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Abstract: We present CertiCAN, a tool produced using the Coq proof assistant for the formal
certification of CAN analysis results. Result certification is a process that is lightweight and flexible
compared to tool certification. Indeed, the certification of an industrial analyzer needs access to
the source code, requires the proof of many optimizations or implementation tricks and new proof
effort at each software update. In contrast, CertiCAN only relies on the result provided by such
a tool and remains independent of the tool itself or its updates. Furthermore, it is usually more
time efficient to check a result than to produce it. All these reasons make CertiCAN a practical
choice for industrial purposes.
CertiCAN is based on the certification and combined use of two well-known CAN analysis tech-
niques completed with additional optimizations. Experiments demonstrate that CertiCAN is com-
putationally efficient and faster than the underlying combined analysis. It is able to certify the
results of RTaW-Pegase, an industrial CAN analysis tool, even for large systems. This result paves
the way for a broader acceptance of formal tools for the certification of real-time systems analysis
results.
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CertiCAN
Certification d’analyses de bus CAN et de leurs résultats

Résumé : Nous présentons CertiCAN, un outil produit à l’aide de l’assistant de preuves
Coq et permettant de certifier les résultats d’analyses de bus CAN. La certification de résultats
d’analyses est un procédé moins coûteux et plus flexible que la certification des analyses elles-
mêmes. En effet, la certification d’un analyseur industriel demande l’accès au code source, la
preuve d’un code souvent complexe avec de nombreuses optimisations ou astuces de mise en
œuvre sans compter le besoin de nouvelles preuves à chaque mise à jour. CertiCAN, de son côté,
n’a besoin que du résultat de l’analyse ; il reste indépendant de l’analyseur, de son implantation
et de ses mises à jour. De plus, il est toujours plus efficace de vérifier un résultat que de le
produire. Ces caractéristiques font de CertiCAN un choix pragmatique pour une utilisation
industrielle.

CertiCAN est basé sur la certification et l’utilisation combinée de deux techniques classiques
d’analyse complétée par une collection d’optimisations. Les expérimentations montrent que Cer-
tiCAN est efficace et plus rapide que les analyses sous-jacentes. Il est capable de certifier les
résultats de RTaW-Pegase, un analyseur industriel de bus CAN, et ce même pour des systèmes
complexes. Ce résultat ouvre la voie à une utilisation plus large d’outils formels pour la certifi-
cation des résultats d’analyse de systèmes temps-réels.

Mots-clés : Analyse de systèmes temps-réel, bus CAN, certification, assistant de preuves Coq
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1 Introduction

There is a general trend toward certified1 proofs for real-time systems analysis. One motivation is
the need to increase confidence in the analysis techniques developed by the research community.
A recent series of mistakes in the analysis of self-suspending tasks [8] underlines the limitations
of pen-and-paper proofs for such complex problems. This issue is not new, as illustrated by
the flaw in the original Response Time Analysis (RTA) of CAN messages proposed by Tindell
et al. [26, 28, 27], which was found and fixed only many years later [11]. This motivated the
development of Prosa [10], an open-source library of definitions and proofs for real-time systems
analysis based on the Coq [4] proof assistant. Computer assisted proofs provide the additional
advantage that they make it easier to build on top of existing results and to precisely identify
the hypotheses required for a result to hold.

A second reason behind the need to certify real-time systems analysis results comes from
industry. Standards such as ISO 26262 for automotive or DO-178C for avionics advocate the use
of formal methods for the development and validation of safety critical systems. In particular,
proof assistants have now reached a level of maturity which allows them to certify complex
applications – see, for example, the use of the CompCert C compiler [3], [18] based on Coq or
the Sel4 microkernel [7] based on Isabelle/HOL [5]. It is only natural that such a general trend
towards formal proofs also affects real-time aspects. For all these reasons, we aim at providing
certified real-time guarantees for industrial systems.

The analysis underlying our CertiCAN tool is a RTA for task sets with offsets under Fixed
Priority Non Preemptive (FPNP) scheduling, with a notion of transaction, i.e., messages sent
from the same Electronic Control Unit (ECU). The CAN [9] protocol is widely used in automotive
applications and there exist several commercial tools performing CAN analysis. Among these,
we focus on RTaW-Pegase [6], for which we obtained an academic license.

Rather than certifying RTaW-Pegase, that is, formally proving that the CAN analysis imple-
mented in RTaW-Pegase is correct, we choose to build a tool based on the Coq proof assistant
that can certify the results of the CAN analysis performed by RTaW-Pegase. In other words,
our tool, called CertiCAN, can be called every time a result obtained with RTaW-Pegase2 must
be certified. This choice is motivated by the fact that result certification is a process that is
lightweight and flexible compared to tool certification, which makes it a practical choice for in-
dustrial purposes. Indeed, RTaW-Pegase is a complex tool for which we do not have the source
code. It is likely to be highly optimized and subject to regular changes. All this would make it
difficult to certify the tool directly and this correctness proof would need to be updated regularly.

Our problem is then: Can we certify efficiently enough the analysis results computed by
RTaW-Pegase? Compared to a traditional RTA, can we use the fact that a result certifier is
given as input the bound it is expected to certify?

Our solution is based on the following idea: We use a combination of two existing analysis
techniques, one precise but with high computational complexity and another one much faster but
approximate (it may compute pessimistic upper bounds on response times). These two analyses
were introduced by Tindell for the RTA of tasks with offsets scheduled according to the Fixed
Priority Preemptive policy [24, 25]. The precise analysis was adapted to CAN by Meumeu Yomsi
et al. [29].

CertiCAN combines in an optimized way the two analyses. It first tries to certify the result
provided as input using the approximate analysis only, then resorts to a more precise analysis

1Throughout this paper, we use the term certified for formally verified using a proof assistant, in our case
Coq.

2Note that CertiCAN does not depend on the internals of the RTA tool considered. It is interoperable with
any other tool analyzing the same CAN system models as RTaW-Pegase.
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4 Pascal Fradet, Xiaojie Guo, Sophie Quinton

for cases which cannot be certified using the approximate analysis. Experiments demonstrate
the potential of CertiCAN for industrial practice. It is able to certify the results returned by
RTaW-Pegase even for large systems.

The main contribution of this paper is CertiCAN, the first formally proven tool able to certify
the results of commercial CAN analysis tools. This is however not the only contribution of the
paper. More specifically, we propose:

1. a generic CAN analysis that permits to build concrete analyses with different precision,
e.g., precise, approximate, or a trade-off between them;

2. a new RTA for CAN that combines two well-known analyses, one precise and another
approximate;

3. the correctness proof in Coq of these three analyses;

4. three Coq-certified tools in OCaml extracted from the proofs, one for each analysis;

5. based on the same principle as the new RTA, a method and its corresponding certified tool
(called CertiCAN) for certifying the results of non certified tools such as RTaW-Pegase;

6. proven optimizations for increasing CertiCAN’s timing efficiency;

7. experiments that demonstrate the usability of CertiCAN for industrial practice.

Beyond CertiCAN, we believe that the results presented in this paper are significant in that
they demonstrate the usability of result certification for industrial analyzers. In addition, the
underlying technique can be reused for any other system model for which there exist RTAs with
different levels of precision.

All the Coq specifications and proofs are available online [2].
The rest of this paper is structured as follows. Section 2 introduces the system model and some

notations and definitions used later on. We present in Section 3 the two existing CAN analyses
as well as their generic version on which our certifier is based. Section 4 presents an optimized
RTA combining the previous CAN analyses, which is then used in CertiCAN, a tool formally
specified and proven in Coq for certifying CAN analysis results. Section 5 describes some proven
optimizations needed to make CertiCAN deal with large systems. Section 6 relates experimental
evaluations and comparisons of the combined analysis, CertiCAN and RTaW-Pegase. Additional
details about the proof effort and the generality of the approach are provided in Section 7.
Related work is presented in Section 8 and we conclude in Section 9.

This article extends and revises the work presented in [16, 14]. Since then, CertiCAN has
been refined and greatly improved using novel (certified) optimizations. Sections 4.2, 5 and 7
are novel, new experiments have been conducted and Section 6 has been completely rewritten.
Explanations and examples have been added throughout.

2 Context

The CAN network is a vehicle communication bus which is widely used in many industrial
domains, especially in automotive. In critical applications, it is essential to perform RTAs to
ensure that systems can meet their timing requirements (e.g., that the response time of a message
is smaller than its deadline). The CAN analyses offered by RTaW-Pegase are based on a precise
RTA of periodic tasks with offsets dispatched according to the Fixed Priority Non-Preemptive
(FPNP) scheduling policy [29]. In addition to the precise analysis, RTaW-Pegase proposes an

Inria
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ECU2 ECU4

ECU1 ECU3 ECU5

CAN bus

Figure 1: An example of CAN bus

approximate but faster version. The implementation of these analyses uses several undocumented
optimizations.

In this section, we first present the notions of the CAN protocol which are useful for describ-
ing a CAN system. We refer interested readers to the official CAN specification [9] for more
details; Then, we present the system model considered in CAN analyses as well as notations and
definitions used throughout this article.

2.1 CAN protocol

The CAN protocol describes communication rules between ECUs on a CAN bus. The topology
of a CAN bus is illustrated in Figure. 1. Each ECU uses a local clock and sends messages
to other ECUs according to the FPNP scheduling policy. Each message is assigned a unique
priority and cannot be preempted once its transmission has started. When several messages
must be transmitted, the bus selects the message with the highest priority. Messages to be sent
are encapsulated in a fixed frame. The frame consists of:

• a unique identifier (11 bits for the standard format and 29 bits for the extended format);

• a message to transfer whose size, noted m, can range from 1 to 8 bytes;

• some control bits e.g., acknowledgment, error detection, bit stuffing, etc.

In the worst case, the size of a frame is 55 + 10m bits for the standard format and 80 + 10m bits
for the extended format [11].

Maximum transmission time

Usually, the bit rate of a CAN bus is fixed and can be either 125 kbit/s, 250 kbit/s, 500 kbit/s,
or 1 Mbit/s. With the above information, we can determine the maximum transmission time of
a message. For instance, on a 500 kbit/s CAN bus, the transfer of an 8-byte message using the
standard frame format takes at most

(55 + 10 ∗ 8) bits
500 kbit/s

= 270 µs

This formula is used later to produce task sets for experimental evaluations.

RR n° 9443



6 Pascal Fradet, Xiaojie Guo, Sophie Quinton

Response time

In many cases, a message cannot be immediately transmitted after its activation (i.e., its request
to send). The bus may already be busy sending another message, and then all higher priority
messages that are also activated will be transmitted first. The response time of a message is
defined as the time duration between its activation and its completion (i.e., its end of transmis-
sion). It is usually associated with a real-time constraint stating that its response time should
be less than a given duration (i.e., its relative deadline).

Fixed timing relation between messages within one ECU

Each ECU contains several periodic messages to send. All activation times of a periodic message
are known once its first activation time is fixed. When all messages activate at the same time,
the message with the lowest priority can be delayed for a considerable duration. Consequently,
it could result in missing its deadline. To address this issue, messages activations are separated
by introducing an offset for each message. It is a fixed time duration from local time 0 to the
first activation time of a message. Adding offsets allows to shift periods, to increase the bus
utilization while keeping the system schedulable.

2.2 System model
The system model considered consists of a set of transactions (representing ECU nodes)

Sys := {T1,T2, . . . ,TN}

where each transaction Ti is a set of periodic tasks (representing messages):

Ti := {τi,1, τi,2, . . . , τi,M}

Each task τi,k has a fixed and unique priority k (a smaller number means a higher priority)
and is characterized by a 4-tuple

(c+i,k, di,k, pi,k, oi,k)

where

• c+i,k denotes its worst-case execution time (WCET), i.e., the maximum transmission time,

• di,k its relative deadline,

• pi,k its activation period, and

• oi,k its offset, i.e., the duration between an activation of Ti and the first activation of τi,k
after that. In this paper, we consider only constrained offsets, i.e., oi,k < pi,k.

Each transaction Ti is activated periodically after an offset oi with a period (called the hyper-
period) equal to the least common multiple of the periods of all its tasks. Formally,

HP i = lcm{pi,1, pi,2, . . . , pi,M}

Tasks within the same transaction share the same clock. All tasks of Ti being periodic, their
offsets define a precise timing relation between them. Note that the model does not suppose any
global synchronization between transactions. Any possible time shift between any two trans-
actions is assumed to be possible and must be considered by the analysis. Task τi,k activates
periodically its jobs at oi,k +m× pi,k with m ≥ 0. A job  of a task τi,k is characterized by

Inria
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• its activation time act(),

• its completion (end of transmission) time end() and

• its execution (transmission) time c() (≤ c+i,k)

Its response time r() is defined as end() − act(). The worst-case response time (WCRT) of
task τi,k, denoted wcrti,k, is the largest possible response time among all jobs of task τi,k.

In the following, we mostly use terminology related to tasks rather than messages, since our
analysis applies to any FPNP scheduling of tasks with transactions.

We note hep(k), hp(k), lp(k) the sets of tasks of the system under study whose priorities are
higher than or equal to, higher than or lower than k, respectively.

3 Certified RTAs for CAN

In this section, we describe two RTAs for CAN, a precise analysis and an approximate one, that
we use to certify the results of the RTaW-Pegase tool. The correctness of these RTAs has been
proven using the Coq proof assistant [4] on top of the Prosa library [1]. In the following, we
consider a task τi,k and describe how the two RTAs compute an upper bound on its worst-case
response time. The presentation follows the Coq specification. We omit proofs of lemmas and
theorems and refer the interested reader to the Coq source [2].

Both analyses operate on a set of scenarios. A scenario represents an alignment between
among transactions that corresponds to a set of maximum workload functions, which is used to
compute an upper bound on the response time of τi,k for that alignment. The precise analysis
considers the set of precise scenarios corresponding to all possible alignments between transac-
tions. The approximate analysis considers a much smaller set of approximate scenarios where all
transactions, except the one of the task under study, are represented by an approximate workload
function.

Both analyses rely heavily on the well-known concept of busy window, as we explain now.

3.1 Busy window analysis

Let us consider a task τi,k for which we want to bound the response time.

Definition 1 (Level-k quiet time). An instant t is said to be a level-k quiet time if all jobs of
priority higher than or equal to k activated strictly before t have completed at t.

Definition 2 (Level-k busy window). A time interval [t1, t2[ is said to be a level-k busy window
if:

1. t1 and t2 are level-k quiet times;

2. there is no level-k quiet time in ]t1, t2[; and

3. at least one job with a priority higher than or equal to k is activated in3 [t1, t2[.

Note that, due to the non-preemptive nature of scheduling, a job with priority lower than k
may be executing at the beginning of a level-k busy window. This is referred to as blocking and
the duration of the blocking delay at the beginning of a busy window [t1, t2[ is denoted bk(t1).

3Using this definition, we can prove that at least one job with a priority higher than or equal to k is activated
at t1.

RR n° 9443



8 Pascal Fradet, Xiaojie Guo, Sophie Quinton

q(1)

q(2)

τi,2

τi,1

1 2 3 4 5 10 15 20

Figure 2: Queueing delays in a busy window.

Let  be an arbitrary job of task τi,k. Let [t1, t2[ denote the level-k busy window during
which  of τi,k is activated4. Clearly, a job with a priority higher than or equal to k completes
in the level-k busy window in which it is activated. In other words, its response time can be
bounded by the length of the corresponding busy window. Such a bound is however quite coarse.
In particular, there may be several jobs of the same task activated in the same busy window.
To provide a tighter bound on the response time of , we introduce the notions of phase and
queueing delay, similar to their definition in [15].

Definition 3 (Queueing delay). The queueing delay of a job  in a level-k busy window [t1, t2[,
denoted q(), is the duration t− t1 + 1 where t is the instant at which  is scheduled for the first
time ( i.e., starts execution).

Figure 2 shows the queueing delays of the two jobs of task τi,2 in a level-2 busy window where
n denotes the n-th job of task τi,2 activated in that busy window.

Definition 4 (Phase). The phase of a job  activated in an interval [t1, t1 + ∆[, denoted ϕ(),
is the duration act()− t1, i.e., the duration between t1 and the activation time of that job. The
phase of a task τj,l is the phase of the first job of τj,l in [t1, t1 + ∆[.

For instance, in Figure 2, the phase of 1 in [0,23[ is 0, and that of 2 is 0 + 1× 9 = 9.

Based on these definitions,  completes at

t1 + q()− 1 + c()

The response time of  is therefore

r() = t1 + q()− 1 + c()− act()

which can be rewritten with the phase of 

r() = q()− 1 + c()− ϕ() (1)

From now on, our objective will be to compute a bound on r(). For that, we will look for an
upper bound on q() and c() as well as a lower bound on ϕ(). First, let us explain how the
queueuing delay q() can be computed, using the notion of workload.

Definition 5 (Workload). The workload wl j,l(t1,∆) of task τj,l in a time interval [t1, t1 + ∆[
is the cumulative execution time of its jobs activated in that interval.

4 It can be shown that if the utilization is below 100%, it is always possible to compute that level-k busy
window.

Inria
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The queueing delay of  can be found by computing the least fixed point of the following
equation:

∆ = fq(∆)

where
fq(∆) := bk(t1) +

∑
τj,l∈hp(k)

wl j,l(t1,∆) + wl i,k (t1, ϕ()) + 1 (2)

The intuition behind the above formula is that job  can only be scheduled after (1) the initial
blocking delay; (2) the execution of all higher priority jobs that have been activated before  can
get scheduled; and (3) the execution of other jobs of τi,k activated before .

The key to upper bound q() is to upper bound fq(∆) by a function f+q (∆), and then use the
following lemma to conclude that the fixed point of f+q (∆) is an upper bound on q().

Lemma 1. Let f , g : N→ N be two monotonically increasing functions and ∆1 and ∆2 be fixed
points of the equations ∆ = f (∆) and ∆ = g(∆), respectively. Then if for all x : N, f(x) ≤ g(x)
and, for all x : N+, x < ∆1, we have x < f(x), then ∆1 ≤ ∆2.

To upper bound fq(∆), let us start by upper bounding the blocking delay.

Lemma 2 (Blocking delay bound). bk(t1) ≤ b+k where

b+k := max
τj,l∈lp(k)

(c+j,l − 1) (3)

Indeed, blocking is maximized when the lower priority task that has the largest worst-case
execution time starts executing a job with such an execution time just one time unit before the
start of the level-k busy window.

Second, let us upper bound the workload of tasks. For any task τj,l in the system, and for
any time duration ∆, the workload of task τj,l is maximized when all its jobs take their WCET.
Formally,

Lemma 3 (Workload bound). wlτj,l(t1,∆) ≤ wl+τj,l(t1,∆) where

wl+τj,l(t1,∆) := d∆− ϕ(τj,l)

pj,l
e × c+j,l (4)

wl+τj,l is called the workload bound function of task τj,l.

Let us now focus on lower bounds on the phase. Suppose that  is the n-th job of task τi,k in
the interval [t1, t1 + ∆[. Given that we only consider periodic tasks, we have

ϕ() = ϕ(τi,k) + (n− 1)× pi,k (5)

Within busy window [t1, t2[, the response time of task τi,k can be locally bounded by

max
n≤n+



{q(n)− 1 + c(n)− ϕ(n)}

where n+ is an upper bound on the number of jobs of task τi,k in that busy window and n
represents the n-th job of task τi,k activated in that busy window. n+ can be computed by

n+ :=

⌈
bw 

pi,k

⌉
(6)

RR n° 9443



10 Pascal Fradet, Xiaojie Guo, Sophie Quinton

where bw  = t2 − t1 denotes the duration of the busy window during which  executes.
bw  can be found by computing the least fixed point of the following equation:

∆ = fbw (∆)

where
fbw (∆) := bk(t1) +

∑
τj,l∈hep(k)

wl j,l(t1,∆)

Computing an upper bound on the WCRT of task τi,k amounts now to finding a finite set of
scenarios such that fbw (∆) and fq(∆) for any busy window are bounded by the corresponding
functions f+bw (∆) and f+q (∆) of a scenario in that set. The WCRT of the task τi,k is found by
taking the maximum WCRT found for all these scenarios.

3.2 Precise analysis
The precise analysis considers the finite set of scenarios corresponding to the cases where

1. all jobs in the busy window take their worst-case execution time to complete; and

2. t1 is aligned with an activation in each transaction.

We will show that, for any given job  of task τi,k, there is a scenario belonging to the set
described above that upper bounds q() and lower bounds ϕ().

Definition 6 (Alignment). Let tj denote the time of the first activation in Tj ∩ hep(k) after t1
and al j, called alignment, the duration between the latest activation of transaction Tj before t1,
and tj.

For any task τj,l in the system, and for any time instant t1 and time duration ∆, the workload
of task τj,l is maximized when we right shift the interval [t1, t1 + ∆[ to align t1 with the first
activation with a priority higher than or equal to k in Tj after t1.

Lemma 4. wl+j,l(t1,∆) ≤ wl+j,l(tj ,∆)

The key to the precise analysis is that there is only a finite number of tj for which wl+j,l(tj ,∆)
differs: at the end of the hyperperiod of Tj , the activation pattern, and therefore the workload,
repeats. In fact, we can show that wl+j,l(tj ,∆) = wl+j,l(oj + al j ,∆) and that al j is an element of
Al j defined as follows.

Al j :=
⋃

τj,l ∈Tj ∩ hep(k)

{ al j = oj,l +m× pj,l | m ∈ N ∧ al j < HP j }

The list Al j of offsets for each transaction Tj is composed of all possible activations of jobs with
a higher priority than k (∈ hep(k)) in the transaction Tj within its hyper-period HP j .

The consequence of that is that the workload (and therefore the busy window length and the
queueing delay) in any busy window can be upper bounded by a finite set of workload bounds.

Lemma 5. For any time duration ∆,

fbw (∆) ≤ f+bw (∆) (7)

where
f+bw (∆) := b+k +

∑
τj,l∈hep(k)

wl+j,l(oj + al j ,∆) (8)

Inria
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Lemma 6. In any level-k busy window and for any time duration ∆

fq(∆) ≤ f+q (∆) (9)

where
f+q (∆) := b+k +

∑
τj,l∈hp(k)

wl+j,l(oj + al j ,∆) + wl+i,k (oi + al i, ϕ()) + 1 (10)

Furthermore, one can easily express ϕ() as a function of al i. If  is the n-th job of τi,k, then:

ϕ() = oj,l + (n− 1)× pi,k − al i (11)

To upper bound the WCRT wcrti,k of τi,k, we thus need to test all possible such al j for each
transaction Tj , representing all possible alignments of the busy window with an activation. The
list of all scenarios is made of all combinations of alignments over all transactions. The WCRT
wcrti,k of task τi,k is bounded by the maximal WCRT of all scenarios.

Definition 7 (Scenario). A scenario s is a tuple (al1, · · · , alN ) representing a list of alignments
for each transition. We denote r+s (τi,k) the response time bound obtained using the corresponding
bounds described above.

Theorem 1. Let × denote the cartesian product. Then

wcrti,k ≤ max
s∈S
{r+s (τi,k)}

where S = Al1 × · · · ×AlN

3.3 Approximate analysis
For large systems, the number of precise scenarios explodes and the precise analysis quickly
becomes intractable. In this subsection, we present a more efficient but approximate analysis.
It follows the same approach as presented in [24]. Its principle is to use approximate scenarios,
which consist in the alignments of the considered transaction Ti only; the other transactions are
represented by an approximate workload bound function. The latter provides an upper bound
on the workload among all possible alignments and is defined as follows.

Definition 8. The approximate workload bound function of a transaction Tj for the duration ∆
is defined as the maximum workload among all possible alignments represented by Al j:

wl∗Tj
(∆) = max

alj∈Alj

 ∑
τj,l∈Tj ∩ hep(k)

wl+τj,l(oj + al j ,∆)


Functions f+bw (∆) and f+q (∆) are upper bounded by using wl∗Tj

(∆) for each transaction Tj .
However, in order to obtain a tighter bound, we compute the precise workload of transaction Ti
of task τi,k (i.e., the task we analyze).

Lemma 7 (Bound-f+bw (∆)). For any time duration ∆ and any al i ∈ Al i

f+bw (∆) ≤ f∗bw (∆)

where
f∗bw (∆) := b+k +

∑
Tj∈Sys
j 6=i

wl∗Tj
(∆) +

∑
τi,l∈Ti ∩ hep(k)

wl+τi,l(oj + al j ,∆)
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Lemma 8 (Bound-f+q (∆)). For any time duration ∆ and any al i ∈ Al i

f+q (∆) ≤ f∗q (∆)

where

f∗q (∆) := b+k +
∑

Tj∈Sys
j 6=i

wl∗Tj
(∆) +

∑
τi,h∈Ti∩hp(k)

wl+τi,h(oj + al j ,∆) + wl+τi,k (oi + al i, ϕ()) + 1 (12)

We compute bw∗ali the least fixed point of equation

bw∗ali = f∗bw (bw∗ali)

and, for each n ≤ n∗ali , the least fixed point of equation:

q∗ali,n = f∗q (q∗ali,n)

then, the response time of jobs of task τi,k activated in the busy window [t1, t2[ is upper bounded
by r∗ali(τi,k) defined as:

max
n≤n∗

ali

{
q∗ali,n − 1 + c+i,k − (oj,l + (n− 1)× pi,k − al i)

}
Then, the WCRT wcrti,k of task τi,k is the maximum of these values for all possible alignments
represented by Al i.

Theorem 2.
wcrti,k ≤ max

ali∈Ali
{r∗ali(τi,k)}

Compared to the precise analysis, we do not consider all possible combinations (the cartesian
product) of all alignments of all transactions.

3.4 Generic Analysis
We have presented two analyses for CAN:

• A precise analysis which provides a precise result but quickly becomes intractable.

• An approximate analysis which is able to efficiently return approximate results.

To benefit from the advantages of both the precise analysis and the approximate analysis, we
combine the two analyses together in order to use as much as possible the approximate version
to compute the precise results. The combined analysis presented in Section 4 relies on a generic
analysis that we present now.

The generic analysis combines in a generic way the precise and approximate analyses. It
allows computing the WCRT by using a combination of precise alignments and approximate
alignments5. The precision of its results depends on its inputs. It computes the precise result if
its inputs are all precise alignments, the approximate results while its inputs are all approximate
alignments, or a trade-off between precise and approximate analysis if its inputs contain both
precise and approximate alignments. It separately computes precise workloads and approximate
workloads. Transactions in systems are divided into two disjoint sets:

5An approximate alignment means that an approximate workload bound function are used for computing the
WCRT
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1. Setp (Contributing precise workload); Each transaction in Setp provides a precise work-
load for each specific alignment between transactions among this set. All possible align-
ments are considered to perform the worst-case response time for a given task τi,k to be
analyzed. Note that the transaction Ti containing the task under consideration τi,k will
always be in this set.

2. Seta (Contributing approximate workload). Each transaction in Seta provides an approx-
imate workload as defined in Definition 8.

Considering the two sets, functions f+bw (∆) and f+q (∆) can be upper bounded by using wl+(∆)
for transactions from Setp and wl∗(∆) for transactions from Seta.

Definition 9. Let SSetp
:= {· · · × Al j × · · · } be all combinations of alignments among

transactions in Setp, where Al j is the set of alignments for transaction Tj ∈ Setp.

Lemma 9 (Refined Bound-f?bw (∆)). For any time duration ∆ and any s ∈ SSetp :

f+bw (∆) ≤ f?bw (∆)

where
f?bw (∆) := b+k +

∑
Ti∈Seta

wl∗Ti
(∆) +

∑
Tj∈Setp

o∈O

wl+Tj
(o,∆)

Lemma 10 (Refined Bound-f?q (∆)). For any time duration ∆, any s ∈ SSetp and n:

f+q (∆) ≤ f?q (∆)

where

f?q (∆) := b+k +
∑

Ta∈Seta

wl∗Ta
(∆) +

∑
Tp∈Setp

p 6=i

wl+Tp
(op + alp,∆)

+
∑

τi,l∈Ti ∩ hep(k)

wl+τi,h(oi + al i,∆) + wl+τi,k (oi + al i, ϕ(n)) + 1

(13)

and ϕ(n) := oj,l + (n− 1)× pi,k − al i.

Let Al be a list of alignments which consists of one al j for each transaction Tj ∈ Setp. We
can prove that Al ∈ £Setp

. Similar to the two previous analyses, an upper bound of the length
of bw  is obtained by computing bw?

Al , the least fixed point of equation

bw?
Al = f?bw (bw?

Al)

Within bw?
Al , we can compute the maximum number n?Al of activations of task τi,k. Then, for

each q ≤ n?Al , we compute the least fixed point of equation:

q?Al,n = f?q (q?Al,n)

Consequently, the response time of jobs of task τi,k activated in the busy window [t1, t2[ is
upper bounded by

r?Al(τi,k) = max
n≤n?

Al

{
q?Al,n − 1 + c+i,k − ϕ(n)

}
with ϕ(n) := oj,l + (n− 1)× pi,k − al i.

Finally, the WCRT wcrti,k of task τi,k is the maximum of these values for all possible align-
ments represented by SSetp .
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Theorem 3.
wcrti,k ≤ max

s∈SSetp

r?s (τi,k)

This analysis is a generic version for both the precise one and the approximate one. It provides
with the same result as the precise analysis when Setp only contains transaction Ti, while it
returns the same result as the approximate analysis when Seta = ∅. Of course, many other
combinations can be used by using different divisions of transactions.

The complexity of any instance of the generic analysis lies between the complexities of the
precise and approximate analyses. In Theorem 3, the size of £Setp reflects the time complexity
of this analysis. It is greater than the size of Al i used for the approximate analysis and less than
the size of {Al1 × · · · × AlN} used for the precise analysis. It makes it possible to obtain many
different precisions by choosing how to divide transactions into Seta and Setp.

4 Combined RTA and Result Certifier
In this section, we present two combined RTAs based on the previous generic analysis. The
underlying idea is to use the approximate version when it can be shown that its result is the
precise one. In addition, we present CertiCAN, a result certifier based on combined RTA, which
can certify the results of industry analyzers even for large systems.

For the sake of clarity, we start by presenting a simple two-level combined RTA. Then, we
present the full combined RTA which is at the basis of CertiCAN.

4.1 Two-level Combined RTA

The two-level combined analysis is based on the precise and approximate analyses presented in
Sections 3.2 and 3.3. Its main features are the following.

• It uses the approximate analysis as much as possible to avoid unnecessary computations
and thus increase performance;

• It nevertheless computes the same results as the precise analysis.

For the sake of simplicity, we abstract an analysis as a function A that takes a scenario s
as input and that returns a result i.e., the WCRT. The precise analysis, Ap, considers a list of
precise scenarios Sp and computes a worst case response time for each. Its result is the maximum
of all these computations, that is:

max
sp∈Sp

Ap(sp)

The approximate analysis, Aa, does the same on a list of approximate scenarios Sa . The two
soundness properties of the approximate analysis are:

• Each approximate scenario sa dominates a list of precise scenarios written Dom(sa) i.e.,

maxsp∈Dom(sa)Ap(sp) ≤ Aa(sa) (14)

• The list Sa of approximate scenarios dominates all precise scenarios of Sp .

Therefore, we know that the result of the approximate analysis is an over approximation of the
precise result, that is

maxsp∈Sp
Ap(sp) ≤ maxsa∈Sa

Aa(sa) (15)
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sa1 sa2

spsp sp spsp sp

2000Approximate

Precise

1600

1900 1800 1580

· · · · · ·

Figure 3: Scenario domination according to the two-level combined analysis for a system of four
transactions. Each approximate scenario (orange node) dominates 1000 precise scenarios (green
nodes). Unprinted nodes and the nodes in gray represent the scenarios which do not need to be
analyzed.

The two-level combined analysis is based on the following observation: If the WCRT obtained
for an approximate scenario sa is less than the WCRT found so far on the set of precise scenarios
visited, then there is no need to analyze the precise scenarios dominated by sa.

Example 1. Consider a system of four transactions {T1,T2,T3,T4} and the number of align-
ments in each transaction is 2, 10, 10, 10 respectively. For a task of transaction T1, the precise
analysis has to perform 2000 scenarios for computing a precise result, while we only need to
examine 2 scenarios for obtaining an approximate result by over-approximating the three other
transactions T2, T3, and T4.

This example with 2 approximate scenarios and each one dominating 1000 precise scenarios is
depicted in Figure 3, where vertices represent scenarios, edges represent the domination relation
and labels next to vertices are their corresponding response times. For this example, the two-
level combined analysis is called with an initial WCRT 0 and the list [(2000, sa1); (1600, sa2)]. It
proceeds as follows:

• the current approximate response time (2000) is greater than the current WCRT (0) so the
maximum response time of the 1000 dominated precise scenarios is computed (1900) and
becomes the current WCRT;

• because 1900 is greater than or equal to the next approximate response time in the list
(1600), the response times of the corresponding dominated scenarios do not need to be
computed (they are necessarily smaller);

• the analysis returns 1900 which is the precise WCRT but considered only 1000 precise
scenarios instead of 2000.

The two-level combined RTA returns the same WCRT as the precise analysis but using in
practice much fewer computations.

4.2 Full Combined RTA

The problem of the two-level combined RTA is that a single approximate scenario may dominate
a considerable number of precise scenarios, in particular, for systems that have many transac-
tions. Therefore, for large systems, it is sometimes intractable to analyse all the precise scenarios
dominated by the first approximate scenario alone. In order to solve this issue, we add interme-
diate approximate levels to get a multi-level combined RTA. We refer to this version as the full
combined RTA.
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The full combined analysis is based on the generic analysis as presented in Section 3.4. It
separates the transactions into two disjoint sets Setp and Seta. It examines all alignments for
transactions in Setp and uses the approximate workload bound function for each transaction
in Seta. The main idea of the full combined analysis is to refine the approximate analysis
transaction by transaction, until the computed result cannot decrease any more, and is then
guaranteed to be the same as that of the precise analysis.

For instance, consider a system {T1, . . . ,Tn}; to analyze a task in transaction T1, the full
combined analysis starts with Setp = {T1} and Seta = {T2, . . . ,Tn}. The scenarios correspond
to all combinations Al?Setp

of alignments among transactions in Setp, that is represented by
Al1; Then, we refine the result by putting one transaction from Seta into Setp, for example
Setp = {T1,T2} and Seta = {T3, . . . ,Tn}. Thus, we must now check more scenarios Al?Setp

=
Al1 × Al2; Consequently, the time complexity increases but the result is more precise. When
all transactions are moved into Setp, the analysis checks all combinations of alignments, that
is, all precise scenarios. Therefore, it provides the same result as the precise analysis. Using
this refinement technique, we build a tree with as many levels as the number of transactions in
the system to analyze. Each level represents a setting of the generic analysis. The first level
describes the approximate analysis, while the last level expresses the precise analysis.

Example 2. We take the same example with four transactions as in Example 1 and build a 4-
level tree according to the procedure of the full combined analysis (in Figure 4). The full combined
analysis first computes the sorted list [(2000, sa1); (1600, sa2)] representing scenarios at Level-1
and the transaction sets Setp := {T1} and Seta := {T2,T3,T4} to refine. Given that Seta
is not empty, we move one transaction from Seta to Setp and compute the results for the 10
scenarios at Level 2 dominated by the scenario corresponding to the largest approximate response
time (2000) at Level 1. Then the results for the 10 scenarios are sorted by descending order. That
builds a part of Level-2; Recursively, we take one transaction from Seta to compute Level-3, and
so on until Level-4 when the Seta is empty; At Level-4, all results are precise and the largest
response time is 1900. Then, 1900 becomes the current precise WCRT; because 1900 is greater
than or equal to all next approximate response at any level (1890 at Level 3, 1700 at Level 2,
1600 at Level 1), the response times of the corresponding dominated scenarios do not need to be
computed (they are necessarily smaller); the analysis returns 1900 which is the precise WCRT.
It had to consider only 22 approximate and 10 precise scenarios.

sa1 sa2

s ′02s ′01 s ′10

s ′′02s ′′01 s ′′10

s ′′′02s ′′′01 s ′′′10

s ′12s ′11 s ′20

s ′′12s ′′11 s ′′20

s ′′′12s ′′′11 s ′′′20

2000Level-1 (2 scenarios)

Level-2 (2× 10 scenarios)

Level-3 (2× 10× 10 scenarios)

Level-4 (2× 10× 10× 10 scenarios)

1600

1920
1700

1580

1910
1890

1680

1900 1800 1780

· · ·

· · · · · ·

· · ·

Figure 4: Scenario domination according to the full combined analysis for a system of four
transactions. Each approximate scenario dominates 10 less approximate scenarios. Unprinted
nodes and the nodes in gray represent the scenarios which do not need to be analyzed.

The procedure of the full combined analysis is similar to the two-level combined analysis: It
uses the computed results from approximate scenarios to help the refinement procedure then to
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reduce the number of scenarios to analyze. Generally, it can be seen as a branch-and-bound algo-
rithm applied to a tree. The efficiency of the analysis depends on the order in which transactions
are chosen for the refinement. We discuss this point in Section 5.3.

Algorithm 1 Full Combined RTA

1: % R denotes the current WCRT, its initial value is 0
2: % lS denotes a list of scenarios (at the first level) paired with their corresponding WCRT
3: lS := sort(map(λs.(Ag(s), s)) S1)
4: % ltr denotes the list of transactions to be refined (i.e., Seta)
5: procedure CRTA(R, lS , ltr)
6: match lS with
7: % lS empty: returns the WCRT
8: | nil ⇒ return R
9: % otherwise: takes one element to analyze

10: |(r, s) :: l′S ⇒
11: % if the current WCRT is greater than the approximate result r,
12: then returns the current WCRT
13: if R ≥ r then return R
14: else
15: match ltr with
16: % if ltr is empty, returns max(r,R)
17: | nil ⇒ return max(r,R)
18: % otherwise, takes one transaction to refine
19: |t :: l′tr ⇒
20: % computes the dominated scenarios as well as their results,
21: and sorts their results
22: llocal ← (sort (map (λs.(Ag(s), s)) (refine s ltr)));
23: % computes the result for those dominated scenarios
24: Rlocal ← CRTA(R, llocal, l

′
tr);

25: % recursively, analyzes the remaining elements l′S of the list lS
26: CRTA(Rlocal, l′S , ltr)
27: end if
28: end procedure
29: CRTA(0, lS , ltr)

The structure of the full combined analysis is shown in Algorithm 1. First, the generic
analysis is first applied to each scenario at the first level (we denote S1 the set of scenarios at
the first level). These results (i.e., one WCRT for each scenario) paired with their corresponding
scenario are sorted in descending order lS := sort (map (λs.(Ag(s), s)) S1) as shown at Line 3
in Algorithm 1. Sorting the list in that order leads to considering the scenario with the largest
approximate WCRT first. This heuristic relies on the intuition that the largest precise WCRT
(which is the value to be found) is more likely to be dominated by a large approximate WCRT
and therefore, will be found earlier with that ordering.

Then, at Line 5 in Algorithm 1, the combined RTA (CRTA) is called with 0 as the initial result
(noted R, it will be updated after each iteration), the list lS := sort(map(λs.(Ag(s), s)) S1), and
a list ltr of transactions to be refined (i.e., Seta). CRTA considers each approximate WCRT
of list lS in turn and starts with the first member (r, s) of lS . Note that r = Ag(s) is the
WCRT for scenario s. If R ≥ r then it stops and returns R (it is not the case when R = 0 as
the initial input). Otherwise, it examines whether there are still some transactions in ltr to be
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refined (Line 15). If ltr is empty, it means that all transactions have been taken into account
precisely and the current WCRT becomes max(r,R). If there are still transactions in ltr, for the
current scenario s, at Line 22, the function refine computes its dominated scenarios as well as
their results using the refinement mechanism and sorts their results by descending order. These
dominated scenarios paired with their results are stored in the list llocal. Next, the local WCRT,
noted Rlocal, is computed for that list. Recursively, CRTA proceeds with the next element of the
initial list and the local result Rlocal until it finds the global WCRT, i.e., the precise WCRT.

We have formally proven in Coq that the results returned by the full combined analysis are
the same as the ones computed by the precise analysis.

4.3 The CertiCAN Result Certifier

From the full combined RTA, we derive our result certifier, CertiCAN, which is able to check
results of CAN analysis tools. Consider a result R0 computed by an industrial analyzer. To
certify this result, we apply the full combined analysis with an initial WCRT set at R0.

The algorithm of CertiCAN is shown in Algorithm 2. To check that R0 is equal to or larger
than the precise WCRT, CertiCAN considers each approximate WCRT of the argument list
(i.e., lS), in turn. If the current WCRT is equal to or less than R0 then the certification is
completed (and returns True) since all remaining approximate WCRTs (and the WCRTs of the
corresponding dominated scenarios) of the list lS are also less than R0. Otherwise, it examines
whether there are still some transactions in ltr to be refined. If ltr is empty, it means that there
is no transaction left to be refined and the current WCRT is a precise result, consequently if R0

is smaller than that precise WCRT, CertiCAN returns False. Otherwise, for the scenario s, the
function refine computes the dominated scenarios as well as their corresponding WCRT. These
dominated scenarios paired with their corresponding WCRT are stored in the list llocal. Then,
CertiCAN checks results computed using that list. If the result is False then the certification
procedure completes and returns False. Otherwise, CertiCAN proceeds, recursively, with the
next element of the initial list lS .

If CertiCAN returns True then it can be formally proven that R0 is greater than or equal to
the precise WCRT.

5 Optimization

Although the full combined RTA is able to accelerate the computation of a precise result, it
is still time consuming when systems are complex. In this section, we present three additional
optimizations for CertiCAN. They are based on the following observations:

1. Within one transaction, there are possibly many alignments. Each alignment within a
transaction can be considered as a specific workload function to analyze as shown in Fig-
ure 5a. Therefore, we can determine the domination relation between alignments by com-
paring their corresponding workload functions. This permits to remove dominated align-
ments without loss of precision;

2. During the analysis, some functions are called with the same arguments repeatedly. These
recomputations can be avoided using memoization and lookup tables;

3. The order of transactions considered for refinement affects the analysis speed. We have
investigated several heuristics to find orders that accelerate the analysis.
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Algorithm 2 The CertiCAN Result Certifier

R0 contains the WCRT to certify

1: % lS denotes a list of scenarios (at the first level) paired with their corresponding WCRT
2: lS := sort(map(λs.(Ag(s), s)) S1)
3: % ltr denotes a list of transactions (i.e., Seta)
4: procedure CertiCAN(lS , ltr)
5: match lS with
6: % if lS is empty, returns True
7: | nil ⇒ return True
8: % otherwise, takes one element of lS to analyze
9: |(r, s) :: l′S ⇒

10: % if the WCRT to certify is greater than the approximate result r,
11: then returns True
12: if R0 ≥ r then return True
13: else
14: match ltr with
15: % if ltr is empty, returns False
16: | nil ⇒ False
17: % otherwise, takes one transaction to refine
18: |t :: l′tr ⇒
19: % computes the dominated scenarios as well as their results,
20: and sorts their results
21: llocal ← (sort (map (λs.(Ag(s), s)) (refine s ltr)));
22: % certifies the result for those dominated scenarios
23: Rlocal ← CertiCAN(llocal, l′tr);
24: if Rlocal = False then return False
25: else
26: % recursively, certifies the results for the remaining elements l′S
27: CertiCAN(l′S , ltr)
28: end if
29: end if
30: end procedure
31: CertiCAN((sort (map (λs.(Ag(s), s)) S1)), ltr)
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(a) A transaction of two periodic tasks. Their offsets are
2 and 3, their periods are 6 and 9, respectively. Num-
bers next to arrows represent job execution times. The
LCM of tasks periods is 18, during which there will be
5 activations. This transaction, therefore, represents 5
alignments. Each dashed line shows the beginning of an
alignment.
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(b) Workload functions of the five align-
ments of the transaction presented in Fig-
ure 5a.

Figure 5: Abstraction of one transaction to workload functions.

5.1 Removing dominated alignments
Each alignment of a transaction corresponds to a workload function as shown in Figure 5. For
instance, for the alignment represented by the red dashed line (at time 2) in Figure 5a, its
cumulated workload for a given duration ∆ is wl1(∆) in Figure 5b. Thus, a transaction can be
considered as a set of workload functions to analyze. We design an algorithm that filters out
dominated alignments (i.e., workload functions) from each transaction. For example, we can
remove function wl5 because its value is always smaller than that of wl1. Then we prove that
this filtering is correct, that is, it preserves the final results.

First, let us introduce some definitions expressing relations between workload functions and
between scenarios.

Definition 10 (Strong workload domination). A workload function wl1 is said to strongly dom-
inate the workload function wl2, denoted wl1 � wl2, if and only if for any duration ∆ ∈ N ,

wl1(∆) ≥ wl2(∆)

Definition 11 (Weak workload domination). A workload function wl1 is said to weakly dominate
the workload function wl2 w.r.t. a duration L, denoted wl1 �

L
wl2, if and only if for any duration

∆ ∈ [0, L],
wl1(∆) ≥ wl2(∆)

Note that to determine the weak domination relation between workload functions for a set
of periodic tasks, it is sufficient to compare their workload value for any duration within the
hyper-period, i.e., LCM of all task periods.

A scenario corresponding to a specific alignment can be considered as a collection of workload
functions, which consists of one function from each transaction.

We now introduce the notion of scenario workload and generalize the notion of domination
between scenarios.

Definition 12 (Scenario workload). Consider a scenario s corresponding to a collection of n
workload functions {wl1,wl2, . . . ,wln}, for a given time duration ∆, its workload is the sum of
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all workloads provided by the n workload functions. Formally,

wl s(∆) =

n∑
i=1

wl i(∆)

Definition 13 (Scenario domination). A scenario s1 is said to dominate the scenario s2, denoted
s1 � s2, if and only if the WCRT computed for s1 is greater than the one obtained for s2.
Formally,

s1 � s2 ⇐⇒ WCRTs1 ≥WCRTs2

Lemma 11 (Workload function domination implies scenario domination). Consider two sce-
narios s1 and s2 with workload functions wl s1 and wl s2 , respectively. Let L be the least fixed
point of equation f(L) = b+k +

∑
Tr∈Sys wl∗Tr(L). If wl s1 weakly dominates wl s2 w.r.t. L, then

R̃T
+

s1 ≥ R̃T
+

s2 . As a result,
wl s1 �

L
wl s2 =⇒ s1 � s2 (16)

In order to determine the domination relation between scenarios, we compute the weak dom-
ination relation between their corresponding workload functions. Then, we design a procedure
to filter out dominated functions using domination relations and prove its correctness.

That algorithm relies on three simple functions:

1. Filter(lf , f ) removes the function f from the list lf of functions if f is a member of that
list;

2. Compare(wl1, wl2, L) computes whether wl1 is weakly dominated by wl2 w.r.t. L. It returns
true if wl1 is dominated by wl2 for any ∆ ∈ [0, L] and false otherwise;

3. DominatedByOthers(f, lf , L), defined in Algorithm 3, computes whether a function f is
weakly dominated (w.r.t. L) by any function except itself from a list lf of functions.

The main procedure, described in Algorithm 4, proceeds as follows:

• It starts with n workload functions f0, .., fn−1 to be filtered and a length L for computing
their weak domination relations;

• DominantFunction is called to filter out all dominated functions from lf (Line 15). It
takes two lists (initially, they are the same i.e., lf ) and a number L; it returns the list
of all dominant functions of lf (i.e., the functions which are not dominated by any other
function from lf );

• if l2 is empty then it returns the list l1 (Line 4), otherwise it checks whether the first
function wl from l2 is dominated by any other function from l1 (Line 8);

• if wl is dominated by another function of l1 then it removes wl from l1 and continues to
examine the functions l′2 by recursively calling DominantFunction (Line 9); otherwise,

• otherwise, it examines the remaining functions l′2 without changing l1 (Line 11).

As mentioned before, the LCM of task periods is one sufficient length for determining weak
domination relation among workload functions. In order to increase the efficiency of our tool,
we have proven the smallest sufficient length (SSL)6 for filtering out the dominated workload
functions is the worst-case busy window. We will compare the efficiency of the filter with LCM
and the one with SSL in the next section. This optimization has been proven in Coq and applied
in our tool.

6It is the length of the longest busy window.
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Algorithm 3 Dominated by Others
1: f denotes a workload function
2: lf denotes a list of workload functions f0, f1, .., fn−1
3: L denotes the sufficient length for determining the weak domination relations between work-

load functions from the list lf
4: procedure DominatedByOthers(f, lf , L)
5: match lf with
6: | nil ⇒ false
7: |f ′ :: l′f ⇒
8: % if f ′ is f itself (note that each function has an identifier)
9: if f ′ isf then

10: % then examine other functions l′f
return DominatedByOthers(f, l′f , L)

11: % else if f is dominated by f ′ return true
12: else if Compare(f, f ′, L) then

return true
13: else
14: % else examine other functions l′f

return DominatedByOthers(f, l′f , L)
15: end if
16: end procedure

Algorithm 4 Dominant Function Filter
1: lf denotes a list of workload functions f0, f1, .., fn−1 to filter
2: L denotes the sufficient length for determining the weak domination relations between work-

load functions from the list lf
3: procedure DominantFunction(l1, l2, L)
4: match l2 with
5: | nil ⇒ l1
6: |wl :: l′2 ⇒
7: % if wl is dominated by any other function from l1
8: if DominatedByOthers(wl, l1, L) then
9: % then wl is removed from l1 then the functions l′2 are examined

return DominantFunction(Filter(l1 ,wl), l′2, L)
10: else
11: % else examine the functions l′2

return DominantFunction(l1, l′2, L)
12: end if
13: end procedure
14: % ldomf contains all dominant functions for the list lf
15: ldomf := DominantFunction(lf , lf , L)
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5.2 Avoiding recomputations
To analyze the response time of one task, we need to examine many scenarios, which are actually
combinations of workload functions. And to certify a system, we need to analyze all tasks.
Workload functions will be evaluated numerous times with the same arguments involving many
recomputations. We improve this by applying techniques like memoization. For the sake of
simplicity in proofs, we used lookup tables to store results of workload functions.

For each transaction, we can pre-calculate each workload function up to a large enough value7,
e.g., its hyper-period HP and store all values in a table. When a specific value is needed, we search
from this table, instead of recalculating. In addition, it is not necessary to compute all workload
values for the domain [0,HP [. We only need to compute workloads for some specific durations
i.e., discontinued instants in Figure 5b when their workload values change. For instance, in
Figure 5b, the instants when wl1 must be computed are just 1, 2, 7, 11, 13, and similarly 1, 5,
7, 13, 14 for wl2.

This optimization has been implemented and its correctness has been proven in Coq.

5.3 Heuristic algorithms
The analysis starts with approximate results, then it refines them by examining alignments
transaction by transaction. But which transaction should be selected first to analyze? More
generally, which order of transactions should be chosen by the refinement?

We investigated whether the order in which transactions are considered (i.e., moved to Setp)
affects significantly the efficiency of the combined analysis and CertiCAN. For this, we imple-
mented two different heuristics:

• Static order. We sort the transactions by putting the transactions with the highest utiliza-
tion first. The intuition is that when computing an approximate workload, the higher the
utilization of the transaction, the more pessimistic results probably are. In other words,
if the transaction with the highest utilization is considered first for each refinement, the
result is probably refined the most. Therefore, there will be more chances to speed up the
analysis by using the utilization-sorted transaction list to refine. This configuration costs
very little and works for most systems. This strategy is used by our tool. However, the
gain of this optimization depends on the utilization distribution over transactions.

• Dynamic order. In the case where the utilization of the different transactions is similar, the
static order does not provide significant benefit. In this case, we tried a dynamic order. For
each refinement, we examine each transaction to refine (i.e., compute the corresponding
dominated scenarios as well as their WCRT) then choose the transaction with the largest
WCRT to analyze. Thus, finding the transaction to pick at each step requires quite a lot
more computations. In some cases, it speeds up the analysis, but slows it down for other
cases. This optimization is not currently used in our tool.

6 Experimental Evaluation
Having completed the Coq formalization and correctness proofs of our analyses and their opti-
mizations, we used the Coq extraction feature to obtain four certified tools: a precise analyzer8,

7It should be greater than the length of any busy window computed in analyses. In our implementation, it is
the length of the largest busy window that is computed when analyzing the lowest task. We have proven this is
sufficient.

8Given that the precise analyzer has a very high time complexity and can only deal with small systems, it is
not considered in the following experimentations which focus on large systems.
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an approximate analyzer, a combined analyzer, and CertiCAN, the result certifier based on the
combined analysis. Note that all these extracted analyzers integrate the optimizations presented
in Section 5.

In this section, we evaluate these certified tools in terms of performance and scalability.

Table 1: Configuration parameters for NETCARBENCH generator.

ECUs 7 - 15
Utilization 40% - 60%
Period {5, 10, 20, 50, 100, 200, 500, 1000}
Offset random with granularity = 5
Priority unique, arbitrary distribution
Transmission speed 500 kbits/s

The evaluated task sets are generated by NETCARBENCH9, a benchmark generator for
automotive message sets. This generator is used in the design and configuration of CAN and
FlexRay communication systems. The following experimentations have been performed on 3000
systems that were generated by NETCARBENCH using a set of parameters presented in Table 1.
More detail about configuration parameters10 can be found in our NETCARBENCH configura-
tion file in Appendix A. In all figures, all results are obtained from an Intel Core i7@2.6GHz,
16Gb, 64bits laptop.

Evaluation of analyzers

First, we compare the three analyzers: the approximate analyzer, the combined analyzer, and
RTaW-Pegase.

Systems of 7-15 ECUs & U = 0.4-0.6
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Figure 6: Comparison between certified analyzers and RTaW-Pegase

9http://www.netcarbench.org/
10These parameters have been provided by an expert from the automotive domain. Note that the utilization

of the first ECU is allocated 30% of the whole utilization, e.g., it is 18% if the system utilization is 60%.
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Figure 6 shows that the combined analyzer has a remarkable performance. It returns precise
results and its time efficiency is close to that of the approximate analyzer. Compared to Pegase,
the combined analyzer has a better scalability. For the most complex systems, Pegase uses
approximately two hours to compute a result whereas the combined analyzer needs less than 30
seconds to provide the same result. The main reason is that the combined analyzer combines two
analyses (a precise and an approximate) in an optimized way that analyzes scenarios on demand.
Other reasons may be that our optimizations avoid re-computations as much as possible, e.g., by
calculating the discontinued points and removing dominated scenarios. On the other hand,
Pegase is more efficient than the combined analyzer on simple systems. One reason is that
Pegase is written in C whereas the analyzer is extracted from Coq proofs in OCaml.
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Figure 7: Evaluated scenarios by the certified analyzers

During our experimentations, we recorded the number of scenarios evaluated by the certified
tools as showed in Figure 7. The number of scenarios for the precise analyzer is theoretically com-
puted to be compared with the two other analyzers. This figure shows again that the combined
analyzer has a good scalability. It is comparable to the approximate analyzer. Note that the
trend of the combined and approximate analyzers’ curves is similar to the one in Figure 6 because
the runtime of the analyses depends directly on the number of scenarios that are evaluated.

CertiCAN vs Combined analyzer
We evaluate CertiCAN by verifying the results produced by the industrial tool RTaW-Pegase.
We compared the performance of CertiCAN and the combined analyzer in Table 2.

The results in Table 2 show that CertiCAN is as good as the combined analyzer which is not
surprising since they both share the same techniques and optimizations. Knowing the result to
check, CertiCAN is a bit more efficient than the combined analyzer (by 17%). Both tools return
a result in less than four seconds for most systems. For the most complex systems, they both
only take less than half a minute. Note that the number of evaluated scenarios is not exactly
proportional with the runtime because different scenarios may have a different time complexity,
e.g., an approximate scenario requires more computations to find the maximum workload among
all its workload functions.
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Table 2: Performance comparison between CertiCAN and the combined analyzer.

Tool min mean median max

# Evaluated scenarios CertiCAN 496 3573 3330 17136
Combined Analyzer 855 4392 4082 25126

Runtime (s) CertiCAN 0.10 3.67 3.09 24.29
Combined Analyzer 0.14 3.85 3.23 29.15

Of course, CertiCAN is way more efficient than the combined analyzer for checking the
schedulability of systems. We evaluated 100 more complex systems with the configuration (uti-
lization = 60 - 80 %, 15 - 20 ECUs) presented in Appendix B. In this experiment, we verify the
system schedulability using task deadlines as CertiCAN inputs. With this setting, CertiCAN is
45 times more efficient than the combined analyzer.

Impact of optimizations
We have evaluated 100 systems using the same configuration presented in Table 1 to understand
the impact of applied optimizations using the same configuration presented in Table 2. The result
is presented in Table 3. CertiCAN with 2 levels cannot deal with large systems, using many levels
of refinement and a filter for filtering out dominated functions makes it possible. The filter with
SSL is 5 - 8 times more efficient than the one with LCM. Avoiding recomputations11 provides an
improvement by a factor of 15 - 25.

Table 3: Impact of optimizations.

Statistic 2 levels
Many Levels
Filter-LCM

Without AVO

Many Levels
Filter-SSL

Without AVO

Many Levels
Filter-LCM
With AVO

Many Levels
Filter-SSL
With AVO

CertiCAN runtime (s) Mean - 492 61 20 4
Max - 6435 329 831 15

According to all our experiments, we found that both the combined analyzer and CertiCAN
have a high scalability. As far as we know, in modern cars, no more than 15-20 ECUs are
connected to a single CAN bus [20, 21]. This indicates that CertiCAN can provide formal
guarantees for industrial CAN bus analyzers.

It came as a surprise to find out that our analyzer was more efficient than Pegase for large
systems. This is due to several sophisticated optimizations that we considered to improve the
poor performance of the first versions of our tools. We now realize that all of them were not
strictly necessary, at least to certify the results of Pegase. Integrating these optimizations into
Pegase would make it more efficient than our certified tools, thus allowing it to analyze even
larger systems.

7 Discussion
We have formally proven in Coq the correctness of the precise, approximate and generic RTAs
presented in Section 3, the combined RTA and certifier of Section 4 and their optimizations
of Section 7. Our proofs build upon the Prosa library [1] and use the basic definitions that

11In Table 3, AVO stands for avoiding recomputations, i.e., lookup table, discontinued points.
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it provides (task, job, arrival sequence, schedule, busy window, etc.). Note that if proofs are
machine-checked, this cannot be the case for specifications and theorem declarations. Besides
using the basic definitions from Prosa, we also had to define the FPNP scheduling policy and
the task model. Compared to the proofs, those specifications are small and simple. They can be
scrutinized and checked by the interested reader [2].

Table 4 illustrates the complexity of the proof effort (note that it excludes proofs from Prosa).
Of course, formalizing these developments in Coq requires much more time and effort than on

Table 4: Proof effort for certifying CAN analyses.

Feature LOC
System model (with proof) 1000
Workload property & removing re-computation 3142
Fixed point property 700
Busy window analysis 3037
Generic analysis 294
Combined analysis 1680
Combination property 545
Approximate and precise analyses 432
Candidate property 1562
Removing dominated candidates 1060
Analyzers & CertiCAN (with proof) 4000
Arithmetic proofs 1400
Total 18852

paper, but it also brings important benefits:

• It gives formal guarantees about the soundness of the specification and the absence of flaws
in the proofs;

• It provides a better understanding of the role of each assumption, which helps to generalize
proofs;

• The Coq extraction technique permits to produce formally verified tools (such as analyzers
and certifiers) in the form of OCaml programs.

One of the most interesting by-products is that formalization often leads to more general and
reusable proofs. For instance, our proof of busy window analysis does not rely on a specific task
model but on abstract functions. It can be reused for other task models as long as we have the
corresponding abstract functions.

Also, we defined two RTAs by instantiating the abstract functions with two different workload
functions. Actually, the approach could be applied to get other RTAs with different levels of
approximation. The combined analysis and certifier depend of generic properties (domination
relations) that do not rely on the specific real-time model under study. The correctness proofs
for the combined algorithm could apply to other kinds of analyses possibly disconnected from
real-time theories.

RR n° 9443



28 Pascal Fradet, Xiaojie Guo, Sophie Quinton

8 Related work

To the best of our knowledge, CertiCAN is the first tool for certifying real-time systems analysis
results. It is, however, built on top of existing results of real-time analyses, in particular formal
proofs and abstraction refinement.

CertiCAN relies on formal definitions and lemmas from the Prosa library [1]. Prosa is the
largest effort to date regarding the certification of real-time systems analyses. It is however
not the first one. Previous publications in the area include [12], [13] and [17], based on the PVS
proof assistant, which use state machines as the underlying formalism. The first two papers focus
on the priority ceiling protocol and the latter on the scheduler of the Deos real-time operation
system. While related to our work in a broader sense, these contributions do not tackle the
problem of certifying RTA results.

Closer to us, a recent attempt [19] aims at certifying the results of Network Calculus com-
putations using the interactive proof assistant Isabelle/HOL. In particular, [19] makes a case for
result certification. The presented results are however preliminary and appear to have been dis-
continued. Our work can thus be seen as the concrete realization, with a different proof assistant
and another underlying analysis technique, of the idea proposed in [19].

Our combined RTA follows a principle that is similar to the abstraction refinement method
used in [22] and [23]. In particular, these two papers already use two different abstraction levels
to compute precise bounds with increased efficiency. The main difference is that [22] deals with
the analysis of digraph tasks with constrained deadlines, which does not fit the CAN context.
We found this approach to be particularly well suited for result certification: having the response
time bound to certify given as input makes the combined analysis all the more efficient.

9 Conclusion

In this paper, we have presented several RTA techniques and optimizations culminating in Cer-
tiCAN, a formally proven tool for the certification of CAN analysis results.

The analysis underlying CertiCAN is based on a combined use of two well-known CAN
analysis techniques, one precise and the other approximate. The resulting analysis is as tight as
the precise analysis but much faster. All analyses and certifier have been proven correct in Coq
on top of the Prosa library. Thanks to the Coq extraction mechanism, we were able to produce
the corresponding certified tools.

We have shown that the CertiCAN approach, which provides result certification rather than
tool certification, is a realistic solution for industrial practice. The reason for this is twofold.
First, it is flexible and light-weight in the sense that it does not depend on the internal structure
or updates of the analysis tool that it complements. Second, it is efficient enough in terms of
computation time. In particular, it is able to certify results computed by RTaW-Pegase, an
industrial CAN analysis tool, even for large systems.

We believe that this work represents a significant step toward a formal certification of real-
time systems analysis results in general. In particular, the underlying technique can be reused for
any other system model for which there exist RTAs with different levels of precision. Future work
includes the extension of the approach to networks of CAN buses and to other communication
protocols.
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Appendices
A Configuration file 1 for NETCARBENCH

1 <netcarbench−data version="3.2" >
2 <can−network name="EVALUATION" granularity="5" bandwidth="500" >
3 <network−load min="0.4" max="0.6" />
4 <nb−network−interfaces min="7" max="15" />
5 <fixed−station−loads>
6 <station id="1" value="0.30" />
7 </fixed−station−loads>
8 <frame−periods>
9 <period value="5" weight="2" margin="1" prio_low_range="1" prio_high_range="200"/>

10 <period value="10" weight="5" margin="2" prio_low_range="201" prio_high_range="400"/>
11 <period value="20" weight="5" margin="2" prio_low_range="401" prio_high_range="600"/>
12 <period value="50" weight="10" margin="4" prio_low_range="601" prio_high_range="800"/>
13 <period value="100" weight="10" margin="4" prio_low_range="801" prio_high_range="1000"/>
14 <period value="200" weight="5" margin="2" prio_low_range="1001" prio_high_range="1200"/>
15 <period value="500" weight="2" margin="1" prio_low_range="1201" prio_high_range="1400"/>
16 <period value="1000" weight="2" margin="1" prio_low_range="1401" prio_high_range="1600"/>
17 </frame−periods>
18 <frame−payloads>
19 <payload value="1" weight="1" margin="1"/>
20 <payload value="2" weight="1" margin="1"/>
21 <payload value="3" weight="1" margin="1"/>
22 <payload value="4" weight="2" margin="1"/>
23 <payload value="5" weight="3" margin="2"/>
24 <payload value="6" weight="4" margin="2"/>
25 <payload value="7" weight="5" margin="2"/>
26 <payload value="8" weight="6" margin="3"/>
27 </frame−payloads>
28 <offsets mode="RANDOM"/>
29 </can−network>
30 </netcarbench−data>

Listing 1: Configuration file 1 for NETCARBENCH
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B Configuration file 2 for NETCARBENCH

1 <netcarbench−data version="3.2" >
2 <can−network name="EVALUATION" granularity="5" bandwidth="500" >
3 <network−load min="0.6" max="0.8" />
4 <nb−network−interfaces min="15" max="20" />
5 <fixed−station−loads>
6 <station id="1" value="0.30" />
7 </fixed−station−loads>
8 <frame−periods>
9 <period value="5" weight="2" margin="1" prio_low_range="1" prio_high_range="200"/>

10 <period value="10" weight="5" margin="2" prio_low_range="201" prio_high_range="400"/>
11 <period value="20" weight="5" margin="2" prio_low_range="401" prio_high_range="600"/>
12 <period value="50" weight="10" margin="4" prio_low_range="601" prio_high_range="800"/>
13 <period value="100" weight="10" margin="4" prio_low_range="801" prio_high_range="1000"/>
14 <period value="200" weight="5" margin="2" prio_low_range="1001" prio_high_range="1200"/>
15 <period value="500" weight="2" margin="1" prio_low_range="1201" prio_high_range="1400"/>
16 <period value="1000" weight="2" margin="1" prio_low_range="1401" prio_high_range="1600"/>
17 </frame−periods>
18 <frame−payloads>
19 <payload value="1" weight="1" margin="1"/>
20 <payload value="2" weight="1" margin="1"/>
21 <payload value="3" weight="1" margin="1"/>
22 <payload value="4" weight="2" margin="1"/>
23 <payload value="5" weight="3" margin="2"/>
24 <payload value="6" weight="4" margin="2"/>
25 <payload value="7" weight="5" margin="2"/>
26 <payload value="8" weight="6" margin="3"/>
27 </frame−payloads>
28 <offsets mode="RANDOM"/>
29 </can−network>
30 </netcarbench−data>

Listing 2: Configuration file 2 for NETCARBENCH
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