
HAL Id: hal-03501383
https://hal.inria.fr/hal-03501383

Submitted on 23 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Computer Mouse Pointing Model Online
Identification and Endpoint Prediction

Anatolii Khalin, Rosane Ushirobira, Denis Efimov, Géry Casiez

To cite this version:
Anatolii Khalin, Rosane Ushirobira, Denis Efimov, Géry Casiez. On Computer Mouse Pointing Model
Online Identification and Endpoint Prediction. IEEE Transactions on Human-Machine Systems, 2022,
52 (5). �hal-03501383�

https://hal.inria.fr/hal-03501383
https://hal.archives-ouvertes.fr

1

On Computer Mouse Pointing Model Online
Identification and Endpoint Prediction

Anatolii Khalin, Rosane Ushirobira, Denis Efimov, Géry Casiez

Abstract—This paper proposes a new simplified pointing model
as a feedback-based dynamical system, including both human and
computer sides of the process. It takes into account the commu-
tation between the correction and ballistic phases in pointing
tasks. We use the mouse position increment signal from noisy
experimental data to achieve our main objectives: to estimate
the model parameters online and predict the task endpoint.
Some estimation tools and validation results, applying linear
regression techniques on the experimental data are presented.
We also compare with a similar prediction algorithm to show
the potential of our algorithm’s implementation.

I. INTRODUCTION

COMPUTER and information technologies conquered a
big part of our everyday lives, and in this way, the

optimization, in a smooth and pleasurable manner, of Human-
Computer Interaction (HCI) processes has become an impor-
tant issue. There are different approaches to analyzing and
designing HCI algorithms, and some of them are based on the
control theory. According to [1], it allows the user and com-
puter systems to be linked by describing the communication
between the parts and the process dynamics as a whole. In such
an approach, the human-computer interaction can be presented
as a feedback interconnection. An experimental comparison of
different methods demonstrates that control theory applications
are up-and-coming in the HCI domain [2]. Most applications
of control theory in HCI so far are directed to pointing tasks.

Pointing is a fundamental task, and it has been a research
subject for many years in the HCI field. A pointing task
consists of guiding some device in the control (also called
motor) space for navigating the cursor in the operating space (a
display). There are some papers about hardware optimization
(for instance, a recent study about the optimal sensor position
in the mouse [3]), but the majority of papers in HCI with
regards to pointing concern the so-called interaction techniques
[4], [5], [6], [7]. Despite the development of new devices,
touchpads and computer mice are the most popular input
devices for most users, and they are still widely used for such
tasks as pointing, tracking, dragging, targeted-tracking [8], etc.
That is why there are several models for direct and indirect
pointing tasks available in the literature, providing different
levels of the process description.

Regarding the goals of this work, the considered problem
can be divided into two parts: the first one is the modeling of
a pointing task and the second one is the endpoint prediction.

The first concept related to the modeling of a pointing task
was the Fitts law [9], which states that the pointing time has
a logarithmic relation to the ratio of distance and the target’s
width, also called Index of Difficulty (ID). The Fitts law has

been experimentally validated many times [10], [11]. However,
Fitts law can model pointing time in relation to the ID of
the task, but it does not allow to model the dynamics of the
movement. The first attempt to provide a dynamical pointing
model was the so-called Surge model [12]. It was the first try
to model the task in two modes: the constant-coefficient model
and the second-order controller model, representing open-loop
and closed-loop phases, correspondingly. Later, VITE (Vector
Integration to Endpoint) model was introduced in [13] as a
linear time-invariant system describing the motion, controlled
by an agonist-antagonist pair of muscles (wrist rotation).
Simultaneously, Meyer et al. [14] established that the pointing
task contains two phases: a ballistic (supposed to be an open-
loop process of the initial movement towards the target) and a
correction phase (that finishes the task by closed-loop visual
guidance until the target is reached). This concept was called
Meyer’s Optimized Initial Impulse model [14]. Another feature
of this model was the possibility of modeling the multiple
open-loop phases (also called sub-movements). More recently,
based on this principle and the VITE model, a united switched
dynamical model was created in [15], verified on experimental
data of [16], and whose closed-loop stability has been proven.
Another line of research was based on Todorov’s optimal
feedback control of motor coordination [17], [18], [19]. The
main idea was to apply Stochastic Optimal Control to model
a human movement [20], [21], [22]. The latest result of such
an approach can be found in [23], where, besides feedback,
the authors also consider feedforward control, which models
the part of the process with motor planning to generate a
command (before the movement begins). Another recent idea
was based on the so-called Intermittent Control [24]. The
key feature of the latter framework was a build-in event-
based trigger, which allowed the model to switch between
closed- and open-loop control depending on the error between
the goal point and the one observed by the user. Such an
approach appeared to be compatible with current physiological
and psychological theories. A different view on modeling
worth mentioning is through the information theory. In the
recent work [25], the two-phase process is viewed as a
communication problem where the information is transmitted
from a source (initial/current point) to a destination (endpoint)
over a so-called channel, perturbed by Gaussian noise with a
presence of feedback (in a second phase). Despite the diversity
of approaches for modeling the pointing task, we believe that
searching for a simple, and at the same time, an accurate model
is yet a relevant research direction.

The second problem considered in this paper with regards
to pointing is the endpoint prediction. Indeed, it is possible

2

to facilitate the interaction and shorten the movement time
by predicting the user’s desired destination. Several papers
have been published regarding endpoint prediction, and few
algorithms in this area were proposed. Starting from Lank
et al. [26], the Kinematic Endpoint Prediction (KEP) model
was introduced. This model is based on the minimum jerk
law, formulated in [27], and the proposed prediction relies
on a polynomial curve fitting (based on a fourth-order poly-
nomial). The model showed the best performance at 80%
of the path and distances more than 600 pixels. Another
idea was presented in [28], where a simple regression-based
extrapolation was used, making the endpoint guess at the
peak of the velocity. The prediction technique based on the
inverse optimal control model was introduced in [29], where
a probabilistic model and machine learning were combined.
It showed better performance compared to previously pro-
posed models, especially during the short-distance trials. The
Kinematic Template Matching concept was introduced in [30].
The template matching algorithm compares the velocity profile
and decides which distance the user wants to cover based on
previous trials. The algorithm showed a better performance
for the 2D-task than the KEP model and reasonable general
accuracy.

We can formally divide all existing endpoint prediction
algorithms into two groups:

group I) algorithms with knowledge about previous trials
(memory), and

group II) without any knowledge (no memory).
In the first group, we can put the algorithms based on the

linear regression [28], any machine learning tools [29], and the
recently introduced KTM algorithm [30] because all of them
require several trials of the same user or on the same setup to
identify the endpoint online. The algorithms without memory,
such as KEP [26], rely on more general rules and assumptions
about the motion, and they can be applied from the first try.

Another innovative idea for facilitating the target acquisition
for the user was presented in [31]. The authors used a target
prediction approach with the eye-gaze device, and the idea
was to skip the ballistic phase entirely by cursor warping
(moving the pointer directly to the area of users’ sight). The
results of the experiments showed a significant decrease in
the pointing time. In this paper, we will follow the classical
pointing task setup, using only the computer mouse for our
prediction algorithm, since it is the case for most users.

Despite all these achievements, the current state of the art
can still be improved in many ways. For example, since all the
algorithms mentioned above do not utilize a dynamical point-
ing model representing both sides of the process, the results
are less general and less accessible for analysis. Algorithms
based on machine learning or probability techniques do not
explain the nature of the movement well, and their results are
unreliable in unusual setups and situations.

Both problems described above are usually separated and
not considered together in a single model-based prediction
algorithm, which could be more advantageous for description
and analysis. We fill the indicated gap in the present work,
and an endpoint prediction algorithm is presented, based on a
new simplified version of the dynamical model given in [15].

Fig. 1. Closed-loop model, conventional block diagram

The aim of simplifying the model from [15] is to improve
the possibility of online parameter identification and allow
the process characteristics to be adjusted or modified online.
Another advantage of the presented model is its portability
since we do not suppose to know the used surfaces that the
computer mouse operates on, the Pointing Transfer Function
(PTF) of the operating systems (which will be introduced
later in the text), or other varying setup conditions. A recent
adaptive observer technique [32] is used to adjust the model
parameters and identify everything on the fly. It is suggested
how to modify the PTF once the endpoint coordinates are
derived. Experimental data with a computer mouse [16], [33]
is applied for this work’s model development and validation.

II. PROBLEM STATEMENT

The problem considered in this paper is modeling and
parameter identification of an indirect pointing task.

The main idea here is to use the automatic control theory
to design the pointing model, where the user is a controller
in the closed-loop, whose behavior and decision we do not
know exactly, but we can measure and estimate it indirectly
and predict the desired position. The interaction and related
input and output signals are presented in Fig. 1 for the x-
direction displacement (there is also the y displacement in
the 2-dimensional case). We suppose that the user positions
the cursor on the screen having x and/or y as an input
and transforms it with his decision into a wrist movement,
producing the force that translates the mouse, which has the
position xm and ym on the plane. So, the mouse output will be
its velocity Vm =

√
V 2

mx +V 2
my, where ẋm = Vmx and ẏm = Vmy

are the velocity projections on x and y axes, respectively. The
term of mass was omitted: we suppose that the mass of a
mouse and a hand on it is a unit, and all other parameters
appearing in an equation are normalized by the mass. The
basic equations for this process can be presented as follows:

ẋm(t) = Vmx(t),

V̇mx(t) = Ffr(t)−Finput(t), (1)

ẋ(t) =
Vmx(t)
Vm(t)

PTF(Vm(t)), ∀t ≥ 0

where Ffr is the mouse friction force, and Finput is the force
generated by the user, PTF : R → R is a pointing transfer
function (see [16]), that transforms the mouse velocity Vm
into the cursor velocity on the screen Vc(t)= ∂

∂ t

√
x2(t)+ y2(t),

∀t ≥ 0 (usually, through look-up tables that realize a nonlinear
function in all existing operating systems [16]), the ratio

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.02

0.04
x

m
 [
m

]

x
m

x
m

diff

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

V
m

x
 [
m

/s
]

V
mx

V
mx

diff

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time [s]

-2

0

2

a
x
 [
m

/s
2
]

a
x

diff

Fig. 2. Position differentiation: a) t [s] vs xm and xdi f f
m [m]; b) t [s] vs Vmx

and V di f f
mx [m/s]; c) t [s] vs adi f f

x [s]

Vmx
Vm

is used to project the PTF effort on the corresponding
movement direction. We assume that the human force Finput is
proportional to the endpoint position Tx (in the ballistic phase)
or the current error between x and Tx (in the correction phase).
Remark 1. Our idea is to estimate the decision process
online, predict the reference position Tx (which we originally
do not know, only the user does), and improve PTF using
the estimated value T̂x of the endpoint Tx. To this end, we
introduce an additional feedback in the PTF block to adjust
the navigation, shorten the pointing time, and possibly reduce
the error rate (usually present in all known tests). Thus, we
add a correction term ρ(x− T̂x) with some tuning parameter
ρ > 0, so the last equations in (1) takes the form:

ẋ(t) =
Vmx(t)
Vm(t)

PTF(Vm(t))−ρ

(
x(t)− T̂x(t)

)
, ∀t ≥ 0.

It is also worth mentioning that we still do not know how a
user will react to such a modification of PTF, will it be more
optimal or not, but we will provide the related experiments to
check it in a later future. An example of how users can react
to a similar approach can be found in [34], where the endpoint
prediction was used to help the elderly navigate on the screen.

For 2-D tasks, the equations for the vertical components ym,
Vmy, y, Ty, T̂y can be presented in the same way.

So the motivating technical issue of this work is to estimate
the cursor’s wanted position Tx and Ty as fast as possible using
the dataset obtained in the experiment [33].

III. DATA DESCRIPTION AND PROCESSING

According to [33], a mouse with a frequency of 1 kHz and
2000 CPI was used, and all measurements are provided at
discrete instants of time tk [s] with a varying sampling period
hk−1 = tk− tk−1 for k = 1,2, . . . and t0 = 0 (the sampling is not
exactly 0.001 [s] due to the event-based nature of the operating
system). We have an optical sensor inside the mouse, that
measures the integer value increment of the mouse displace-
ment ∆xk

m = xk
m− xk−1

m in counts (with a measurement noise
that is skipped for brevity), where xk

m = xm(tk), which can be
converted into velocity in [m/s] for the conformity, considering
the mouse CPI and inches to meters ratio ι = 0.0254:

Vmx(tk) =V k
mx =

ι ∆xk
m

CPI hk−1 , k = 1,2,

0.2 0.4
0

200

400

x
 [
p
x
l]

a) No submovements

0.2 0.4 0.6
850

900

950

1000
b) With submovements

0 0.2 0.4 0.6

time [s]

0

0.1

V
m

x
 [
m

/s
]

0 0.2 0.4 0.6 0.8

time [s]

0

0.1

Fig. 3. Trial with and without sub-movements: a), c) x [pxl] vs time, b), d)
Vmx [m/s] vs time

The mouse position in [m] is obtained from the calculated
velocity (scaled mouse displacement) by each time step accu-
mulation:

xk
m = xk−1

m +hk−1V k
mx.

The cursor position on the screen xk = x(tk) in [pixel] is avail-
able at the same time instants. Similarly, we have yk

m = ym(tk),
∆yk

m = yk
m− yk−1

m , Vmy(tk) and yk = y(tk).
Examples of obtained noisy signals are shown in Fig. 2 and

demonstrate a bad velocity estimation due to the noise. To
obtain a better velocity profile and the respective acceleration
(which we need later for the mode identification) we applied
a homogeneous differentiator to the mouse position (see [35],
and Appendix A for the used equations). This type of dif-
ferentiator’s main advantage is that it possesses a finite-time
convergence rate [35], which is faster than any exponential,
and in addition, it is proven to be robust to the disturbances
[36]. Finding a trade-off between smoothness and convergence
accuracy, the parameters are tuned as

λ = 5, ξ = 2, α =−0.2,

then Vmx = ẑ2 and amx = ẑ3 can be used for further parameter
identification of the model. The filtered mouse position, veloc-
ity and acceleration are derived by applying the homogeneous
differentiator in [35] to the mouse position presented in Fig.
2. From these plots, we can conclude that this homogeneous
differentiator filters well the noise and generates rather smooth
estimates of the velocity and acceleration.

Remark 2. The experiments of [33] included 10 users, which
navigate the cursor on the screen using the mouse in a task
with 13 targets positioned along a circle, following the norm
ISO 9241-9 (§B.6.2.2). Two different distances (150 and 75
mm), target widths (7 and 2 mm), and two different PTFs
were used. Depending on the velocity or position profile, it
is possible to detect which user is more experienced with
the setup and who is less. An experienced user makes a
ballistic movement very close towards the goal, and the motion
is realized in one round without sub-movements (without
additional ballistic corrections). A less-experienced user needs
more attempts to reach the surrounding area and may produce
several sub-movements to attain the goal (see Fig. 3 for illus-
trations). Another way to define experienced users is according
to the movement time: the lower their time on completing

4

the trial, the more experienced they are. In this paper, we
will rely on the first definition since our prediction algorithm
will be generalized to the cases with sub-movements. The
performance also depends on the target width and the number
of trials made with the current setup. Therefore, it makes
sense to evaluate the model on the trials without additional
sub-movements because when a user utilizes his/her personal
setup (PC and mouse), the movements are much more precise
than with an unfamiliar one. This will be done first, and next,
the model presented in this paper is generalized in subsection
V.D, considering all possible cases.

IV. POINTING TRANSFER FUNCTION

As was mentioned earlier, the PTF provides the gain from
the mouse velocity Vm to the cursor one Vc. Every operating
system has its look-up tables with standard gains, and every
mouse velocity input is interpolated accordingly. The set of the
final gains constitute a nonlinear function. The authors of [16]
created a useful library, called Libpointing, which captures
raw mouse data and allows one to create and use one’s own
PTF.

In this work, we assume that the shape of the PTF is un-
known to develop a platform-independent approach. Therefore,
it has to be reconstructed from the measured data, and our idea
is that a polynomial of the mouse velocity can approximate
the PTF function in (1):

PTF(Vm(t)) =Vc(t) =
q

∑
i=0

ciV i
m(t), ∀t ≥ 0

where the nonlinear gain is a polynomial of order q with
unknown coefficients c0, ...cq. Taking into account the discrete-
time nature of the measurements, we have:

V k
c =

q

∑
i=0

ciV i
m(k),

where V k
c =Vc(tk) and Vm(k) =Vm(tk). The cursor velocity can

be approximated by a simple Euler formula

V̂ k
c =

dk−dk−1

hk−1 ,

where dk =
√

x2
k + y2

k is the distance on the screen from the
origin corner, or by applying the homogeneous differentiator
in [35] to dk. Next, a simple linear regression estimation tech-
nique [37] can be used to estimate the parameters c0, . . . ,cq:[

ĉ0 . . . ĉq
]>

= A−1
k ψ

k

provided that the matrix Ak is not singular, where

Ak = δAk−1 +ωkω
>
k , ψ

k = δψ
k−1 +ωkV̂ k

c ,

ωk =
[
V 0

m(k) . . . V q
m(k)

]>
with the regression vector ωk; ψk and Ak are auxiliary matrix
variables, and δ ∈ (0,1] is a forgetting factor.

After some trials, we obtain the polynomial function of the
current PTF, which can be used for modeling and prediction.
The higher is the polynomial order, the more accurately the
final coefficient set will represent the current PTF in future
trials. So, it can be helpful to utilize the model with continuous
functions, avoiding the usage of look-up tables.

V. POINTING TASK MODELING AND IDENTIFICATION

A pointing model has to reflect both muscular and percep-
tion, human feedback following the current position on the
screen. The task is to estimate the desired position of the cursor
given by the constants Tx (and Ty), based on the dataset of x
and Vmx (y and Vmy, respectively). As usual, the real-world
data is noisy, and a challenging estimation issue is that we
have no good mouse velocity and acceleration measurements
in the experiments. In this section, with a small ambiguity of
notation, we will use the signals xm, Vmx and amx gathered
after applying the homogeneous differentiator, as previously
explained.
Remark 3. Although we estimate the horizontal and vertical
cursor position dynamics separately, the general pointing task
is two-dimensional. As observed in the experimental data
provided in [33], the correcting (tracking) phase usually starts
approximately in about 1

5 of the maximal amplitude of Vmx
on its downhill. In the sequel, we use this rule to define the
threshold for commutation between the modes.

A. Correction phase

In (1), we choose the input force as a simple linear feedback

Finput = b2(x−Tx),

with a parameter b2 > 0, which is unknown and can be
different for each trial (such a choice is often assumed in the
so-called Equilibrium-point hypothesis [38]). We can select
the dynamic friction force in a usual form

Ffr =−b1Vmx,

where b1 > 0 is the friction coefficient, which is also unknown
and trial-sensitive. Usually, b1 > 0 is dependent on the mouse
and the surface mouse operated on, but it also depends on the
users’ hand position, which influences the mass and makes this
coefficient not constant, despite operating the same surfaces. If
the parameters b1 and b2 are non-negative, then the resulting
dynamics is stable, which corresponds to our intuition about
the pointing process. Thus, estimation techniques can be
applied to this model:

V̇mx(t) =−b1Vmx(t)−b2(x(t)−Tx), ∀t ≥ 0

and dividing it by b2 to decouple the main parameter we want
to estimate here, Tx, we can present this equation in a suitable
form for the linear regression:

x(t) =− 1
b2

V̇mx(t)−
b1

b2
Vmx(t)+Tx = ω

>(t)θ ,

where ω(t) =
[
−amx(t) −Vmx(t) 1

]> is the regression vec-

tor, which contains measured signals, and θ =
[

1
b2

b1
b2

Tx

]>
is the vector of unknown constant parameters to estimate.
Next, a linear estimation technique (as for PTF previously)
can be applied. However, the Persistence of Excitation (PE)
condition [39] needs to be satisfied for the convergence of
the parameter estimation error, which is not confirmed in our
setting (the system is stable, and the external input is constant;
therefore, Vx and amx approach zero asymptotically, while x(t)

5

goes to the constant Tx as t goes to infinity). Since we mainly
need to estimate only one parameter, i.e., the desired position
Tx, then a strong excitation providing the PE property for all
three parameters in θ is not needed. It is useful to separate the
estimation variables for better identification. An efficient and
recently introduced DREM procedure [40], [41] (see Appendix
B) allows the coefficients in θ to be evaluated separately. This
procedure can also provide a finite-time convergent estimation
even without the satisfaction of PE condition [32] (interval
excitation, which is presented in pointing tasks, is enough).
In this work, we selected the auxiliary filters as delays:
Hi(s) = eiτs for i = 0,1,2 for some basic delay τ > 0, then
using the steps described in Appendix B, we can get three
scalar equations with separated parameters:

Ỹi(t) = ϕ(t)θi + v(t), ∀t ≥ 0 (2)

where v is the error variable related to the measurement and
differentiation noise, and ϕ is the new scalar regressor, which
leads to the adaptation algorithm

˙̂T x(t) =−γ3ϕ(t)(ϕ(t)T̂x(t)− Ỹ3(t)),

with γ3 > 0 a tuning parameter and T̂x the estimate of Tx.
The noise is unknown, but we can detect when its influence

is too strong and cut the prediction in corresponding regions.
A simple way to do it would be to introduce an additional

condition on the estimate T̂x. To reduce the big influence of
the noise, we can bound T̂x under the assumption that it is
supposed to be close to the endpoint after the ballistic phase.
Although the screen resolution naturally bounds the endpoint
position, we want to avoid using the introduced model’s setup-
dependent data. We can restrict our prediction estimation using
only the cursor position data obtained from the current trial.
Because the correction phase serves for the final navigation
of the pointer to the goal, it should ideally operate around
the current position value. Choosing the approximate evalu-
ation (bound) as 1

10 of the distance already traveled, we can
introduce the condition as follows:∣∣∣T̂x(t)− T̂x(t−)

∣∣∣< 0.1 |x(t)|

where T̂x(t−) denotes the estimate of Tx at the previous instant
of time. If it is satisfied, we update T̂x. Otherwise, we keep
the previous value, cutting out the noisy region affecting the
estimation and producing numerical instability.

B. Ballistic phase

In this phase, we assume that the whole movement is
realized intuitively or automatically in the motor space based
on the averaged PTF gain sensed by the user (i.e., it is an open-
loop deterministic motion), and the mouse position follows the
curve:

xm(t) =
Tx

2c
(1− cos(ηt)) , ∀t ≥ 0,

where η > 0 is a user-dependent parameter, which regulates
the velocity of displacement, and the movement amplitude is
proportional to the goal position Tx divided by an averaged
PTF gain c > 0. This coefficient represents the ratio between

the motor and operational spaces, and for the user, it is
expected that

x(t) = cxm(t).

In such a case xm

(
π

η

)
= Tx

c and x
(

π

η

)
= Tx. Note that this

gain c can be easily estimated if the PTF function is known
(if it has been already identified as explained above):

c =V−1
max

∫ Vmax

0
PTF(s)ds,

where Vmax is the maximal admissible computer mouse veloc-
ity for the user (can be extracted from the data). Nevertheless,
as we demonstrate below, we do not need this parameter to
estimate the endpoint. Thus, if the ballistic movement is well-
realized, and the human approximation of the PTF gain c is
adequate, then the cursor has to fall into a vicinity of the
desired position Tx. Simple calculations show that

ẋm(t)=Vmx(t)=
Txη

2c
sin(ηt), V̇mx(t)= amx(t)=

Txη2

2c
cos(ηt),

hence,

V̇mx(t) =−η
2
(

xm(t)−
Tx

2c

)
=−η2

c

(
x(t)− Tx

2

)
,

and the obtained model can be related to the one proposed
previously for the correction phase by imposing Ffr ≡ 0 and
Finput = b2

(
x− Tx

2

)
with b2 =

η2

c . Consequently, in the ballistic
phase, it is assumed that the friction force can be neglected
during such a fast transient and the goal position for the
ballistic phase is just half away from the desired set-point
Tx (this is an interpretation in terms of visual user feedback).

To estimate the goal position Tx using this model, let us
observe that if for some t ′≥ 0, we have amx(t ′)= 0 then x(t ′)=
Tx
2 . So, a basic estimation algorithm during ballistic phase is:

T̂x(t) =

{
2x(t), if amx(t) ·Vmx(t)≥ 0
T̂x(t−), otherwise

, ∀t ≥ 0,

where T̂x(t−) stands for the estimated value of Tx at the
previous instant of time.

The idea of doubling the position until the peak of velocity
for endpoint estimation is not new. In [42], observing the
experimental data, the authors concluded that it could be an
option to obtain the users’ goal during the movement. We
derived this conclusion here from the equations presented for
the ballistic phase of the switched model (thus suggesting a
mathematical explanation for [42]).

C. Switched model identification algorithm

The procedure for updating the endpoint estimation T̂x using
the proposed simplified switched model is divided into three
modes:

a) Ballistic phase before velocity peak (before amx reaches
zero). We look for the velocity Vmx peak during this part of
the ballistic phase by comparing the current absolute value to
the previous maximum. While Vmx grows, T̂x can be found as:

T̂x(t) = 2x(t).

6

Fig. 4. Switched Model Diagram

b) Ballistic phase after velocity peak. If the current velocity
Vmx is lower than its maximum, then T̂x is constant and defined
by its previous value at the peak.

c) The correction phase. Here, we use the DREM estimation
procedure as described before.

Moreover, we can generalize such an approach to the
situation when the user’s estimation of PTF is not adequate.

D. Prediction of trials with sub-movements

Sometimes during the trial, the user cannot reach the goal
with a first try. It is a well-known problem in the pointing task.
The additional ballistic phases, which appear before the goal
is reached (it is easy to recognize them in the velocity profile
shown in Fig. 3), are called sub-movements, and they make
the endpoint prediction task much more complicated. The
switching model presented in this paper allows us to change
the mode at any point in time. Therefore, we can generalize the
prediction algorithm presented above by considering possible
sub-movements.

The generalized idea for updating the endpoint prediction
is presented in Fig. 4. Basically, we check ∆T̂x at each time
step, depending on the conditions of the current value of the
velocity Vmx(i) and acceleration amx(i).

First, we search for the maximum of the mouse velocity
magnitude by comparing it to the current value. Second,
we determine in which phase of motion we currently are.
It is the same condition described in the previous section:
below 1

5 of the maximum velocity, we use the estimation
from the model for the correction phase; otherwise, we use
the ballistic prediction. If we are in the ballistic phase, we
have the following condition to verify: whether the velocity
is increasing with regard to the direction of the motion or
decreasing (it means that we require current acceleration and
velocity have the same sign to adjust the prediction by 2∆x).
Through this modified condition from the previous section, we
also consider overshooting: when the target has already passed
and the user moves the mouse in the opposite direction, ∆T̂x is
negative and our prediction is decreasing in the same way as

0.5 1 1.5 2 2.5

200

400

600

0 0.5 1 1.5 2 2.5 3

0

0.05

0.1 V
mx

Fig. 5. Simulation of corrective phase model: a) t [s] vs x and T̂x [pxl]; b) t
[s] vs Vmx[m/s]

with undershoot, the sign is considered. Simultaneously, we
have the corrective phase condition to bound the prediction
when the data is the noisiest. Since the noise itself is unknown,
we cannot compensate for its influence, but we can restrict the
estimation to those moments of time when the estimation is
leaving the predefined boundaries. It usually signifies exactly
when the measurement data is the noisiest. When it is satisfied,
we update the T̂x; otherwise, we keep the prediction to avoid
possible numerical instabilities and make the algorithm more
robust to the disturbances, as explained in subsection 5.1.

Remark 4. We have the same diagram for T̂y in parallel at
each timestep. It is possible that according to the Vmx velocity
profile, we are still in the ballistic phase, while according to
Vmy, we are in the corrective phase and vice versa. We assume
that this situation is possible, based on the observation of the
2-D cursor trajectories from the experimental data.

The generalized algorithm cannot estimate the final desired
value in the case of sub-movements after the first velocity
peak. However, we can estimate the sub-movement final value
earlier by merely accumulating new estimates with the first
peak value.

Let us demonstrate the efficiency of the proposed model and
the estimation approach using real data and simulations.

VI. RESULTS AND SIMULATIONS

A. Validation and identification of our pointing model

First, the chosen model in the correction phase was eval-
uated in the simulation, where the model parameters were
assigned artificially: b1 = 4, b2 = 7, Tx = 600 pxl and PTF=
arctan (it can be any bounded function according to [15]). The
model identification results are presented in Fig. 5, the final
position and other coefficients are estimated almost simulta-
neously with the constant time step h = 0.01 [s], meaning that
the proposed estimation method works for the designed model.

Next, real data from experiments in [33] were used for the
switched model validation.

First, we try to avoid the division into two phases and repre-
sent the movement via the correction phase model. However,
the estimation results given in Fig. 6 show that the high-
velocity part (the ballistic phase) of the process does not fully
correspond to the chosen model with the experimental data,
and it is hard to estimate the value of Tx early enough. An

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

200

400
a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

time[s]

0

0.1

0.2

V
m

x
[m

/s
]

b) V
mx

Fig. 6. Correction phase model estimation: a) t[s] vs x and T̂x [pxl]; b) t [s]
vs Vmx [m/s]

0.2 0.4 0.6 0.8
0

200

400

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time[s]

0

0.1

V
m

x
[m

/s
] b)

V
mx

Fig. 7. Switched model estimation for one trial: a) t [s] vs x and T̂x [pxl]; b)
t [s] vs Vmx [m/s]

explanation for this phenomenon is that there might be some
nonlinear terms missed in the model (1) for the forces Ffr(t)
and Finput(t), which leads to high modeling error and inaccu-
rate identification during the ballistic phase. Investigating such
a missed term can be a task for future model improvements.
Still, as one can see in Fig. 6, the model represents well the
process in the corrective phase.

After analyzing the performance of the reduced model, we
would like to return to the classic division in two phases, where
we use the complete designed model with separate equations
for the ballistic phase until the motion is close to the correction
phase. Such a model demonstrates a better overall performance
(check Fig. 7), and it guesses the destination point on the peak
of the velocity profile rather accurately, but only when the user
has enough experience. When the sub-movements appear, the
algorithm recognizes them as explained in Subsection 5.4 and
gives a fair prediction reacting to them in the same way as to
the main peak (check Fig. 8). However, to validate the model
performance more concretely, let us compare it with another
algorithm.

B. Comparison with existing prediction algorithms

As it was mentioned in the introduction, prediction al-
gorithms can be divided into two groups (with or without
prior knowledge). Both groups have their pros and cons.
For instance, algorithms with foreknowledge can be more
precise on average but require the user to complete all the
range of motion, usually taking some time and memory.
Moreover, the result can be unpredictable under unknown

0.2 0.4 0.6 0.8
0

200

400
a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time[s]

0

0.05

0.1

V
m

x
[m

/s
] b) V

mx

Fig. 8. Switched model estimation for one trial: a) t [s] vs x and T̂x [pxl]; b)
t [s] vs Vmx [m/s]

0.2 0.4 0.6 0.8
0

0.5

1

a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

0

1V

b)
V

Fig. 9. Hogan’s law theoretical model (unitless): a) t vs x and T̂x; b) t vs V

circumstances. Concurrently, algorithms without memory can
produce immediate results, which may be less accurate but
more stable at any setup and unpredictable situation.

The problem is then to find the trade-off between the
final accuracy and robustness of the prediction. The paper
[30] shows that the algorithm with foreknowledge does not
improve the estimation significantly, even when theoretically,
this should be a significant advantage.

This paper introduces an algorithm belonging to the second
group and fits the theoretical and mechanical model presented
above. For this reason, in this section, we make a comparison
with the KEP algorithm to show our model’s performance
using the same data. It is worth to mention that the KEP
algorithm was improved later in [43], the newer version
became more stable in terms of estimation (the stability check
was added), and the prediction is started in 85% of the
movement, which improved the accuracy of the final prediction
but removed information about early prediction. Later, the
single point prediction, based on the KEP algorithm was
introduced in [44], but since we are interested in the early
prediction - a single point and the improved model was not
considered in the comparison, only the stability condition
from the improved model was applied. Apart from this, we
reconstructed the KEP algorithm from the original paper [26],
applying it to every step of the motion.

The interesting fact is that the ballistic phase prediction also
satisfies the Hogan Minimal Jerk model [27] theoretical data,
used as a basis for the KEP algorithm. It is easy to verify
that the amplitude of the velocity in the equation is precisely
the doubled position at the time of the maximum velocity

8

10 20 30 40 50 60 70 80 90 100

Pecentage of the distance

0

100

200

300

400

500

600
A

v
e
ra

g
e
 p

re
d
ic

ti
o
n
 e

rr
o
r

(p
x
l) Average error, all trials KEP

Switched

Fig. 10. Comparison: percentage of the path vs error [pxl]. All trials

(x(1) = 2x(1
2), t ∈ [0,1] in Eqn. 8 of [26]). Therefore, if we

apply our ballistic algorithm to the Hogan equations, we obtain
the earlier exact prediction halfway on the velocity peak (Fig.
9). It is another reason why we think that our algorithm should
outperform the KEP.

Since users were not used to the setup, most of the trials
in the experiments [33] had sub-movements. It is important to
mention that by trials without sub-movements, we mean the
ones where the highest peak of the velocity is at least 5 times
higher than all the others, and peaks below this threshold are
not considered as sub-movements due to the low impact on
the prediction, the example can be found in Fig. 3. Since our
prediction algorithm considers trials with sub-movements in
Fig. 10, we then chose all the experiment trials (960).

The way of evaluating the model was as follows: we had
960 trials from users, performing pointing tasks in 2-D space,
but since the estimation in our model is separate for T̂x and
T̂y, we took one set of data from each trial, the vertical or the
horizontal (x , y), depending on which distance (Tx or Ty) was
longer. This choice was made to obtain the suitable range, for
comparison with KEP (in [43], the target range was 200−600
pxl). The range of target in the chosen data was 265−800 pxl.

The MAE (Mean Absolute Error) comparison at the differ-
ent percentages of the way shows that, on average, we have a
better estimate at all the stages of the trajectory (see Fig. 10).
In our switched model, we have faster error convergence to
the 50 % of the way, where the velocity peak is supposed to
be situated and after the rate decreases to 95 %, and finally, it
converges to the endpoint value with an average error of 9.6
pxl. In contrast, KEP shows convergence close to linear with
the final average error of 69.9 pxl.

However, a more detailed analysis in the box-whisker plot
in Fig. 11 shows that our reconstructed KEP algorithms mean
error is affected by the larger amount of the outlier points
and their wider distribution. By outlier, we mean the value
bigger than 1.5 times the interquartile (box range). This fact
could mean that the stability check applied from the [43] might
not be enough to provide bounded prediction using the curve
fitting process in all real-world cases.

For the more solid comparison, the statistical test on the pre-
diction error data for all 10 users, considering different model
(KEP, Switched), different target width, distance, PTF was
provided. Repeated measures ANOVA showed a significant
effect of model on the error (from 0.1 to 0.75 of the distance

5 15 25 35 45 55 65 75 85 95

-1000

-500

0

500

1000

A
v
e
ra

g
e
 p

re
d
ic

ti
o
n
 e

rr
o
r

(p
x
l) KEP, all trials

5 15 25 35 45 55 65 75 85 95
Pecentage of the distance

Switched, all trials

Fig. 11. Box-whisker plot comparison: percentage of the path vs error
distribution [pxl]

p < 0.001), with the most significant in 0.5 - F(1,9) = 38.81,
p < 0.001, η2

p = 0.81. In the range from 0.75 to 1, the test
showed no significant difference in the model performance.
Also, the effect of the distance was significant in all cases
(for instance, F(1,9) = 214.35, p < 0.001, η2

p = 0.96 for
0.5) target width in some cases (F(1,9) = 11.34, p < 0.008,
η2

p = 0.56 for 0.5), pair model*distance (F(1,9) = 16.61,
p < .003, η2

p = 0.65 for 0.5) and there was no effect of the
PTF.

Another test was conducted using the error data without
outliers in Fig. 11 (for all outliers (red-crossed points), the
quartile bound was assigned (0.25 or 0.75 percentile)). Re-
peated measures ANOVA still showed a significant effect of
the model in the range from 0.15 to 0.6 of the distance
(p < 0.01) with the highest in 0.5 with F(1,9) = 15.70,
p < 0.003, η2

p = 0.64, and no significant effect after. This
means that even considering the instability of KEP early
prediction, the Switched model introduced in this paper still
outperforms KEP in the early and mid-distance prediction.
Another advantage is that after removing the outliers for both
models, the average final prediction is still closer with the
Switched (5.2 pxl to 6.4 in KEP).

The comparison results are not surprising because the dis-
advantage of the KEP model is that the estimation is unstable
in the early stage. This is why the KEP model authors claim
to obtain a good estimation starting only from the 80 % of
the total path, which is not the case in the model introduced
in this paper. To conclude the section, we can state that
the average error analysis and the showed that the presented
switched algorithm outperforms the most known algorithm in
the group of algorithms without memory (KEP), especially at
the early phase (trajectory path 85 %) and converges to almost
exact value at the end due to the separated correction phase
estimation algorithm.

C. Pointing Transfer Function (PTF)

In terms of PTF estimation, a fifth-order polynomial was
chosen to represent the gain, q = 5(the parameter tuning has
been performed via the error and trial method). Several trials
were used to identify the coefficients (12×4 trials in Fig. 12),
and the position of the next trial (x,y) was built using only
the velocity Vm set with the model (1). In Fig. 12, it is shown
that the used approach reconstructs the PTF pretty accurately.

9

0 0.2 0.4 0.6

time [s]

0

100

200

300
x
,

P
x
 [

p
x
l]

a) Trial used to find coefficients

P
x
 Built with polynomial

x from experiment

0 0.2 0.4 0.6 0.8

time [s]

0

100

200

x
,

P
x
 [

p
x
l]

b) Next trial

P
x
 Built with polynomial

x from experiment

0 0.2 0.4 0.6

time [s]

-400

-200

0

y
,

P
y
 [

p
x
l]

c) Trial used to find coefficients

P
y
 Built with polynomial

y from experiment

0 0.2 0.4 0.6 0.8

time [s]

0

200

400

y
,

P
y
 [

p
x
l]

d) Next trial

P
y
 Built with polynomial

y from experiment

Fig. 12. Transfer functions: x,y [pxl] vs time

The more trials are used to build the polynomial – the more
accurate the approximation is. In the experiments recorded in
[33], two different PTFs were used for the pointing task: a)
the sigmoid function that mimics the default macOS transfer
function provided by libpointing, configured with the
following parameters: (gmin = 1 gmax = 15 v1 = 0.05 m/s
v2= 0.6 m/s), and b) the custom one, created with Libpointing
which mimics constant gain of 4. The resulted gain curve,

gain(Vm) =
T F(Vm)

Vm
,

of full trials for one user (in the range 0.0127-0.3 [m/s] of
mouse inputted velocity) is represented in Fig. 13. One can
see from these plots that in the lower range (0.0127-0.2 [m/s]),
the curves tend to align more with the real gain curve because
there were more points presented with these velocity values in
the trials during the identification process, while in the range
0.2-0.3 [m/s] the values were rarer, so the deviation is bigger
and the gain is less accurate.

These results confirm that the presented methodology pro-
vides an accurate way to reconstruct the PTF by an analytical
function, which can help in future analysis and position
estimation.

VII. PROBLEMS AND FUTURE WORK

The presented results demonstrate the potential of the de-
signed model and the tools for its identification. However, it
leaves much room for improvement. In general, the human
motion dynamics are nonlinear and highly uncertain (such as
varying parameters, exogenous and endogenous perturbations).
Hence, advanced robust-adaptive estimation and identification
algorithms are essential in this domain, which constitutes a
good benchmark for applying cut-edge technologies. A related
issue is that a trade-off is necessary between the complexity
and validity of the model used for estimation, and the pos-
sibility of designing a corresponding observer procedure. For
many existing pointing movement models, as in [13]–[15],
it is challenging to design a reliable identification method
(due to, for instance, the switched nature of the model and
its nonlinearity). That is why in this work, we have revisited
the modeling theory for pointing and then developed new tools
for identification.

In the previous section, it has been observed that the
identification based on a linear time-invariant second-order

0.05 0.1 0.15 0.2 0.25 0.3

5

10

G
a
in

a) PTF #1(macOS)

Real PTF

Estimated PTF

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

V
m

 [m/s]

0

2

4

6

G
a
in

b) PTF #1(custom)

Real PTF

Estimated PTF

Fig. 13. Gains comparison: Vm [m/s] vs gain

model does not work well in the high-velocity ballistic phase
yet. This finding motivates why we propose a switched model,
with different dynamics in the correction and ballistic phases.
This model can be considered as a simplified version of the
one given in [15]. For the new model, the endpoint is well
predicted at the velocity peak, but the idea of improving the
correction phase dynamics to make it accurate even earlier is
nevertheless relevant. How to correctly describe the ballistic
phase in the model is a question for future research, for
example, some interesting ideas were published recently in
[45]. Using more data from trials of well-experienced users
can provide a better understanding of the model’s accuracy
and limitations.

Another problem is the model’s sensitivity to the data,
which implies that sometimes the velocity profile requires an
intensive tuning of the differentiator (thus, a high-frequency
device should be acquired for better tuning). Although the
velocity profile obtained from the differentiator is smooth
enough, the acceleration is still noisy. Careful preliminary
filtering of the sensor data may also improve accuracy.

The approach developed for the online identification of
the pointing transfer function shows good performance, and
increasing the degree of the polynomial applied for approxi-
mating the PTF leads to a more precise estimation. If more
trials are used for the identification of the coefficients, then
the better is the accuracy.

Our identification framework’s bottleneck is the necessity to
measure or calculate the mouse velocity and acceleration. The
homogeneous differentiator in [35] provides a relatively good
solution to this problem. Also, instead of differentiating xm or
Vmx, it is appealing to use another sensor, like in [33] with the
inertial accelerometer. This accelerometer can provide more
precise data with a much higher frequency. For comparison,
the mouse optical sensor can run up to 1 kHz, while even a
cheap inertial accelerometer can write data with the sampling
up to 16 kHz. Then the only restriction would be the USB-
port transmission capability. A fusion of the two approaches
can lead to better identification and noise reduction.

VIII. CONCLUSION

A new simple dynamic pointing model was introduced
as a feedback-based dynamical system with commutation
between correction and ballistic phases. The model considers
the cursor’s position as the input and the human decision on

10

moving the mouse as an output. The dry friction, the users’
regulating force, and the signal’s treatment by a computer
constitute the complete dynamical system, representing the
indirect pointing task. Linear regression techniques for the
identification of the model coefficients were used. The model
was tested on the experimental data from [33] demonstrating a
good prediction of the users’ behavior. A comparison with an
existing prediction algorithm was provided and showed better
performance overall for our model. The estimation of PTF
(a nonlinear function representing the gain from the mouse
velocity to cursor velocity) was successfully represented as the
polynomial with coefficients obtained from several trials by the
linear regression technique. Discussion and future directions
of research were given.

REFERENCES

[1] A. Oulasvirta, P. O. Kristensson, X. Bi, and A. Howes, Computational
interaction. Oxford University Press, 2018.

[2] J. Müller, A. Oulasvirta, and R. Murray-Smith, “Control theoretic mod-
els of pointing,” ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 24, no. 4, pp. 1–36, 2017.

[3] S. Kim, B. Lee, T. Van Gemert, and A. Oulasvirta, “Optimal sensor
position for a computer mouse,” in Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, 2020, pp. 1–13.

[4] R. Blanch, Y. Guiard, and M. Beaudouin-Lafon, “Semantic pointing:
improving target acquisition with control-display ratio adaptation,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems, 2004, pp. 519–526.

[5] T. Grossman and R. Balakrishnan, “The bubble cursor: enhancing target
acquisition by dynamic resizing of the cursor’s activation area,” in
Proceedings of the SIGCHI conference on Human factors in computing
systems, 2005, pp. 281–290.

[6] O. Chapuis, J.-B. Labrune, and E. Pietriga, “Dynaspot: speed-dependent
area cursor,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2009, pp. 1391–1400.

[7] R. Blanch and M. Ortega, “Rake cursor: improving pointing performance
with concurrent input channels,” in Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, 2009, pp. 1415–1418.

[8] R. Senanayake, R. S. Goonetilleke, and E. R. Hoffmann, “Targeted-
tracking with pointing devices,” IEEE Transactions on Human-Machine
Systems, vol. 45, no. 4, pp. 431–441, 2015.

[9] P. M. Fitts, “The information capacity of the human motor system
in controlling the amplitude of movement.” Journal of experimental
psychology, vol. 47, no. 6, p. 381, 1954.

[10] S. Zhai, J. Kong, and X. Ren, “Speed–accuracy tradeoff in fitts’ law
tasks—on the equivalency of actual and nominal pointing precision,”
International journal of human-computer studies, vol. 61, no. 6, pp.
823–856, 2004.

[11] O. Chapuis, R. Blanch, and M. Beaudouin-Lafon, “Fitts’ law in the wild:
A field study of aimed movements,” 2007.

[12] R. G. Costello, “The surge model of the well-trained human operator in
simple manual control,” IEEE Transactions on Man-Machine Systems,
vol. 9, no. 1, pp. 2–9, 1968.

[13] D. Bullock and S. Grossberg, “Neural dynamics of planned arm
movements: emergent invariants and speed-accuracy properties during
trajectory formation.” Psychological review, vol. 95, no. 1, p. 49, 1988.

[14] D. E. Meyer, R. A. Abrams, S. Kornblum, C. E. Wright, and
J. Keith Smith, “Optimality in human motor performance: ideal control
of rapid aimed movements.” Psychological review, vol. 95, no. 3, p. 340,
1988.

[15] S. Aranovskiy, R. Ushirobira, D. Efimov, and G. Casiez, “A switched
dynamic model for pointing tasks with a computer mouse,” Asian
Journal of Control, vol. 22, no. 4, pp. 1387–1400, 2020.

[16] G. Casiez and N. Roussel, “No more bricolage! methods and tools
to characterize, replicate and compare pointing transfer functions,” in
Proceedings of the 24th annual ACM symposium on User interface
software and technology, 2011, pp. 603–614.

[17] E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of
motor coordination,” Nature neuroscience, vol. 5, no. 11, pp. 1226–1235,
2002.

[18] E. Todorov, “Optimality principles in sensorimotor control,” Nature
neuroscience, vol. 7, no. 9, pp. 907–915, 2004.

[19] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in Proceedings of the 2005, American Control Conference, 2005. IEEE,
2005, pp. 300–306.

[20] N. Qian, Y. Jiang, Z.-P. Jiang, and P. Mazzoni, “Movement duration,
fitts’s law, and an infinite-horizon optimal feedback control model for
biological motor systems,” Neural computation, vol. 25, no. 3, pp. 697–
724, 2013.

[21] L. Rigoux and E. Guigon, “A model of reward-and effort-based optimal
decision making and motor control,” 2012.

[22] J. Izawa, T. Rane, O. Donchin, and R. Shadmehr, “Motor adaptation as
a process of reoptimization,” Journal of Neuroscience, vol. 28, no. 11,
pp. 2883–2891, 2008.

[23] B. Berret, A. Conessa, N. Schweighofer, and E. Burdet, “Stochastic
optimal feedforward-feedback control determines timing and variability
of arm movements with or without vision,” PLOS Computational
Biology, vol. 17, no. 6, p. e1009047, 2021.

[24] J. A. Á. Martı́n, H. Gollee, J. Müller, and R. Murray-Smith, “Intermittent
control as a model of mouse movements,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 28, no. 5, pp. 1–46, 2021.

[25] J. Gori and O. Rioul, “A feedback information-theoretic transmission
scheme (FITTS) for modeling trajectory variability in aimed move-
ments,” Biological Cybernetics, vol. 114, no. 6, pp. 621–641, 2020.

[26] E. Lank, Y.-C. N. Cheng, and J. Ruiz, “Endpoint prediction using
motion kinematics,” in Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, 2007, pp. 637–646.

[27] N. Hogan, “An organizing principle for a class of voluntary movements,”
Journal of neuroscience, vol. 4, no. 11, pp. 2745–2754, 1984.

[28] T. Asano, E. Sharlin, Y. Kitamura, K. Takashima, and F. Kishino,
“Predictive interaction using the delphian desktop,” in Proceedings of the
18th annual ACM symposium on User interface software and technology,
2005, pp. 133–141.

[29] B. Ziebart, A. Dey, and J. A. Bagnell, “Probabilistic pointing target
prediction via inverse optimal control,” in Proceedings of the 2012 ACM
international conference on Intelligent User Interfaces, 2012, pp. 1–10.

[30] P. T. Pasqual and J. O. Wobbrock, “Mouse pointing endpoint prediction
using kinematic template matching,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2014, pp. 743–
752.

[31] D. Rozado, “Mouse and keyboard cursor warping to accelerate and
reduce the effort of routine hci input tasks,” IEEE Transactions on
Human-Machine Systems, vol. 43, no. 5, pp. 487–493, 2013.

[32] J. Wang, D. Efimov, and A. A. Bobtsov, “Finite-time parameter estima-
tion without persistence of excitation,” in 2019 18th European Control
Conference (ECC). IEEE, 2019, pp. 2963–2968.

[33] A. Antoine, S. Malacria, and G. Casiez, “Using high frequency ac-
celerometer and mouse to compensate for end-to-end latency in indirect
interaction,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018, pp. 1–11.

[34] J. P. Hourcade, C. M. Nguyen, K. B. Perry, and N. L. Denburg,
“Pointassist for older adults: analyzing sub-movement characteristics to
aid in pointing tasks,” in Proceedings of the sigchi conference on human
factors in computing systems, 2010, pp. 1115–1124.

[35] W. Perruquetti, T. Floquet, and E. Moulay, “Finite-time observers:
application to secure communication,” IEEE Transactions on Automatic
Control, vol. 53, no. 1, pp. 356–360, 2008.

[36] E. Bernuau, A. Polyakov, D. Efimov, and W. Perruquetti, “Verification
of iss, iiss and ioss properties applying weighted homogeneity,” Systems
& Control Letters, vol. 62, no. 12, pp. 1159–1167, 2013.

[37] L. Ljung, System identification: theory for the user. Prentice Hall PTR,
1999.

[38] A. G. Feldman, “Once more on the equilibrium-point hypothesis (λ
model) for motor control,” Journal of motor behavior, vol. 18, no. 1,
pp. 17–54, 1986.

[39] R. Bitmead, “Persistence of excitation conditions and the convergence of
adaptive schemes,” IEEE Transactions on Information Theory, vol. 30,
no. 2, pp. 183–191, 1984.

[40] S. Aranovskiy, A. Bobtsov, R. Ortega, and A. Pyrkin, “Performance
enhancement of parameter estimators via dynamic regressor extension
and mixing,” IEEE Transactions on Automatic Control, vol. 62, no. 7,
pp. 3546–3550, 2016.

[41] M. Korotina, S. Aranovskiy, R. Ushirobira, and A. Vedyakov, “On
parameter tuning and convergence properties of the drem procedure,”
in 2020 European Control Conference (ECC). IEEE, 2020, pp. 53–58.

11

[42] H. Keuning-van Oirschot and A. J. Houtsma, “Cursor displacement
and velocity profiles for targets in various locations,” in Proceedings
of Eurohaptics. Citeseer, 2001, pp. 108–112.

[43] J. Ruiz and E. Lank, “Effects of target size and distance on kinematic
endpoint prediction,” 2009.

[44] ——, “Speeding pointing in tiled widgets: Understanding the effects
of target expansion and misprediction,” in Proceedings of the 15th
international conference on Intelligent user interfaces, 2010, pp. 229–
238.

[45] B. Berret and F. Jean, “Stochastic optimal open-loop control as a theory
of force and impedance planning via muscle co-contraction,” PLoS
computational biology, vol. 16, no. 2, p. e1007414, 2020.

[46] A. Levant, “Higher-order sliding modes, differentiation and output-
feedback control,” International journal of Control, vol. 76, no. 9-10,
pp. 924–941, 2003.

APPENDIX A
HOMOGENEOUS DIFFERENTIATOR

Let a smooth signal y(t)∈R be available for measurements
for all t ≥ 0, and our goal is to estimate its derivatives.

To this end, we can use the homogeneous finite-time
observer from [35], which in our case plays the role of a
differentiator.

˙̂z1 = ẑ2− k1 dẑ1− yc1+α ,
˙̂z2 = ẑ3− k2 dẑ1− yc1+2α , (3)

...
˙̂zn = −kn dẑ1− yc1+nα ,

where ẑi can be utilized as an estimate of y(i−1) derivative for
1≤ i≤ n (here y(0) = y), α ∈ R and ki ∈ R for 1≤ i≤ n are
tuning parameters. If α = n−1

n , then this differentiator becomes
the high order sliding-mode differentiator from [46].

For realization, the system (3) has to be discretized using,
for example, the explicit Euler method at time instants tk = kh
with a fixed step h > 0, and choosing the coefficients ki in a
way that ensures stability. For this purpose, for n = 4, taking
the characteristic polynomial as p(s) = (s+ λ)(s+ λξ)(s+
λξ 2)(s + λξ 3), where λ ,ξ > 0 are tuning parameters, we
obtain:

k1 = (1+ξ +ξ
2 +ξ

3)λ , k2 = (1+ξ +2ξ
2 +ξ

3 +ξ
4)ξ λ

2,

k3 = (1+ξ +ξ
2 +ξ

3)ξ 3
λ

3, k4 = ξ
6
λ

4,

hence,

ẑk+1
1 = ẑk

1 +h
(

ẑk
2− k1

⌈
ẑk

1− yk
⌋

1+α

)
,

ẑk+1
2 = ẑk

2 +h
(

ẑk
3− k2

⌈
ẑk

1− yk
⌋

1+2α

)
,

ẑk+1
3 = ẑk

3 +h
(

ẑk
4− k3

⌈
ẑk

1− yk
⌋

1+3α

)
,

ẑk+1
4 = ẑk

4 +hk4

⌈
ẑk

1− yk
⌋

1+4α

for k = 0,1,2, . . . , where ẑk
i = ẑi(tk) and yk = y(tk) for 1≤ i≤ 4,

and α ∈ [− 1
4 ;0).

APPENDIX B
DREM (DYNAMIC REGRESSOR EXTENSION AND MIXING)

PROCEDURE

Consider the linear regression equation:

y(t) = φ(t)>θ , ∀t ≥ 0,

where y(t) ∈ R is the measured output signal, φ(t) ∈ Rn is
the regressor, and θ ∈ Rn is the vector of unknown constant
parameters. The DREM technique, introduced in [40], consists
of two steps.

The first step is the dynamic regressor extension, where we
introduce linear BIBO (bounded-input bounded-output) stable
dynamic operators Hi for 1 ≤ i ≤ n and define the vector
Y : R+→Rn and the matrix Φ : R+→Rn×n by applying the
operators on the scalar output y and on the regression vector
φ :

Y = [Y1 . . .Yn]
>, Φ = [Φ1 . . .Φn]>;

Yi = Hi(y), Φ
i = Hi(φ), 1≤ i≤ n.

Due to the linearity of the operators Hi and BIBO stability,
these signals satisfy the equation:

Y = Φθ

subject to transient asymptotically converging errors. One of
the options of the extension is a delay operator

Hi(·)(t) := ·(t− τi)

for some τi > 0, τi 6= τ j for 1≤ i 6= j ≤ n.
The second step is mixing, whose objective is to derive a

set of n scalar equations to separate the estimation of each
parameter θi. Denoting Ỹ = Φ∗Y and ϕ = det(Φ), where Φ∗

is the adjugate matrix of Φ, we obtain:

Ỹi(t) = ϕ(t)θi

for all 1≤ i≤ n. For this set of scalar equations, the gradient
parameter estimation algorithm is applicable to obtain θ̂ the
estimate of θ :

˙̂
θ i = γiϕ(Ỹi−ϕθ̂i)

for 1≤ i≤ n, where γi > 0 is a tuning parameter.

