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Abstract. Domestic canaries produce complex vocal patterns embed-
ded in various levels of abstraction. Studying such temporal organization
is of particular relevance to understand how animal brains represent and
process vocal inputs such as language. However, this requires a large
amount of annotated data. We propose a fast and easy-to-train trans-
ducer model based on RNN architectures to automate parts of the anno-
tation process. This is similar to a speech recognition task. We demon-
strate that RNN architectures can be efficiently applied on spectral fea-
tures (MFCC) to annotate songs at time frame level and at phrase level.
We achieved around 95% accuracy at frame level on particularly complex
canary songs, and ESNs achieved around 5% of word error rate (WER)
at phrase level. Moreover, we are able to build this model using only
around 13 to 20 minutes of annotated songs. Training time takes only 35
seconds using 2 hours and 40 minutes of data for the ESN, allowing to
quickly run experiments without the need of powerful hardware.

Keywords: Birdsong · Echo State Networks · Long Short Terms Mem-
ory · RNN · Audio Classification · MFCC

1 Introduction

Birdsongs are a common resource to study sensorimotor learning of complex
sequences of gestures. Many songbirds species, like the Bengalese finch or the
canary, organize their songs on top of small stereotypical units, called notes or
syllables. In the case of canaries, songs are composed of around 10 to 30 different
syllables classes [12]. Individuals in a canary population might share syllables to
some extent, due to the learning process of these vocalizations involving imitation
from tutors, but each individual’s repertoire is a unique combination of syllable
types [19]. Canaries chain syllables of a same class together in repetitive patterns
to form phrases (Figure 1), that are then chained to form songs. Phrase length
(i.e. the number of repetitions of a syllable within a phrase) is uncorrelated to
syllable type, but might play a role in song syntax [13]. Markowitz et al. [13]
also demonstrated the existence of a complex temporal structure in canary songs,
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where the order of phrases can be approximated by a high order Markov chain.
This makes canary songs of a particular relevance to understand the mechanisms
underlying the sequential organization of gestures in animal brains.

However, investigating the origin of the sequential organization of bird songs
requires large amount of data. Studies like [13] should be more numerous in order
to decipher general syntactic rules in canary songs, but this is limited by the
available datasets of annotated song recordings. The annotation process is a task
consisting in (a) segmenting the songs, by identifying temporal patterns onset
and offset in time, and (b) classifying and labelling these temporal patterns,
similarly to what is done for human speech recognition datasets. This process is
done by hand, and is as time consuming as it is error prone.

We propose to use Recurrent Neural Networks (RNN) to process spectral fea-
tures of canary songs to fulfill both the labelling and segmentation tasks. These
RNNs can be trained on small datasets of only a dozen of canary songs, allowing
to automatize most of the annotation process. They operate at phrase level, seg-
menting canary songs into sequences of repetitive patterns, which is supposed
to be sufficient for analysis like [13]. We compare simple neural architectures
like a single Long Short Term Memory (LSTM) layer or Echo States Networks
(ESN) [8]. We chose these methods to demonstrate that lightweight algorithms,
in comparison to more intensive deep learning methods, can be successfully used
on difficult tasks similar to speech recognition, while being less time and en-
ergy consuming. Importantly, the limited number of parameters that need to be
learned enables one to apply them on limited amount of data while not overfit-
ting on it; this is particularly interesting because it limits the amount of data
necessary to be hand-labelled beforehand to train the model.

1.1 Related work

Automatic methods for song annotation of various bird species have been de-
veloped in the past years, to try leveraging the large audio recordings available.
These methods make use of various techniques, like Dynamic Time Warping
(DTW) [17, 10, 1], Hidden Markov Models (HMM) [3], Support Vector Machines
(SVM) [16], unsupervised clustering [15] or combinations of Convolutional Neu-
ral Networks (CNN) and HMM [11]. While they can usually be applied on bird-
songs where vocal patterns can be easily identified and segmented like Bengalese
finch songs, these methods are known to fail on birdsongs with more complex
temporal patterns like canary songs, where segmentation of songs into sequences
of phrases or syllables is usually done by hand with only partial automation pos-
sible using thresholding techniques. Ongoing work described in Cohen et. al [4]
solves the segmentation problem by using machine learning techniques to try to
extract the position of syllables on spectrograms of the songs while classifying
them using CNNs and LSTMs. We propose a similar approach, using simpler
neural networks to avoid overfitting and to allow fast training and deployment
of models on hardware with limited capacity. However, unlike [4], we focused on
segmenting songs at phrases (i.e. consecutive repetitions of syllables) level and
not at single syllables level. Phrase annotations are indeed sufficient to perform
analysis like [13].
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Fig. 1. Labeled canary song excerpt. Canary songs are made of a sequence of phrases,
which are themselves made of repetitions of syllables. Each box delimits a syllable. The
sequence of phrases is here Ci-C-H-E-R (sequence of labels on the figure). Sound is
represented as Mel-spectrogram (i.e. spectrogram with Mel scale).

2 Methods

2.1 Song transduction task

Our task lies at the level of phrase annotation: each phrase is attributed a label
corresponding to the syllable type that composed it, and each phrase label is
delimited in time (expressed in seconds relative to the beginning of the audio
sequence). An annotation is the combination of these absolute timestamps and
of a syllable label. Figure 1 gives an example of an annotated portion of song,
with groups of syllables (gray and white boxes) identified with arbitrary letters.

The task of canary song annotation can then be broken down into two
sequence-to-sequence subtasks :

– an audio-to-frame transduction task – each time frame (each column of
pixel in figure 1) representing the preprocessed audio signal must be anno-
tated with a corresponding phrase label.

– an audio-to-phrases transduction and segmentation task – the song must
be transcribed as a sequence of tokens representing the phrase labels in the
same fashion as the available dataset, by grouping in time the annotations
found during the audio-to-frame subtask. In figure 1, the sequence of phrases
to reconstruct is Ci-C-H-E-R.

To evaluate the fulfillment of these subtasks, we use two different metrics.
The audio-to-frame task is evaluated using the frame accuracy (ACC) [2]. The
ACC score is computed by assessing the correctness of the predicted labels for
each time frame of data representing the song. Additionally, we also compute
a global macro averaged F1 -measure over all the annotated songs to take into
account the dataset imbalance (i.e. the F1 -measure is computed for all labels
and then their unweighted mean is computed).

The audio-to-phrases task is evaluated using the word error rate (WER)
measure at the phrase level (i.e. a “word” in this context is considered to be a
phrase). The WER normalises the number of editions, deletions and substitu-
tions necessary to align perfectly a predicted sequence with the correspondent
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Fig. 2. Cumulated duration of the different types of phrases in the dataset.

expected one. It is thus defined as the Levenshtein distance between the predicted
and expected sequences divided by the exact number of phrases in the expected
sequence. All scores in section 3 are presented as mean ± standard deviation,
figures included (plain areas of color represent standard deviation boundaries,
curves represent mean).

We propose to train two RNN architectures on this task: an ESN (section
2.4) and an LSTM (section 2.5).

2.2 Available data

We use a corpus of 459 songs recorded from a single canary, for a total song
duration of approximately 3 hours 20 minutes. The songs were annotated by
one human experimenter, and checked by other experimenters when the syllable
category was unclear. They were then corrected by a second human experimenter
assisted by early versions of the models presented in 2.4. The corrected version
of the dataset contains 27 different types of phrases, each identified by a unique
arbitrary label. We finally added three other classes of phrases. A cri class (call in
French) is used to annotate all canary vocalizations that are not part of a sound,
and are simple calls. A SIL (silence) class is used to annotate all segments where
the bird is not singing. A TRASH class is used to annotate phrases that are
impossible to classify clearly.

The phrases distribution is highly unbalanced inside the dataset, as presented
in figure 2. As we want the model trained to be as good as possible at recognizing
all types of syllables, we split the dataset in order to ensure that all types of
syllables appear at least once in the training dataset. Once this condition is filled
and the training set contains representative songs, we keep splitting the dataset
until the training set contains 368 songs (around 2 hours 39 minutes), and the
testing set contains 91 songs (around 41 minutes). The dataset is available on
Zenodo (zenodo.org) [7].

2.3 Data preprocessing

Speech recognition tasks generally need to convert raw audio signals to a format
having a good trade-of between accuracy and number of features. We chose Mel-
Frequency Cepstral Coefficients (MFCC) as a representation for canary songs:
they allow to extract frequency features of the audio signal in a biologically
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meaningful way, while compressing the spectral representation down to a few
coefficients. We mainly based our preprocessing steps on human audio stan-
dards (making some adjustments based on the frequency bands of canary vo-
calizations), assuming that we only need to extract the information that could
have been perceived by human annotators. Indeed, canary syllables often form a
clear identifiable pattern on a spectrogram, because it does not include complex
harmonics.

MFCC computations where performed using the Librosa [14] Python library.
Song spectrograms are first extracted using Short Time Fourier Transform every
11ms (often called frame stride) and computed on overlapping windows of 23ms
(often called window width)4, using a Hanning window to reduce edge effects.
Then, we set the frequency range of a 128 filters Mel filterbank to [500Hz; 8kHz],
as canaries vocal patterns occur below 8kHz and as the [0Hz; 500Hz] bandwidth
represents mostly noise. Mel filters are appliyed on spectrograms through a dot
product, and a final Discrete Cosine Transform (DCT) creates cepstral repre-
sentations. We extracted 13 cepstral coefficients as usually fed to MFCC-based
speech recognition models. We also computed the first (∆) and second (∆2)
derivatives of the MFCC signal, in order to provide the models with gestures
dynamics. We therefore feed all models with a total of 39 features per timeframe.
No normalization is applied to the MFCC representations, except a cosine lifter-
ing as described in [9], with a factor of 40, which helps to linearize the variance
of the coefficients. We did not apply any other normalization to avoid any loss
in representativeness in the extracted features.

2.4 Presentation of the Echo State Network model

We used ESNs with leaky integrator sigmoid neurons as transducers of the songs
audio signals. ESNs can be described as randomized RNNs using simple learning
rules to update the parameters of a readout layer of neurons. Appart from this
readout layer of neurons, no other parameters are learned. All the other param-
eters are randomly chosen to build the reservoir and the input layer, and are
kept fixed during the whole life cycle of the network. The reservoir is the main
component of ESNs. It is a randomly, sparsely connected pool of neuronal units
in charge of unfolding the temporal dynamics of the input data in a high di-
mensional space. The reservoir is randomly, sparsely connected to the sequential
input stream of data through connections defined in the input layer. Activities
(also known as states) of neuronal units in the reservoir are described following
the equation 1 :

x[t] = (1− α)x[t− 1] + α tanh(Win · u[t] + W · x[t− 1]) (1)

where x[t] is the vector storing the activities of the N neurons at time t, and
u[t] is the current input vector at time t. The parameter α is the leaking rate
(LR), controlling the time constant of the ESN, and set to 9×10−2. W ∈ RN×N

stores connections weights of reservoir neurons, with N = 1000. All weights are

4 frame stride and window width are respectively called hop length and win length in
librosa.
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Fig. 3. An example predicted sequence of ESN and LSTM models on a song bout. A
Mel-scale spectrogram of the song bout used as example. B Target annotation sequence
(blank represent silence SIL class) and predicted annotation sequence from LSTM
and ESN. Colored lines represents segment of consecutive frames sharing the same
annotation label, indicated on top. Frame accuracy can be conceptualized as measuring
the lines alignment in length and color between the targets and the predictions. WER
only measures the validity of the colors (and thus labels) sequence (e.g. N-S-M-D-I-A
in the figure). C LSTM chromagram-like output activations for all frame representing
the song. The y axis represents phrases classes. The x axis represents time in frames.
Each frame is labeled following the argmax of the activations for this frame. D Same
as C with the ESN. Because output activation of ESN is linear, the outputs values
tends to be noisier than the outputs of the LSTM, that are normalized using a softmax
activation function.

randomly initialized from a uniform distribution using the method described
by [5] with a spectral radius of 0.7 and a connection density of 20% (i.e. non-
zero weights). Win ∈ RI×N stores connections weights going from the I-
dimensional inputs to the N -dimensional reservoir. These weights are randomly
chosen in {−1, 1}, with a connection density of 20%, and are then scaled by a
constant factor called input scaling (IS). Because the input data is composed of
three different sets of features (MFCCs, ∆, ∆2) with different distributions, we
chose to apply three different ISs to the corresponding connections weights. We
therefore define the MFCC input scaling (ISS), the ∆ input scaling (ISD), and
the ∆2 input scaling (ISD2), respectively set to 10−3, 5 × 10−3 and 5 × 10−3.
Finally, we use a linear regression with L2 regularization (also called Tikhonov
regression or ridge), with a regularization coefficient of 10−4, to use the same
as the LSTM model described in 2.5, to learn the Wout ∈ RN×U matrix. The
latter stores the readout connections between the N -dimensional reservoir and
the U -dimensional output space. In our case, U is set to 30, the number of
phrase labels. The outputs ŷ[t] of the model at time frame t are then computed
following ŷ[t] = Wout · x[t], given the reservoir state x[t]. The predicted class
index c[t] in the repertoire is then defined as the index of the maximum value in
the prediction vector.
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Fig. 4. Frame accuracy of models trained on subsets of songs of increasing size, on the
training set (left) and on the testing set (right). Thirty songs represents around 780
seconds of song, 50 songs represents around 1303 seconds of song, 70 songs represents
around 1813 seconds of song.

All hyperparameters presented were optimized during a random search made
on a subset of 100 songs including all syllable types.

2.5 Presentation of the LSTM model

We used a single LSTM (with forget gate) as originally presented in [6]. We set
the number of units inside the LSTM to 72, in order to make the comparison
fair with ESNs in term of total number of trainable parameters, which is around
30, 000. After adding a fully connected layer of units with softmax activation
function on top of the LSTM to outputs class belonging probabilities, the model
has a total of 34, 446 parameters. A L2 regularization is applied to the weights
of the fully connected layer, with a regularization coefficient of 10−4. We then
trained the LSTM using Adam gradient descent algorithm, with a learning rate
of 10−3. Loss was computed using a log cross-entropy measure. Training was
automatically stopped using the validation accuracy value, after a performance
stagnation or decrease of 20 consecutive epochs. On average, LSTMs were trained
on 181 ± 36 (std) epochs before achieving their best measured performance on
validation data. The validation accuracy value is either computed on a validation
fold of the training dataset during 5-folds cross-validation or on the test dataset
during training with the whole training dataset.

3 Results

3.1 Performance of transduction

Performance of the models on the audio-to-frame task was evaluated using a
5-fold cross-validation on the training dataset defined in section 2.2. We trained
30 random initializations of ESNs for each experiment, against 5 random ini-
tializations of LSTMs. This imbalance was motivated by the important training
time of LSTMs, and by the fact that LSTMs models are expected to converge
toward similar solutions independently of their initializations, as fully trained
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Table 1. Average scores obtained with a 5-fold cross-validation over all training songs
and several models instances.

Model Average frame accuracy (ACC) Median frame accuracy F1 (macro avg.)

LSTM 0.931 ± 0.104 0.951 0.865

ESN 0.935 ± 0.09 0.952 0.877

Table 2. Average WER obtained after training on the full training set.

Model ESN LSTM

WER (%) 5.3 ± 7.2 27.4 ± 16.2

neural networks, while ESNs rely on a randomized layer of neurons kept fixed
during training.

The frame accuracy (ACC) was computed for all songs, and then aver-
aged over the whole corpus, the folds and the random instances of the models.
There is no significative difference in performance between the models medi-
ans (Wilcoxon rank-sum test over all accuracy measures, for all songs and all
folds, W = 10016240, p = 0.28), and they both achieve an accuracy rate slightly
higher than 93% in mean and 95% in median. We completed ACC with an F1-
measure, which is significantly lower than ACC (around 0.86). This F1-measure
is computed using a macro-averaging of precision and recall over all the classes
of phrases, i.e. all classes are given equal importance in the computation, unlike
with the accuracy score. This metric therefore gives insights on how well the
models truly perform for all syllables types, without taking into account the im-
balance of the classes in the dataset. All the metrics values are given in table 1.
An example of models outputs can be found in figure 3.

Finally, all models instances were trained on the whole training set and
evaluated on the test set defined in 2.2. ESNs achieve an accuracy rate of
94.4%±2.7%, while LSTMs reach a lower accuracy rate of 93.9%±10.0%. ESNs
accuracy median (95.4%) is however significantly lower than LSTMs accuracy
median (95.9%). (Wilcoxon rank-sum test over all accuracy measures on test set,
W = 534682.5, p = 2.92× 10−8).

Comparison with [4] can not be done fairly, as our method operate at phrase
level and not at syllable level, and as we did not use the same dataset. We discuss
the possibility of extending this work in Discussion. However, our method shows
performance at frame level belonging to the same range of performance exhibited
in [4] (between 92%-98% accuracy)5.

3.2 Performance of models on reduced dataset

The aim of canary songs annotation automation is to save as much time and re-
sources as possible for the experimenters working with these songs. Although our
models are supervised, the amount of annotated data required for the models to
produce acceptable results can be low enough to still significantly save time. We

5 As the work in [4] seems to not having been reviewed yet, we will not make further
comparisons to avoid any mistakes than could originate from unverified results.
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Fig. 5. WER of models trained on subsets of songs of increasing size (left) and WER
of models trained on the whole training set (right). Song time is equivalent to the one
explained in figure 4.

tried to assess the minimum amount of data necessary to reach the performances
described in 3.1.

Figure 4 shows the evolution of the ACC score on the test set given the
number of songs in the training dataset, using 5 instances of LSTMs and 30
instances of ESNs on random subsets of data. ESNs appear to be less sensitive
to reduction of the training dataset than LSTMs, and reach back their peak
performance being trained on 30 to 50 songs, which represents approximately
780 ± 55 to 1303 ± 87 seconds of song (13 minutes to 21 minutes 43 seconds).
Low overfitting is observed with this training set sizes, as the test and train ACC
are comparable. LSTMs, on the other hand, reach back their peak performance
defined in 3.1 with a training set containing at least 70 songs, which represents
approximately 1813± 87 seconds (around 30 minutes of song).

3.3 Sequence extraction

In order to perform the audio-to-phrases task, we reconstructed phrases from
the models predictions made at frame level for the audio-to-frame task. To do
so, we simply annotated consecutive frames sharing the same annotation with
a single label. Segmentation of songs is therefore implicitly performed by the
RNN: we consider that phrases onset and offset are delimited by uninterrupted
sequences of frames with the same label. Figure 3 shows that this method allows
to accurately segment the songs without any post processing, because ESNs and
LSTMs shift their outputs activations in time following the onset and offset of
the phrases. Figure 5 shows that ESNs significantly outperform LSTMs on the
audio-to-phrases task, by achieving a 5.3%±7.2% WER on the testing set, being
trained on the whole training set. LSTMs achieve a 27.4%± 16.2% WER. This
difference is explained by a higher instability of LSTMs predictions onsets and
offsets, creating small noisy occurrences of phrases where they are not expected,
as visible in figure 3B. WER scores are summarized in table 2. While these errors
are insignificant at frame level, because of the important imbalance in duration
between phrase classes, they can seriously hinder the WER, as it is not weighted
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by phrases durations. Finally, ESNs are able to reach their peak performance
using a subset of 30 to 50 songs, the same number they require in 3.2 to reach
their peak ACC. This allows us to recommand to use ESNs to annotate songs
and to train them on at least around 20 minutes of song to obtain acceptable
results.

3.4 Time constraint

All trainings where performed on an Intel Core i7-9850H with 12 cores operating
at a frequency of 2.60GHz, on a computer equiped with 31.1GiB of RAM. The
training time considered takes into account the tool used to build the models –
ReservoirPy [18] for the ESNs, TensorFlow and Keras for the LSTMs – and the
policy used to stop the training, when applicable. Training times were averaged
over the 10-folds cross-validation. Average training time for ESNs is significantly
shorter than average training time for LSTMs, as ESNs only require one epoch
of training. LSTMs on the other hand were trained using an early stopping
policy based on validation accuracy with a patience of 20 epochs, and only
reach top performance after around 180 epochs of training. These measures
are nevertheless only given as very broad indications, as the comparison is not
completely fair: ESNs were able to benefit from a parallelized training policy over
the 12 cores of the processor, while the LSTMs were only partially benefiting
from it. Also, most deep learning models such as LSTMs are nowadays trained
on specialized hardware like GPUs. In our case, training on GPU makes the
training longer, as our LSTMs are quite small, and as the flow of data between
CPU and GPU adds a significant overhead. However, regarding the very short
training time of ESNs, we can safely hypothesized that such performances are
out of reach for an LSTM, even with further optimizations.

Table 3. Average training time for the two models during 10-fold cross-validation.

Model LSTM ESN

Average training time (s) 2930 ± 222 35± 1

4 Discussion

Canary is one of the most complex singer that can be found among song birds. Its
songs display sophisticated syntactic rules, as demonstrated in [13], which make
it an appropriate candidate for deeper analysis of the emergence and learning
of sequential organization of gestures. However, these analysis heavily rely on
the quantity of available data to untangle the temporal complexity of the songs.
These data are usually hand-annotated, and the full annotation process has to
be repeated for each individual, because each canary produces specific syllables.

In this context, we proposed an efficient yet lightweight solution using RNNs
to help with the annotation process, by shortening significantly the amount of
time necessary to annotate large amount of data. Our method achieves a low er-
ror rate at phrase level (around 5% when using ESN) which should be acceptable
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for syntactic analysis. We applied this method on a canary that was producing
particularly complex syllables in order to build robust classifiers applicable to
any domestic canary songs. A more extensive study should be conducted soon,
using other publicly available datasets. We also make ours public, to contribute
to any field of research requiring annotated canary songs. Additionally, a more
extensive study would also allows to perform a fair comparison with [4] by per-
forming the annotation task at syllable level, and to assess the quality of the
annotated sequence of phrases by comparing their temporal structure with the
results of [13]. In any case, we confidently make the hypothesis that our method
allows faster computation that the deep learning solution presented in [4], at
least when using an ESN, while reaching similar performance. Indeed, the full
training of an ESN only take around 40 seconds using 2 hours 39 minutes of
data.

Furthermore, our method is rooted in speech recognition area by using MFCCs
as representation of the audio signals, in order to extract the relevant spectral
information and reduce its dimensionality. While this approach was criticized in
[11], a previous study successfully using CNN and HMM to decode Bengalese
finch songs, we empirically show that MFCCs seem to remain a good approxi-
mation of spectral information, at least for canary vocalizations. We also demon-
strated that RNNs like ESNs can outperform more complicated and widely used
techniques like LSTMs, within a fair comparison setup, on tasks deemed as dif-
ficult and closely related to speech recognition.

We finally make the hypothesis that our method could be successfully applied
to other species, song birds, mammals, or even insects. Our method has the
advantage of being easy to experiment with, as the training time for ESNs is
very short compared to other deep learning algorithms, allowing for extensive
optimization and statistical robustness, and does not require powerful hardware
to run successfully.
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