
HAL Id: hal-03502320
https://hal.inria.fr/hal-03502320

Preprint submitted on 24 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mitigating Leakage from Data Dependent
Communications in Decentralized Computing using

Differential Privacy
Riad Ladjel, Nicolas Anciaux, Aurélien Bellet, Guillaume Scerri

To cite this version:
Riad Ladjel, Nicolas Anciaux, Aurélien Bellet, Guillaume Scerri. Mitigating Leakage from Data De-
pendent Communications in Decentralized Computing using Differential Privacy. 2021. �hal-03502320�

https://hal.inria.fr/hal-03502320
https://hal.archives-ouvertes.fr

Mitigating Leakage from Data Dependent
Communications in Decentralized Computing using

Differential Privacy
Riad Ladjel∗, Nicolas Anciaux∗, Aurélien Bellet†, Guillaume Scerri∗

∗Petrus team, Inria, France †Magnet team, Inria, France

Abstract—Imagine a group of citizens willing to collectively
contribute their personal data for the common good to produce
socially useful information, resulting from data analytics or
machine learning computations. Sharing raw personal data with
a centralized server performing the computation could raise
concerns about privacy and a perceived risk of mass surveillance.
Instead, citizens may trust each other and their own devices
to engage into a decentralized computation to collaboratively
produce an aggregate data release to be shared. In the context
of secure computing nodes exchanging messages over secure
channels at runtime, a key security issue is to protect against
external attackers observing the traffic, whose dependence on
data may reveal personal information. Existing solutions are
designed for the cloud setting, with the goal of hiding all prop-
erties of the underlying dataset, and do not address the specific
privacy and efficiency challenges that arise in the above context.
In this paper, we define a general execution model to control the
data-dependence of communications in user-side decentralized
computations, in which differential privacy guarantees for com-
munication patterns in global execution plans can be analyzed
by combining guarantees obtained on local clusters of nodes. We
propose a set of algorithms which allow to trade-off between
privacy, utility and efficiency. Our formal privacy guarantees
leverage and extend recent results on privacy amplification by
shuffling. We illustrate the usefulness of our proposal on two
representative examples of decentralized execution plans with
data-dependent communications.

I. INTRODUCTION

In many areas such as health, social networks or smart
cities, the need to obtain information from citizens for the
social good is growing. Hospitals are asking patient groups
to provide health statistics1 related to diseases for which little
data is available or about recently recognized pathologies [46].
Researchers also ask citizen volunteers to collectively use
their social media accounts to identify potential abuse and
political propaganda [52]. Similarly, municipalities are using
participatory sensing applications to collect urban statistics
(e.g., on street noise exposure [29], [43], [13]). While legal
frameworks such as data portability [18], [41] or data altruism
[17] allow citizens to retrieve and share their personal data,
asking citizens to provide raw data raises privacy concerns,
with a risk of being perceived as mass surveillance [58] and
limited chances for widespread adoption [33].

Instead, in this work we consider a setting where groups of
citizens wish to collectively compute and share an aggregate
data release, resulting from a distributed database query or

1See e.g., the ComPaRe initiative in Paris hospitals: https://compare.aphp.fr/

a federated machine learning process [31] executed on their
personal data. In terms of security, this implies considering
a distributed set of trusted computing nodes processing data
locally, and exchanging results at runtime through secure
communication channels. While techniques aiming to en-
sure that a computation does not leak information (including
through communication patterns) exist, from secure multiparty
computations [11] to secure outsourcing [16], they either
have a very high overhead when massive number of parties
are involved or rely on distributing trust between a small
number of servers which is contradictory with our massively
distributed setting. In order to avoid such drawbacks, we
thus avoid changing the way distributed computations are
performed and wish to keep computations at the level of
client nodes. Securing local processing from an attacker can be
tackled by solutions ranging from software security [5], [10]
to hardware-based protection [42], [30], [40]. These solutions
suggest that avoiding secure servers and relying only on simple
client nodes is a feasible and sound approach.

In this paper, we focus on the problem of protecting against
traffic analysis between computing nodes, whose dependence
on data may reveal sensitive (e.g., personal) information. This
is a standard, independent security problem that has been
less studied than leakage from other side channels (such as
memory access patterns [63], [61], [1], [37]), especially in the
context of massively decentralized processing. Data-dependent
communications in execution plans of distributed queries arise
for efficiency reasons (to enable nodes to do more work
in parallel) and depend on the query to be evaluated. For
example, in distributed SQL and MapReduce analytics, nodes
process data based on given (group-by) value intervals or (join)
hashed key values (see e.g., [8]). In distributed data mining and
machine learning algorithms, iterative updates to the models
are split across computing nodes based on the distance to given
centroids, according to regions of the feature space, or based
on the similarity of local updates [62], [55], [53], [50], [28].

Existing solutions to hide the dependency between com-
munication patterns and underlying data values have been
proposed for the so-called confidential computing model [48],
[54], [19], [20], [44], where computing nodes are allocated
in cloud settings within secure enclaves and generate data
exchanges at query time over secure communication channels.
A first option is to make all communications (computationally)
data independent. As a more practical alternative to the naive

ar
X

iv
:2

11
2.

12
41

1v
1

 [
cs

.C
R

]
 2

3
D

ec
 2

02
1

 https://compare.aphp.fr/

option of broadcasting dummy messages to all nodes, [39]
proposes to use communication padding (data transmitted from
node to node is padded to a maximum size) and clipping (when
the maximum size is reached, messages are discarded) for
MapReduce computations. However, to avoid high communi-
cation overheads and preserve the utility of the computation,
appropriately tuning the padding and clipping parameters is
crucial. This requires prior knowledge on the data distribution
to obtain a good balance between computing nodes, which
is unrealistic in our context with potentially unknown sets of
volunteers holding small data sets (in extreme cases, citizens
contribute with a single personal record).

A second option is to anonymize communication patterns
by resorting to secure shuffling [9], mixnets [23] or obliv-
ious data exchanges [63]. However, the privacy guarantees
obtained in a massively decentralized setting are difficult to
formally quantify, especially against attackers with auxiliary
knowledge. Even without such knowledge, anonymized com-
munication patterns may still leak sensitive information (e.g.,
observing communication patterns to computing nodes that
collect personal data for a given range of values would reveal
the number of involved citizens with values in this range).

Hence, hiding communication patterns in the case of mas-
sively decentralized computations on end-user nodes calls for
new solutions. A key challenge is to design techniques that can
appropriately trade-off between privacy, utility and efficiency.

In this work, we propose to mitigate the leakage from data-
dependent communication patterns with the tools of differen-
tial privacy, a mathematical definition of privacy with many
interesting properties (including robustness against auxiliary
knowledge). Our first contribution is to define a general
execution model, in which the differential privacy guarantees
of communications patterns resulting from global execution
plans can be analyzed by combining guarantees obtained for
local clusters of nodes through composition. Our second con-
tribution is a set of algorithms to hide cluster-level communi-
cation patterns. Our algorithms rely on a combination of local
sampling (each node randomizing the targets of messages),
flooding (adding dummy messages) and shuffling subsets of
messages with scramblers. We prove analytical differential
privacy guarantees for our solutions by relying and extending
recent results on privacy amplification by shuffling [14], [27],
[4]. Finally, our last contribution is to highlight the practical
usefulness of our solutions on two representative examples of
execution plans with data-dependent communication, showing
possible privacy-utility-efficiency trade-offs.

The rest of the paper is organized as follows. Section II
defines the problem. Section III introduces a first approach
where each node locally randomizes its messages. In Sec-
tion IV, we propose algorithms where the noise can be shared
across nodes. Section V presents an evaluation of our approach
on two concrete use-cases. We review some related work in
Section VI, and conclude in Section VII.

II. PROBLEM DEFINITION

In this section, we describe our execution and adversary
models, formulate the problem of mitigating the dependency
of communication to data when executing distributed queries,
and present the performance metrics used to evaluate the
quality of solutions. We begin with a motivating example used
throughout the section to illustrate the various concepts.

A. Motivating Example

We introduce here a representative example of distributed
query producing aggregated values of certain attributes
grouped by other sets of attributes for a dataset contributed by
a large set of participants. This type of queries, called Aggre-
gate in the paper, is used to understand frequency distributions
and collect marginal statistics from the data, as routinely
performed in a data exploration phase. Such queries are also
used in many data mining/machine learning algorithms (e.g.,
to learn decision trees). The data, computation and distribution
models are as follows.

a) Data model: Personal data is hosted in users’ source
nodes and forms a partition of the dataset under consideration,
as in federated machine learning or federated database scenar-
ios. For simplicity, the dataset is represented by a single table
D(A), with A a fixed set of attributes used in the computation,
and any source node hosts a single tuple t in D.

b) Computation model: An Aggregate query on the
dataset D is expressed as Q = {q} a set of sub-queries, where
each sub-query q = (Gq,Vq,Fq) is defined by a set Fq of
statistical functions (e.g., {count, avg, max}) evaluated over a
set of aggregate attributes Vq ⊂ A and grouped by another set
of attributes Gq ⊂ A. Note that Q is a typical case of a SQL
aggregate database query with a grouping sets clause.

c) Distribution model: For evaluating query Q, the
dataset D is partitioned vertically by sub-query q, and hori-
zontally on grouping attribute values of Gq for each sub-query.
Each partition Diq of the dataset is then assigned to a distinct
compute node ciq in charge of computing q(Diq). The partitions
Diq can be formed by locally (i.e., at source node) assigning
any tuple t ∈ D to the appropriate partitions. The result of
Q = ∪q,i{q(Diq)} is obtained by the union of the results
produced by all compute nodes {ciq} on their partition Diq .

For illustration purposes, in the rest of this section we
consider the following query instance as a running example.

Example 1 (Running example, Figure 1). A dataset for
a diabetes study consists of a table D(A,B, I) with two
grouping columns, Age range (A) and Body mass index
(B), and one aggregation column, Insulin rate (I). Each
row of the table is a tuple tk = (a, b, i) with the values
taken for a contributing patient. A query Q is the union
of q1 = (A, I, avg) and q2 = (B, I, avg) which compute
respectively the average insulin rate grouped by age range
and grouped by body mass index. Note that this query is
equivalent to the SQL database query: SELECT A,B,AVG(I)
FROM D GROUP BY GROUPING SETS (A),(B). The dataset
D = {tk}k∈[1,d] is distributed on a set of source nodes each

2

………………

R

………………………

… …. …. ….

dataset D = k{tk}

source node sk

D1
i

D2
j

(aAi, ik) (bBj, ik)

result node

q1(D1)i

compute node c1
i

q1(D1)

D2

tk

Fig. 1: Distributed query plan (Example 1).

holding one tuple tk. To evaluate the query, a first vertical
partition of the dataset D1 = D(A, I) is used to evaluate q1

and a second D2 = D(B, I) to evaluate q2. The grouping
domains A for q1 and B for q2 are respectively partitioned
horizontally into C parts {Ai}i∈[1,C] and {Bj}j∈[1,C], with
Di1 = {t ∈ D1, t.a ∈ Ai} and Dj2 = {t ∈ D2, t.b ∈ Bj}.
The query execution is distributed on two groups C1 and C2
of C compute nodes each, computing q1(D1) and q2(D2)
respectively. A source node holding tk = (ai, bj , ik) with
ai ∈ Ai and bj ∈ Bj sends (ai, ik) to compute node
ci1 ∈ C1 which evaluates q1(Di1) and (bj , ik) to cj2 ∈ C2 which
evaluates q2(Dj2). The result R of the query is the union of
the results produced by compute nodes.

Data leakage from communications. In general, an attacker
observing the destination of (encrypted) messages sent by a
user contributing to the computation deduces the values of
the grouping attributes G1, . . . ,Gn for this user. For example,
the user contributing tuple (A = 19, B = 18, I = 128)
in Example 1 sends (A = 19, I = 128) to the compute
node processing A = 19, and (B = 18, I = 128) to the
one processing B = 18, and thus reveals their age and
body mass index to the attacker. By extension, an attacker
observing a compute node identifies users sharing the values
processed by that compute node. If some compute nodes
process sensitive values (e.g., nodes corresponding to low or
high BMI values in Example 1), the communications reveal
potentially discriminated users. More generally, the higher
the number of grouping sets (desirable in terms of utility)
and the finer the partitioning (beneficial from a performance
viewpoint), the more extensive and accurate is the information
inferred about contributors. Ultimately, an attacker observing
the messages in the computation could infer all the grouping
values of the participants, which amounts to revealing their
profile (if not their identity, as a few demographic attributes
are enough to uniquely identify an individual [47]).

B. Execution Model

Our execution model aims to abstract away the specific com-
putation to focus on capturing generic communication patterns.
In order to achieve this, we break down the distributed compu-
tation between a set of elementary nodes that execute arbitrary
computations but have simple communication behavior. We
assume that nodes communicate on secure channels enforcing
integrity and secrecy of communications (e.g. TLS). We then
combine these nodes in order to obtain an execution plan.

a) Nodes: The simplest building block of our execution
model is a node, which executes an elementary step of the
computation. We assume that each node has a unique un-
forgeable public identifier (typically provided by a PKI). The
input of this elementary computation consists of data received
from other nodes and/or internal data of the node (represented
as a set of tuples). As we focus on communication between
nodes, we allow nodes to run any program on received data
but explicitly require that a node sequentially follows three
steps:

1) Receive a number of input messages from a set of source
nodes (if any);

2) Process input data together with internal data of the
node;2

3) Establish secure channels with target nodes and send a
number of messages to a set of target nodes (if any).

We assume that the number of messages received and sent by a
given node is fixed (if it is not, we add a dummy target node
that represents discarding the message). We further assume
that the size of messages does not depend on the value taken
by the data (content of the message).

Given a node ν and its input data Dν (a set of tuples consist-
ing of internal data and messages received from other nodes),
the execution of ν on Dν generates some communication in
the form of a set of triplets (ν,mi, ti) indicating that node ν
sent a message with content mi to target node ti. We denote
by ν(Dν) the set of triplets produced by the execution of ν
on Dν . Since messages are indistinguishable to attackers (as
we use secure channels between nodes and assume same size
messages), in the rest of the paper we will often omit mi.

Example 2. The computation described in Example 1 consists
of four types of nodes:
• A set of source nodes, each holding one data tuple tk =

(ai, bj , ik) where ai ∈ Ai and bj ∈ Bj . They do not
receive messages and send two messages: (ai, ik) to the
compute node ci1 in C1 processing Di1, and (bj , ik) to the
compute node cj2 in C2 processing Dj2.

• Two types of compute nodes C1 = {ci1 : 1 ≤ i ≤ C}
and C2 = {cj2 : 1 ≤ j ≤ C} which receive a number
of messages from the source nodes and send out one
message (the aggregated result).

• A result node R which receives the (partially) aggregated
data from the compute nodes.

2We do not consider the leakage that may occur during computation due
to side channels (e.g. timing), see Section VI for a review of mitigation
techniques based e.g. on constant time code, ORAMs, etc.

3

b) Execution plans: An execution plan is a set of nodes
with disjoint node identifiers (if an “agent” needs to execute
multiple computation steps, it executes several nodes). A
distributed execution is simply the execution of all nodes
where each message is taken as input to the specified target
node.

Definition 1 (Communication graph of an execution plan).
Given a set of nodes N , a dataset D =

⋃
ν∈N Dν , and r

the randomness used in the computation (divided across all
nodes), we define the communication graph N r(D) of the
execution planN on data D with randomness r as the union of
the communication outputs {(ν, ti)} =

⋃
ν∈N ν(Dν) produced

by each node ν ∈ N with input data Dν (message contents
are excluded as they are hidden by secure channels and have
same size) during the computation, with edges labeled by the
order number of the message sent.

Probabilities will be taken over r. When clear from the
context, r may be omitted.

Example 3. In our example, the communication graph for the
execution plan outlined in Example 1 is the graph presented in
Figure 1 where a source node s holding tuple tk = (ai, bj , ik)
with ai ∈ Ai and bj ∈ Bj has an edge labeled 1 to the
compute node ci1 ∈ C1 processing (ai, ik), and an edge labeled
2 to the compute node cj2 ∈ C2 processing (bj , ik), and all
compute nodes have an outgoing edge to the result node R.

C. Adversary and Security Models

We assume that node identifiers cannot be forged by the
adversary in order to impersonate nodes. This could typically
be achieved through the use of a public key infrastructure
(PKI). In the case of SGX for example, Intel would play the
role of such a PKI, ensuring that the computation environment
is what we expect. We assume that all nodes communicate on
secure channels that provide two-way authentication, secrecy
of messages (i.e. an adversary cannot distinguish between
a true message and a random message of the same size),
and integrity of communications (i.e. an adversary may not
convince the receiver that a forged message was sent by
the sender), under some cryptographic assumption H (e.g.
decisional Diffie–Hellman). For example, TLS with client
authentication would satisfy these conditions under the crypto-
graphic hypotheses ensuring that the adversary may not break
the underlying encryption and signature schemes.

We consider an adversary observing all communications,
and only communications, in particular the adversary cannot
observe the internal state of nodes. Additionally we assume
that the adversary cannot not break the cryptographic hypothe-
ses H (and is otherwise unbounded). Therefore, the adversary
cannot break the security of secure channels and thus cannot
observe the content of messages.

The natural way to model the amount of information leakage
of an execution plan N is differential privacy, applied here
to communication patterns. Formally, given an execution plan
N and a dataset D, the adversary is given access to a

computation of N (D) and tries to infer information about
individual tuples in D (e.g., the values of attributes A and
B of a user in Example 1) leading to a natural definition
similar to the computational differential privacy of [38]. As
usual with differential privacy, we do not make any assumption
on the auxiliary knowledge of the adversaries (they may
have arbitrary knowledge and even know some tuples of the
dataset). We then require that the adversary should not be
able to distinguish two runs of the protocol with neighboring
datasets (i.e. datasets differing by exactly one tuple) with good
probability. As the adversary cannot break secure channels, we
can abstract away the content of messages and the construction
of secure channels (for more details see Appendix A), giving
only the communication graph as observables for the adver-
sary. Formally, under hypotheses H, we have the following
privacy definition.

Definition 2 (DP for execution plans). An execution plan N
is (ε, δ)-differentially private if for any neighboring D0,D1

(differing by at most one tuple), and for all possible sets O of
communication graphs, we have:

P [N (D0) ∈ O] ≤ eεP [N (D1) ∈ O] + δ.

Note that providing privacy guarantees for releasing the
result of the computation is an orthogonal problem, but one
advantage of using differential privacy for protecting commu-
nications is that it will compose well with techniques that
provide differential privacy guarantees for protecting the result
or other side channels (see Section VI).

D. Reducing the Problem to Clusters of Nodes

In order to analyze the problem and control data depen-
dency, we restrict the type of nodes we consider as follows.

Definition 3 (Simple node). A simple node is a node such that
modifying one input tuple in D may only change one output
message of this node (content and target).

Importantly, this does not restrict the type of distributed
computations that we can do in practice. For instance, although
in Example 2 a source node is not simple (two messages
depend on the tuple tk), it can be seen as a pair of simple
“logical” nodes running on the same client, one sending
(a, i), the other one sending (b, i). Note that when doing this
transformation the input data of nodes is no longer disjoint
between nodes. These two “logical” nodes share the same
base identity (the identity of the physical node) and are
differentiated by the order number of the message they send.

As a preliminary step towards achieving differential privacy
for communications in an arbitrary execution plan, we reduce
the problem to considering a set of simple nodes with the
same communication behavior, namely a cluster of nodes. This
allows for a generic analysis as we will see in Section III.3

Moreover, working at the level of a cluster will allow us to

3In particular, for a cluster, the only data dependency is which target
receives a message, and differential privacy of all communications essentially
becomes recipient anonymity as defined in [3].

4

share noise addition for these nodes (see Section IV), obtaining
better guarantees with less traffic while reasoning locally on
the potential communications. Crucially, we show that if we
provide privacy guarantees for each cluster of an execution
plan, they translate into privacy guarantees for the overall
execution plan by composition (see Theorem 1).

Definition 4 (Cluster of nodes). In an execution plan N , a
set of nodes C ⊆ N is a cluster if
• the set of potential target nodes T ⊆ N for each message

sent by any node in C is the same,
• all nodes in C are simple,
• nodes in C operate on disjoint data.

Example 4. In our running example, source nodes (users
contributing data) are not simple as they produce two mes-
sages (see Figure 1) and thus cannot directly be divided into
clusters. However, breaking down each source node s into
two logical nodes s1 and s2 sending out messages for the first
(resp. second) set of target nodes C1 (resp. C2), all nodes are
simple. Denoting by S1 (resp. S2) the nodes communicating
with C1 (resp. C2), note that the nodes in S1 operate on disjoint
data (different tuples of D), as do nodes in S2 (but nodes in
S1 share data with nodes in S2, as nodes s1 and s2 process
the same tuple t ∈ D). The computation can therefore be
divided into five clusters: S1, S2, C1 and C2 and R, as shown
in Figure 2. Note that communications originating from C1 and
C2 are not data dependent (they only send out one message to
R), hence they do not need any countermeasure to hide their
communication patterns. R does not send messages at all, and
will therefore be ignored in the remainder of the paper.

For simplicity and without loss of generality, in the rest of
the paper we assume that nodes in a cluster only send one
message. Indeed, as each input tuple of a simple node may
only change one output message, all output messages can be
computed independently.

As our goal is to modify execution plans without altering
the underlying computation, we are restricted to working on
communication graphs rather than the internal workings of
nodes. Therefore, all our algorithms will take communication
graphs as input and return new, perturbed communication
graphs. With a reduction similar to the one presented in [3],
based on our previous assumptions, we can abstract away
the dependence on data and provide the following differential
privacy definition, which is equivalent to Definition 2 for
clusters of nodes. Indeed, with our definition of simple nodes,
two neighboring datasets may only produce communication
patterns differing by the recipient of at most one message,
defining neighboring communication graphs.4

Definition 5 (DP for communication graphs). An algorithm A
is (ε, δ)-differentially private if for any two neighboring com-
munication graphs G1,G2 (differing in at most one message)
and any set of communication graphs O, we have:

P [A(G1) ∈ O] ≤ eεP [A(G2) ∈ O)] + δ.

4This is in line with the notion of adjacency for recipient anonymity in [3].

cluster S1 cluster S2

cluster C2
cluster C1

………………

R

………………………

… …. …. ….D1
i

D2
j

tk

Fig. 2: Clusters of nodes (Example 4).

If A can be written as a transformation of an execution plan
N (potentially by adding nodes in the middle of the original
communication paths), with a slight abuse of notations we
denote this transformation as A(N).

Finally, as execution plans may be composed of multiple
clusters, we need a way of combining the privacy guarantees
of each cluster into a guarantee for the overall execution plan.
In order to do this, we take advantage of the composition prop-
erties of differential privacy and use the simple observation
that a given data tuple may only influence communications
along the communication path originating from its source.

Theorem 1. Let N be a valid execution plan where vertices
form a set I of disjoint clusters (Ni)i∈I . If for each i ∈ I ,
A(Ni) is (εi, δi)-differentially private, then A(N) is (ε, δ)-
differentially private where ε and δ are the worst possible
sums of εi’s and δi’s encountered along the path of a data
item the communication graph:

ε = max
path p∈N

∑
i:∃ν∈Ni s.t. n∈p

εi,

δ = max
path p∈N

∑
i:∃ν∈Ni s.t. n∈p

δi.

Proof. The result follows from applying a combination of clas-
sical sequential and parallel composition results for differential
privacy, see [26].

Remark 1. Execution plans typically require a small number
of clusters. For instance, a single cluster is sufficient for simple
Aggregate queries (with one grouping set). For computations
that require an iterative process (e.g., K-means and machine
learning algorithms in general), we make the graph acyclic
by considering that each iteration is done by a different set of
nodes (and each “agent” will execute several nodes). In terms
of clusters, this means that each iteration adds more clusters
and the privacy guarantee we obtain degrades with the number
of iterations, as usual when considering differential privacy for
this type of computation. Some optimizations can be made for
specific computations, but we leave this for future work.

Example 5. In our running example, each data item encoun-
ters clusters S1,S2, C1, C2 along its path. As mentioned before,
C1 and C2 have data-independent communication outputs, and

5

thus provide perfect privacy and do not need countermeasures.
Therefore, if A provides (ε1, δ1) and (ε2, δ2)-DP for C1 and
C2 respectively, then A(N) is (ε1 + ε2, δ1 + δ2)-DP.

Example 6. If one is willing to trade off utility for a gain in
privacy, another possible way of implementing (an analogue
of) this computation would be for each participant to decide
whether they want to participate to the aggregate on a or the
aggregate on b. In this new execution plan N ′, each data tuple
goes through exactly two clusters along its path (either S1, C1
or S2, C2) and A(N ′) is (max{ε1, ε2},max{δ1, δ2})-DP.

As any execution plan can be broken down into clusters, and
Theorem 1 provides DP guarantees on the whole execution
plan from guarantees on clusters, we focus on providing
guarantees at the cluster level. Specifically, Section III takes
advantage of the fact that all nodes in a cluster have simi-
lar communication behavior in order to derive a DP bound
using local differential privacy, while Section IV uses this
common behavior to mutualize the cost of countermeasures
across clusters while amplifying privacy guarantees. We then
empirically show in Section V that for typical execution plans
the guarantees provided at the cluster level transfer well to the
execution plan level.

E. Performance Metrics

In the general case it is theoretically impossible to have
both perfect privacy and low overhead (in terms of latency
and bandwidth) and solutions have to trade one for the other,
as shown in [21]. While we study a more specific problem,
solutions similarly lie on a spectrum from no privacy and no
overhead to perfect privacy and huge overhead (e.g., broad-
cast). In this work, we explore trade-offs between privacy,
utility and efficiency, defined as follows:
• Privacy, measured by the parameters ε and δ of differ-

ential privacy (which bound the amount of leakage about
individual data point).

• Utility, measured as the number of tuples effectively used
in the final result.

• Efficiency, divided into three distinct dimensions:
– Network load: the amount of additional traffic gen-

erated by our solution w.r.t. non-private communica-
tions,

– Individual load on users’ nodes: the number of secure
channels per node,

– Additional users’ consents: the number of additional
user’s nodes involved in the execution plan.

Note that depending on the specific implementation and
computation considered, the relative importance of these met-
rics may vary. For instance, efficiency aspects may be crucial
to make the approach practical when using secure hardware.
Our solutions will provide simple ways to adjust the trade-off
between these metrics.

III. SOLUTION BY LOCAL SAMPLING AND FLOODING

Following the reduction described in Section II-D, we
consider a single cluster of nodes composed of a set S of

S sources nodes, each source seeking to send one message
to a set T of T target nodes. In this context, a communi-
cation graph G can be represented as a set of S messages
G = {(s1, t1), . . . , (sS , tS)} where each si ∈ S and ti ∈ T .
Our goal is to design a differentially private algorithmA which
takes as input a (non-private) communication graph G and
returns a perturbed graph A(G) which preserves the utility and
efficiency of the distributed computation as much as possible.

In this section, we propose and analyze a baseline solution
in which each message (s, t) is randomized at the source node
s, independently of others. In other words, the algorithm A
will be of the form

A(G) = {R(s1, t1), . . . ,R(sS , tS)},

where R is a local randomizer applied independently to each
message. This setting corresponds to the so-called local model
of differential privacy [24].

A. Proposed Algorithm

Our algorithm is based on two principles: sampling and
flooding. Sampling consists in randomizing the target of the
message, following the idea of randomized response [59], [32].
Note however that in contrast to typical use-cases in which
randomized response is used to perturb the content of the
message, here we use it perturb the destination of the message.
Sampling allows to trade utility for privacy without affecting
efficiency. On the other hand, flooding consists in producing
additional dummy messages that are indistinguishable from
real messages from the attacker point of view, but can be
discarded by target nodes at execution time so they do not
affect the final result of the computation. Flooding alone
cannot guarantee differential privacy (except in the extreme
case when it becomes equivalent to a broadcast), but combined
to sampling we will show that it allows to trade efficiency for
improved privacy without affecting utility.

Formally, let σ ∈ [0, 1] be the sampling parameter and
d ∈ {1, . . . , T − 1} the flooding parameter. Our local ran-
domizer Rdσ , executed at each source node s, takes as input a
message (s, t) and returns a collection of d+1 messages to be
sent by the source node. These messages, which constitute the
output observable by an adversary, are generated as follows:
first, with probability 1 − σ, the source node keeps the true
message to the true target t, otherwise it sends a dummy
message to a target t′ chosen uniformly at random;5 then,
the source node creates d additional dummy messages aimed
at a set of d targets chosen uniformly without replacement
from T (excluding the target of the first message). From
this local randomizer Rdσ , we define the global algorithm as
Adσ(G) = {Rdσ(s1, t1), . . . ,Rdσ(sS , tS)}, which applies Rdσ to
each message in G. For convenience, we denote the sampling-
only variants by Rσ := R0

σ and Aσ := A0
σ .

5If it happens that t′ = t, we obviously send to true message to maximize
utility.

6

0.0 0.2 0.4 0.6 0.8 1.0
Sampling rate

0

2

4

6

8
T=20
T=50
T=100

(a) Privacy of Aσ

0 5 10 15 20
Number of additional dummies d

0

1

2

3

4

5

6 Sampling rate =0.1
Sampling rate =0.5
Sampling rate =0.9

(b) Privacy of Adσ (T = 20)

Fig. 3: Privacy of Aσ and Adσ varying σ and d.

B. Privacy Analysis

We can show the following differential privacy guarantees
for Adσ . The proof can be found in Appendix B.

Theorem 2. Let σ ∈ [0, 1] and d ∈ {1, . . . , T − 2}. The
algorithm Adσ satisfies ε-differential privacy with

ε = ln

(
(1− σ)T

σ(d+ 1)
+ 1

)
.

For the case where d = T−1, Adσ is equivalent to a broadcast
and thus ε = 0.

To illustrate the influence of all parameters, we plot the
values of ε as given in Theorem 2 for different number of
targets T , sampling parameter σ and flooding parameter d.
Figure 3a shows the case of the sampling-only variant Aσ
(no flooding). We see that achieving reasonable values of ε
(typically, ε is recommended to be smaller than ln(3) [25])
requires a large σ (typically larger than σ = 0.9), making Aσ
quite impractical for use-cases that require low sampling (e.g.,
when recruiting additional consenting users to act as source
nodes is very costly). Flooding helps to reduce ε while keeping
σ fixed, as can be seen in Figure 3b. Interestingly, there are
diminishing returns: the bulk of the gains in privacy come from
the first dummies. We also see that the bigger σ, the faster the
decrease of ε with d.

C. Performance Analysis

We analyze the performance in terms of utility and efficiency
metrics defined in Section II-E.

a) Utility: In order to maintain the same utility (i.e.,
number of real contributions taken into account in the compute
nodes) as the non-private algorithm with S sources, the total

s1 s2 s3 s4 s5 s6

t1 t2

(a) No scrambler (Section III)

s1 s2 s3 s4 s5 s6

t1 t2

sc1 sc2

(b) 2 scramblers (Section IV)

Fig. 4: Cluster with 2 target, 6 source and 2 scrambler nodes.

number of source nodes must be St = S
(1−σ) , with also an

impact on efficiency with St − S additional users’ consents.
b) Efficiency: In Adσ , d + 1 messages are sent by each

source to at most d+1 targets. The individual load on compu-
tation (target) nodes in total number of secure communication
channels to be initiated is hence bounded by St× (d+ 1) and
the total volume of exchanged messages is St × (d+ 1)× µ,
with µ the size of a single message. Overall, Adσ introduces a
factor (d+ 1) overhead compared to a non-private execution.

While effective to enforce high privacy while maintaining
high utility, this baseline solution based on sampling and
flooding thus comes at a significant cost in efficiency.

IV. AMPLIFYING PRIVACY VIA SCRAMBLERS

In the baseline algorithm proposed in the previous section,
the privacy of each communication only comes from the
sampling rate and flooding applied locally by the source node.
In this section, we propose an approach where source nodes
can benefit from the sampling applied at other source nodes as
well as from shared dummy messages, thereby “hiding in the
crowd”. To this end, we introduce an additional type of node
called scrambler whose role is to collect a set of n locally
randomized messages (from n source nodes), add d extra
dummy messages and shuffle the output before transmitting
the messages to the target nodes.

After introducing our approach in Section IV-A, we first
state a pure ε-DP guarantee in Section IV-B. Arguing that this
result is quite conservative, in Section IV-C we prove (ε, δ)-
DP guarantees which capture the desired “hiding in the crowd”
effect, by extending recent results on amplification by shuffling
[4]. Finally, we briefly discuss the efficiency of the proposed
approach in Section IV-D.

A. Proposed Algorithm

One of the tools at our disposal to balance privacy, utility
and efficiency is to add computation nodes. We propose to add
a set of scrambler nodes, which are assumed to have the same
security properties as the other nodes and will be responsible
for collecting messages from source nodes before transmitting
them to target nodes. Recall that the content of messages is
encrypted by source nodes and can only be decrypted by the
target node. As relying on a single scrambler would introduce
a single point of failure and require that the scrambler opens
secure channels with each source node (which is impractical
considering the load limitation constraints stated in Section II),
we propose to add a set of S/n scramblers and assign each

7

Algorithm 1: Algorithm Sd executed at each scrambler
Input: Set of messages {(si, t′i)}ni=1, flooding

parameter d, list of potential targets T , boolean
B (optional: to cap the number of messages
per target, default False)

Output: set of messages O
1 O = {t′i}ni=1

2 for j ← 1 to d do // add d dummy messages
3 if B =True then
4 T ← T \ {t : O.count(t) = n}
5 tj ← uniformly random target from T
6 O ← O ∪ {tj}
7 O.shuffle() // random permutation
8 return O

source node to one scrambler in an input-independent manner.
The parameter n, assumed to divide S for simplicity, thus
corresponds to the number of source nodes assigned to each
scrambler. Figure 4 shows the difference between this new
architecture and the one considered in Section III.

We now describe the algorithm we propose in this setting.
Let σ ∈ [0, 1] be the sampling parameter and d ∈ N
the flooding parameter. Given an input communication graph
G = {(s1, t1), . . . , (sS , tS)}, each message (si, ti) is first pro-
cessed by its source node si who applies the local randomizer
Rσ(si, ti) (i.e., with sampling rate σ but no flooding) and
sends the resulting message (si, t

′
i) to the scrambler. Then,

each scrambler collects the n inputs from its assigned sources,
adds d dummy messages, shuffles the whole set of messages
and sends them to the corresponding targets. The scrambler
algorithm is shown in Algorithm 1. Note that the default
behavior for creating dummy messages is to select targets
uniformly at random with replacement, which we denote by
Sd. We will also consider a variant where the number of
messages sent to each target is capped by n, which we denote
by Sd. In any case, the scrambler can be implemented by a
simple shuffling primitive, which is becoming standard in the
design of private systems [9], [14], [27], [4], [64].

Crucially, the communication between sources and scram-
blers is input-independent, therefore from the point of view of
the adversary the output can be restricted to the communica-
tion between scramblers and targets. Furthermore, since each
scrambler operates over a distinct partition of n source nodes,
from the differential privacy point of view it will be sufficient
to analyze the algorithm at the level of a single partition. We
denote the partition-level algorithm by An,dσ , which can be
written as a sequential composition of the local randomizer
Rσ and the scrambler algorithm Sd:

An,dσ (G) = Sd
(
Rσ(s1, t1), . . . ,Rσ(sn, tn)

)
. (1)

Similarly, we denote by An,dσ the variant based on Sd.
Intuitively, An,dσ and An,dσ should achieve a better privacy-

utility-efficiency trade-off than the baseline approach of Sec-
tion III because an adversary can only infer information from

the communication pattern between the scrambler and the
targets. In particular, (i) each dummy message added by the
scrambler should improve privacy for all sources nodes in the
partition, and (ii) local sampling at each source node should
further help to hide each message destination. This is what we
will examine in our privacy analysis.

B. Privacy Analysis: Pure ε-DP

Our first result quantifies the privacy guarantees provided by
the algorithm in terms of (pure) ε-DP. For dummies to provide
some benefit in terms of ε-DP, we need to consider the variant
An,dσ where the number of messages to each target is capped
by n. We have the following result.

Theorem 3. Let σ ∈ [0, 1] and d ∈ {1, . . . , n − 1}. The
algorithm An,dσ satisfies ε-differential privacy with

eε =

∑d
k=0

(
d
k

)(
n−1
k

)
(1− σ)kRlie

n−k−1
(

1− σ + k · Rlie
2

1−σ

)
∑d
k=0

(
d
k

)(
n−1
k

)
(1− σ)kRlie

n−k−1
(
Rlie + k · Rlie21−σ

)
where Rlie = σ

T−1 and
(
n
k

)
is the binomial coefficient.

Sketch of proof. The main challenges are to deal with the
combinatorial number of possible inputs and outputs, and the
fact that each dummy message depends on the input messages
as well as previously drawn dummies (due to the cap on
the maximum number of messages per target). Our proof is
based on factorizing the probability distribution of outputs in a
way that allows us to identify the combination of neighboring
communication graphs G,G′ and output O which produces the
worst-case ratio P [An,dσ (G) = O]/P [An,dσ (G′) = O]. We can
then compute the exact value of this ratio, which gives ε. The
detailed proof can be found in Appendix C.

As the formula in Theorem 3 is difficult to interpret, we
plot the value of ε when varying the parameters σ, d and n in
Figure 5. Figures 5a and 5b confirm that the privacy guarantees
provided by An,dσ increase with the local sampling rate σ
and the number of dummies d added by the scrambler. More
interestingly, we see that An,dσ provides stronger privacy than
the local algorithm Adσ (without scrambler) when compared
at equal sampling rate σ and total number of dummies.
Equivalently, An,dσ can match the privacy of Adσ with fewer
dummy messages, i.e., with better efficiency.

However, Figure 5c shows that the number of messages n
given as input to the scrambler does not have a significant
impact on the privacy guarantee. This is due to the fact that
pure ε-DP is governed by the ratio of probabilities of the worst-
case output, even if the probability of that output actually
occurring is extremely small. To illustrate the fact that
ε-DP is quite restrictive and gives a somewhat pessimistic
view of the privacy guarantees provided by our algorithms,
we performed a numerical simulation on a small problem
instance for a large number of random runs (see Appendix D
for details on this simulation). Figure 6 shows how many
times each output occurred across runs of algorithm An,dσ
on two neighboring communication graphs (the red and blue

8

0.2 0.4 0.6 0.8 1.0
Sampling rate

0

1

2

3

4

5

6
n, d (d = 0,n=100)
n, d (d = 50,n=100)
n, d (d = 100,n=100)
d (d = 1)

(a) Varying sampling rate σ (n = 100)

0 20 40 60 80 100
Total number of dummy messages

0

1

2

3

4

5

6
n, d (= 0.1,n=100)
n, d (= 0.3,n=100)
n, d (= 0.5,n=100)
d (= 0.5)

(b) Varying number d of dummies (n = 100)

100 200 300 400 500
Size of the scramblers' input (n)

0

1

2

3

4

5

6
n, d (= 0.1,d=50)
n, d (= 0.3,d=50)
n, d (= 0.5,d=50)

(c) Varying number n of messages (d = 50)

Fig. 5: Impact of the parameters σ, d and n on the privacy of An,dσ , measured by ε, for T = 20 targets. For comparison
purposes, we also plot the privacy of Adσ (the local algorithm without scrambler), which adds nd dummy messages in total.

0 1000 2000 3000 4000 5000 6000
Distinct outputs ordered by ratio of probabilities

0

1

2

3

Lo
g

of
 th

e
pr

ob
ab

ilit
ie

s'
ra

tio

0

1

2

3

4

Nu
m

be
r o

f o
cc

ur
en

ce
s

1e6

Fig. 6: Number of occurrences and corresponding log-ratio
of probabilities (in decreasing order) for the distinct outputs
obtained across 7×108 runs of An,dσ (T = 4, σ = 0.2, d = 20
and n = 20). See main text and Appendix D for details.

histograms) and gives the estimated log-ratio of probabilities
for each of these outputs (the green dots). The results clearly
show the largest log-ratios (i.e., the ones that drive up the
value of ε) correspond to very rare outputs. This was observed
consistently across all inputs we tried.

Our simulation results suggest that Theorem 3 may not fully
reflect the privacy benefits of our algorithms. In the next
section, we prove (ε, δ)-differential privacy results which give
a more faithful account of the privacy guarantees of An,dσ .

C. Privacy Analysis: (ε, δ)-DP via Amplification by Shuffling

The goal of this section is to prove (ε, δ)-DP guarantees
for our algorithm An,dσ . Obtaining such guarantees is more
challenging than proving ε-DP, as the latter boils down to
identifying and computing (or upper bounding) the worst-case
ratio of probabilities over all possible outputs. In contrast,
establishing (ε, δ)-DP requires to characterize the distribution
of outputs so that its “long tails” (where the desired ε-DP
guarantees may not hold) can be accounted for in δ.

Recall that An,dσ can be seen as the composition of two
algorithms: a local randomizer Rσ and a scrambler Sd (see
Eq. 1). To prove (ε, δ)-DP guarantees, we leverage and extend
techniques from the recent literature on privacy amplification
by shuffling [14], [27], [4]. Privacy amplification by shuffling

allows to prove differential privacy guarantees for algorithms
of the form A = S0◦Rn, where R is any differentially private
local randomizer and S0 simply returns a shuffle of its inputs.
Privacy amplification by shuffling was designed to provide
privacy for the content of messages. Here, we use this idea in
the novel context of providing privacy for the communication
patterns, and also extend the proof of [4] to account for the
additional privacy brought by dummy messages added by our
scrambler Sd.

A key quantity in our analysis is the so-called privacy am-
plification random variable introduced by [4]. In our context,
given ε > 0, two messages (s, t) and (s, t′) with t 6= t′

and a random variable t′′ ∼ Uniform({1, . . . , T}) uniformly
distributed over the set of targets, the privacy amplification
random variable can be written as:

Lt,t
′

ε = σ(1− eε) + (1− σ)T (I[t′′ = t]− eεI[t′′ = t′]), (2)

where I is the indicator function. Lt,t
′

ε is related to the
difference in the probabilities that Rσ outputs (s, t′′) when
applied to two different inputs (s, t) and (s, t′). It will quantify
the contribution of each input-independent random message
present in the final output (be it obtained from sampling
by source nodes or from dummy messages added by the
scrambler) to the (ε, δ)-differential privacy guarantees of An,dσ .

a) Analytical bound: We are now ready to state the main
result of this section: an analytical (ε, δ)-DP guarantee for
An,dσ (the proof can be found in Appendix E).

Theorem 4. Let d ∈ N. If σ > 0, then the algorithm An,dσ
satisfies (ε, δ)-differential privacy for any ε > 0 with

δ ≥ 1

σn

n∑
m=1

m

m+ d

(
n

m

)
σm(1− σ)n−m

b2

4a
e−

2(m+d)a2

b2 ,

where a = 1− eε and b = (1− σ)T (1 + eε)− 2σ(1− eε).
If σ = 0, then An,dσ satisfies (ε, δ)-DP for any ε > 0 with

δ ≥ 1

d+ 1

b2

4a
e−

2(d+1)a2

b2 .

Remark 2 (Generality of our analysis). Beyond the particular
case of the local randomizer Rσ we use in this work, our
analysis readily applies to any other differentially private local
randomizer R. The only condition is that dummy messages

9

drawn by Sd must follow a specific distribution which depends
on the choice of R, see Appendix E for details.

Theorem 4 highlights the trade-off between ε and δ. Given
a value for ε, the formulas directly give the lowest admis-
sible value of δ. Conversely, we can fix δ and numerically
search for the lowest value of ε for which the inequality is
satisfied. As δ can be interpreted as the probability that the
privacy loss exceeds ε, it should be kept to a small value. A
general guideline for δ is that it must be smaller than 1/n
to provide meaningful guarantees [26]. Crucially, Theorem 4
shows that the privacy guarantees improve with the number
n of messages, as each original message will become input-
independent with probability σ. Dummy messages further
contribute by guaranteeing a minimal number d of input-
independent messages in the output. As shown by the second
inequality, we can obtain (ε, δ)-DP guarantees even if σ = 0,
i.e., without affecting the utility but only the efficiency.

For the sake of simplicity, Theorem 4 relies on Hoeffding’s
inequality to upper bound the sum of privacy amplification
random variables. Numerically tighter (albeit more complex)
bounds can be obtained by applying Bennett’s inequality
(which leverages the variance of L(t,t′

ε), see Appendix E for
details.

We use this improved version of our analytical bound to
plot the privacy guarantees of An,dσ as a function of the
different parameters and comparing to our previous ε-DP result
(Theorem 3). Figure 7 shows that our amplified (ε, δ)-DP
guarantees provide large improvements over the previous ε-
DP result in regimes where the expected number of input-
independent messages in the output (roughly σn + d) is
sufficiently large (in the order of 300). When σn and d are both
small, Theorem 3 does not provide any privacy improvement
and we fall back on the privacy guarantees provided by the
local randomizer Rσ alone.

b) Further improvements: The result of Theorem 4 is
in fact quite pessimistic when both σn and d are small:
this is because the concentration inequalities used to bound
E[
∑m+d+1
i=1 Li]+ are known to be loose when the number

m+ d+ 1 of terms in the sum is small. To get tighter privacy
guarantees in such regimes, we can instead compute a Monte
Carlo estimate of E[

∑m+d+1
i=1 Li]+, i.e., we can approximate

the expectation empirically using a finite number R of random
samples. The procedure is outlined in Algorithm 2. Note that
drawing a sample of the privacy amplification random variable
amounts to fixing two arbitrary targets t 6= t′, sampling a target
t′′ uniformly at random from T , and computing Eq. 2.

The larger R, the closer the empirical estimate L̂ is to the
true value. We can bound the deviation |L̂−E[

∑m+d+1
i=1 Li]+|

with high probability using concentration inequalities, which
gives a high probability bound on the error in estimating δ.
In all our plots and experiments we use R = 5000, which
is sufficient for Hoeffding’s inequality to ensure that the
probability of the relative estimation error of δ being larger
than 1/1000 is negligibly small (below 10−30).

Figure 7 shows the strong gains in the privacy guarantees

Algorithm 2: Empirical estimation of
E[
∑m+d+1
i=1 Li]+

Input: Number of random samples R

1 for r ← 1 to R do
2 Draw Lr1, . . . , L

r
m+d according to Eq. 2

3 Lr ←
[∑m+d

i=1 Lri
]
+

4 L̂← 1
R

∑R
r=1 L

r

5 return L̂

obtained using this empirical estimation: we are able to
obtain significant privacy amplification compared to pure ε-
DP (Theorem 3) even in regimes where both σn and d are
small.

In summary, we have derived analytical (ε, δ)-DP guar-
antees for our algorithm An,dσ by leveraging and extending
techniques from the literature of privacy amplification by
shuffling. We have also shown how to obtain tighter empirical
bounds. We will see in Section V how to use our results to
tackle practical use-cases.

D. Performance Analysis
As before, recall that we consider a simple computation

with S = |S| source nodes delivering a single message to one
of the T = |T | potential target nodes.

a) Utility: In order to maintain the same utility (i.e.,
number of real contributions) as the non-private algorithm
with S sources, the total number of source nodes must be
St = S

(1−σ) . We thus consider SF = St/n scramblers.
b) Efficiency: Each scrambler must open a secure com-

munication channel with n sources and T targets and ex-
changes 2 × n + d messages. Hence the total number of
secure channels is St+SF ×T and the volume of exchanged
messages is St + SF × (n+ d)× µ.

V. EVALUATION

User-side collaborative computing is gaining interest with
the emergence of (1) cross-device federated learning [31], [12]
where large sets of personal devices collaboratively train ma-
chine learning models, and (2) personal database management
systems [56], [2] where populations of trusted user devices are
engaged in collective database aggregation queries [34], [36].

Data-dependent communication schemes increase perfor-
mance by distributing data to compute nodes based on the data
values of group-by/join keys (e.g., parallel Oracle SQL Ana-
lytics [8]), data points distance to given centroids or regions of
feature space (e.g., parallel K-means [62], K-medoids [55],
DBSCAN [53]) or similarity of users’ profiles [50], [28].

We focus on two types of distributed queries representative
of these contexts, and illustrate the trade-offs between privacy,
utility and efficiency obtained with our proposal.

A. Queries and Datasets
We consider two queries representative of above cases,

called Aggregate and K-means. Aggregate is used to under-
stand frequency distributions and collect marginal statistics

10

0 500 1000 1500 2000 2500 3000
Size of the scramblers' input (n)

0

1

2

3

4

5

6

Pure -DP
Amplified (,)-DP (analytical)
Amplified (,)-DP (empirical)

(a) Impact of n (d = 50, σ = 0.2)

0 100 200 300 400 500
Number of additional dummies (d)

0

1

2

3

4

5

6
Pure -DP
Amplified (,)-DP (analytical)
Amplified (,)-DP (empirical)

(b) Impact of d (n = 100, σ = 0.2)

0.2 0.4 0.6 0.8 1.0
Sampling rate ()

0

1

2

3

4

5

6
Pure -DP
Amplified (,)-DP (analytical)
Amplified (,)-DP (empirical)

(c) Impact of σ (n = 500, d = 50)

Fig. 7: Impact of n, d and σ on the privacy of An,dσ , measured by ε, for T = 20 targets. For (ε, δ)-DP, we set δ = 10−4.

from a set of consenting users (see example in Section II-A).
K-means is representative of iterative data processing algo-
rithms used for instance in data mining and machine learning.
We describe the two queries and their execution plans below.

Aggregate (see Section II-A). A set of C×G compute nodes,
with G the number of grouping sets of attributes (e.g., G =
2 in Example 1), evaluates statistical functions (min, max,
avg), with each compute node processing a partition of the
input dataset and sending its output to the result node. A set
of S source nodes, each holding a single tuple with numeric
values (on which statistics are computed) and grouping values
(according to which tuples are grouped), send values from
their tuple to G compute nodes.
K-means: A set of S source nodes, each holding a single

data tuple, compute the distance of their tuple to the K
centroids and send their tuple to the compute node managing
the closest centroid. A set of C×I compute nodes (with I the
number of iterations, and C = K the number of centroids),
each managing a single centroid for a single iteration, update
their centroid using the data tuples received from the source
nodes, send their updates to the compute nodes for the next
iteration, and propagate the updated centroids back to the
source nodes they interact with. These steps are repeated for
a fixed number I of iterations. The final result is transmitted
to the result node. The initial state (first iteration) consists
of K (random) points representing the initial centroids of K
clusters.

In both cases, communication patterns between source and
compute nodes reveal potentially sensitive information about
the input data (grouping keys in Aggregate and close/similar
users’ tuples in K-means). Our proposal adds local sampling
at source nodes and a set of SC scrambler nodes per grouping
set/iteration between the source and compute nodes (see
Figure 4b). For K-means, the new centroid obtained by each
compute node at the end of the current iteration is sent back to
all scrambler nodes which propagate them back to the source
nodes they interact with to initiate the next iteration.

Datasets. For Aggregate, we use a synthetic dataset. We
tested both uniform and biased distributions: for both cases
we generated from 10k to 100k records distributed across 20
grouping intervals for 4 grouping attributes. For K-means, we
use the classic MNIST dataset of handwritten digits, composed

of 70k records in dimension 784 and distributed among 10
classes. We execute K-means on the training set (60k), and
measure the quality of the clusters we obtain on the test set
(10k) using the rand index metric to compare to the ground-
truth class labels and evaluate utility.

B. Practical Trade-offs and Results

Privacy evaluation. In both execution plans any source
node potentially sends messages (via scrambler nodes) to any
compute node, and any partition of mutually disjoints sets of
source nodes can define a set of clusters of nodes. Each of
the SC scrambler nodes associated to a given grouping set (in
Aggregate) or iteration (in K-means) takes as input a partition
of the source nodes and hence belongs to different clusters that
are never on the same data path. On the contrary, scrambler
nodes assigned to successive iterations or different grouping
sets use as inputs the same sets of input source nodes and are
therefore on the same data path. In Aggregate, according to
Theorem 1 the privacy of the overall execution plan is thus
given by ε ≤ G× max

1≤i≤SC
(εi) and δ ≤ G× max

1≤i≤SC
(δi) where

εi and δi denote the privacy guarantees for the cluster with
the i-th scrambler. Similarly, the privacy of the execution plan
for K-means is ε = I × max

1≤i≤SC
(εi) and δ = I × max

1≤i≤SC
(δi).

Parameters. Different trade-offs between privacy, utility, and
performance can be studied. The parameters of the experi-
ments are shown in Table I. C is the number of compute nodes
and determines the degree of parallelism of the algorithm.
Its value depends on the computation and cannot be changed
without impacting the performance. The value of the number
S of source nodes (consenting users) influences both efficiency
and utility. It is varying in our experiments between 10k
and 20k. SC is the number of scrambler nodes involved per
grouping set (for Aggregate, the number G of grouping sets
varies from 1 to 4) and per iteration (for K-means, the number
I of iterations is 10). Parameters ε and δ determine privacy.
The numbers n of source nodes per scrambler, and d of dummy
messages added per scrambler, affect privacy and efficiency,
while the sampling rate σ affects privacy and utility. Fixing
two of these three parameters and increasing the third would
increase privacy.

Results. To study the impact of the different parameters in
the trade-offs between privacy, utility and efficiency metrics

11

Name Range
C 20 (×G ×I)
SC 20-100 (×G ×I)
I 10
G 1-4
S 10k − 20k
ε 0− 5
δ 10−4

n 10-600
d 0-1000
σ 0− 1

TABLE I: Range
of parameters for

measures.

2 4 6 8
Overhead network load

0

1

2

3

4

5
=0.3 SC=50(x1) [G=1]
=0.3 SC=50(x2) [G=2]
=0.5 SC=50(x3) [G=3]
=0.5 SC=50(x4) [G=4]

Fig. 9: Aggr.: privacy vs net. load.

(see Section II-E), for simplicity, we work at fixed utility, i.e.,
we fix the number of tuples effectively used by a compute
node (except in Fig. 8d which varies utility). We then plot
privacy as a function of the efficiency metrics along its three
dimensions: (i) the network load overhead, evaluated as the
number of messages added compared to a regular distributed
execution, depends on the number of scrambler nodes SC
added per grouping set or iteration, number of dummies d
introduced by each scrambler node, and number of source
nodes added for privacy reasons, (ii) the individual load,
evaluated as the number of secure channels created per node,
which depends mainly on the number n of source nodes per
scrambler node6 and is limited by the power/bandwidth of
end-user devices, (iii) the number of additional users’ consents
required, influenced by the sampling rate σ and the number
of contributors S. Note that we consider the three metrics
for Aggregate, but only the first two for K-means. Indeed, the
impact of sampling on utility is known to be negligible for K-
means [51]. Preliminary measures using the rand index metric
against the ground-truth clusters confirm that the proportion
of correctly clustered tuples for high sampling rates (σ = 0.9)
is very close to that obtained when we do not sample.

The curves shown in Figures 8 and 9 show our re-
sults. In each curve, we evaluate the trade-offs between
efficiency/utility parameters (X-axis) and privacy (Y-axis).

Network load vs privacy (Figures 8a, 8e and 9). We vary
the number d of dummies introduced by the scrambler nodes,
fixing the number of tuples effectively used to 10k, for
different configurations. We consider low sampling rates for
Aggregate (to maximize utility) and high sampling rates for
K-Means (without utility loss). Network overhead exists even
without dummy (left side of the curves) due to the introduction
of scrambler nodes. When d is increased, the privacy gains are
significant, especially for the first dummies. Configurations
with good privacy (ε ≤ 1) and acceptable network load can
be achieved.

Additional users’ consents vs privacy (Figures 8c and 8d).
Fig. 8c shows privacy at constant utility (10k significant
contributions) for fixed network overheads, increasing the
sampling rate σ hence the number S of users’ consents (up to
20k), with the number d of dummies kept compliant with the
target network overhead. We observe that it is more privacy
efficient to increase σ (users’ consents) than to increase d,
especially with few messages per scrambler (low n, then

6And to a lesser extent on the number C of compute nodes, as C is small.

higher SC and lower d). Similarly, Fig. 8d shows that at fixed
number of users’ consents (S=10k) and dummies, sampling
has a drastic effect on privacy, especially with fewer dummies.

Individual load vs privacy (Figures 8b and 8f). Individual
load is typically determined by the application context (i.e.
limitations of individual participants). Figures 8b and 8f show
that increasing individual load on scramblers yields better
privacy, however this effect also diminishes when individual
load increases. In particular, these figures suggest that a few
tens to a few hundreds channels are enough in most cases.

Overall, depending on the constraints of the use case (ac-
ceptable utility loss, maximum individual load, . . .), a number
of good configurations can be reached by tuning the number
of scramblers, the sampling rate and the number of dummies.

VI. RELATED WORK

Anonymous communications. Providing ways of communi-
cating anonymously is far from a new problem. While our
appoach is focused on tackling data dependency in communi-
cations, it is closely related to various lines of work seeking
to hide endpoints of communications.

The first and probably simplest way of providing anony-
mous communications is to use mix networks (mixnets)
[49]. Recent work has studied how shuffling messages with
mixnets can amplify local differential privacy guarantees (see
Section VI). While we take inspiration from such works in
our use of scramblers (which we do not deliberately call
mixnets or shufflers as they also have the function of adding
dummy messages), simply using mixnets would not provide
differential privacy guarantees in our case as they do not hide
the number of messages sent to each target. Similar solutions
seeking to achieve anonymous routing (e.g TOR [22]) have
the same problem, and typically induce a fairly high overhead
in terms of communications and cryptographic computations
at client side.

Differentially private messaging is more closely related to
our goal. Vuvuzela [57] and a number of following works
[35] seek to provide differentially private communications.
These would satisfy our goal of hiding data dependency in
a differentially private manner. However, these aim at a larger
goal, which is to fully hide who communicates with who (and
even the fact that users are communicating at all) rather than
restricting the problem to hiding data dependency. In our case,
we are willing to disclose the fact that a source is talking to
a target, we simply want to hide which specific target. As a
consequence, these works have a very high overhead as they
need to drown all actual traffic within fake traffic (the system
should behave in roughly the same way whether people are
communicating or not), leading to network load being orders
of magnitude greater than the number of actual messages sent.
In our work we leverage the fact that distributed computations
typically do not exhibit arbitrary communication patterns to
obtain a much more efficient solution.

Finally, the work of [3] aims at modeling and providing
tools for analyzing protocols where cryptographic guarantees
and differential guarantees coexist and providing differential

12

3 4 5 6 7 8
Overhead network load

0

1

2

3

4

5
=0 SC=50
=0.3 SC=50
=0 SC=100
=0.3 SC=100

(a) Aggregate: privacy vs network load (G=1)

0 100 200 300 400 500 600
Number of secure channels per node

0

1

2

3

4

5
Network load: x3
Network load: x5
Network load: x7

(b) Aggregate: privacy vs individual load

0 20 40 60 80 100
% of additional consents

0

1

2

3

4

5
n=50 Network load: x4
n=200 Network load: x4

(c) Aggregate: privacy vs consents

20406080
% of utility

0

1

2

3

4

5 n=50 d=0
n=400 d=0
n=50 d=200
n=400 d=200

(d) Aggregate: privacy vs utility

2 3 4 5 6
Overhead network load

0

1

2

3

4

5
=0.8 SC=50
=0.9 SC=50
=0.8 SC=100
=0.9 SC=100

(e) K-means: privacy vs global load

100 200 300 400 500
Number of secure channels per node

0

1

2

3

4

5
Network load: x1.5,2,2.5
Network load: x1.5,2,2.5
Network load: x1.5,2,2.5

(f) K-means: privacy vs individual load

Fig. 8: Trade-offs between privacy, utility and efficiency in Aggregate and K-means.

privacy notions suitable for anonymous communications. Our
adversary model is largely inspired by this work: in particular,
our reduction from computational differential privacy and the
adjacency notion for communication graphs in clusters is
similar to the one in [3].

Differentially private data analysis. In terms of techniques
used in this paper our work is closely related to differential
privacy in the shuffle model [14], [27], [4] which provides
an intermediate model between central and local DP. The
shuffle model can reduce the utility cost of the local model
by passing randomized data points through a secure shuffler
(mixnet) before they are shared with an untrusted third party.
However, many queries do not admit accurate solutions in the
shuffle model [15]. In contrast we rely here on user-side trusted
environments for distributed query evaluation, which provides
different trade-offs. In particular, we avoid the loss in utility
of local DP without requiring a trusted third party, and allow
to accurately evaluate general queries (albeit at a potentially
large cost in efficiency if trusted execution environments must
be used to secure user-side computation). An original aspect
of our work is to leverage DP and amplification by shuffling
to guarantee the privacy of data-dependent communications
patterns (and thereby mitigate traffic analysis attacks), while
the above work on the shuffle and local models uses DP to
guarantee the privacy of the content of messages with data-
independent communication patterns. We also stress the fact
that our approach nicely composes with central DP in use-
cases where the result of the query evaluated in our frame-
work is released in a differentially private way. In particular,
if we provide an (ε1, δ1)-DP guarantee for communication
patterns and an (ε2, δ2)-DP guarantee for releasing the query
result, then by the composition property of DP we obtain
an (ε1 + ε2, δ1 + δ2)-DP guarantee against an adversary who
observes both the communication patterns and the final result.

Hiding memory access patterns and input/output size. Many
solutions were proposed to hide the query and/or the size of
inputs and outputs of operators in execution plans [6], [7], [61],
[45]. While the goal of these works is to hide data dependency
in execution flows, these approaches tackle a different problem
from ours. Indeed, only trees are considered (i.e. any operator
has a single successor) and the goal is to hide the query
executed within an operator and/or the result size, for example,
hiding the number of tuples returned by a selection query. In
contrast, our proposal supports any query plan, and prevents
attackers from inferring information about individual tuples by
observing the communications.

Another line of work consists in hiding memory access
patterns in distributed cloud computations and local com-
putations with multiple processors. In particular, [1], [37]
provide differential privacy guarantees for memory access
patterns. Specifically, [37] offers modifications to secure two-
party computations between two non-colluding servers that
hold individual data, and [1] offers a definition of oblivious
differential privacy which is roughly the counterpart of ours
when considering memory access pattern rather than com-
munications but focuses on a single process rather than on
interactions between multiple processes. Interestingly, these
approaches can be used to protect individual nodes (which may
perform complex computations), and the differential privacy
guarantees they provide would compose nicely with ours.

Hiding data dependency in communication patterns. Sev-
eral existing works use various anonymous communication
techniques to hide data exchange between nodes in distributed
query plans in a cloud setting [9], [23], [63]. While these are
somewhat related to ours, they assume users have a (very)
large amount of data and offer either unsatisfactory guarantees
in our massively decentralized setting or massive overheads.

A more direct way to hide the dependency between com-

13

munication patterns and private data values is to make all
communications data-independent, as done in [39] by padding
and clipping messages in MapReduce computations for confi-
dential computing in the cloud. However, this technique would
produce massive overheads or very imprecise results in our
case, where there is no prior knowledge on the data distribution
to appropriately tune the padding and clipping parameters.

VII. CONCLUSION

In this paper, we proposed a differentially private solution to
mitigate the leakage from data-dependent communications in
massively distributed computations. We leveraged recent work
on privacy amplification by shuffling to formally prove privacy
guarantees for our solution. We also showed how to balance
privacy, utility and efficiency on two use-cases representative
of distributed computations, highlighting the genericity of our
solution.

We hope that our proposal will contribute to the develop-
ment of new decentralized models for Data Altruism [17], in
which citizens contribute the computation of socially useful
information, with community control over the computation
performed on the user side. Many research questions remain
open, such as formulating and validating a collective com-
puting “manifesto”. Another concrete challenge relates to the
implementation of a platform to support these technologies.
An interesting future work is to build on the emergence of
Personal Data Management Systems (PDMS) [2], [56], which
provide new tools for individuals to collect their personal data
and control how they share results of local computations.

ACKNOWLEDGMENTS

This work was supported by the French National Research
Agency (ANR) through grants ANR-16-CE23-0016 (Project
PAMELA) and ANR-20-CE23-0015 (Project PRIDE).

REFERENCES

[1] Joshua Allen, Bolin Ding, Janardhan Kulkarni, Harsha Nori, Olga
Ohrimenko, and Sergey Yekhanin. An algorithmic framework for
differentially private data analysis on trusted processors. In NeurIPS,
pages 13635–13646, 2019.

[2] Nicolas Anciaux, Philippe Bonnet, Luc Bouganim, Benjamin Nguyen,
Philippe Pucheral, Iulian Sandu Popa, and Guillaume Scerri. Personal
data management systems: The security and functionality standpoint.
Inf. Syst., 80:13–35, 2019.

[3] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser,
and Esfandiar Mohammadi. Anoa: A framework for analyzing anony-
mous communication protocols. J. Priv. Confidentiality, 7(2), 2016.

[4] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy
blanket of the shuffle model. In CRYPTO (2), volume 11693 of Lecture
Notes in Computer Science, pages 638–667. Springer, 2019.

[5] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N. Kho,
and Jennie Rogers. SMCQL: secure query processing for private data
networks. Proc. VLDB Endow., 10(6):673–684, 2017.

[6] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jen-
nie Rogers. Shrinkwrap: Efficient SQL query processing in differentially
private data federations. Proc. VLDB Endow., 12(3):307–320, 2018.

[7] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers.
SAQE: practical privacy-preserving approximate query processing for
data federations. Proc. VLDB Endow., 13(11):2691–2705, 2020.

[8] Srikanth Bellamkonda, Hua-Gang Li, Unmesh Jagtap, Yali Zhu, Vince
Liang, and Thierry Cruanes. Adaptive and big data scale parallel
execution in oracle. Proc. VLDB Endow., 6(11):1102–1113, 2013.

[9] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien
Tinnés, and Bernhard Seefeld. Prochlo: Strong privacy for analytics
in the crowd. In SOSP, pages 441–459. ACM, 2017.

[10] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and
Tomas Toft. Secure multiparty computation goes live. In Financial
Cryptography, volume 5628 of Lecture Notes in Computer Science,
pages 325–343. Springer, 2009.

[11] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,
and Karn Seth. Practical secure aggregation for privacy-preserving
machine learning. In CCS, pages 1175–1191. ACM, 2017.

[12] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Ste-
fano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. Towards Federated
Learning at Scale: System Design. In MLSys, 2019.

[13] Mariem Brahem, Guillaume Scerri, Nicolas Anciaux, and Valérie Is-
sarny. Consent-driven data use in crowdsensing platforms: When data
reuse meets privacy-preservation. In PerCom, pages 1–10. IEEE, 2021.

[14] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and
Maxim Zhilyaev. Distributed Differential Privacy via Shuffling. In
EUROCRYPT, pages 375–403. Springer, 2019.

[15] Albert Cheu and Jonathan R. Ullman. The Limits of Pan Privacy
and Shuffle Privacy for Learning and Estimation. Technical report,
arXiv:2009.08000, 2020.

[16] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanava-
jjhala, and Somesh Jha. Cryptε: Crypto-assisted differential privacy on
untrusted servers. In SIGMOD Conference, pages 603–619. ACM, 2020.

[17] EU Commission. Proposal for a regulation of the european parliament
and of the council on european data governance (data governance act),
com/2020/767., 25 October 2020.

[18] EU Commission. Regulation (eu) 2016/679 of the european parliament
and of the council on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data,
and repealing directive 95/46/ec (general data protection regulation)., 27
April 2016.

[19] Confidential Computing Consortium. Confidential Computing Consor-
tium Defining and Enabling Confidential Computing, 2020.

[20] Confidential Computing Consortium. Confidential Computing:
Hardware-Based Trusted Execution for Applications and Data, 2020.

[21] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket
Kate. Anonymity trilemma: Strong anonymity, low bandwidth overhead,
low latency - choose two. In IEEE Symposium on Security and Privacy,
pages 108–126. IEEE Computer Society, 2018.

[22] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In USENIX Security Symposium, pages
303–320. USENIX, 2004.

[23] T. T. Anh Dinh, P. Saxena, E. C. Chang, B. C. Ooi, and C. Zhang.
M2R: enabling stronger privacy in mapreduce computation. In USENIX
Security Symposium, 2015.

[24] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local
privacy and statistical minimax rates. In FOCS, pages 429–438. IEEE
Computer Society, 2013.

[25] Cynthia Dwork. Differential privacy: A survey of results. In TAMC,
volume 4978 of Lecture Notes in Computer Science, pages 1–19.
Springer, 2008.

[26] Cynthia Dwork and Aaron Roth. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci., 9(3-4):211–407,
2014.

[27] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity. In SODA, pages
2468–2479. SIAM, 2019.

[28] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran.
An efficient framework for clustered federated learning. In NeurIPS,
2020.

[29] Sara Hachem, Vivien Mallet, Raphael Ventura, Animesh Pathak, Valérie
Issarny, Pierre-Guillaume Raverdy, and Rajiv Bhatia. Monitoring noise
pollution using the urban civics middleware. In BigDataService, pages
52–61. IEEE Computer Society, 2015.

14

[30] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett
Witchel. Ryoan: A distributed sandbox for untrusted computation on
secret data. ACM Trans. Comput. Syst., 35(4):13:1–13:32, 2018.

[31] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Salim El
Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón,
Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui,
Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu,
Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný,
Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède
Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage,
Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng
Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu,
and Sen Zhao. Advances and Open Problems in Federated Learning.
Technical report, arXiv:1912.04977, 2019.

[32] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. Extremal mecha-
nisms for local differential privacy. In NIPS, 2014.

[33] Jan Krämer, Pierre Senellart, and Alexandre de Streel. Making data
portability more effective for the digital economy: Economic implica-
tions and regulatory challenges. Centre on Regulation in Europe asbl
(CERRE), 2020.

[34] Riad Ladjel, Nicolas Anciaux, Philippe Pucheral, and Guillaume Scerri.
Trustworthy distributed computations on personal data using trusted
execution environments. In TrustCom/BigDataSE, pages 381–388. IEEE,
2019.

[35] David Lazar, Yossi Gilad, and Nickolai Zeldovich. Karaoke: Distributed
private messaging immune to passive traffic analysis. In OSDI, pages
711–725. USENIX Association, 2018.

[36] Julien Loudet, Iulian Sandu Popa, and Luc Bouganim. SEP2P: secure
and efficient P2P personal data processing. In EDBT, pages 145–156.
OpenProceedings.org, 2019.

[37] Sahar Mazloom and S. Dov Gordon. Secure computation with differen-
tially private access patterns. In CCS, pages 490–507. ACM, 2018.

[38] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan.
Computational differential privacy. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 126–142. Springer, 2009.

[39] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Markulf Kohlweiss, and Divya Sharma. Observing and preventing
leakage in mapreduce. In CCS, pages 1570–1581. ACM, 2015.

[40] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebas-
tian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party
machine learning on trusted processors. In USENIX Security Symposium,
pages 619–636. USENIX Association, 2016.

[41] Stuart L Pardau. The California Consumer Privacy Act: Towards a
European-Style Privacy Regime in the United States. J. Tech. L. &
Pol’y, 23:68, 2018.

[42] R. Pires, D. Gavril, P. Felber, E. Onica, and M. Pasin. A lightweight
mapreduce framework for secure processing with SGX. In CCGrid,
2017.

[43] Iulian Sandu Popa, Dai Hai Ton That, Karine Zeitouni, and Cristian
Borcea. Mobile participatory sensing with strong privacy guarantees
using secure probes. GeoInformatica, 25(3):533–580, 2021.

[44] Fahmida Y Rashid. The rise of confidential computing: Big tech
companies are adopting a new security model to protect data while it’s
in use-[news]. IEEE Spectrum, 57(6):8–9, 2020.

[45] Kui Ren, Yu Guo, Jiaqi Li, Xiaohua Jia, Cong Wang, Yajin Zhou, Sheng
Wang, Ning Cao, and Feifei Li. Hybridx: New hybrid index for volume-
hiding range queries in data outsourcing services. In ICDCS, pages
23–33. IEEE, 2020.

[46] Carole Robert, Jean Imbert, Mohamed Lajnef, Camille Noûs, Gilbert
Cabiran, Serge Robert, Françoise Cabiran, and Flavie Mathieu. Produc-
tion of knowledge using data collected by associations of patients: The
fibromyalgia example. Med Sci (Paris), 37(1):81–88, 2021.

[47] Luc Rocher, Meenatchi Sundaram Muthu, and Yves-Alexandre de Mon-
tjoye. The observatory of anonymity: An interactive tool to understand
re-identification risks in 89 countries. In WWW (Companion Volume),
pages 687–689. ACM / IW3C2, 2021.

[48] Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall,
Antoine Delignat-Lavaud, Sylvan Clebsch, Kapil Vaswani, and Vikas
Bhatia. Toward confidential cloud computing: Extending hardware-

enforced cryptographic protection to data while in use. ACM Queue,
19(1):49–76, 2021.

[49] Krishna Sampigethaya and Radha Poovendran. A survey on mix
networks and their secure applications. Proc. IEEE, 94(12):2142–2181,
2006.

[50] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered
federated learning: Model-agnostic distributed multitask optimization
under privacy constraints. IEEE Trans. Neural Networks Learn. Syst.,
32(8):3710–3722, 2021.

[51] David Sculley. Web-scale k-means clustering. In Proceedings of the
19th international conference on World wide web, pages 1177–1178,
2010.

[52] Márcio Silva, Lucas Santos de Oliveira, Athanasios Andreou, Pedro
Olmo Stancioli Vaz de Melo, Oana Goga, and Fabrı́cio Benevenuto.
Facebook ads monitor: An independent auditing system for political ads
on facebook. In WWW, pages 224–234. ACM / IW3C2, 2020.

[53] Hwanjun Song and Jae-Gil Lee. RP-DBSCAN: A superfast parallel
DBSCAN algorithm based on random partitioning. In SIGMOD Con-
ference, pages 1173–1187. ACM, 2018.

[54] David Sturzenegger, Aetienne Sardon, Stefan Deml, and Thomas Hard-
jono. Confidential computing for privacy-preserving contact tracing.
CoRR, abs/2006.14235, 2020.

[55] Ying ting Zhu, Fu zhang Wang, Xing hua Shan, and Xiao yan Lv. K-
medoids clustering based on mapreduce and optimal search of medoids.
In 9th International Conference on Computer Science Education, pages
573–577, 2014.

[56] Lachlan Urquhart, Neelima Sailaja, and Derek McAuley. Realising
the right to data portability for the domestic internet of things. Pers.
Ubiquitous Comput., 22(2):317–332, 2018.

[57] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zel-
dovich. Vuvuzela: scalable private messaging resistant to traffic analysis.
In SOSP, pages 137–152. ACM, 2015.

[58] Anne Wagner, Aleksandra Matulewska, and Sarah Marusek. Pandemica
panoptica: Biopolitical management of viral spread in the age of covid-
19. International Journal for the Semiotics of Law-Revue internationale
de Sémiotique juridique, pages 1–37, 2021.

[59] Stanley L Warner. Randomized response: A survey technique for
eliminating evasive answer bias. Journal of the American Statistical
Association, 60(309):63–69, 1965.

[60] Gary C White. Capture-recapture and removal methods for sampling
closed populations. Los Alamos National Laboratory, 1982.

[61] Min Xu, Antonis Papadimitriou, Andreas Haeberlen, and Ariel Feldman.
Hermetic: Privacy-preserving distributed analytics without (most) side
channels. Technical report, 2019.

[62] Weizhong Zhao, Huifang Ma, and Qing He. Parallel K-means clustering
based on mapreduce. In CloudCom, volume 5931 of Lecture Notes in
Computer Science, pages 674–679. Springer, 2009.

[63] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An oblivious and encrypted
distributed analytics platform. In NSDI, pages 283–298. USENIX
Association, 2017.

[64] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Shuang Song, Kunal Talwar, and Abhradeep Thakurta. Encode, Shuffle,
Analyze Privacy Revisited: Formalizations and Empirical Evaluation.
Technical report, arXiv:2001.03618, 2020.

15

APPENDIX A
COMPUTATIONAL DIFFERENTIAL PRIVACY

We explain how we can reduce our attention to the privacy
notion defined in Definition 2 under our hypotheses. Similarly
to [38], we start from a notion which explicitly restricts the
power of the adversary.

Definition 6 (Computational DP for execution plans). An
execution plan N is (ε, δ)-differentially private if for any
neighboring D0,D1 (differing by at most one tuple), and any
probabilistic polynomial time adversary A we have:

P [A interacting with N (D0) guesses 0]

≤ eεP [A interacting with N (D1) guesses 0] + δ.

We can make two immediate simplifications to this defini-
tion using our assumption that communication channels are
secure. The first one is to exclude adversaries that influence
the computation by injecting messages (as such an adver-
sary would need to break secure channel integrity). We can
therefore restrict ourselves to a passive adversary. The second
one is that we may also omit the content of messages, as
under secure channels all messages can be replaced by random
messages without the adversary being able to differentiate the
two situations. Finally, as two identical communication graphs
are trivially indistinguishable when the content of messages is
random, the question reduces to whether different neighboring
datasets generate similar communication graphs, leading to our
Definition 2 in the main text.

APPENDIX B
PROOF OF THEOREM 2

Proof. Let G and G′ be two neighboring communication
graphs and let (s, t) and (s, t′) with t 6= t′ be the messages
that differ in G and G′ respectively. To prove that Adσ satisfies
ε-differential privacy, we need to show that for any possible
output O:

P [Adσ(G) = O]

P [Adσ(G′) = O]
≤ eε.

Since each message is processed independently by Rdσ , and G
and G′ are neighboring, we have:

P [Adσ(G) = O]

P [Adσ(G′) = O]
=

P [Rdσ(s, t) = O]

P [Rdσ(s, t′) = O]
. (3)

We now seek to bound the above ratio for the worst-case
output. By construction of Rdσ , the probability of producing
a message (s, t′′) with t′′ 6= t 6= t′ is the same for Rdσ(s, t)
and Rdσ(s, t′). Therefore, we can focus on four cases for the
output O produced by Rdσ: (i) (s, t) ∈ O and (s, t′) ∈ O, (ii)
(s, t) /∈ O and (s, t′) /∈ O, (iii) (s, t) ∈ O and (s, t′) 6∈ O and
(iv) (s, t) 6∈ O and (s,′ t) ∈ O.

The probability of the first two cases is the same under both
inputs, hence their ratio is 1. The two last cases are symmetric,
so without loss of generality we consider an output O such that
(s, t) ∈ O and (s, t′) 6∈ O. Consider sampling d+ 1 elements
without replacement from T : for two distinct t, t′ ∈ T , let

E¬t′ be the event where t′ is not selected, E¬t∧¬t′ the event
where neither t nor t′ are selected and Et∧¬t′ the event where
t is selected but not t′. We have:

P [Et∧¬t′] = P [E¬t′]− P [E¬t∧¬t′]

=
T − d− 1

T
− (T − d− 1)(T − d− 2)

T (T − 1)

= (d+ 1)
T − d− 1

T (T − 1)
.

Using the above, we can compute the ratio of probabilities in
Eq. 3:

P [Rdσ(s, t) = O]

P [Rdσ(s, t′) = O]
=

(1− σ)T−(d+1)
T−1 + σP [Et∧¬t′]

σP [Et∧¬t′]

=
(1− σ)T−(d+1)

T−1 + σ(d+ 1) T−d−1
T (T−1)

σ(d+ 1) T−d−1
T (T−1)

=
(1− σ)T

σ(d+ 1)
+ 1 ≤ eε, (4)

which combined with Eq. 3 shows that Adσ satisfies ε-DP.

Incidentally, Eq. 4 shows that the local randomizer Rdσ
satisfies ε-local differential privacy.

APPENDIX C
PROOF OF THEOREM 3

To facilitate the reading, we introduce additional notations.
Let G and G′ be two neighboring communication graphs and
let (s, t) and (s, t′) with t 6= t′ be the messages that differ in G
and G′ respectively. We abstract the graphs G as G = {x, y, z}
where x is the number of messages targeting t, z is the number
of messages targeting t′ and y is the number of messages
targeting t′′ ∈ T \ {t, t′} with t 6= t′. Following the same
principle we denote the output as O = {α, β, γ} where α is
the number of messages the scrambler sends to the target t, γ
is the number of messages are sent to the target t′ and β is
the number of messages are sent to t′′ ∈ T \{t, t′}. The other
used notations are summarized below:

• Pn,d
(α x
β y
γ z

)
is the probability to get an output O =

{α, β, γ} with the algorithm An,dσ given a graph G =
{x, y, z}

• Rdn
(α x
β y
γ z

)
is the ratio

Pn,d
(
α x+1
β y
γ z

)
Pn,d

(
α x
β y
γ z+1

) and it is equal to eε

• Pdum
n,d

(
k1 α − k1
k2 β − k2
k3 γ − k3

)
is the probability to send k1 dummies

(resp. k2, k3) to the target t (resp. t′′ ∈ T \ {t, t′}, t′).
• Φu,v = is the probability to draw u times α, v times γ

and x+ z − u− v times β (i.e Pn,0
(u x
x + z − u − v 0

v z

)
).

• I(conditions) is the indicator function (equal to 1 when
the conditions are met and 0 otherwise).

a) Useful formulas: based on the notations above, we
provide below some useful formulas used in the remaining of
the chapter.

16

Pn,d
(α x
β y
γ z

)
=
∑

k1+k2=d

Pdum
n,d

(
k1 α − k1

d−k1−k2 β−(d−k1−k2)
k2 γ − k2

)
·Pn,0

(
α − k1 x

β − (d − k1 − k2) y
γ − k2 z

)
(5)

Pn,0
(α 0
β y
γ 0

)
=
y!σ̄β

(
σ

T−1

)y−β
α!β!γ!

I
(
α ≥ 0
β ≥ 0
γ ≥ 0

)
(6)

Pn,0
(α x
β y
γ z

)
=

∑
u+v≤x+z

Φu,vPn,0
(

α − u 0
β − (x + z − u − v) y

γ − v) 0

)
(7)

By replacing formula (6) in formula (7) we obtain:

Pn,0
(α x
β y
γ z

)
=
∑

u+v≤x+z

Φu,v
y!σ̄β−v

(
σ

T−1

)y−β+v

(α− u)!(β − (x+ z − u− v))!(γ − v)!

× I
(

u ≤ α
x+z−u−v≤β
v ≤ γ

)
(8)

Proof. We first need to determine the input and the output
producing the higher ratio7 for two neighboring graphs.
In other words we need to find G = {x + 1, y, z},
G′ = {x, y, z + 1} and O = {α, β, γ} such that
Rdn
(α x
β y
γ z

)
= P [A(G)∈O]

P [A(G′)∈O)] is maximum.

We have:

Rdn
(α x
β y
γ z

)
=

Pn,d
(
α x+1
β y
γ z

)
Pn,d

(α x
β y
γ z+1

)
We start by developing the numerator:

Pn,d
(
α x+1
β y
γ z

)
=

∑
k1+k2=d

Pdum
n,d

(
k1 α − k1

d−k1−k2 β−(d−k1−k2)
k2 γ−k2

)
·Pn,0

(
α−k1 x+1

β−(d−k1−k2) y
γ−k2 z

)

Pn,d
(
α x+1
β y
γ z

)
=

∑
k1+k2=d

Pdum
n,d

(
k1 α − k1

d−k1−k2 β−(d−k1−k2)
k2 γ−k2

)
·

(
σ̄Pn,0

(
α−k1−1 x

β−(d−k1−k2) y
γ−k2 z

)
+

(
σ

T − 1

)
Pn,0

(
α−k1 x

β−(d−k1−k2)−1 y
γ−k2 z

)
+

(
σ

T − 1

)
Pn,0

(
α−k1 x

β−(d−k1−k2) y
γ−k2−1 z

))
We then apply the formula 8 to each Pn,0:

Pn,0
(

α−k1−1 x
β−(d−k1−k2) y

γ−k2 z

)
=

∑
u+v≤x+z

y!σ̄β−(d−k1−k2)−v
(

σ
T−1

)y−β−(d−k1−k2)+v

(α−k1−1− u)!(β−(d−k1−k2)−(x+ z − u− v))!(γ−k2− v)!

· Φu,v · I
(

u ≤ α−k1−1
x+z−u−v≤β−(d−k1−k2)

v ≤ γ−k2

)
7Ignoring the symmetric case where the ratio is minimum.

Pn,0
(

α−k1−1 x
β−(d−k1−k2) y

γ−k2 z

)
=

∑
u+v≤x+z

f
(
α, k1
β, k2
γ, k3

)
(α−k1−u)I

(
α−k1−u≥1

1
1

)

where:

f
(
α, k1
β, k2
γ, k3

)
=

y!σ̄β−(d−k1−k2)−v
(

σ
T−1

)y−β−(d−k1−k2)+v

(α−k1− u)!(β−(d−k1−k2)− (x+ z − u− v))!(γ−k2− v)!

Φu,v · I
(

u ≤ α−k1
x+z−u−v≤β−(d−k1−k2)

v ≤ γ−k2

)

In the same way we obtain for the two other Pn,0:

Pn,0
(

α−k1 x
β−(d−k1−k2) −1 y

γ−k2 z

)
=

∑
u+v≤x+z

f
(
α, k1
β, k2
γ, k3

) (σ
T−1

)
(β−(d−k1−k2)− (x+ z − u− v))

σ̄

·I
(

1
(β−(d−k1−k2) − (x + z − u − v)) − 1 ≥ 0

1

)

Pn,0
(

α−k1 x
β−(d−k1−k2) y

γ−k2−1 z

)
=
∑

u+v≤x+z

f
(
α, k1
β, k2
γ, k3

)
(γ −k2 − v)I

(
1
1

γ −k2−v−1

)

By replacing in the numerator we obtain:

Pn,d
(
α x+1
β y
γ z

)
=

∑
k1+k2≤d
u+v≤x+z

Ω
(
α, k1
β, k2
γ, k3

)
·

(̄
σ(α−k1 − u)I

(
α−k1−u≥1

1
1

)

+

(
σ

T−1

)2

(β−(d−k1−k2)− (x+ z − u− v))

σ̄

· I
(

1
(β−(d−k1−k2)−(x+z−u−v))≥1

1

)
+

(
σ

T − 1

)
(γ −k2 − v)I

(
1
1

γ −k2−v≥1

))

where Ω
(
α, k1
β, k2
γ, k3

)
= Pdum

n,d

(
k1 α − k1

d−k1−k2 β−(d−k1−k2)
k2 γ−k2

)
f
(
α, k1
β, k2
γ, k3

)
.

With the same reasoning for the denominator, we obtain:

Pn,d
(α x
β y
γ z+1

)
=
∑

k1+k2≤d
u+v≤x+z

Ω
(
α, k1
β, k2
γ, k3

)((σ

T − 1

)
(α−k1 − u)I

(
α−k1−u≥1

1
1

)

+

(
σ

T−1

)2

(β−(d−k1−k2)− (x+ z − u− v))

σ̄

· I
(

1
(β−(d−k1−k2)−(x+z−u−v))≥1

1

)
+ σ̄(γ −k2 − v)I

(
1
1

γ −k2−v≥1

))

The ratio can then be written as:

17

Rdn
(α x
β y
γ z

)
=

∑
k1+k2≤d
u+v≤x+z

Ω
(
α, k1
β, k2
γ, k3

)
·
(
σ̄χ1 + χ2 +

(
σ

T−1

)
χ3

)
∑

k1+k2≤d
u+v≤x+z

Ω
(
α, k1
β, k2
γ, k3

)
·
((

σ
T−1

)
χ1 + χ2 + σ̄χ3

)

where:
χ1 = (α−k1 − u)I

(
α−k1−u≥1

1
1

)

χ2 =

(
σ

T−1

)2

(β−(d−k1−k2)− (x+ z − u− v))

σ̄

χ3 = (γ −k2 − v)I
(

1
1

γ −k2−v≥1

)
As σ̄ �

(
σ

T−1

)
, to maximize the ratio, one need to

maximize χ1 and minimize χ3. On the one hand χ1 is maximal
when α is maximal (i.e. α = n, as the maximum one can send
to the same target with algorithm An,dσ is n). On the other
hand, χ3 is minimal when γ = 0. Thus, the output producing
the higher ratio is O = {n, d, 0}.

To further increase the ratio, we need to minimize k1 and u.
The first one depends on d, a fixed parameter of the algorithm
we cannot change. The later one, u, is varying from 0 to x+z
and takes its minimal value when x + z = 0. We deduce
from this that the two inputs producing the higher ratio are
G = {1, n− 1, 0} and G′ = {0, n− 1, 1}.

By replacing the new indices in the ratio we obtain:

Rdn

(
n 0
d n−1
0 0

)
=

∑d
k=0

(d
k

)(n−1
k

)
σ̄k
(

σ
T−1

)n−k−1 (
σ̄ + k ·

(
σ

T−1

)2

σ̄

)
∑d
k=0

(d
k

)(n−1
k

)
σ̄k
(

σ
T−1

)n−k−1 (
σ

T−1
+ k ·

(
σ

T−1

)2

σ̄

) =eε

which leads to the result.

APPENDIX D
DETAILS OF NUMERICAL SIMULATION

The results of our numerical simulation (Figure 6) were
obtained as follows.

First, given a number of target T , we fix an input computa-
tion graph with n messages drawn from uniform and skewed
target distributions. Then, two neighboring communication
graphs G1 and G2 are generated by randomly changing the
target of one message.

Second, for fixed parameters (σ, d and n), we run our
algorithm many times on the neighboring communication
graphs with different random seeds. For each run and each
output O encountered, we count how many times O appeared
for each communication graph:

c1(O) = {# times O occurred when the input was G1},
c2(O) = {# times O occurred when the input was G2},

which correspond to the red and blue bars shown in Figure 6.
We then compute an estimate of the log-ratio of the probabil-
ities for each output O as:

r(O) = ln
(

max
{c1(O)

c2(O)
,
c2(O)

c1(O)

})
,

which correspond to the dotted green line in Figure 6.
The total number of runs are set such that nearly all possible

outputs are drawn at least once. To make sure that we did
enough runs, we applied the Capture-recapture [60] counting
technique used in biology to estimate the size of populations
of animals. More precisely, we follow a two-step approach
to estimate the percentage of unseen outputs. First, we divide
the number of runs into different batches. We execute a batch
and record all the different output drawn. Second, we draw
another batch and count the number of new outputs (i.e., not
seen in the first batch). The percentage of new outputs in the
second batch represents the percentage of all possible outputs
that have not been seen in any batch.

Interestingly, we observed that the choice of input has a
negligible impact on the results: although the probability of
individual outputs obviously depend on the input, the overall
shape of the output probability distribution (and thus the
results in Figure 6) remains essentially the same.

APPENDIX E
TECHNICAL DETAILS AND PROOFS FOR THE RESULTS OF

SECTION IV-C

In this section, we provide a detailed exposition of our
analysis leading to Theorem 4 in the main text. We first
introduce some key technical concepts in Section E-A. In
Section E-B, to keep our analysis as general as possible (see
Remark 2), we first prove (ε, δ)-DP results for a generic local
randomizer R. Finally, in Section E-C, we apply our general
result to our specific context.

For notational convenience, for any integer n ≥ 1, we will
denote the set {1, . . . , n} by [n].

A. Key Concepts

In this section, we review some key concepts from Balle et
al. [4] that we need to prove our results.

a) Decomposition of local randomizers.: Let X and Y be
some input and output domains respectively. Let R : X → Y
be a local randomizer taking an input x ∈ X and returning
a randomized output y ∈ Y . The total variation similarity
γR of a local randomizer R measures the probability that R
produces an output which is independent from its input. When
this happens, the output is sampled from some distribution ωR,
which is called the blanket distribution of R. When it is clear
from the context, we drop the subscript and simply write γ
and ω.

We will leverage a decomposition of R as a mixture be-
tween an input-dependent and input-independent mechanism.
Specifically, denoting by µx the output distribution of R(x),
we write µx = (1− γ)υx + γω. For a particular R : X → Y ,
the largest possible γ is given by γ =

∫
infx µx(y)dy and

18

the corresponding blanket distribution ω is given by ω(y) =
infx µx(y)/γ. Balle et al. [4] show that γ ≥ e−ε0 for any ε0-
DP local randomizer, but it is possible to compute the exact
value of γ for common local randomizers (see Lemma 5.1 in
[4]).

We can illustrate these concepts onRσ , the local randomizer
used in our algorithm. Since Rσ only randomizes the target,
we can abstract away the source node and we have X = Y =
T , γRσ = σ, υRσ,t(t

′) = I[t = t′] and ωRσ (t′) = 1/k for all
t′ ∈ T .

b) Hockey-stick divergence.: Differential privacy can be
conveniently expressed as a divergence between distributions.
Divergences come with known results and properties that
provide useful technical tools to derive differential privacy
guarantees. Below, we will use the characterization of (ε, δ)-
DP based on the so-called hockey-stick divergence. Precisely,
the hockey-stick divergence of order eε between distributions
µ and µ′ is defined as:

Deε(µ||µ′) =

∫
[µ(y)− eεµ′(y)]+dy,

where [·]+ = max(0, ·). The following lemma from [4] shows
the direct connection to (ε, δ)-DP.

Lemma 1. An algorithm A : Xn → Ym is (ε, δ)-DP if and
only if Deε(A(D)||A(D′)) ≤ δ for any neigboring datasets
D = {x1, . . . , xn−1, xn} and D′ = {x1, . . . , xn−1, x

′
n}.

B. Privacy Guarantee for a Generic Local Randomizer

Let ε, ε0 ≥ 0, δ ∈ (0, 1) and d ∈ N. In this section, we
prove an (ε, δ)-DP result for algorithms A : Xn → Yn+d of
the form A = SR,d ◦ Rn, where:
• Rn : Xn → Yn is such that

Rn(x1, . . . , xn) = (R(x1), . . . ,R(xn))

where R : X → Y is an arbitrary local randomizer
satisfying ε0-DP.

• SR,d : Yn → Yn+d randomly samples d “dummy”
messages from the blanket distribution ωR and shuffles
(i.e., applies a random permutation to it) the multiset
composed of the n input messages and the d dummy
messages.

Note that SR,0 (no dummy) corresponds to a standard shuffler:
this is the setting covered by recent results on privacy ampli-
fication by shuffling, in particular those of [4]. The purpose
of this section is to extend these results to account for the use
of dummy messages, i.e., when d > 0.

a) Step 1: Bounding the divergence in terms of i.i.d.
random variables.: Let D = {x1, . . . , xn−1, xn} and D′ =
{x1, . . . , xn−1, x

′
n} be two neighboring datasets that differ

only in their last points xn and x′n. The key technical step
of the proof is to bound the divergence Deε(A(D)||A(D′)) in
terms of a sum of i.i.d. realizations of a “privacy amplification”
random variable Lxn,x

′
n

ε defined as:

L
xn,x

′
n

ε =
µxn(W)− eεµx′n(W)

ω(W)
, (9)

where W ∼ ω. We have the following result, which is the
analog to Lemma 5.3 of [4] for the case with dummies.

Lemma 2. Let ε > 0 and let D = {x1, . . . , xn−1, xn} and
D′ = {x1, . . . , xn−1, x

′
n} two neighboring datasets with xn 6=

x′n. We have:

Deε(A(D)||A(D′))

≤
n−1∑
m=0

1

m+ d+ 1
Cn−1
m γm(1− γ)n−1−mE

[
m+d+1∑
i=1

Li

]
+

=
1

γn

n∑
m=1

m

m+ d
Cnmγ

m(1− γ)n−mE

[
m+d∑
i=1

Li

]
+

,

where L1, . . . , Lm+d are i.i.d. copies of Lxn,x
′
n

ε .

Proof. Recall that A = SR,d ◦ Rn. For a fixed input dataset
D = {x1, . . . , xn−1, xn}, we define the random variable Yi ∼
µxi for i ∈ [n], where µx = (1 − γ)υx + γω is the output
distribution of R(x) as defined in Section E-A. For i ∈ [d],
we also define the random variable Zi ∼ ω . Using these
notations, the output of A(D) can be seen as a realization of
the random multiset O = {Y1, . . . , Yn, Z1, . . . , Zd} ∈ NYn+d,
where NYn+d denotes the collection of all multisets of size
n + d of elements of Y . Similarly, for a neighboring dataset
D′ = {x1, . . . , xn−1, x

′
n}, the output of A(D′) is a realization

of the random multiset O′ = {Y1, . . . , Y
′
n, Z1, . . . , Zd}. Our

goal is thus to bound Deε(O||O′), where we use a slight abuse
of notation by applying the divergence to random variables
rather than distributions.

To exploit the mixture decomposition µx, we define ad-
ditional random variables. Let Vi ∼ υxi and Wi ∼ ω for
i ∈ [n− 1]. Hence we have:

Yi =

{
Vi with probability 1− γ,
Wi with probability γ.

Finally, we define B ⊆ [n − 1] to be the random subset of
inputs among the first n − 1 who sampled from the blanket,
and let B̄ = [n − 1] \ B. Note that for any B ⊆ [n − 1] we
have P [B = B] = γ|B|(1− γ)n−1−|B|. With these notations,
conditioned on a particular B, we have

O|{B = B} =WB ∪ VB̄ ∪ Zd ∪ {Yn},

where WB = {Wi}i∈B , VB̄ = {Vi}i∈[n−1]\B and Zd =
{Zi}di=1.

By standard properties of the hockey-stick divergence (see
Lemma A.1 in [4]), we have:

Deε(O||O′) ≤
∑

B⊆[n−1]

γ|B|(1− γ)n−1−|B|D(1)
B,d (10)

where D(1)
B,d = Deε(WB ∪ VB̄ ∪Zd ∪ {Yn}||WB ∪ VB̄ ∪Zd ∪

{Y ′n}).
By applying Lemma A.2 from [4], we further show that we

can ignore the contributions of the first n− 1 inputs who did
not sample from the blanket. Precisely:

D(1)
B,d ≤ Deε(WB ∪ Zd ∪ {Yn}||WB ∪ Zd ∪ {Y ′n}). (11)

19

Since the Wi’s are i.i.d., the distribution of WB depends
on B only through its cardinality m = |B|. We thus define
Wm = {W1, . . . ,Wm} for any m ∈ [n − 1], with W0 = ∅.
Rewriting (10) and (11), we have shown that:

Deε(O||O′) ≤
n−1∑
m=0

Cn−1
m γm(1− γ)n−1−mD(2)

B,d (12)

where D(2)
B,d = Deε(Wm ∪ Zd ∪ {Yn}||Wm ∪ Zd ∪ {Y ′n}).

We now upper bound the right-hand side of (12) in terms of
the privacy amplification variables L1, . . . , Lm+d arising from
the m inputs who sampled from the blanket and the d dummy
messages.

Let y ∈ Ym+d be a tuple of elements from Y and Y ∈
NYm+d be the corresponding multiset. We have:

P [Wm−1 ∪ Zd ∪ {Yn} = Y]

=
1

(m+ d)!

∑
τ

P [(W1, . . . ,Wm−1, Yn, Z1, . . . , Zd) = yτ],

where τ ranges over all permutations of {1, . . . ,m + d} and
we write yτ = (yτ(1), . . . , yτ(m+d)). Since Wi ∼ ω, Yn ∼ µxn
and Z ∼ ω, we have:

P [(W1, . . . ,Wm−1, Yn, Z1, . . . , Zd) = yτ]

= ω(yτ(1)) . . . ω(yτ(m−1))µxn(yτ(m))ω(yτ(m+1)) . . . ω(yτ(m+d)).

Summing this expression over all permutations τ and factoring
out P [Wm ∪ Zd = Y] gives:

1

(m+ d)!

∑
τ

(
ω(yτ(1)) . . . ω(yτ(m−1))µxn(yτ(m))

× ω(yτ(m+1)) . . . ω(yτ(m+d))

=

(
m+d∏
i=1

ω(yi)

)
1

m+ d

m+d∑
i=1

µxn(yi)

ω(yi)

= P [Wm ∪ Zd = Y]
1

m+ d

m+d∑
i=1

µxn(yi)

ω(yi)
.

Plugging this in the definition of Deε , we get:

Deε(Wm−1 ∪ Zd ∪ {Yn}||Wm−1 ∪ Zd ∪ {Y ′n})

=

∫
NYm

[
P [Wm−1 ∪ Zd ∪ {Yn} = Y]

− eεP [Wm−1 ∪ Zd ∪ {Y ′n} = Y]
]
+
dY

=

∫
NYm

P [Wm ∪ Zd = Y]

[
1

m+ d

m+d∑
i=1

µxn(yi)− eεµx′n(yi)

ω(yi)

]
+

dY

= E

[
1

m+ d

m+d∑
i=1

µxn(yi)− eεµx′n(yi)

ω(yi)

]
+

= E

[
1

m+ d

m+d∑
i=1

Li

]
+

.

Plugging this into (12) completes the proof.

b) Step 2: Bounding the sum of privacy amplification
variables.: To control the term E[

∑m+d
i=1 Li]+ in Lemma 2,

we need to resort to concentration inequalities for sums of i.i.d.
random variables. We can trivially adapt Lemma 5.5 (based
on Hoeffding’s inequality) and Lemma 5.6 (based on Bennett’s
inequality) from [4] by replacing m by m+ d.

Lemma 3. Let L1, . . . , Lm+d be i.i.d. bounded random vari-
ables with E[Li] = −a ≤ 0. Suppose that b− ≤ Li ≤ b+ and
let b = b+−b−. Then, by Hoeffding’s inequality, the following
holds:

E

[
m+d∑
i=1

Li

]
+

≤ b2

4a
e−

2(m+d)a2

b2 .

If furthermore we have E[L2
i] ≤ c, then by Bennett’s inequal-

ity:

E

[
m+d∑
i=1

Li

]
+

≤ b+

a(m+ d) log(1 + ab+
c)

e
− (m+d)c

b2
+

φ(
ab+
c)
,

where φ(u) = (1 + u) log(1 + u)− u.

Bounding the sum of privacy amplification random variables
with the above lemma requires the knowledge of their expected
value as well as bounds on the values they can take. Bennett’s
inequality further requires a bound on the second moment: this
can lead to a tighter (albeit more complex) bound compared to
Hoeffding’s. Balle et al. [4] provide such bounds that hold for
any local randomizer R satisfying ε0-DP, as we recall below.

Lemma 4. Let R : X → Y be an ε0-DP local randomizer
with total variation similarity γ. For any ε ≥ 0 and any x, x′ ∈
X , the privacy amplification variable L = Lx,x

′

ε satisfies the
following:

1) E[L] = 1− eε,
2) γe−ε0(1− eε+2ε0) ≤ L ≤ γeε0(1− eε−2ε0),
3) E[L2] ≤ γeε0(e2ε + 1)− 2γ2eε−2ε0 .

c) Step 3: Putting everything together.: Based on the in-
termediate results above, we can obtain an (ε, δ)-DP guarantee
that holds for any ε0-DP local randomizer. We illustrate this
using the simpler Hoeffding’s inequality in Lemma 3.

Theorem 5. Let R : X → Y be an ε0-DP local randomizer
with total variation similarity γ, and d ≥ 0. The algorithm
A = SR,d ◦ Rn is (ε, δ)-DP for any ε and δ satisfying

1

γn

n∑
m=1

m

m+ d
Cnmγ

m(1− γ)n−m
b2

4a
e−

2(m+d)a2

b2 ≤ δ,

where a = 1− eε and b = γ(1 + eε)(eε0 − e−ε0).

Although the above theorem does not give a simple expres-
sion for ε and δ, it can be easily evaluated numerically, for
instance to identify the lowest achievable ε given the ε0 and
γ of R and the desired δ.

C. Application to our Setting

We can now apply our previous privacy guarantees, which
hold for an arbitrary randomizer, to our specific context. Since

20

our local randomizer Rσ only randomizes the target, for
simplicity of notations we abstract away the source node and
consider that Rσ operates on X = T and returns an element
of Y = T . We have γRσ = σ, υRσ,t(t

′) = I[t = t′] and
ωRσ (t′) = 1/k for all t′ ∈ T . Rσ is in fact equivalent to
T -ary randomized response [32], and we can refine the results
of Lemma 4. This is shown in the following lemma, adapted
from [4].

Lemma 5. For any ε > 0 and t, t′ ∈ T , the privacy
amplification variable L = Lt,t

′

ε satisfies the following:
• −(1− σ)Teε + σ(1− eε) ≤ L ≤ (1− σ)T − σ(1− eε),
• E[L2] = σ(2− σ)(1− eε)2 + (1− σ)2T (1 + e2ε).

We can use the results of Lemma 5 instead of the generic
ones from Lemma 4 to obtain tighter privacy guarantees
that are specific to randomized response. Doing this with
Hoeffding’s inequality and combining with Lemma 2 gives
the statement for σ > 0 in Theorem 4.

a) Special case where source nodes do not sample (σ =
0).: Interestingly, when σ = 0 (i.e., source nodes never sample
and always send their true message to the scrambler), the
analysis is still valid and we can get (ε, δ)-DP guarantees
that rely entirely on the dummies added by the scrambler.
In this case, the set B in the proof of Lemma 2 (the set of
source nodes who sample from the blanket) is always empty
and therefore the result of Lemma 2 simplifies to:

Deε(A(D)||A(D′)) ≤ 1

d+ 1
E

[
d+1∑
i=1

Li

]
+

.

The bounds in Lemma 5 also simplify when σ = 0, namely:
−Teε ≤ L ≤ T and E[L2] = T (1 + e2ε). We can thus apply
Hoeffding’s or Bennett’s inequalities with the above values to
bound the sum of i.i.d. variables as in Lemma 3 using d+ 1
instead of m + d, and get privacy guarantees for this special
case as well. Using Hoeffding’s gives the statement for σ = 0
in Theorem 4.

21

	I Introduction
	II Problem Definition
	II-A Motivating Example
	II-B Execution Model
	II-C Adversary and Security Models
	II-D Reducing the Problem to Clusters of Nodes
	II-E Performance Metrics

	III Solution by Local Sampling and Flooding
	III-A Proposed Algorithm
	III-B Privacy Analysis
	III-C Performance Analysis

	IV Amplifying Privacy via Scramblers
	IV-A Proposed Algorithm
	IV-B Privacy Analysis: Pure -DP
	IV-C Privacy Analysis: (,)-DP via Amplification by Shuffling
	IV-D Performance Analysis

	V Evaluation
	V-A Queries and Datasets
	V-B Practical Trade-offs and Results

	VI Related Work
	VII Conclusion
	References
	Appendix A: Computational differential privacy
	Appendix B: Proof of thm:privacylocal
	Appendix C: Proof of Theorem 3
	Appendix D: Details of Numerical Simulation
	Appendix E: Technical Details and Proofs for the Results of Section IV-C
	E-A Key Concepts
	E-B Privacy Guarantee for a Generic Local Randomizer
	E-C Application to our Setting

