⊥ must be
a distinguished symbol interpreted differently from >.

The standard redundancy criterion Red[ based on |=[ sup-
ports all the familiar deletion and simplification techniques
except splitting. Using Red[ not only prevents looping, but it
also enables the use of the given clause procedure, because
any redundant inference according to Red[ remains redundant
after SPE or DPE. As usual, the devil is in the details, and the
details are in the report [18].

V. SATISFIABILITY BY CLAUSE ELIMINATION

The main approaches to show satisfiability of a first-order
problem are to produce either a finite Herbrand model or
a saturated clause set. Saturations rarely occur except for
very small problems or within decidable fragments. In this
section, we explore an alternative approach that establishes
satisfiability by iteratively removing clauses while preserving
unsatisfiability, until the clause set has been transformed
into the empty set. So far, this technique has been studied
only for QBF [27]. We show that blocked clause elimination
(BCE) can be used for this purpose. It can efficiently solve
some problems for which the saturated set would be infinite.
However, it can break the refutational completeness of
a saturation prover. We conclude with a procedure that
transforms a finite Herbrand model into a sequence of clause
elimination steps ending in the empty clause set, thereby
demonstrating the theoretical power of clause elimination.

Kiesl et al. [16] generalized blocked clause elimination to
first-order logic. Their generalization uses flat L-resolvents,
an extension of flat resolvents that resolves a single literal L
against m literals of the other clause.

Definition 18: Let C = L ∨C′ and D = L1 ∨ ·· · ∨ Lm ∨ D′,
where (1) m ≥ 1, (2) the literals Li are of opposite polarity
to L, (3) L’s atom is p(~sn), (4) Li’s atom is p(~ti) for each i,
and (5) C and D have no variables in common. The clause(∨m

i=1
∨n

j=1 s j 6≈ ti j
)
∨C′ ∨ D′ is a flat L-resolvent of C and D.

Definition 19: A clause C = L ∨ C′ is (equality-)blocked
by L in a clause set N if all flat L-resolvents between C and
clauses in N \{C} are tautologies.

Removing a blocked clause from a set preserves unsatis-
fiability [16]. Kiesl et al. evaluated the effect of removing



all blocked clauses as a preprocessing step and found that it
increases prover’s success rate.

In fact, there exist satisfiable problems that cannot be
saturated in finitely many steps regardless of the calculus’s
parameters but that can be reduced to an empty, vacuously
satisfiable problem through blocked clause elimination.

Example 20: Consider the clause set N consisting of
C = p(x, x) and D =¬p(y1,y3)∨ p(y1,y2)∨ p(y2,y3). Eventu-
ally, the superposition of p(x, x) into D’s negative literal needs
to be performed, regardless of chosen selection function or
term order, with the conclusion E1 = p(z1,z2)∨ p(z2,z1). Then,
superposition of E1 into D yields E2 = p(z1,z2) ∨ p(z2,z3) ∨
p(z3,z1). Repeating this process yields infinitely many clauses
Ei = p(z1,z2) ∨ ·· · ∨ p(zi,zi+1) ∨ p(zi+1,z1) that cannot be
eliminated using standard redundancy-based techniques.

In the example above, the clause D is blocked by its
second or third literal. If we delete D, C becomes blocked
in turn. Deleting C leaves us with the empty set, which is
vacuously satisfiable. The example suggests that using BCE
during saturation might help focus the proof search. Indeed,
Kiesl et al. ended their investigations by asking whether BCE
can be used as an inprocessing technique in a saturation prover.
Unfortunately, in general the answer is no.

Example 21: Consider the unsatisfiable set N = {C1, . . . ,
C6}, where

C1 = ¬c ∨ e ∨ ¬a C2 = ¬c ∨ ¬e C3 = b ∨ c

C4 = ¬b ∨ ¬c C5 = a ∨ b C6 = c ∨ ¬b

Assume the simplification ordering a ≺ b ≺ c ≺ d ≺ e and
the selection function that chooses the last negative literal of
a clause as presented. Gray boxes indicate literals that can
take part in superposition inferences. Only two superposition
inferences are possible: from C3 into C4, yielding the tautology
C7 = b ∨ ¬b , and from C5 into C6, yielding C8 = a ∨ c .
Clause C7 is clearly redundant, whereas C8 is blocked by its
first literal. If we allow removing blocked clauses, the prover
enters a loop: C8 is repeatedly generated and deleted.

Although using BCE as inprocessing breaks the complete-
ness of superposition in general, it is conceivable that a
well-behaved fragment of BCE might exist. This could be
investigated further.

Not only can BCE prevent infinite saturation (Example 20),
but it can also be used to convert a finite Herbrand model
into a certificate of clause set satisfiability. The certificate uses
only blocked clause elimination and addition, in conjunction
with a transformation to reduce the clause set to an empty
set. This theoretical result explores the relationship between
Herbrand models and satisfiability certificates based on clause
elimination and addition. It is conceivable that it can form the
basis of an efficient way to certify Herbrand models.

In propositional logic, asymmetric literals can be added
to or removed from clauses, retaining the equivalence of the
resulting clause set with the original one. Kiesl and Suda [28]
described an extension of this technique to first-order logic.
Their definition of asymmetric literals can be relaxed to allow

the addition of more literals, but the resulting set is then only
equisatisfiable to the original one, not equivalent. This in turn
allows us to show that a problem is satisfiable by reducing it
to an empty problem, as is done in some SAT solvers.

For the rest of this section, we work with clausal first-
order logic without equality. We use Herbrand models as
canonical representatives of first-order models, recalling that
every satisfiable set has a Herbrand model [29, Sect. 5.4].

Definition 22: A literal L is a global asymmetric literal
(GAL) for a clause C and a clause set N if for every ground
instance Cσ of C, there exists a ground instance D% ∨ L′% of
D ∨ L′ ∈ N \{C} such that D%⊆Cσ and ¬L′%= Lσ.

Theorem 23: If L is a GAL for the clause C and the clause
set N, then the set (N \ {C})∪{C ∨ L} is satisfiable if and
only if N is satisfiable.
For first-order logic without equality, a clause L∨C is blocked
if all its L-resolvents are tautologies [16]. The L-resolvent
between L ∨C and ¬L1 ∨ ·· · ∨ ¬Ln ∨ D is (C ∨ D)σ, where
σ is the most general unifier of the literals L,L1, . . . ,Ln
[20]. Given a Herbrand model J of a problem, the following
procedure removes all clauses while preserving satisfiability:

1) Let q be a fresh predicate symbol. For each atom p(~s)
in the Herbrand universe: If J |= p(~s), add the clause
q ∨ p(~s); otherwise, add q ∨¬p(~s). Adding either clause
preserves satisfiability as both are blocked by q.

2) Since J is a model, for each ground instance Cσ, there
exists a clause q ∨ L with L ∈ Cσ. We can transform
C ∈ N into C ∨ ¬q, since ¬q is a GAL for C and N.

3) Consider the clause q ∨ L added by step 1. Since L is
ground and no clause q ∨ ¬L was added (since J is a
model), the only L-resolvents are against clauses added
by step 2. Since all of those clauses contain ¬q, the
resolvents are tautologies. Thus, each q ∨ L is blocked
and can be removed in turn.

4) The remaining clauses all contain ¬q. They can be
removed by BCE as well.

The procedure is limited to the first-order logic without
equality, since step 3 is justified only if L is a predicate literal.
(Otherwise, L cannot block clause q ∨ L [16].) The procedure
also terminates only for finite Herbrand models.

Example 24: Consider the satisfiable clause set N = {r(x)∨
s(x), ¬r(a), ¬s(b)} and a Herbrand model J over {a,b, r,s}
such that r(b) and s(a) are the only true atoms in J. We
show how to remove all clauses in N using J by following
the procedure above.

Let NJ = {q ∨ ¬r(a), q ∨ r(b), q ∨ s(a), q ∨ ¬s(b)}. We
set N← N∪NJ. This preserves satisfiability since all clauses
in NJ are blocked. It is easy to check that ¬q is GAL for
every clause in N \NJ. The only substitutions that need to be
considered are {x 7→ a} and {x 7→ b} for r(x) ∨ s(x). So we
set N ← {¬q ∨ r(x) ∨ s(x), ¬q ∨ ¬r(a), ¬q ∨ ¬s(b)} ∪ NJ.
Clearly, all clauses in NJ are blocked, so we set N ← N \
NJ. All clauses remaining in N have a literal ¬q and can be
removed, leaving N empty as desired.



VI. IMPLEMENTATION

Hidden-literal-based, predicate, and blocked clause elimi-
nation all admit efficient implementations in a superposition
prover. In this section, we describe how to implement the first
two sets of techniques. For BCE, we refer to Kiesl et al. [16].
All techniques are implemented in Zipperposition [30].

A. Hidden-Literal-Based Elimination

For HLBE, an efficient representation of HL(L,N) is cru-
cial. Because this set may be infinite, we underapproximate it
by restricting the length of the transitive chains via a parameter
Klen. Given the current clause set N, the finite map Imp[L′]
associates with each literal L′ a set of pairs (L,M) such that
L′ ↪→k L, where k≤ Klen and M is the multiset of clauses used
to derive L′ ↪→k L. Moreover, we consider only transitions
of type (1) (as per Definition 3). The following algorithm
maintains Imp dynamically, updating it as the prover derives
and deletes clauses. It depends on the global variable Imp and
the parameters Klen and Kimp.

procedure ADDIMPLICATION(La,Lc,C)
if Imp[Laσ] 6= /0 for some renaming σ then
(La,Lc)← (Laσ,Lcσ)

if there are no L,L′,M,σ such that (L′,M) ∈ Imp[L],
5 Lσ= La, and L′σ= Lc then

for all (σ,M) such that (Lcσ,M) ∈ Imp[Laσ] do
erase all (L′,M′) such that M ⊆ M′ from Imp[Laσ]

for all L such that (L′,M) ∈ Imp[L]
and Laσ= L′ for some σ do

10 if |M| < Klen then
Imp[L]← Imp[L]∪{(Lcσ,M]{C})}

for all L such that Imp[L] 6= /0
and Lσ= Lc for some σ do

Concl←{(L′σ,M]{C}) |
15 (L′,M) ∈ Imp[L], |M| < Klen}

Imp[La]← Imp[La]∪Concl
Congr←{(s 6≈ t,{C}) | ∃u.Lc = u[s] 6≈u[t]}
Imp[La]← Imp[La]∪{(Lc,{C})}∪Congr

procedure TRACKCLAUSE(C)
20 if C = L1 ∨ L2 then

ADDIMPLICATION(¬L1, L2, C)
ADDIMPLICATION(¬L2, L1, C)
if L2 = ¬L1σ for some nonidempotent σ then

for all i← 1 to Kimp do
25 L2← L2σ

ADDIMPLICATION(¬L1, L2, C)

procedure UNTRACKCLAUSE(C)
for all La,Lc,M such that (Lc,M) ∈ Imp[La] do

if C ∈ M then
30 erase (Lc,M) from Imp[La]

The algorithm views a clause L ∨ L′ as two implications
¬L−�→ L′ and ¬L′ −�→ L. It stores only one entry for all literals
equal up to variable renaming (line 2). Each implication La −�→
Lc represented by the clause is stored only if its generalization

is not present in Imp (line 4). Conversely, all instances of the
implication are removed (line 6).

Next, the algorithm finds each implication stored in Imp that
can be linked to La −�→ Lc: either Lc becomes the new conse-
quent (line 9) or La becomes the new antecedent (line 13). If
Lc can be decomposed into u[s] 6≈u[t], rule (3) of Definition 3
allows us to store s 6≈ t in Imp[La] (line 18). This is an exception
to the idea that transitive chains should only use rule (1). The
application of rule (3) does not count toward the bound Klen.

In first-order logic, different instances of the same clause
can be used along a transitive chain. For example, the clause
C = ¬p(x) ∨ p(f(x)) induces p(x) ↪→i p(f i(x)) for all i. The
algorithm discovers such self-implications (line 23): For each
clause C of the form ¬L∨ Lσ, where σ is nonidempotent, the
entires (Lσ2,{C}), . . . ,(LσKimp+1,{C}) are added to Imp[L],
where Kimp is a parameter.

To track and untrack clauses efficiently, we implement the
mapping Imp as a nonperfect discrimination tree [31]. Given
a query literal L, this indexing data structure efficiently finds
all literals L′ such that for some σ, L′σ= L and Imp[L′] 6= /0.
We can use it to optimize all lookups except the one on line 9.
For this remaining lookup, we add an index Imp−1 that inverts
Imp, i.e., Imp−1[L] = {L′ | Imp[L′] = (L,M) for some M}. To
avoid sequentially going through all entries in Imp when the
prover deletes them, for each clause C we keep track of each
literal L such that C appears in Imp[L].

Rules HLE and HTR have a simple implementation based
on lookups in Imp. To implement UNITHLE and UNITHTR
we maintain the index Unit, containing literals Lcσ, such that
(Lc,M)∈ Imp[La] for some M and La and σ is the most general
unifier of L′ and La, for some unit clause {L′}. Implementation
of FLE and FLR also uses Unit: when (L′,M) is added to
Imp[L], we check if (¬L′,M′) ∈ Imp[L] for some M′. If so,
¬L is added to Unit.

In propositional logic, the most efficient known approach
constructs the binary implication graph for the clause set N
[4], with edges (¬L,L′) and (¬L′,L) whenever L∨ L′ ∈ N. To
avoid traversing the graph repeatedly, solvers rely on times-
tamps to discover connections between literals. This relies
on syntactic comparisons of literals, which is very efficient
in propositional logic but not in first-order logic, because of
substitutions and congruence.

B. Predicate Elimination

To implement portfolio predicate elimination, we maintain
a record for each predicate symbol p occurring in the problem
with the following fields: set of definition clauses for p,
set of nondefinition clauses in which p occurs once, and
set of clauses in which p occurs more than once. These
records are kept in a priority queue, prioritized by properties
such as presence of definition sets and number of estimated
resolutions. If p is the highest-priority symbol that is eligible
for SPE or DPE, we eliminate it by removing all the clauses
stored in p’s record from the proof state and by adding flat
resolvents to the passive set. Eliminating a symbol might make
another symbol eligible.



As an optimization, predicate elimination keeps track only
of symbols that appear at most Kocc times in the clause set.
For inprocessing, we use signals that Zipperposition emits
whenever a clause is added to or removed from the proof state
and update the records accordingly. At the beginning of the
1st, (Kiter+1)st, (2Kiter+1)st, . . . iteration of the given clause
procedure’s loop body, predicate elimination is systematically
applied to the entire proof state. The first application of
inprocessing amounts to preprocessing. By default, Kocc = 512
and Kiter = 10. The same ideas and limits apply for blocked
clause elimination.

Zipperposition uses its integrated SAT solver to check the
condition (5) of Definition 13. During experimentation, we
noticed that recognizing definitions of symbols that occur in
the conjecture often harms performance. Thus, Zipperposition
recognizes definitions only for nonconjecture symbols.

VII. EVALUATION

We measure the impact of our elimination techniques for
various values of their parameters. As a baseline, we use Zip-
perposition’s first-order portfolio mode, which runs the prover
in 13 configurations of heuristic parameters in consecutive
time slices. None of these configurations use our new tech-
niques. To evaluate a given parameter value, we fix it across
all 13 configurations and compare the results with the baseline.

The benchmark set consists of all 13 495 CNF and FOF
TPTP 7.3.0 theorems [17]. The experiments were carried out
on StarExec servers [32] equipped with Intel Xeon E5-2609
CPUs clocked at 2.40 GHz. The portfolio mode uses a
single CPU core with a CPU time limit of 180 s. The base
configuration solves 7897 problems. The values in the tables
indicate the number of problems solved minus 7897. Thus,
positive numbers indicate gains over the baseline. The best
result is shown in bold.

A. Hidden-Literal-Based Elimination

The first experiments use all implemented HLBE rules. To
avoid overburdening Zipperposition, we can enable an option
to limit the number of tracked clauses for hidden literals. Once
the limit has been reached, any request for tracking a clause
will be rejected until a tracked clause is deleted. We can choose
which kind of clauses are tracked: only active, only passive,
or both. We also vary the maximal implication chain length
Klen and the number of computed self-implications Kimp.

In Zipperposition, every lookup for instances or general-
izations of s≈ t must be done once for each orientation of
the equation. To avoid this inefficiency, and also because
the implementation of hidden literals does not fully exploit
congruence, we can disable tracking clauses with at least one
functional literal. Clauses containing functional literals can
then still be simplified.

Figures 1 and 2 show the results, without and with func-
tional literal tracking enabled, for Klen = 2 and Kimp = 0.
The results suggest that tracking functional literals is not
worth the effort but that tracking predicate literals is. The best
improvement is observed when both active and passive clauses

Tracked clauses
250 500 1000 ∞

Active −14 −16 −8 −12
Passive +7 +10 +5 −35
Both +12 +10 +7 −45

Fig. 1. Impact of the number and kinds of tracked clauses on HLBE
performance, when only predicate literals are tracked

Tracked clauses
250 500 1000 ∞

Active −10 −14 −8 −18
Passive −5 −5 −14 −71
Both +2 −1 −8 −79

Fig. 2. Impact of the number and kinds of tracked clauses on HLBE
performance, when all literals are tracked

are tracked. Normally DISCOUNT-loop provers [25] such as
Zipperposition do not simplify active clauses using passive
clauses, but here we see that this can be effective. Figure 3
shows the impact of varying Klen and Kimp, when 500 clauses
from the entire proof state are tracked. These results suggest
that computing long implication chains is counterproductive.

B. Predicate and Blocked Clause Elimination

For defined predicate elimination, the number of resolvents
grows exponentially with the number of occurrences of p. To
avoid this expensive computation, we limit the applicability
of PPE to proof states for which p is singular. According to
our informal experiments, full PPE, without this restriction,
generally performs less well.

Predicate elimination can be done using Khasidashvili and
Korovin’s criterion (K&K) or using our relaxed criterion with
different values of Ktol. Figure 4 shows the results for SPE and
PPE used as preprocessors. Our numbers corroborate Khasi-
dashvili and Korovin’s findings: SPE with K&K proves 70
more problems than the base, a 0.9% increase, comparable to
the 1.8% they observe when they combine SPE with additional
preprocessing. Remarkably, the number of additional proved
problems more than doubles when we use our criterion with
Ktol > 0, for both SPE and PPE.

Although this is not evident in Figure 4, varying Ktol
substantially changes the set of problems solved. For
example, when Ktol = 0, SPE proves 60 theorems not proved
using Ktol = 50. The effect weakens as Ktol grows. When
Ktol = 100, SPE proves only 13 problems not found when
Ktol = 200. Similarly, the set of problems proved by SPE and
PPE differs: When Ktol = 25, 14 problems are proved by PPE
but missed by SPE. Recognizing definition sets is useful:
PPE outperforms SPE regardless of the criterion.

Performing BCE and variable elimination until fixpoint
increases the performance of SAT solvers [14]. We can
check whether the same holds for superposition provers. In
this experiment, we use the relaxed criterion with Ktol = 25
and HLBE which tracks up to 500 clauses from any clause
set, Klen = 2, and Kimp = 0. We use each technique as
preprocessing and inprocessing.



Chain length Klen
1 2 4 8

Kimp = 0 +9 +10 +7 +5
Kimp = 1 +5 +11 +7 +4
Kimp = 2 +6 +11 +8 +8

Fig. 3. Impact of the parameters Klen and Kimp on HLBE performance

Relaxed with Ktol
K&K 0 25 50 100 200

SPE preproc. +70 +117 +154 +160 +154 +158
PPE preproc. +71 +124 +160 +164 +165 +162

Fig. 4. Impact of the choice of criterion on predicate elimination performance

The results are summarized in Figure 5, where the + sign
denotes the combination of techniques. We confirm the results
obtained by Kiesl et al. about the performance of BCE as
preprocessing: It helps prove 30 more problems, increasing the
success rate by roughly 0.4%. The same percentage increase
was obtained Kiesl et al. Using BCE as an inprocessing,
however, hurts performance, presumably because of its incom-
patibility with the redundancy criterion.

For preprocessing, the combinations SPE+BCE and
PPE+BCE performed roughly on a par with SPE and PPE,
respectively. This stands in contrast to the situation with
SAT solvers, where such a combination usually helps.
It is also worth noting that the inprocessing techniques
never outperform their preprocessing counterparts. The last
column shows that combining HLBE with other elimination
techniques overburdens the prover.

C. Satisfiability by Blocked Clause Elimination

Kiesl et al. found that blocked clause elimination is espe-
cially effective on satisfiable problems. To corroborate their
results and ascertain whether a combination of predicate elim-
ination and blocked clause elimination increases the success
rate, we evaluate BCE on all 2273 satisfiable or TPTP FOF
and CNF problems. The hardware and CPU time limits are the
same as in the experiments above. Figure 6 presents the results.

The baseline establishes the satisfiability of 856 problems.
We consider only preprocessing techniques, since BCE
compromises refutational completeness—a saturation does not
guarantee that the original problem was satisfiable. We note
that recognizing definition sets makes almost no difference on
satisfiable problems. The sets of problems solved by BCE and
PPE differ— 30 problems are solved by BCE and not by PPE.

VIII. CONCLUSION

We adapted several preprocessing and inprocessing elimi-
nation techniques implemented in modern SAT solvers so that
they work in a superposition prover. This involved lifting the
techniques to first-order logic with equality but also tailoring
them to work in tandem with superposition and its redundancy
criterion. Although SAT solvers and superposition provers
embody radically different philosophies, we found that the
lifted SAT techniques provide valuable optimizations.

HLBE
SPE PPE +PPE

BCE SPE +BCE PPE +BCE +BCE

Preprocessing +30 +154 +159 +160 +166 +162
Inprocessing −48 +140 +127 +146 +131 +127

Fig. 5. Performance of predicate and blocked clause elimination

HLBE
SPE PPE +PPE

BCE SPE +BCE PPE +BCE +BCE

Preprocessing +29 +46 +60 +47 +59 +55

Fig. 6. Performance of predicate and blocked clause elimination for estab-
lishing satisfiability

We see several avenues for future work. First, the implemen-
tation of hidden literals could be extended to exploit equality
congruence. Second, although inprocessing blocked clause
elimination is incomplete in general, we hope to achieve refu-
tational completeness for a substantial fragment of it. Third,
predicate and blocked clause elimination, which thrives on the
absence of clauses from the proof state, could be enhanced
by tagging and ignoring generated clauses that have not yet
been used to subsume or simplify untagged clauses. Fourth,
predicate and blocked clause elimination could be extended
to work with functional literals. Fifth, more SAT techniques
could be adapted, including bounded variable addition [33] and
blocked clause addition [34]. Sixth, the techniques we covered
could be adapted to work with other first-order calculi such
as SMT and tableaux, or generalized further to work with
higher-order calculi such as combinatory superposition [35]
and λ-superposition [36].
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