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Abstract 
 

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically 

conducted through experimentation. However, the process is time and resource-intensive and not easily 

translatable across different laboratories. A machine learning (ML) approach to EBB parameter 

optimization can accelerate this process for laboratories across the field through training using data 

collected from published literature. In this work, regression-based and classification-based ML models 

were investigated for their abilities to predict printing outcomes of cell viability and filament diameter 

for cell-containing alginate and gelatin composite hydrogels. Regression-based models were 

investigated for their ability to predict suitable extrusion pressure given desired cell viability when 

keeping other experimental parameters constant. Also, models trained across data from general literature 

were compared to models trained across data from one literature source that utilized alginate and gelatin 

bioinks and experimental conditions closely replicatable with available laboratory resources. The results 

indicate that models trained on large amounts of generalized data can impart physical trends on cell 

viability, filament diameter, and extrusion pressure seen in past literature. Regression models trained on 

the larger dataset also predicted cell viability closer to experimental values for material concentration 

combinations not seen in training data of the single-paper-based regression models. While the best 

performing classification models for cell viability can achieve an average prediction accuracy of around 

70%, the cell viability predictions remained constant despite altering input parameter combinations. 

Trained models on bioprinting literature data show the potential usage of applying ML models to 

bioprinting experimental design. Furthermore, experimental parameters of polymer precursor 

concentration, support bath presence, and non-primary cell types were empirically explored in their 

effects on extrusion pressure, filament diameter, and cell viability respectively. 
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1. Introduction: Extrusion-based Bioprinting and Applicability of 

Machine Assisted Experimentation 

Adapted from:  

1. S. Tian, H. Zhao, N. Lewinski, Key parameters and applications of extrusion-based bioprinting, 

Bioprinting. (2021) e00156. https://doi.org/10.1016/j.bprint.2021.e00156. 

2. S. Tian, Machine Assisted Experimentation of Extrusion-based Bioprinting Systems, (2021). 

https://www.mdpi.com/2072-666X/12/7/780. 
 

1.1 Extrusion-based bioprinting 

 
In the field of bioprinting, the most frequent modality used is extrusion-based bioprinting (EBB). 

Extrusion bioprinters contain three main features: 1) cartridge or syringe reservoirs for cell-laden or cell-

free material, 2) a dispensing mechanism such as pneumatic pressure, pistons, or ejection screws, 3) and 

a nozzle to control printing resolution [1]. Extrusion bioprinters can contain multiple printheads to 

deposit various cell-laden or cell-free material. This holds an advantage of over other forms of 

bioprinting modalities such laser-assisted bioprinting and electro-spinning as there can be higher control 

over where biomaterials, different cell types and densities, signaling molecules, and support materials 

can be deposited. For this work, the term bioink will be defined by the International Society of 

Biofabrication’s definition: ‘formulation of cells suitable for processing by an automated biofabrication 

technology that may also contain biologically active components and biomaterials [2]. In addition, EBB 

can operate at higher cell densities and compared to additional printing modalities. Many extrusion 

printer systems offer additional printing processing capabilities, including UV irradiation capabilities for 

photoinitiation of crosslinkable material and the ability to hold a support bath for low viscosity bioinks. 

Throughout the field, the characterization of printing construct quality is done with various quantitative 

and qualitative approaches. Furthermore, printing parameters ensuring high cell viability and appropriate 

expression of cellular markers have not been characterized across different types of organs. 

 

https://doi.org/10.1016/j.bprint.2021.e00156
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1.2 Common parameters across the EBB field 

 
1.2.1. Printability 

 
 Printability can be generally defined as the suitability of a bioink to be extruded into the desired 

construct geometry need. Within this broad term, different research groups have developed specific 

definitions, quantitative and qualitative, capturing specific material and post-processing parameters such 

as rheological properties and shape fidelity ratio of printed filament [3–10]. Notable quantitative 

measurements of printability include a modification of the circularity equation noted as Pr (Equation 

1).  

 𝑷𝒓 =
𝑳𝟐

𝟏𝟔𝑨
     (1) 

In Equation 1, L here indicates the perimeter of filament forming an infilled pore given a cross-sectional 

area at its base and A is the cross-sectional area of the pore. A Pr value of one would indicate perfect 

square shape [8,11]. The equation is modified to quantify deviation from square geometry of pores 

formed from layered filaments. Deviation from square geometry is used as most of EBB constructs 

contain successive filament with 90° deviation from the previous layer. Another equation used to 

quantify printability is the printability optimization index (POI) (Equation 2), which accounts for 

extrusion pressure (P), nozzle diameter (D), Young’s modulus of the extruded material (M), and printing 

accuracy (Acc) [12,13].  

𝑃𝑂𝐼 =  
𝐴𝑐𝑐 𝑀

𝐷𝑃
     (2) 

 

 Different groups in the field have captured printability through several types of phenomena: 

extrudability, filament continuity and consistency, shape fidelity, and filament spreading [14]. With 

combinations of extruded biomaterial characteristics, resultant cell viability, and printing settings, ranges 

of printability can exist to provide a set of optimized parameters to use for printing aforementioned 

biomaterial.  
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  When conducting printability tests to observe the effects of viscosity, material concentration, cell 

concentration, and mechanical properties, a visualized matrix or phase diagram of what can be extruded 

produces succinct yet important information. In general, three sets of printability criteria exist for a 

printability matrix: printable, unprintable (viscosity of the material being too low, leakage through 

printing nozzle), and unextrudable (viscosity of the material being too high). The most common type of 

printability matrices are based on material concentrations, where the printability criteria is correlated to 

different combinations of one material’s concentration to another printing variable, often including 

temperature (Fig. 1), cross-linking duration, concentration of another printing material, or nozzle 

movement speed [15–23].   

 

    

Figure 1. Phase diagram indicating the optimal temperature and crosslinking extent for GelMA at 10, 

15, and 20 % weight/volume (% w/v) (Adapted from Gu et al. [16]) 

 

 Printer-specific parameters, such as feed rate, have also been used in printability matrices (e.g. 

correlation of viscosity-based speed parameter and material storage modulus ratio to filament definition 

[21]). Other forms of printability matrices include print material elastic modulus and maximum loading, 

material extrusion rate and extrusion pressure, dynamic moduli and extrusion pressure, nozzle 



5  

movement speed and extrusion pressure, and material concentration and oxidation percentage (Fig. 2) 

[4,15,24–26].  

  

Figure 2. Evaluation of printability from alginate concentration (weight %) and oxidation percentage 

combinations, taking into account material density, kinetic viscosity, and cell viability directly post-

printing (Reproduced with permission from Jia et al. [26]) 

 

 Printability studies thus far have gathered sufficient data to extract trends and understand the 

different materials used. Material storage and loss moduli can be linked to viscosity and printability 

parameters. It is known that when the storage and loss moduli are equivalent, the material is at its 

gelation point and becomes rigid enough to form discrete layers. However, specific upper and lower 

limits of these ratios have not been established for the complete process of flow initiation to gel 

formation [27,28]. Another useful process to supplement printability parameters is modeling a material’s 

viscosity change over shear stress behavior (shear sweep test) using a non-Newtonian fluid model such 

as the Ostwald-de Waele (Power Law) or Hershel-Bulkley shear-thinning model [29]. Specifically, K, 

the flow consistency index and n, the flow behavior index or these equations can be obtained by finding 

the y-intercept and slope of fitted regressions on logarithmic scale shear sweep data respectively. The 

flow behavior index is of particular interest as it indicates the extent of shear thinning (n < 1) or shear 

thickening (n > 1) of a material [30]. In one case, a material with larger K and lower n resulted in having 
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acceptable printability across a larger pressure range [29].  

1.2.2. Extrudability 

  
 Extrudability is simply the ability for a bioink or biomaterial to be extruded out of a nozzle to 

form a consistent filament. A bioink’s viscosity is the most important indicator to resist against 

extrusion. With higher bioink viscosity, higher shear stress can result at the interface between the inner 

nozzle surface and bioink, which can disrupt cell membrane integrity and lead to lowered cell viability 

[31]. To reduce shear stress-induced cell death, it is standard in the EBB field to use shear thinning 

hydrogels, meaning their viscosities decrease with increasing shear strain. With large nozzle outlets, less 

extrusion pressure is needed to extrude filament and subsequently inducing lower shear stress as well. 

The downside to using larger nozzles is the reduction of filament resolution. Extrudability has been 

characterized in various formats as well. One group quantified extrudability as pressure needed to attain 

a specific material flow rate through a nozzle [24] while other groups deemed a bioink of a certain 

polymer precursor concentration to be unextrudable if it cannot achieve a flow at a maximum operating 

pressure [32], if gelation occurs before extrusion at too high of a rate [33], or if nozzles attached onto the 

cartridge becomes loose before material can be extruded out [34].  

1.2.3. Shape fidelity 
 

Shape fidelity is the ability for a printed construct to retain as much of the desired size and 

deposition geometry of the computer aided design model is one of most important printability measures.  

The degree of shape fidelity can be determined through image analysis by measuring the variation in 

filament diameter between the computer-aided design and the printed design, i.e. ink spreading,  angular 

and height differences [35–38]. Using the printability ratio for suitable pore size (e.g. mesh designs) and 

construct geometries can supplement image analysis, although this practice is not widespread. Shape 

fidelity needs to be defined considering the extruded materials’ cumulative interactions with the 

substrate, multiple filament layers, cells, and biochemical additives. Bioink composition, extrusion 

pressure, and nozzle or platform movement speed also need optimization to produce suitable shape 
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fidelity. One method that evaluates these parameters together is examining filament coalescence. 

Filament coalescence is the merging of discrete filaments into a single filament. Coalescence is tested 

based on the distance between filament strands printed when bioink composition and printer parameters 

are fixed. Filament coalescence tests have been considered to further develop appropriate resolution [9]. 

Based on filament fusion studies, the minimum distance between two filaments that does not result in 

merging is a key factor to consider for 3D construct designs after viscoelastic and filament diameter 

behavior. Despite filament diameter being a straightforward method to evaluate shape fidelity, in 

practice few groups report this parameter. Meanwhile, filament line spacing after deposition is also 

seldom stated. Fiber diameter, spacing, and pore size, are crucial to determining scaffold integrity and its 

ability to support cell survival and proliferation. 

Methods for assessing fidelity also vary, where one can assess fidelity post-printing by forcing 

the printed structures to undergo different physical and chemical changes to see if shape fidelity is 

retained [39]. Current definitions of shape fidelity have focused on retaining the physical structure of 

printed scaffolds without considering cellular effects. New assessment of shape fidelity should 

incorporate effects on cell viability, extracellular matrix (ECM) production rates, as well as set limits to 

expansion and shrinkage of filament post-printing.  

Resolution is defined as the diameter of filament extruded. Suitable resolution values for 

bioprinting depends on the desired intricacies of the construct geometry used. Printing with smaller 

resolution opens up the possibilities to accurately deposit bioink in geometries at scales similar to the 

tissue of interest. When single filament strands extruded from a cylindrical nozzle are considered, 

theoretical filament diameter can be modeled based on the Power Law as: 

𝑑 = 𝐷√
𝐷

2𝑣
(

𝜂

𝐾
)1/(𝑛−1)  (3) 

where D is the nozzle diameter, ν is the average flow rate velocity, η is the viscosity of the 

material, and K and n are the power law coefficients [40]. The average flow rate (ν) can be found from a 
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derivation based a non-Newtonian fluid extruding through a cylindrical nozzle, shown in Equation 3 

[29]: 

𝑣 = (
−∆𝑃

2𝐿𝐾
) (

𝑛

3𝑛+1
) 𝑅

𝑛+1

𝑛   (4) 

Here, ∆𝑃 is the extrusion pressure, L is length of the nozzle, and R is the nozzle inner radius. 

From Equation 4, increasing viscosity for a shear-thinning material (n < 1), decreasing nozzle diameter, 

increasing flow rate velocity, and decreasing n all would decrease filament diameter printed, which 

improves printing resolution under the traditional definition that smaller diameters mean increased 

resolution [40].  

Hydrophobic surfaces lead to less spreading of deposited materials, and lead to a smaller 

increase in filament diameter onto a substrate. Miri et al. [40] demonstrates this in resolution 

simulations, although surface tension effects are noted to be smaller than nozzle or substrate movement 

speed and material viscosity due to limitations of modeling viscoelastic shape recovery mechanisms as 

well as the weight of deposited material. Shrinkage in filament diameter from nozzle diameter is desired 

for resolution control for a wide range of applications. However, ideal filament diameter, or width, 

during and after deposition should be the same as the nozzle diameter [41,42]. Noticeable shrinkage and 

swelling have been observed for alginate and other materials added in hydrogel composites [21,43,44]. 

Although filament swelling and shrinkage can occur under different printing parameters, printability can 

still be maintained (Fig. 3) [21]. When optimizing bioprinting parameters, it is commonly stated that cell 

viability ranges from 40-80% for extrusion printing [45–47], and improving this range to 90% or above 

would be optimal [37]. If printing with lower resolution as opposed to a higher resolution results in 

higher long-term cell viability, and desired biological functions, thinner filaments may not be necessary. 
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Figure. 3. Printability matrix based on filament shrinkage and swelling and filament deposition 

characteristics: a) Characterization of filament alginate-laponite filament based on surface structure and 

swelling/shrinkage behavior b) At constant laponite concentration in biomaterial ink, the effects of 

alginate and the ratio of nozzle movement speed to rate of extrusion (speed ratio) is shown c) 

Printability matrix based on material concentrations and speed ratio is shown, where filament with 

consistent cross sectional diameters and smooth surfaces can still be formed despite swelling 

(reproduced with the permission of Huang et. al. [21]) 

 
1.2.4. Cellular considerations in printability 
 

Printability criteria often consider cell viability, especially those related to shear stress and 

residence time of cells within a nozzle; however, specific ranges of acceptable shear stresses, residence 

times, and bioink viscosity remain to be established for different types of cells. For example, mice 

embryonic stem cells can experience drastic cell viability loss under the same range of shear stress 

where immortalized cell such as mice L929 fibroblasts, human mesenchymal stem cells, or HeLa cells 

are less affected [8,48,49]. Additionally, shear stress can impart a decrease in proliferative ability in 

stem and immortalized cells at relatively higher values [48,49] while also improving proliferation and 
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differentiation in human stem cells between the ranges of 5 to 10 kPa [48]. Additionally, sterilization 

methods on bioink polymer precursors needs to be chosen carefully to not lower printability. Seen in one 

study, autoclaving alginate powder led to hydrogels that extruded filaments with higher spreading ratio 

as compared to hydrogel filaments composed of UV-sterilized, and ethanol-sterilized alginate powders 

[50]. The study also demonstrated that across different sterilization techniques, relatively high printing 

pressure with moderate nozzle movement speeds can be used to reduce deposition discontinuities. Since 

printability is affected by many variables, printing parameters need to be systematically and consistently 

characterized to clearly understand causes of specific behaviors of printed constructs and the resulting 

cell viabilities. Surface tension between the bioink and substrates, viscoelastic effects of hydrogel 

bioinks, thixotropic behavior of bioinks, unique polymer processing steps such as die swelling during 

extrusion [4], and the effect of cell density and cell type on printability metrics as compared to cell-free 

bioinks are all areas that would warrant more work to better define windows of printability. 

Furthermore, it would be beneficial to visualize information that correlates cell growth and metabolic 

activity, such as viability and protein expression, to printability. Poldervaart et al. [19] demonstrate this 

by finding an optimal printing range to promote desired cell viability at certain methacrylated hyaluronic 

acid concentrations while also correlating the printing range to calcium deposition from human bone 

marrow-derived mesenchymal stem cells (Fig. 4).  
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Fig. 4. Optimal printing conditions incorporated cell viability and osteogenic differentiation for 

choosing the optimal concentrations for methacrylate-HA printing (Reproduced with permission 

Poldervaart et al. [19]) 

 

It has been shown that printing pressure has a far greater impact on cell viability than nozzle 

diameter [51]. This does not diminish the effect that nozzle size has on cell viability during and after the 

extrusion process. Subsequent work demonstrated decreasing nozzle size increases shear stress applied 

to cell-laden bioinks and lowers cell-viability over 7 days [48]. Other groups’ works expanded upon 

Nair et al.’s [51] findings for both conical and cylindrical nozzles through modeling material flow 

undergoing Poiseuille flow, although cell viability trends differ vastly between the two types of 

extrusion tips [31,52].  Comparatively, the high shear stress region in the cylindrical nozzles was 

determined to cover distances up around 16 mm from the nozzle outlet, which implies cells are exposed 

to a larger area of high shear stress than in a conical nozzle [31]. However, the highest shear stress 

present at the nozzle tip (<1 mm from the nozzle outlet) can be up to ten times higher than the greatest 

shear stress on a cylindrical nozzle tip [31]. This gives rise to a tradeoff between nozzle geometry and 

extrusion pressure. It is suggested that conical nozzles are preferred when lower pressures are used due 

to cells being exposed to high shear stresses for a lower duration. Meanwhile, cylindrical nozzles are to 

be used at higher pressure scenarios as conical nozzle tip shear stress becomes significantly higher than 

in cylindrical nozzles [31]. Beyond overall cell viability, cellular movement in bioink based on the 
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velocity profile and distance from a cylindrical nozzle centerline was modeled and tested by one group, 

finding that cell morphology and survival conditions (healthy, apoptotic, and necrotic) became more 

varied as extrusion pressure increases while enzymatic expression of stem cell differentiation into 

osteogenic categories increased [53]. Cellular distribution during extrusion as a function of radial 

distance from the nozzle centerline was also derived.  

 

1.3 Fundamentals of machine learning (ML) 

 
 Machine learning (ML) is a subset of artificial intelligence aimed at creating predictive systems 

from existing data and set algorithms. In contrast to models based on explicit physical equations, such as 

Power Law models in the case of predicting extruded bioink filament diameters, ML approaches use 

pattern recognition algorithms to discern mathematical relationships between empirical observations of 

input variables and extrapolate them to predict chemical, biological and physical properties of desired 

products. Conventionally, ML approaches can be very efficient methods of modeling desired input 

combinations once a sizable dataset is created. ML approaches also do not require extensive 

computational power in many cases. As the ML models only require datasets and a framework for 

training and validation, bioprinting data can be incorporated in dataset form to potentially accelerate 

formulation of different bioprinting material and printing parameters to output certain biological and 

physical endpoints. 

 When constructing ML models, the following criteria must be satisfied: 

1. Data sourcing: The quality of data used for ML model training is paramount for the usability of the 

model. Not only does the model have to contain a sizable number of data instances, but also contains 

a diverse combination of input and output variables if possible. In general, datasets will contain 

sources of bias mainly originating from the process of data extraction. Bias can exist from error 

sources as well as data selection processes.  

2. Data cleaning and curation: With dataset creation comes the need to eliminate errors, omitted data, 
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and controlling for outliers. Common data cleaning procedures include imputing values for missing 

data based on common values seen for a variable in a dataset, deleting duplicative data instances, 

deleting data instances with physically unfeasible characteristics. Normalization of quantitative 

portions of datasets can also be included when data is derived from multiple sources. This is to 

consider discrepancies in characterization methods on gathering data sources. With dynamic and 

large datasets, automated workflows and pipelines are needed to provide quick and accurate 

curation. 

3. Data representation/encoding: Data representation pairs hand in hand with data cleaning and 

curation. How data is represented, or encoded for model training, is critical to determining model 

performance. Major forms of representation of data includes categorical, numerical, binary, and 

graphical. Categorical representation of data assigns integer code to each category. For example, 

surface charge of a nanoparticle in a quantitative structure-activity relationship dataset can be 

represented as categorical data, with negative charge assigned to integer values of 0, neutral charge 

assigned to integer values of 1, and positive charge assigned to integer values of 2. A subset of 

categorical data is binary data, where only two categories exist for represented data. Binary data is 

commonly used to represent the presence of a variable. For instance, the existence of nanoparticle 

coating can be represented as binary data with “Yes” represented as 0 and “No” represented as 1. 

Numerical data is straightforward to explain; variables with continuous numerical distributions are 

represented as numbers.  

4. Model choice: Various ML models exist with varying complexity. From a big-picture view, ML 

algorithms can be divided into two training styles: supervised and unsupervised. The major 

delineation between the two styles is the use of data labelling. Supervised learning algorithms use 

datasets with set labels of input variables for training whereas unsupervised learning algorithms use 

unlabeled input data [54]. Supervised learners undergo iterations of training where the model makes 

output predictions and is corrected when predictions made are wrong. The training process continues 
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until an acceptable threshold level on training accuracy is reached. Supervised learning algorithms 

are mainly used to predict classification and regression output variables from a labelled dataset. 

Unsupervised learning models are trained through deducing structures and patterns within input data, 

where the model attempts to reduce redundancy and organizes data by similarity. Instances of 

unsupervised learning include data clustering and association rule learning [54]. 

 Complexity of ML algorithms can range from classical linear algorithms such as support vector 

machines and logistical regression models, to ensemble models such as random forests, and deep 

learning models that involves usage of artificial neural networks. The complexity of ML algorithms 

does not relate to whether they are suitable for training with a specific dataset. If complex algorithms 

were to be chosen, baseline models should be developed with simpler algorithms to evaluate 

difference in prediction performance to justify the usage of complex algorithms. 

5. Model training and validation: Training a ML model involves splitting a dataset into three sets: a 

training set, validation set, and testing set. The training set is the portion of the dataset that is used to 

develop a modeling using the algorithm of choice. The validation set is used for optimization of 

hyperparameters of ML algorithms, such as maximum tree depth in random forest models. Lastly, 

the testing set is the sample of data used for evaluating the predictive accuracy of the trained model. 

The formation of these subsets can be done by randomly splitting data into set portions or through 

specified split based on initially clustering data together to ensure diversity in each subset to 

represent the intended application range. Validation of the trained model (different from validation 

for algorithm hyperparameter tuning) can then be conducted on desired input parameter combination 

ranges to output outcomes that can be compared to the trained model’s predicted outcome. 

1.4 Application of ML in Bioprinting 

 
The inclusion of ML in 3D bioprinting is relatively new, although unique contributions have 

been made thus far. Shi et al. implemented a multilayer perceptron-based artificial neural network 



15  

trained with computational fluid dynamics simulations of droplet formation and flow behavior to predict 

classification-based droplet behavior based on voltage, nozzle diameter, bioink surface tension, and 

bioink viscosity input parameters for a drop-on-demand bioprinting system [55]. Experimental 

validation of six different input parameter combinations associated with different droplet formations 

confirmed that experimental results matched with predicted droplet formation with each combination. 

The same group developed a multi-objective optimization design method using a gradient descent-

optimized fully connected neural networks to create single droplets based on optimized voltage, nozzle 

diameter, bioink viscosity, and bioink surface tension in comparison to randomly set voltages, bioinks 

with arbitrary surface tensions and viscosities, and printer nozzle diameter [56]. Specific to EBB, ML 

has been used for iterative optimization of printability. Lasso regression was used to optimize printed 

structures in a support bath using both underlying physical parameters that are not directly manipulated 

(e.g. bath material recovery time and perturbation growth rate) along with directly manipulated 

experimental variables (e.g. material flow rate, bath material concentration, and extrusion material 

concentration) [57]. The benefit of using this model was that a specific combination of construct height, 

support bath material concentration, and retraction distance was found to retain print fidelity while 

printing at a faster speed. Another iterative study applied Bayesian Optimization on an initial dataset of 

printability scores based on material and EBB printing parameters, of which parameter combinations are 

predicted with new experimental results to improve printability scores until an optimal parameter 

combination is met with the highest possible printability score [58]. The use of ML resulted in needing 4 

to 47 experiments to find optimal parameter combinations compared to using a total possible number of 

experiments ranging from 6,000 to 10,000 determined by the Bayesian Optimization algorithm. Conev 

et al. also examined random forest regressor and classifier capabilities in determining printed construct 

quality using a previous EBB dataset containing systematic examination of poly(propylene fumarate) 

[59,60]. Results indicated satisfactory labeling performance from both random forest models.  

The common theme amongst above studies is that living cells were not used. Incorporating 
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cellular parameters and predicting cellular performance in bioprinted constructs appear to be the next 

step in ML incorporation in bioprinting. Lee et al. tested cell viability based on collagen, hyaluronic 

acid, and fibrin formulations predicted using the relative least general generalization algorithm along 

with multiple regression modeling for printability [61]. On top of maintaining suitable shape fidelity, 

cell-laden scaffolds with optimized material concentrations exhibited increasing cell proliferation and 

migration up to 28 days after printing. Xu et al. developed a model based on ensemble learning for cell 

viability prediction in stereolithography-based bioprinting [62]. Prediction performance on 10% of the 

dataset used showed a coefficient of determination (R2) score of 0.953, indicating high goodness-of-fit 

for viability prediction of new parameter combinations.  

1.5 Project Overview 
 

 Applications of ML in EBB are currently limited in translatability across different experimental 

conditions, predictability for both biological and physical printability outcomes, and a lack of 

experimental validation of developed models in most studies. The goal of the project is to develop and 

comparatively evaluate predictive models through the lens of four objectives: 

1. Outcome prediction: How accurate are biological and printability predictions compared to 

experimental values for specific testing parameters? 

2. Condition recommendations: If specific biological and printability outcomes are desired, what values 

does one or more input variable need to be to achieve those outcomes? 

3. Prediction size: How do models created with varied training data size vary in performance metrics? 

4. Specified dataset vs. generalized dataset: Training models through a dataset that uses similar or the 

same experimental conditions as the conditions of experimental validation, how do outcome 

predictions fare compared to using a larger dataset containing data sourced from varying 

experimental conditions? 

To examine these research objectives, the development of predictive models that incorporate data of 
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various experimental settings is of particular interest. Specifically, these models have potential 

robustness to be used with various materials, cellular, and printer conditions. As stated previously, data 

collection for ML model implementation have still been sourced from singular research groups. Ideally, 

development of data scrapping tools for quantitative variable information in-text and in-image can 

accelerate and automate the dataset creation process. However, no known tools exist for curating 

information from bioprinting literature, specifically image analysis platforms to aid printability and 

graphical information extraction. In addition, ample amounts of data are needed to provide an accurate 

snapshot of experimental conditions used across bioprinting laboratories in the past decade and more. 

An initial goal of the project is to compile a dataset containing prevalent bioink materials, solvents used 

for bioink synthesis, crosslinking agents and their quantitative characteristics, printer and printer 

accessory characteristics, cellular characteristics and outcomes, and printability outcomes.  

 With this dataset, one can compare different ML models trained on the dataset via classification 

and regression performance metrics. Common regression performance metrics of coefficient of 

determination (R2) and mean squared error were used in this project to assess model performance 

validated on held out data. Accuracy, precision, and recall performance metrics were used to capture and 

compare classification model performance. From the base dataset, data instances with existing filament 

diameter values were compiled to create a dataset for filament diameter predictions and the same 

strategy was applied to create a dataset for extrusion pressure condition recommendation prediction. 

Performance metric evaluation was conducted with varying training set sizes to determine dataset size 

importance. A substantially smaller dataset was created via data gathered from literature using almost 

the same experimental set up available in our lab to train chosen ML models for evaluating the specified 

dataset effect. 

 The development and evaluation of these ML models can provide a baseline examination of the 

efficacy of ML in creating generalized predictive models for EBB. Models evaluated for different 

parameters can also elicit the relative importance of variables used for predictions, which can offer 
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insight on future experimental development centered around those variables. 
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2. Development of supervised classification and regression models 
 

Adapted from:  

1. S. Tian, Machine Assisted Experimentation of Extrusion-based Bioprinting Systems, (2021). 

https://www.mdpi.com/2072-666X/12/7/780. 

 
2.1 Introduction  
 

 The database utilized for ML model training contains bioink material concentration, solvent 

used, polymer crosslinking information, printing settings, cell viability, and printability results accrued 

from 75 EBB manuscripts over the past 13 years. Shown through previously mentioned studies, data 

used for bioprinting ML model training and testing has only been gathered from and applied within 

group. To our knowledge, our compilation of experimental data and parameters reported from different 

bioprinting laboratories for ML applications is the first of its kind. The database contains 617 unique 

instances of cell viability and 339 unique instances of printability.  We analyzed the ability of ML 

regression and classification techniques to accurately and precisely predict cell viability and filament 

diameter outcomes based on certain combinations of material, biological, and printing parameters. In 

parallel, extrusion pressure recommendation models were also evaluated comparatively for prediction 

accuracy and preciseness.   

2.2  Materials and methods 

 
2.2.1. Dataset creation 

 
 Two datasets of 617 instances corresponding to a unique cell viability value and 339 instances 

corresponding to a unique filament diameter value were collected from 75 EBB papers found through 

the search terms TS = Extrusion AND (Bioprinting OR Bioink) and TS = (Extrusion  OR Extrud*) AND 

(Bioprint*  OR Bioink*) AND (alginate*) AND (gelatin*) AND (viability  OR viable*  OR surviv*  OR 

death OR proliferat*) in Web of Science. Material concentration, solvent usage, crosslinking 

mechanism and duration, printer settings, observation duration, cell viability, and filament diameter 

were recorded for each unique instance of either cell viability and/or filament diameter. Papers used for 
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data extraction all utilized live/dead staining for comparable cell viability quantification. When cell 

viability data were presented in graphical form, PlotDigitzer software 

(http://plotdigitizer.sourceforge.net) was used to estimate cell viability values in relation to the viability 

scales they are presented against. Filament diameter values were extracted (via PlotDigitizer) from 

images provided in different manuscripts corresponding to different times of observation after 

printing. The datasets created are available through the Open Science Framework [63]. 

2.2.2. Experimental design 

 
 We framed the prediction of cell viability, filament diameter, and extrusion pressure as 

supervised regression-based and classification-based questions. In the regression models, a value of cell 

viability and filament diameter was predicted based on the training set and compared with the true cell 

viability and filament diameter values of the test set. For cell viability classification models, a binary 

class was created from the numerical cell viability data by setting a threshold for acceptable cell viability 

to be equal to or above 80.0%. The cell viability class was “Acceptable Cell Viability” with values of 

“Y” for yes and “N” for no. For filament diameter classification models, a binary class was created from 

the numeric filament diameter data by setting a threshold for tolerable filament diameter equal or above 

10.0% error [17,18]. This was determined by calculating the absolute difference between filament 

diameter and nozzle diameter and dividing by nozzle diameter. The class was named “Acceptable 

Filament Diameter” with values of “Y” for yes and “N” for no based on above criteria.  At hydrostatic 

pressures above 100 kPa, cell metabolic behavior can become negatively affected [64]. In cell viability 

instances with stated extrusion pressures, instances with a pressure above 100 kPa were deemed to have 

unacceptable extrusion pressure, while the rest were deemed acceptable. We evaluated three regression 

learners in this study: support vector regression, linear regression, and random forest regression; and 

three classification learners: random forest classification, logistic regression classification, and support 

vector machines. 

 

http://plotdigitizer.sourceforge.net/
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2.2.3. Model evaluation 

 
 Metrics used for evaluating regression model performance were the coefficient of determination 

(R2) and mean squared error (MSE). R2 is a measure of goodness of fit of the model on provided data. It 

indicates the proportion of the variance in the dependent variable that is explained by independent 

variables. A perfectly fit model will have a R2 value of zero. MSE indicates the average of the squares of 

errors. Errors are the differences between actual values and predicted values. As MSE values become 

closer to zero, the lower the overall error becomes for model fit onto data. One regression model was 

chosen for prediction usage based on the highest coefficient R2 values and lowest MSE over k-fold cross 

validation training evaluation up to k=10 relative to other models.  

 Metrics used for evaluating classification model performance were accuracy, precision, and 

recall scores. Accuracy represents the percentage of correctly predicted outcomes for a sample. 

Precision is calculated by the ratio of true positive prediction over the sum of true positive and false 

positive predictions. Precision represents the proportion of correct predictions over sum of all 

predictions of the same label. Recall is similar to precision calculations, but the number of false 

positives is replaced by false negatives in predictions. This represents the proportion of all instances of 

the same label that are predicted correctly. Overall, a classification model was chosen for prediction 

usage based on the highest average prediction accuracy uses k-fold cross validation training evaluation 

metholodgy.  

 Chosen models were then utilized to predict acceptable cell viability and filament diameter from 

material and printing parameter combinations feasible to conduct in our laboratory for experimental 

verification of the predicted values. In addition, extrudability of low viscosity and high viscosity was 

also tested using materials and material concentrations within range of the dataset by predicting the 

extrusion pressure that would produce desired cell viability and filament diameters. Datasets were 

preprocessed and ML models were created through Python programming language (Python 3.8) via 

Jupyter notebbok files (https://jupyter.org/). Appendix B and C provides the code used to preprocess 
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data, build models, evaluate models, and output variable predictions.   

2.2.4. Data preprocessing 

 
 Within the dataset, null instances for bioink temperature (i.e. syringe temperature) and printing 

substrate temperature were set at 22 °C as the majority experiments were conducted or are assumed to 

be conducted at room temperature. Additional variables with more than 50% null values were removed 

from the dataset and non-printing in-stances were also removed (instances with cast molded bioink or 

other methods with cells cultured within non-extruded hydrogel). Variables with only null instances and 

instances of zero units were removed prior to model usage as available imputation methods of null 

values would not provide an accurate representation of actual quantitative values of the variables used in 

respective manuscripts. Additional variables with null values and non-zero instances were imputed 

through k-nearest-neighbors imputing with a neighbor range of 30. Categorical data was encoded 

through one-hot-encoding. Feature selection was performed through conducting feature importance 

analysis on variables within the cell viability and filament diameter datasets respectively using random 

forest regression. For regression model performance evaluation, continuous variable instances were nor-

malized through the MinMaxScaler() function (Sci-kit Learn package, Python).  

2.2.5. Dataset training size variation 

 Cross-validation of datasets was used to test training size variation by varying how many folds 

the training data is divided into. The greater number of folds, the greater the number of instances used 

for training. For each model, performance metrics were compared by k-fold cross validation with k 

values of 2, 5, and 10. 

2.3 Results 

 
2.3.1. Cell viability model performance 
 

 Amongst regression models, random forest regression models for cell viability predictions 

elicited higher R2 while minimizing average MSE (Table 1, Fig. S1-2).  
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Table 1. Cell viability regression model performance based on average values of coefficients of 

determination (R2) values and mean squared error (MSE) under 5-fold cross validation. R2 and MSE 

values were averaged from validation amongst all 5 combinations of one fold being trained and tested on 

the remaining 4 folds. 

 

 

 

 

 

 

 

 

Random forest classification models elicited higher prediction accuracy, precision, and recall than other 

models tested (Table 2, Fig. S3-5). 

 

Table 2. Cell viability classification model performance based on average values of accuracy, 

precision, and recall under 5-fold cross validation. Accuracy, precision, and recall values averaged from 

validation amongst all 5 combinations of one fold being trained and tested on the remaining 4 folds. 

 

 

 

 

 

 

 

 

 

 

Cell viability 

regression 

learner model 

Average R2 Average MSE  

Random forest 

regression 
0.384 0.019 

Linear regression 0.231 0.024 

Support vector 

regression 
0.000 0.031 

Cell viability 

classification 

learner model 

Average 

Accuracy 

Average 

Precision  
Average Recall 

Random forest 

classification 
0.689 0.678 0.942 

Logistic regression 0.616 0.616 1 

Support vector 

classification 
0.616 0.616 1 
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Both logistic regression and support vector classification models elicited the same performance values 

for accuracy, precision, and recall due to labeling all cell viability classifications as acceptable cell 

viability during the model fitting process (Fig. 5).  

 

Figure 5. Confusion matrix of logistic regression and support vector classification of cell viability. 10% 

of the cell viability dataset was used as testing data while 90% of the dataset was used as training data. 

CV indicates cell viability. 

 

Feature importance testing based on decision trees generated from random forest tree models indicated 

relatively major effects from extrusion pressure, specific material concentration, solvent choice, nozzle 

diameter, and printing temperatures for cell viability predictions (Fig. 6-7). 

 

Figure 6. Feature importance rankings of material, equipment, and experimental parameters based on 

random forest regression modeling of cell viability 
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Figure 7. Feature importance rankings of material, equipment, and experimental parameters based on 

random forest classification modeling of cell viability 

 

2.3.2. Filament diameter model performance 

 

Amongst regression models, random forest regression models for filament diameter predictions also 

produced higher coefficients of determination while minimizing average mean squared error (Table 3, 

Fig. S6-7). 

Table 3. Filament diameter regression model performance based on average values of 

coefficients of determination (R2) values and mean squared error (MSE) under 5-fold cross validation. 

R2 and MSE values were averaged from validation amongst all 5 combinations of one fold being trained 

and tested on the remaining 4 folds. 

 

 

 

 

 

 

 

 

Learner 

model 
Average R2 Average MSE  

Random 

forest 

regression 

0.645 0.007 

Linear 

regression 
0.543 0.009 

Support 

vector 

regression 

0.003 0.019 
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Similar to cell viability classification, when predicting acceptable filament diameter random forest 

classification models produced higher prediction accuracy, precision, and recall than other models tested 

(Table 4. Fig. S8-10). 

Table 4. Filament diameter classification model performance based on average values of 

accuracy, precision, and recall under 5-fold cross validation. Accuracy, precision, and recall values 

averaged from validation amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 

 

 

 

 

 

 

 

The support vector classification model generated precision and recall scores of zero due to labeling all 

filament diameter tolerance classifications as out of tolerance during the model fitting process (Fig. 8).  

 

Figure 8. Confusion matrix of support vector classification of filament diameter. 10% of the filament 

diameter dataset was used as testing data while 90% of the dataset was used as training data. FD 

indicates filament diameter 

Learner model 
Average 

Accuracy 

Average 

Precision  
Average Recall 

Random forest 

classification 
0.941 0.952 0.808 

Logistic regression 0.846 0.753 0.569 

Support vector 

classification 
0.752 0.000 0.000 
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Through feature importance analysis, nozzle diameter was ranked as the most important feature 

affecting filament diameter model prediction (Fig. 9-10). 

 

Figure 9. Feature importance rankings of material, equipment, and experimental parameters based on 

random forest regression modeling of filament diameter 

 

Figure 10. Feature importance rankings of material, equipment, and experimental parameters based on 

random forest regression modeling of filament diameter 

 

2.3.3. Model predictions compared to experimental trends (non-primary cells) 

 

Holding all but one input parameter constant, including the time of observation at zero days, both 

random forest and linear regression models translated several physical variable's impact onto prediction 

trends. Regression models predicted decreased cell viability with increasing alginate concentration 

(Tables S37-39, 43-45), increasing syringe temperature above 37 °C (Table S50-51) or increasing 
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extrusion pressure (Table S42, S58). The linear regression model also discerned trends reflective of the 

dataset.  Specifically, lower extrusion pressures result in higher cell viabilities (Table S56) when 

increasing syringe temperature (Tables S50-51), when increasing cell density (Tables S61-63), with 

decreasing gelatin concentrations (Tables S59-61), and with increasing nozzle size (Tables 47-49). 

 When predicting filament diameter, the random forest regression model predicted decreasing 

filament diameters when ionic crosslinking duration post-extrusion is above 9 minutes (Table S15), 

when extrusion pressure is increased up to 90 kPa (Table S7), and when nozzle diameter is decreased 

(Table S8-9).  

 The linear regression model further predicts smaller filament diameters when syringe 

temperature, printing substrate temperature, gelatin concentration, CaCl2 concentration, and ionic 

crosslinking duration increased individually (Tables S10-11, S14-16). Furthermore, filament diameter 

increased when alginate concentration increased when predicted with linear regression (Table S13). 

Using random forest classification, filament diameters produced were deemed to be within tolerance 

when using nozzle diameters of 840 μm or larger.  

2.3.4. Effect of training data size on output predictions 

 

 Through increasing the number of cross validation folds, R2 increased while MSE performance 

saw minimal change for two random forest regression and linear regression on cell viability predictions 

(Table 5, Fig. S11-16).  
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Table 5. Cell viability regression model performance based on average values of coefficients of 

determination (R2) values and mean squared error (MSE) under 2-fold, 5-fold, and 10-fold cross 

validation. R2 and MSE values were averaged from validation amongst all n combinations of one fold 

being trained and tested on the remaining n-1 folds. 

Learner model Number of folds Average R2 Average MSE 

Random forest 

regression 

2 0.310 0.022 

5 0.384 0.019 

10 0.377 0.019 

Linear regression 

2 0.109 0.028 

5 0.231 0.024 

10 0.219 0.024 

Support vector 

regression 

2 -0.015 0.032 

5 0.000 0.031 

10 -0.007 0.031 

 

For random forest cell viability classification, we can see that accuracy, precision, and recall stayed 

consistent with increased number of folds and in turn, training set size for cell viability (Table 6, Fig. 

S17-19).  
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Table 6. Random forest classification model performance for cell viability based on average 

values of coefficients of accuracy, precision, and recall scores under 2-fold, 5-fold, and 10-fold cross 

validation. Accuracy, precision, and recall values were averaged from validation amongst all n 

combinations of one fold being trained and tested on the remaining n-1 folds. 

Learner model 
Number 

of folds 

Average 

Accuracy 

Score 

Average 

Precision 

Score 

Average 

Recall Score 

Random forest 

classification 
2 0.708 0.700 0.925 

 5 0.689 0.678 0.942 

 10 0.703 0.693 0.936 

Logistic 

regression 
2 0.616 0.616 1.000 

 5 0.616 0.616 1.000 

 10 0.616 0.616 1.000 

Support vector 

classification 
2 0.616 0.616 1.000 

 5 0.616 0.616 1.000 

 10 0.616 0.616 1.000 

For filament diameter modeling, random forest regression model saw minimal effects due to training 

data size while linear regression saw large increases in R2 and decrease in MSE as the number of cross 

validation folds increased from two to five (Table 7, Fig. S20-23). 
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Table 7. Filament diameter regression model performance based on average values of 

coefficients of determination (R2) values and mean squared error (MSE) under 2-fold, 5-fold, and 10-

fold cross validation. R2 and MSE values were averaged from validation amongst all n combinations of 

one fold being trained and tested on the remaining n-1 folds. 

Learner model 
Number 

of folds 

Average 

R2 

Average 

MSE  

Random forest 

regression 

2 0.639 0.007 

5 0.645 0.007 

10 0.604 0.008 

Linear regression 

2 -5.256 0.115 

5 0.543 0.009 

10 0.491 0.009 

Support vector 

regression 

2 0.005 0.019 

5 0.003 0.019 

10 -0.025 0.019 

 

Accuracy, precision, and recall did not see significant changes regardless of increasing training data size 

(Table 8, Fig. S24-29). 
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Table 8. Classification model performance for filament diameter based on average values of 

accuracy, precision, and recall values under 2-fold, 5-fold, and 10-fold cross validation. Accuracy, 

precision, and recall values were averaged from validation amongst all n combinations of one fold being 

trained and tested on the remaining n-1 folds. 

Learner model Number of folds 
Average Accuracy 

Score 

Average 

Precision Score 

Average Recall 

Score 

Random forest 

classification 

2 0.926 0.912 0.785 

5 0.941 0.952 0.808 

10 0.935 0.951 0.799 

Logistic regression 

2 0.829 0.726 0.514 

5 0.846 0.753 0.569 

10 0.832 0.764 0.517 

Support vector 

classification 

2 0.752 0 0 

5 0.752 0 0 

10 0.752 0 0 

 

2.3.5. Extrusion pressure recommendation prediction performance 

 

Amongst regression models, random forest regression models for extrusion pressure predictions also 

produced higher coefficients of determination while minimizing average mean squared error (Table 9. 

Fig. S30-31). 
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Table 9. Cell viability regression model performance based on average values of coefficients of 

determination (R2) values and mean squared error (MSE) under 2-fold, 5-fold, and 10-fold cross 

validation. R2 and MSE values were averaged from validation amongst all n combinations of one fold 

being trained and tested on the remaining n-1 folds. 

Learner model 
Number of 

folds 
Average R2 Average MSE  

Random forest 

regression 
2 0.540 0.041 

 5 0.636 0.030 

 10 0.623 0.030 

Linear regression 2 0.498 0.045 

 5 0.420 0.047 

 10 0.418 0.046 

Support vector 

regression 
2 0.567 0.039 

 5 0.515 0.040 

 10 0.507 0.040 

 

Similar to cell viability classification, when predicting acceptable filament diameter random forest 

classification models produced higher prediction accuracy, precision, and recall than other models tested 

(Table 10. Fig. S32-34). 
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Table 10. Classification model performance for extrusion pressure based on average values of 

accuracy, precision, and recall values under 2-fold, 5-fold, and 10-fold cross validation. Accuracy, 

precision, and recall values were averaged from validation amongst all n combinations of one fold being 

trained and tested on the remaining n-1 folds. 

Learner model 
Number 

of folds 

Average 

Accuracy 

Score 

Average 

Precision 

Score 

Average 

Recall Score 

Random forest 

classification 
2 0.763 0.807 0.701 

 5 0.760 0.817 0.696 

 10 0.768 0.814 0.701 

Logistic 

regression 
2 0.720 0.775 0.643 

 5 0.729 0.802 0.639 

 10 0.726 0.789 0.650 

Support vector 

classification 
2 0.709 0.775 0.618 

 5 0.729 0.827 0.604 

 10 0.723 0.819 0.601 

  

Both random forest regression and linear regression models indicated increased pressure needed with 

higher alginate and gelatin concentrations, although the random forest regression model predicted a 

lower range of extrusion pressures while the linear regression model predicted a higher range. Based on 

feature importance rankings, substrate temperature appears to be the most significant variable impacting 

extrusion pressure used (Fig. 11-12).  
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Figure 11. Feature importance rankings of material, equipment, and experimental parameters based on 

random forest regression modeling of extrusion pressure 

 

Figure 12. Feature importance rankings of material, equipment, and experimental parameters based on 

random forest classification modeling of extrusion pressure 

 

2.4 Discussion  

 
 In this study, we approached the application of ML to bioprinting in two ways. First, we applied 

regression and classification models to data derived from a single study, which is more directly 

comparable to published studies on ML in bioprinting. In addition, we went further and applied the same 

ML techniques to a larger dataset encompassing results from 75 different studies to understand whether 

this data aggregation approach can effectively widen the area of model applicability. The random forest 

regression, random forest classification, and linear regression models created can be used to an extent in 
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conjunction with one another for outcome prediction as well as condition recommendation. Both random 

forest and linear regression models, more so the linear regression models, have shown the ability to 

represent several physical phenomena that have been documented in previous bioprinting or hydrogel 

studies. In particular, the general trends of increased extrusion pressure and alginate concentration 

resulting in decreased cell viability prediction values correlates with findings in previous literature that 

indicate increasing alginate concentration results in decreased cell viability [51,65,66]. In other cases, 

trends of predicted values oppose what is seen in literature [67,68]. These trends include decreased cell 

viability with increasing nozzle diameter (Tables S45-46), increased cell viability with increasing 

gelatin concentration (Tables S54-56), and larger filament diameter in DMEM-based bioink compared 

to saline solution-based bioink (Tables S12).  

 Compared to other ML models created for bioprinting predictions, the regression models created 

in this study provided lower R2 values and comparable error with similar proportion of training data to 

test data while accuracy of classification models were lower as well [59,62]. A major reason for this is 

the difference in experiment variation for the datasets used to create the models. Input parameters 

gathered from published studies contained a limited number of independent variables due to the chosen 

experimental design which focused on answering a specific research question versus parameter 

optimization. In addition, our dataset is inherently heterogeneous due to being acquired from studies 

conducted using different testing conditions and printing strategies. Comparatively, past studies contain 

larger amounts of data collected from controlled experimental settings [59]. Not all of the input 

conditions used in developing the ML models were reported in every study included in the dataset. 

Although missing data can be estimated using imputation, this can lead to misrepresentation of the 

features’ weight on the output parameters and consequently lead to worse performance metrics along 

with prediction values that do not correlate with experimental results.  

 Feature importance ranking results indicated that cell density as a parameter did not carry as 

great of a weight in random forest predictive function for cell viability compared other bioink and 
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equipment parameters. Increasing cell density in bioink has been shown to marginally improve cell 

viability in the short term (0 to 1 day post-printing) for primary cells and stem cells [69,70]. Increasing 

cell density may also lead to an increase in cell agglomerates. In cases such as cell densities above 5.0 x 

106 cells/mL, cell viability decreases drastically the longer printed constructs are cultured (7 to 21 days) 

[70]. This can be due to the creation of hypoxic conditions for cells in inner areas of cell agglomerates 

which limits nutrient and waste transport through cell structure. In the cell viability dataset, the 

correlation of cell density on cell viability does not result in notable trends when cell density increases. 

Amongst the 617 instances used for cell viability model training, only 196 in-stances used cell densities 

above 5.0 x 106 cells/mL. Amongst those instances, 65.3% of cell viability are acceptable (≥ 80%). This 

is a similar distribution to the cell viability value distribution in the overall dataset, where 61.6% of cell 

viability values are deemed acceptable (≥ 80%). In addition, the majority of unacceptable (< 80%) cell 

viability amongst instances containing more than 5.0 x 106 cells/mL corresponded with cell density 

values between 5.0 to 10.0 x 106 cells/mL while instances with higher cell concentrations saw smaller 

portions of cell viability values being unacceptable. 

 Compared to other ML models created for bioprinting predictions, the regression models created 

in this study provided lower R2 values and comparable error with similar proportion of training data to 

test data while accuracy of classification models were lower as well [59,62]. A major reason for this is 

the difference in experiment variation for the datasets used to create the models. Input parameters 

gathered from published studies contained a limited number of independent variables due to the chosen 

experimental design which focused on answering a specific research question versus parameter 

optimization. In addition, our dataset is inherently heterogeneous due to being acquired from studies 

conducted using different testing conditions and printing strategies. Comparatively, past studies contain 

larger amounts of data collected from controlled experimental settings [59]. Not all of the input 

conditions used in developing the ML models were reported in every study included in the dataset. 

Although missing data can be estimated using imputation, this can lead to misrepresentation of the 
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features’ weight on the output parameters and consequently lead to worse performance metrics along 

with prediction values that do not correlate with experimental results. 
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3. Experimental evaluation of supervised classification and 

regression models 
 

Adapted from: 

1. 1. S. Tian, Machine Assisted Experimentation of Extrusion-based Bioprinting Systems, (2021). 

https://www.mdpi.com/2072-666X/12/7/780. 

 
3.1 Introduction 

 
 Creating ML models that result in relatively high-performance metrics such as high correlation of 

determination or high prediction accuracy indicate the chosen algorithm’s ability to recognize specific 

patterns well amongst input variables within the information limits of the dataset. However, using 

trained models to elicit outcomes and condition recommendations based on combinations of input and 

output variables not present within the training dataset can result in predictions that are out of expected 

tolerance. For bioprinting, a primary goal of ML models is to be used for determining accurate predicted 

results for myriads of printing and material settings, of which these settings may not be present in 

datasets used for training predictive models. Comparing predictions based on these settings to 

experimental results using the same settings can allow users to evaluate strengths and limitations of 

models and develop improvement methods to the models such as the use of hyperparameter tuning. The 

additional experimental data gain can be added for model training as well.   

 Here, we experimentally evaluate for the first time to our knowledge, cell viability, filament 

diameter, and extrusion pressure predictions of bioinks of different polymer precursor concentrations to 

bioprinting regression and classification model predictions. Specifically, polymer precursor 

concentration was varied through changing gelatin precursor concentration to evaluate cell viability and 

filament diameter predicted values while alginate and gelatin precursor concentrations were varied to 

evaluate extrusion pressure predicted values. 

 

 

https://www.mdpi.com/2072-666X/12/7/780
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3.2 Materials and methods 
 

3.2.1. Biomaterial ink synthesis 
 

Sodium alginate powder (Sigma W201502) and gelatin (type B, 300 bloom derived from bovine, 

Sigma G9382) were sterilized under UV radiation for 30 minutes. After-wards, the powders were 

dissolved in complete cell culture media composed of Dulbecco’s Modified Eagle Medium (DMEM, 

Gibco), 10% fetal bovine serum (FBS, Life Technologies) and 1% penicillin-streptomycin (Gibco). The 

mixtures were heated to 50°C and magnetically stirred for 4 hours. Complete mixtures were then 

vortexed for 1 minute and centrifuged at 167 RCF for 3 minutes to eliminate bubbles. Hydrogels were 

stored at 4°C prior to experimentation. Concentrations of sodium alginate (Alg) and gelatin (Gel) 

mixtures in complete media are denoted as Alg/Gel in units of %w/v. Extrusion of bioinks and 

biomaterial inks were conducted at 22.5°C. The 100mM CaCl2 solution used to crosslink printed 

constructs was prepared by dissolving CaCl2 (Sigma-Aldrich) in complete cell culture media and sterile 

filtering through a 0.22 µm syringe filter (Millipore). 

3.2.2. Cell culture maintenance 
 

 Mouse neuroblastoma cells (N2A, CCL-131 cell line, American Type Culture Collection, 

ATCC) were cultured at 37 °C in humidified 5% CO2 atmosphere using complete cell culture media in 

T75 cell flasks (Falcon™, Corning). Cells were passaged every 4 to 5 days with 0.05% trypsin/EDTA 

(Gibco) and a portion was split for use to prepare bioinks for printing. 

3.2.3. Bioink synthesis and construct printing 
 

Alg/Gel hydrogels were heated up to 37 °C prior to mixing with cells. Cell suspensions 

containing 1.0 x 106 trypsinized cells were centrifuged to create cell pellets for mixing. A cell density of 

1.0 x 106 cells/mL was chosen due to it being the most common cell density used amongst studies used 

to compile the training dataset. To this cell pellet, 1mL of liquified hydrogel was added using a 10 mL 

syringe (BD Falcon) and then triturated using a pipet for 30 seconds to mix thoroughly.  The mixture 

was then aspirated into a 10 mL syringe and transferred to a 3 mL cartridge (Nordson EFD) via a female 
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to female luer lock connection. The bioink was then held at room temperature to allow complete 

gelation. The duration of complete gelation depends on the concentration of sodium alginate and gela-tin 

used. Once gelation is reached, the 3 mL cartridge is then secured onto an extrusion-based bioprinter 

(INKREDIBLE, Cellink). For cell viability testing, 80 mm x 80 mm x 0.8 mm models were printed at a 

feed rate of 10 mm/s into 24 well plates at 22.5°C. 22G conical nozzles (Nordson EFD) were used. For 

confocal microscopy imaging, models were printed onto sterile cover glass slides. Directly after printing 

completion, pictures of con-structs were taken, and constructs were exposed to 100 mM CaCl2 

crosslinking solution for 1 minute. Afterwards, remaining crosslinking solution was aspirated and 

constructs were rinsed with Dulbecco’s PBS (DPBS, Gibco, 7.4 pH). The constructs were then 

incubated at 37 °C with 5% CO2 with complete cell culture medium. 

3.2.4. Live/dead staining: 
 

N2A cell viability was determined by staining cells with Hoechst 33342 (40.6 µM) and 

propidium iodide (19.7 µM) dye solutions (Readyprobes, ThermoFisher) following the manufacturer’s 

protocol. Briefly, cell culture media was aspirated and replaced with DPBS containing 1 drop of 

Hoechst 33342 and 1 drop of propidium iodide then incubated for 15 minutes incubation at 37 °C with 

no light exposure. Excitation/emission wave-lengths of 358/461 nm and excitation/emission 

wavelengths of 580/604nm were used to image Hoechst 33342 and propidium iodide stained cells 

respectively using an imaging plate reader (Cytation 3, BioTek). Z-stack images of stained cells in 

bioink were taken through confocal microscopy (LSM 710, Zeiss). Cell counting for cell viability was 

con-ducted with Cytation 3 Cell Imaging software. Cell viability was determined by dividing the total 

number of cells (total number of Hoechst 33342 stained cells subtracted by the number of dead cells 

stained from propidium iodide) by the total number of Hoechst 33342-stained cells. 

3.2.5. Filament diameter measurements: 
 

Constructs were imaged using an imaging plate reader (Cytation 3, BioTek). Collected images 

were analyzed using ImageJ (https://imagej.nih.gov/ij/) for filament diameter length. 
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3.2.6. Extrusion pressure measurements: 
 

Using cell viability dataset instances with available extrusion pressure values (353 instances), 

random forest regression and linear regression models were created to predict extrusion pressure values 

needed to extrude specific material concentrations to produce 80% cell viability. Bioinks of 3/4 Alg/Gel, 

3/7 Alg/Gel and 8/20 Alg/Gel were used to test extrusion pressure predictability within and near the 

edge of material concentration bounds of the dataset used. Material preparation procedure for testing 

extrusion pressure is the same as in section 3.2.1. 

3.2.7. Intrastudy model creation and usage 

 A comparison of general dataset predictive ability was done with a selected study that used 

alginate and gelatin multicomponent hydrogel [71]. 16 instances of unique cell viability outcomes from 

material and equipment parameters were used to create a random forest classification and regression 

model, as well as a linear regression and support vector regression model for cell viability. Filament 

diameter trend was also produced from four filament diameter data points corresponding to different 

material and pressure combinations through multiple regression. Two cell viability values, one based on 

parameter values within range of the intrastudy dataset, and another based on parameter values out of 

range of the intrastudy dataset, were predicted for and compared against predicted values of the overall 

dataset. Filament diameter of constructs printed with an alginate and gelatin multicomponent bioink was 

compared against the intrastudy regression model as well as with the random forest regression model 

predictions made for the same material and equipment parameters. Since only 4 filament diameter 

values were provided in the specific study, a fitted regression model was used. A multiple linear 

regression was fit to data correlating extrusion pressure and alginate concentration with filament 

diameter, resulting in a regression equation (Equation 5) of: 

𝑧 = 𝐴𝑥 + 𝐵𝑦 + 𝐶  (5) 

where A = 333.26, B = -0.245, and C = -781.4. The variable x represents the alginate concentration (% 

w/v), y is the extrusion pressure (kPa), and z is the filament diameter (μm). 
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3.2.8. Statistical analysis: 
 

Cell viability, filament diameter, and extrusion pressure measurements were expressed as mean ± 

standard deviation. Statistical significance between any two groups of either cell viability, filament 

diameter, and extrusion pressure measurements was tested through one-way ANOVA with the 

significance level set as p < 0.05. Percent error was calculated for experimental cell viability, filament 

diameter, and extrusion pressures as compared to predicted values. 

3.3 Results 

 
3.3.1. Effect of specified training data on cell viability 
 

Using the complete cell viability dataset for model training, the random forest regression model 

resulted in a predicted cell viability of 73.1% for a material combination of 3/4 Alg/Gel, 100 mM CaCl2 

crosslinking solution with an exposure duration of 60 seconds, and extrusion through a 22G conical 

nozzle at room temperature (22.5 °C). For another material combination with 3/7 Alg/Gel, 100 mM 

CaCl2 crosslinking solution with an exposure duration of 60 seconds, and extrusion through a 22G 

conical nozzle at room temperature (22.5 °C), the random forest regression model predicted the same 

cell viability value of 71.7%.  

A specific study was used to create an alginate and gelatin-focused dataset for random forest 

regression model training [71]. For 3/4 and 3/7 Alg/Gel, a random forest regression model created  

from this specified dataset resulted in a cell viability prediction of 91.0% both material combinations 

when extrusion pressure was set constant. Actual cell viability of values gathered from live/dead 

staining showed a larger number of dead cells present directly after printing in 3/7 Alg/Gel than 3/4 

Alg/Gel constructs (Fig. 13, S35-38). 
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A B 

  

Figure 13. Total/dead confocal images in the cross-sectional view in the X-Z plane of A) 3/4 Alg/Gel 

and B) 3/7 Alg/Gel immediately after extrusion of A) 3/4 Alg/Gel and b) 3/7 Alg/Gel. The frames of 

images are 1.4 by 0.5 mm in dimension. 

 

Resultant cell viability values for 3/4 and 3/7 Alg/Gel constructs are 85.2% ± 9.1 and 64.2% ± 

10.6% (Table 11). Random forest classification, logistic regression, and support vector regression 

models predicted acceptable cell viability for both material conditions based on tested material 

concentration and printing parameters (Table S1). All predictions were made keeping extrusion pressure 

constant at 95.4 kPa. 
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Table 11. Predicted cell viability values are compared against experimental values for 

corresponding material concentrations of alginate and gelatin. Actual values represent the mean ± 

standard deviation for all samples (n = number of samples) measured from at least 3 batches of Alg/Gel 

bioink. 

Prediction 

Model 

Material 

concentrat

ion 

(%w/v) 

Predicted 

viability 

(%) 

Actual 

viability (%) 

Error 

(%) 

Random 

forest 

regression, 

complete 

dataset 

 

3/4 

Alg/Gel 
73.1 

85.2 + 9.1 (n 

= 8) 
16.6 

3/7 

Alg/Gel 
71.7 

64.2 ± 10.6 (n 

= 11) 
10.5 

Linear 

regression, 

complete 

dataset 

 

3/4 

Alg/Gel 
91.0 

85.2 + 9.1 (n 

= 8) 
6.37 

3/7 

Alg/Gel 
91.0 

64.2 ± 10.6 (n 

= 11) 
29.5 

Random 

forest 

regression, 

intrastudy 

dataset 

 

3/4 

Alg/Gel 
74.0 

85.2 + 9.1 (n 

= 8) 
15.1 

3/7 

Alg/Gel 
75.3 

64.2 ± 10.6 (n 

= 11) 
14.7 

Linear 

regression, 

intrastudy 

datasset 

 

3/4 

Alg/Gel 
-25.9 

85.2 + 9.1 (n 

= 8) 
429 

3/7 

Alg/Gel 
-25.9 

64.2 ± 10.6 (n 

= 11) 
348 

 

Using the complete filament diameter dataset for model training, the random forest regression 

model resulted in predicted filament diameters of 1073 μm and 857 μm for 3/4 and 3/7 Alg/Gel 

respectively (Table 12).  
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Table 12. Predicted filament diameter values are compared against experimental values for corresponding material concentrations of alginate 

and gelatin. Actual values represent the mean ± standard deviation for all samples (n = number of samples) measured from at least 3 batches 

of Alg/Gel bioink. 

 

Prediction model 
Material concentration 

(%w/v) 

Predicted filament 

diameter (μm) 

Actual value 

(μm) 

Error 

(%) 

Random forest 

regression 

 

3/4 Alg/Gel 

1037.3 μm 

(prediction pressure = 25 

kPa) 

927.6 ± 106.0 μm 

(n=8) 
10.6 

3/4 Alg/Gel 

752.2 μm 

(predictive pressure = 

103.3 kPa) 

927.6 ± 106.0 μm 

(n=8) 
23.3 

3/7 Alg/Gel 

857.3 μm 

(predictive pressure = 75 

kPa) 

707.2 ±146.1 μm 

(n=11) 
17.5 

3/7 Alg/Gel 

752.2 μm 

(prediction pressure = 

103.3 kPa) 

707.2 ±146.1 μm 

(n=11) 
5.98 

Linear regression 

 

3/4 Alg/Gel 

1275.8 μm 

(prediction pressure = 25 

kPa) 

927.6 ± 106.0 μm 

(n=8) 
27.3 

3/4 Alg/Gel 

1149.0 μm 

(prediction pressure = 

103.3 kPa) 

927.6 ± 106.0 μm 

(n=8) 
19.3 

3/7 Alg/Gel 

1187.1 μm 

(prediction pressure = 75 

kPa) 

707.2 ±146.1 μm 

(n=11) 
40.4 

3/7 Alg/Gel 

1141.3 μm 

(prediction pressure = 

103.3 kPa) 

707.2 ±146.1 μm 

(n=11) 
38.0 

Intrastudy linear        

regression 

 

3/4 Alg/Gel 

212.3 μm 

(prediction pressure = 25 

kPa) 

927.6 ± 106.0 μm 

(n=8) 
337 

3/7 Alg/Gel 

200.0 μm 

(prediction pressure = 75 

kPa) 

707.2 ±146.1 μm 

(n=11) 
254 
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 Filaments from constructs printed with 3/4 Alg/Gel resulted in 1157 ± 102.2 μm pre-

crosslinking and 927.6 ± 106.0 μm after crosslinking. For 3/7 Alg/Gel, filament diameter pre-

crosslinking was measured at 817.0 ± 107.7 μm while measuring at 707.2 ± 146.1 μm directly after 

crosslinking (Fig. 14-17). 

 

 

Figure 14. 3/4 Alg/Gel constructs directly after printing onto tissue-culture treated well plate surfaces. 

The scale bars depict 1000 µm 

 

 

Figure 15. 3/7 Alg/Gel constructs directly after printing onto tissue-culture treated well plate surfaces. 

The scale bars depict 1000 µm 
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         A B 

 

Figure 16. Brightfield images of A) 3/4 Alg/Gel and B) 3/7 Alg/Gel filaments directly after extrusion. 

The scale bars depict 1000 µm 

          A B 

 

Figure 17. Brightfield images of A) 3/4 Alg/Gel and B) 3/7 Alg/Gel filaments directly after extrusion. 

The scale bars depict 1000 µm 

 

The percent error of the crosslinked filament diameters with respect to nozzle diameter (410 μm) is 

126% and 72.5% for 3/4 Alg/Gel and 3/7 Alg/Gel constructs respectively, making them out of 

tolerance. All classification models predicted unacceptable filament diameter tolerance for both 3/4 

Alg/Gel and 3/7 Alg/Gel combinations (Table S2). 

 
3.3.2. Effect of specified training data on extrusion pressure recommendation predictions 

 

Both random forest regression and linear regression models indicated increased pressure needed 

with higher alginate and gelatin concentrations, although the random forest regression model predicted 



49  

a lower range of extrusion pressures while the linear regression model predicted a higher range. 

Constructs printed using 3/7 Alg/Gel required an average extrusion pressure of 71.7 kPa. Bioink with 

8/20 Alg/Gel was not able to form printed constructs due to high material viscosity, although over-

deposited filament was extruded at an average pressure of 208.3 kPa. As material concentrations 

increased, prediction accuracy of random forest regression diminished while prediction accuracy of 

linear regression improved, as noted by percent error calculations (Table 10). The random forest 

classification model was able to predict acceptable extrusion pressure correctly for 3/4 Alg/Gel and 

8/20 Alg/Gel, but not for 3/7 Alg/Gel. Meanwhile, logistic regression and support vector classification 

models predicted that all material concentration combinations printed under the same printing settings 

can result in using pressure within the acceptable pressure range (Table S3). All model predictions 

were conducted with desired cell viability set to 90% immediately after printing. In the cases of 3/4 

Alg/Gel and 3/7 Alg/Gel, the pressure needed for extrusion and construct formation was smaller and 

resulting cell viabilities were also lower than 90% (Table 3). 
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Table 13. Predicted extrusion pressure required to deposit material are compared against experimental 

values for corresponding material concentrations of alginate and gelatin. Actual values represent the 

mean ± standard deviation for all samples (n = number of batches). 

Prediction 

model 

Material 

concentration 

(%w/v) 

Predicted 

extrusion 

pressure (kPa) 

Actual 

value 

(kPa) 

Error 

(%) 

Random 

forest 

regression 

3/4 Alg/Gel 56.9 

37.3 + 

8.7 (n = 

3) 

34.4 

Random 

forest 

regression 

3/7 Alg/Gel 150.6 

83.7 ± 

4.2 (n = 

3) 

44.4 

Random 

forest 

regression 

8/20 Alg/Gel 150.6 

208.3 ± 

6.2 (n = 

3) 

38.3 

Linear 

regression 
3/4 Alg/Gel 140.8 

37.3 + 

8.7 (n = 

3) 

73.4 

Linear 

regression 
3/7 Alg/Gel 162.9 

83.7 ± 

4.2 (n = 

3) 

48.6 

Linear 

regression 
8/20 Alg/Gel 240.0 

208.3 ± 

6.2 (n = 

3) 

13.2 
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3.4 Discussion  

3.4.1. Influence of cellular parameters has on predictive outcomes 

Previous EBB studies have shown that increasing pressure-induced shear stress on cells can 

cause decreases in cell viability for both immortalized cell lines and stem cells [8,31,48]. In a case with 

10% w/v gelatin printed with HepG2 cells and 27 gauge conical nozzles, cell viability notably 

decreased from 96% to 84% when pressure increased from 200 to 300 kPa [31]. Blaeser et al. indicated 

notable decrease in cell viability of L929 fibroblasts encapsulated in alginate hydrogels when average 

shear stress within the printing orifice reached 5 kPa or above [48]. Specifically, cell viability drops 

from 96% in cases with less than 5 kPa average shear stress reduced to 91% cell viability within 5 to 10 

kPa, further to 76% at higher shear stress values. In terms of pressure, a 5 kPa shear stress value 

corresponded to a pressure between 100 and 150 kPa when a 300 µm cylindrical valve is used along 

with an alginate concentration of 1.0% w/v. Since N2A cells were used in validation experiments, cell 

viability behavior under shear stress would be similar to previous studies also using non-primary cell 

lines. Random forest classification was seen to produce varied prediction results in cases of primary cell 

usage with conical nozzles used. Testing the predicted effects of extrusion pressure on primary cells 

printed through conical nozzles, cell viability was found to become unacceptable above 20 kPa for 3/5 

Alg/Gel while 3/8 Alg/Gel was found to have acceptable viability across pressures from 0 to 300 kPa. 

Increasing alginate concentrations, 5/2 Alg/Gel also saw unacceptable cell viability above 20 kPa while 

5/4 Alg/Gel saw unacceptable viability only when above 270 kPa. When varying syringe cartridge 

temperature for printing primary cells, 3/5 Alg/Gel bioink saw unacceptable cell viability at 

temperatures above 20 °C while 3/8 Alg/Gel usage resulted in unacceptable cell viability at 36 °C or 

above. Interestingly, a 5/2 Alg/Gel material concentration resulted in unacceptable cell viability 

specifically at 23 °C as well as temperatures above 36 °C, while all other temperatures from 4 to 40 °C 

resulted in acceptable cell viability. When gelatin concentration increased to 4% w/v while alginate 
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concentration remained constant at 5% w/v (5/4 Alg/Gel), all predicted cell viability values up to 40 °C 

were acceptable. In the case of predicting suitable extrusion pressure, the use of primary cells resulted 

in a decrease of around 20 kPa less pressure needed for the same material concentration and printing 

setting as compared to using non-primary cells. Overall, to elucidate more straightforward modeling of 

primary cell viability behavior, more data gathered from studies using primary cells and straight 

nozzles is needed to understand if nozzle geometry imparts different biological effects for primary cells 

compared to non-primary cells.  

For cell viability predictions, regression models hold promise for further development. The 

random forest filament diameter regression model offers greater prediction ac-curacy compared to the 

linear regression model based on percent error from actual filament diameter values. If the user knows 

the extrusion range suitable for their bioink, filament diameter predictions can become even more 

accurate (Table 9). Amongst all models, filament diameter prediction models mapped closest to 

experimental results if accounting for the prior knowledge of suitable pressure ranges to input for 

predictions. Unlike other predictive models, the nozzle diameter and extrusion pressure were relatively 

much more impactful variables to the model (Figure 9-10) as compared to the most important variables 

found through feature importance of other random forest models (Figures 6-7, 11-12).  For extrusion 

pressure predictions, the random forest regression model underestimates required extrusion pressure 

while the linear regression model overestimates required pressure. Correction factors determined from 

uncertainty factor evaluation can be applied for these models to produce prediction outcomes closer to 

actual results. For the models in this study to be used effectively, users still need to have baseline 

knowledge of how material parameters and printing settings affect cell viability, filament diameter, and 

extrusion pressure needed, such as in the case of filament diameter regression models. Based on trends 

extracted from tuning different parameters, future experiments could focus on collecting more data for 

the variables where more data would improve the predictive power of the models.  
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The nature of how cell viability values are derived and calculated can play a large role in how 

representative they are of true biological conditions of cells within printed constructs. In studies using 

live/dead staining to derive cell viability values, how large the area of focus on the construct for cell 

counting is accounted for. A standard area of observation for a section of construct filament is not 

provided. In most cases, it is not clear at what focus the transverse plane of a filament is examined. 

Furthermore, whether specific sections of a construct are used, e.g., outer-boundary filament strands, at 

an intersection of filament in the middle of a construct, or randomly-selected sections are selected for 

cell viability measurements is not clear.  

3.4.2. Experimental errors and recommendations 

 

Cell viability values can be compared similarly amongst each other as live/dead staining was 

used to determine most cell viability values in all studies used for dataset compilation. However, due to 

the diverse methodology used to calculate cell viability in the field of bioprinting [14], cell viability 

values derived from different assays may not be simply grouped together for model creation due to the 

measurements of different biological endpoints. Assays that measure different endpoints than live/dead 

staining dyes used in this study (Calcein AM, propidium iodide, and ethidium homodimer), such as the 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) absorbance assay or the lactate 

dehydrogenase membrane integrity assay, can provide different relative viability values from 

colorimetric readings as compared to stained cell counting. Despite cell viability assay variation and 

disparate measurement procedures for live/dead cell staining assays, the random forest regression 

model’s predicted cell viability values fall within normal experimental ranges. Building upon this 

study, a future direction can be to compare ML model robustness when trained on data composed of 

assays that use measure the same cellular endpoints.  

Additional future directions of this work can be to apply experimental results to improve 

quantitative predictions. The use of first principle calculations can be used to estimate missing variables 
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in the dataset.  For example, the Power-law or Herschel-Bulkley fluid behavior modeling can be used to 

find non-Newtonian index values of selected materials to then convert lengthwise and volumetric 

extrusion rates to missing extrusion pressures, and vice versa [10,21,29,48]. Additional non-linear 

learners, such as k-nearest neighbor classification and regression models, can be explored as models 

that generate higher prediction performance than existing models created.  
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4. Additional considerations for EBB predictive modeling  
  

4.1 Relationship between extrusion pressure and material concentration in 

Alg/Gel hydrogel 
 

4.1.1. Introduction 

As evident through Equation 6, higher viscosity (η) hydrogel require larger extrusion to produce flow 

[72].  

𝜟𝑷 = 𝟑𝟐𝜼𝑳𝒗(
𝟑𝒏+𝟏

𝟒𝒏
)(

𝒅𝟐

𝑫𝟒)   (6) 

Variables in the equation represent the same physical attributes as in Equations 3 and 4. Here, d 

indicates filament diameter. Incorporation of a relationship between material concentration and 

extrusion pressure can simplify ML model training through reduction of input variables by only 

requiring one variable type once the relationship is clearly defined. From literature, relationships 

between alginate and gelatin composite material concentration and printability have been elucidated for 

varied polymer concentrations, although a systematic examination of layer deposition ability has not 

been elucidated yet [24]. In terms of printability, an optimal range exists where filament is defined as 

suitably extruded when no hydrogel beading occurs due to insufficient extrusion pressure nor warpage 

of extruded filament due to excessive pressure. A preliminary study on a range of alginate/gelatin 

composite hydrogels was conducted to determine optimal material concentrations to produce suitable 

filament deposition ability without exceeding pressure limits that can result in significant shear-stress 

induced cell death [64].  

4.1.2. Materials and methods 

4.1.2.1. Biomaterial ink synthesis 
 

Sodium alginate powder (Sigma W201502) and gelatin powder (type B, 300 bloom derived 

from bovine, Sigma G9382) at different concentrations were dissolved in complete cell culture media 

composed of Dulbecco’s Modified Eagle Medium (DMEM, Gibco), 10% fetal bovine serum (FBS, Life 

Technologies) and 1% penicillin-streptomycin (Gibco). For instance, to synthesize an alginate-gelatin 
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composite hydrogel with 3% and 7% (w/v) alginate and gelatin concentration, 0.150 g of sodium 

alginate powder and 0.350 g of gelatin powder were weighed and transferred into a scintillation vial 

and 5 mL of complete cell culture media was added afterwards with a magnetic stirbar. The mixtures 

were heated to 50°C and magnetically stirred for 2-4 hours. Complete mixtures were then vortexed for 

3 minutes and centrifuged at 1,663 RCF for 3 minutes to eliminate bubbles. Hydrogels were 

subsequently refrigerated at 4°C prior to experimentation and left at room temperature (22.5 °C) for 4 

hours prior to printability testing. Similar to biomaterial ink nomenclature in Chapter 3, concentrations 

of Alg and Gel mixtures in complete media are denoted as Alg/Gel in units of % w/v.  

4.1.2.2. Biomaterial ink printing 

 

Extrusion of bioinks and biomaterial inks were conducted at 22.5 °C with a 22G and a 25G 

conical nozzle (EFD Nordson). All biomaterial inks were deposited onto glass petri dishes with the 

layer height (distance between the nozzle and substrate for the first printing layer) of deposition set at 

the same length as the inner diameter of the nozzle used. For instance, using a 22G inner nozzle 

diameter corresponded to a 410 μm offset height. 10 by 10 mm constructs with two filament layers 

were oriented to access printability. The printing feed rate was set to 10 mm/s. 

4.1.3. Results and discussion 

A range of 3 to 5 % w/v alginate and a range of 3 to 6 % w/v gelatin were combined to synthesize 

Alg/Gel combinations from 3/3 Alg/Gel to 5/6 Alg/Gel. 3/7 Al/Gel was also synthesized and printed. 

When keeping the alginate concentration constant while increasing gelatin concentration, hydrogel 

larger extrusion pressure needed to produce printed constructs that exhibit consistent filament 

deposition (also described as having a lack of filament discontinuity) (Fig. 18).  

 

 

 

 



57  

   A B 

  

Figure 18: Extrusion pressure required to produce filament deposits of two layers extruded at various 

gelatin concentration extruded from A) a 22G conical nozzle and B) a 25G conical nozzle. Bars with 

the same color indicate constant alginate concentration.  

 

At constant gelatin concentrations, the greatest rate of extrusion pressure increase was observed when 

alginate concentration increased from 3% to 4% when printed with 22G and 25G conical nozzles. As 

gelatin concentration increases, the rate of increase in extrusion pressures with increased alginate 

concentration also increases, indictive of increased stiffness with increased alginate concentration [13]. 

At constant alginate concentrations, rate of extrusion pressure also increases with increased gelatin 

concentrations. Extrusion pressure required to produce consistent and stacked filaments at alginate and 

gelatin concentrations at or above 3% and 4% respectively were varied in absolute values compared to 

literature results [24,71]. Compared to identical Alg/Gel concentrations of 3/4 and 4/4% (w/v), 

extrusion pressure require to produce high structure fidelity with a 22G nozzle was lower in literature 

for 3/4 Alg/Gel, with an extrusion pressure of 20 kPa compared to an average extrusion pressure value 

of 36.1 kPa and higher in literature for 4/4 Alg/Gel at 120 kPa as compared to 49.7 kPa [71]. Potential 

sources of error causing this deviation in printability results from literature can be a difference in 

methods of printability evalutation. Printability in the referenced literature was not defined explicitly. 
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Furthermore, the offset distance in the referenced literature was set at 100 µm as compared to 410 µm 

and 260 µm in our study, the solvent used for hydrogel synthesis was PBS as opposed to DMEM in our 

methods, and the feed rate of the 3D extrusion setup in literature was never provided. Compared to a 

similar study by Gao et al. where DMEM is used as solvent for a polymer concentration of 5/6 Alg/Gel, 

the extrusion pressure required to produced multilayer filament deposits is higher in our study (125 kPa 

versus 90 kPa) [24]. This higher pressure required is attributed to the faster feed rate (600 mm/min 

versus 200 mm/min), allowing less hydrogel material to be deposited with less drag force exterted on 

deposits from the nozzle. With this consideration, a relationship incorporating feed rate along with 

polymer precursor concentration and extrusion pressure can be derived to further reduce the number of 

variables needed for an EBB-based dataset used for ML training. Such relationship can take form as a 

multiple regression model incorporating the effect of polymer material concentration and extrusion 

pressure. Also, if possible, adding an input variable of nozzle offset in ML training datasets can useful 

in determining the relationship of polymer precursor concentration with extrusion pressure needed to 

produce consistent filament deposits. This additional variable can also be incorporated with regression-

based relationships amongst feed rate, material concentration, and extrusion pressure.  

4.2 Effect of support baths 
 

 The use of support baths containing media with the ability to rapidly transition from a solid-like 

state to a fluidic state and vice versa is a common method to allow for printing of low viscosity 

hydrogels. This self-healing property allows for encapsulation of hydrogel to prevent hydrogel flow and 

maintain printed structure. In particular, the technique of extruding hydrogel into a Bingham plastic 

slurry composed of gelatin particles of several hundreds of micrometers in ferret diameter in a solvent 

containing divalent ions or photocrosslinking agents in particularly popular. This technique is termed 

FRESH, in short for freeform reversible embedding of suspended hydrogels [73]. Other forms of 

support baths used include the use of gellan microgels [74], modified hyaluronic acid [75], and alginate 
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microparticles [76]. Despite the proposed effect of support baths retaining hydrogel filament geometry, 

the synthesis method of the support bath and the retrieval process of the printed constructs can lead to 

large variation in printability, specifically in filament diameter size.  

4.2.1. Materials and methods 

 
4.2.1.1. Synthesis of FRESH gelatin slurry 

 
 To create the gelatin slurry support bath, 4.5% (w/v) gelatin (Type A, Thermo Fisher Scientific) 

was mixed in 150 mL of 11 or 100 mM CaCl2 (Sigma-Aldrich) into a solution and then gelled it for 12 

hours at 4°C in a 500-ml mason jar (Ball Inc.). Next, 350 ml of 11 or 100 mM CaCl2 at 4°C was added 

to the jar to fill the jar to the brim. This step helps to prevent air bubble formation and to reduce 

undesired heating and fusing of gelatin particle as much as possible.  The contents of the jar were 

blended at “pulse” speed setting for 120 seconds at 30 second intervals followed by additional 30 

seconds of rest. The rest period prevents overheating from prolonged frictional heat generation from the 

blender blades. After blending, a gelatin slurry was formed and poured into 50 mL conical tubes 

(Falcon, Corning) and centrifuged at 3260 RCF for 2 minutes to separate excess supernatant with 

solubilized gelatin and slurry microparticles. Excess supernatant was aspirated and replaced with up to 

10 mL of 11 mM or 100 mM CaCl2 at 4°C. The slurry was then vortexed for 1 minute to create a 

homogenous suspension and centrifuged again for supernatant separation. The process was repeated 

until no bubbles or foam were observed at the top of the supernatant, which indicated that most of the 

soluble gelatin was removed. The remaining slurry was refrigerated at 4 °C until future use. Slurry 

properties remained stable for four weeks. 

4.2.1.2. Alginate hydrogel synthesis 

 

 0.100 g of sodium alginate powder (Sigma W201502) powder was dissolved in 5 mL of complete 

cell culture media composed of Dulbecco’s Modified Eagle Medium (DMEM, Gibco), 10% fetal 

bovine serum (FBS, Life Technologies) and 1% penicillin-streptomycin (Gibco). The mixtures were 
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heated to 50°C and magnetically stirred for 2-4 hours. Complete mixtures were then vortexed for 3 

minutes and centrifuged at 167 RCF for 3 minutes to eliminate bubbles. Hydrogels were subsequently 

refrigerated at 4°C prior to experimentation and left at room temperature (22.5 °C) for 6 hours prior to 

printing. 

4.2.1.3. Alginate hydrogel printing 

 

Extrusion of alginate hydrogel was conducted at 22.5 °C with both a 25 gauge (25G) (inner 

diameter = 410 μm) cylindrical nozzle (EFD Nordson). Gelatin slurries are transferred to petri dishes or 

culture plate wells for FRESH printing. When transferred into culture plate wells, the plate was 

centrifuged at 739 RCF for 2 minutes at 4 °C to eliminate cavities with slurry sample and to compact 

slurry to produce a consistent density of gelatin microparticles for hydrogels to be embedded in. Prior 

to printing, excess liquid at the surface of the slurry in petri dishes or cell culture plate wells was wiped 

off with paper wipes (Kimberly Clark). All alginate hydrogels were deposited into the gelatin slurry. 

The feed rate was set to 4 mm/s. Extrusion pressure was set at range from 25 to 41 kPa. 

4.2.2. Results and Discussion 

 
4.2.2.1. Optimization of gelatin slurry synthesis 
 

Initial replication attempts of Hinton et al.’s synthesis procedure of gelatin slurry resulted in 

inconsistent separation of excess supernatant and compacted gelatin slurry after the centrifugation 

process (Fig. 19) [73].  
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Figure 19: Based on original synthesis methods of FRESH gelatin slurry, A) no clear separation of 

supernatant and compacted gelatin particles can be observed or B) distinct separation of supernatant 

and gelatin microparticles can be observed. 

 

Comparatively, gelatin slurry batches with no excess supernatant separated required more yield stress to 

initiate movement of thin and long objects than batches produced that generated supernatant top layers 

after centrifugation. The initial step taken to resolve synthesis consistency issue was to store gel-phase 

gelatin and CaCl2 solution at -20 °C for 2 hours to initiate ice crystal formation in the CaCl2 solution. 

This is to maintain as low of a temperature as possible for prevention of gelatin microparticle fusion as 

heat is added through friction between the blender blades and blender contents during the mixing. 

Implementing this process before blending and centrifuging still resulted in poor repeatability of 

supernatant separation. Lewicki et al.’s FRESH gelation slurry synthesis method where filling to the 

brim with CaCl2 solution of a blender jar was recommended prior to blending to reduce overheating of 

gelatin slurry during blending [77]. This step was added to the overall gelatin slurry synthesis procedure 

prior to setting the blending components at -20 °C. Additional steps to reduce overheating and fusion of 

gelatin microparticles include limiting durations of blending to limit prolonged periods of heat addition 

from friction. Instead of blending for a continuous 120 seconds, blending proceeded at 30 second 

intervals with 30 seconds of rest four times. The addition of these steps resulted in consistent separation 

of excess supernatant and compact gelatin slurry that allows for cylindrical nozzle movement and shape 
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recovery during the printing process. 

4.2.2.2. Optimization of feed rate 
 

 Recovery of gelatin slurry material after being displaced by a moving nozzle is not an 

instantaneous process and requires time. Additionally, too high of stress exerted on the slurry material 

can result in larger displacement areas that will not revert back into the undisturbed shape. Therefore, 

determining an optimized feed rate of a nozzle to avoid excessive disruption of the support bath is 

critical to take advantage of its Bingham plastic behavior. To determine an optimized feed rate, a range 

of feed rates were tested from 2 to 10 mm/s, at 2, 3, 4, 5, and 10 mm/s. At a feed rate of 4 mm/s, shape 

recovery behavior was retained well as gelatin slurry material retained their original position within the 

slurry after becoming displaced one minute post nozzle movement within the slurry (Table 14). This 

feed rate was chosen for subsequent FRESH bioprinting of alginate hydrogels. 
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Table 14. Quantitative shape recovery behavior observation of FRESH gelatin slurry 1 minute after movement of nozzle within the 

compacted slurry at 4 °C. Feed rate was adjusted from 2 to 10 mm/s and a 25G cylindrical steel nozzle was actuated within the slurry. 

 

Feed rate 

(mm/s) 

2 3  4  5  10 
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4.2.2.3. Effect of FRESH printing process on shape fidelity 
 

 The printing of alginate hydrogel in gelatin slurry initially retained shape fidelity of bioprinted 

constructs directly after printing. Due to diffusion of phenol red coloring, alginate hydrogel quickly 

changed color from pink-red to a white color. When placed in incubation at 37 °C to melt the gelatin 

slurry and absorption of water into the alginate hydrogel resulted in swelling, leading to expanded 

filament diameter shapes (Fig. 20).  

 
 

Figure 20: 2% (w/v) alginate hydrogel construct printed into gelatin slurry with a CaCl2 concentration 

of 11 mM 

 

When exposed melted gelatin slurry was aspirated, resultant slurry shape fidelity increased several 

times greater than the nozzle diameter of which they were printed out of. In addition to swelling 

behavior, gelatin also attaches to the alginate strands, creating undesired polymeric deposits (Fig . 20).  

 

Figure 21: 2% (w/v) alginate hydrogel construct after aspiration of melted gelatin slurry with a CaCl2 

concentration of 11 mM 



65  

 A method to reduce gelatin fusing to alginate hydrogel can be to increase the ionic crosslinker 

concentration in the gelatin slurry. When CaCl2 concentration was increased to 100 mM from 11 mM 

commonly used in FRESH bioprinting literature, alginate hydrogel deposited crosslinked rapidly when 

extruded out of a nozzle. Due to the drastically shorter crosslinking time, hydrogels were dragged 

through the slurry, leading to no formation of a desired construct (Fig. 21).  

 
 

Figure 22: 2% (w/v) alginate hydrogel printed into gelatin slurry with CaCl2 concentration of 100 mM. 

The pink-colored components indicate alginate hydrogel deposits from the extrusion process. 

 

As 100 mM concentration resulted in premature crosslinking, gelatin slurry with CaCl2 concentration of 

20 mM was synthesized and used for 2% (w/v) alginate printing. Similar to printing into slurry with 11 

mM CaCl2, resultant constructs after incubation and removal of melted slurry still contained large 

deposits of gelatin and swelled filament (Fig. 23) 
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Figure 23: 2% alginate deposited in gelatin slurry with 20 mM CaCl2 A) one minute post-printing and 

B) directly after removal of melted gelatin slurry. 

 

 Deposition of low viscosity hydrogel that can be crosslinked ionically into FRESH gelatin slurry 

holds promise as a method to improve the robustness of biomaterials that can be used for EBB. 

However, optimization of the slurry is critical because the hydrogels used, specifically alginate-based 

ones, are susceptible to high levels of fluid absorption and structural disintegration of constructs that 

can make the process infeasible to produce constructs with suitable shape fidelity. A subset of data 

focused on support-bath based EBB can be created and used for ML model training to examine support 

bath effects on filament diameter effects. 

4.3 Effect of various non-primary cells 
 

 Beyond N2A neuroblastoma cells, two other non-primary cell types were printed to observe 

potential discrepancies in shear-induced cell death mechanisms directly post-extrusion. 

4.3.1. Materials and methods 
 

 Alginate-gelatin composite hydrogel was synthesized according to section 3.2.1 with DMEM/F-12 

basal cell culture (Gibco) used as the solvent for SH-SY5Y printing and DMEM for HepG2 printing. 

6/4 Alg/Gel was used in accordance to previous literature [78] with SH-SY5Y cells while 3/4 and 3/7 

Alg/Gel was used with HepG2 as a comparison to N2A cellular printing at the same polymer precursor 

concentrations. SH-SY5Y neuroblastoma cells were cultured in accordance to procedures in Section 
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3.2.2 with DMEM/F-12 medium while HepG2 cells were cultured with DMEM. Bioink printing and 

cell viability quantification were conducted in accordance to procedures in section 3.2.3 and 3.2.4. 

4.3.2. Results and discussion 

 Directly after printing at an extrusion pressure of 78 kPa, cell viability of SH-SY5Y cells resulted 

in an average of 76.0 ± 4.18% (n = 4) cell viability directly post-printing and crosslinking. For HepG2 

cells, printing with 3/4 Alg/Gel bioinks at a pressure of 48 kPa ± 3.2 kPa (n = 4) resulted in an average 

cell viability value of 79.2 ± 7.14% (n = 4) while printing with 3/7 Alg/Gel bioinks at a pressure of 87.4 

± 1.2 kPa (n = 5) resulted in an average cell viability value of 52.5 ± 4.30% (n = 5).  

 Cell viability values of SH-SY5Y cells printed at a higher pressure with a more viscous bioink (6/4 

Alg/Gel) than printing of N2A cells with 3/4 Alg/Gel were expectedly lower. When compared to 

average cell viability value of N2A cells printed with stiffer 3/7 Alg/Gel, average SH-SY5Y cell 

viability value was higher by 11.8%. A decrease of 6% in viability was seen with HepG2 cells printed 

with 3/4 Alg/Gel as compared to N2A cells printed with the same polymer precursor concentration. 

Similarly, a larger cell viability decrease of 11.7% was seen in HepG2-laden 3/7 Alg/Gel bioink 

compared to N2A-laden bioink. A major factor for notable decreases in cell viability in bioink with 

identical polymer precursor concentrations is the higher average pressure required for extrusion. HepG2 

cells also aggregate into spheroid-like geometries, leading to more cells near the nozzle-bioink interface 

during extrusion to experience high shear stress and subsequent cell death due to shear stress. For future 

statistical models, a correction factor to account for cellular aggregation in HepG2 cells when used can 

allow for more accurate representation of physical phenomenon within a dataset for machine learning 

model training. Overall, cell viability trends follow suit amongst different non-primary cells during the 

extrusion process of retaining similar cell viability values at constant pressures.  
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5. Conclusion and Future Work 

 
5.1 Conclusion 

 

Throughout the field of EBB, research groups utilize a wide array of polymer precursor 

materials, crosslinking strategies, solvents, cells, and biological additives. In addition, a variety of 

printing settings and strategies are used in accordance to materials used and desired printability 

outcomes. This research investigated the ability of applied ML models to create accurate predictive 

models to forecast cellular and printability outcomes as well as experimental input to produce desired 

cellular outcomes. The effect of dataset training size and specificity was also examined through 

training, testing, and experimentally validating a set of ML models trained on a large generalized 

dataset and a set trained on a smaller dataset utilizing experimental parameters that can be replicated in 

our laboratory (this dataset was termed “intrastudy dataset”). The models trained through experimental 

parameters and outcomes extracted from literature spanning the past 13 years in EBB were compared in 

performance metrics as classification and regression models. Amongst both classification and 

regression models, random forest models resulted in higher performance metrics, seen through cross-

validation testing. Compared to previous ML-based EBB literature, performance metrics of coefficient 

of determination for regression models and accuracy for classification models were lower due to having 

utilizing different experimental conditions in the training data, although still suitable (0.43 for R2 and 

71.7% for accuracy scores). 

Experimental validation of the models at different polymer precursor material concentrations 

demonstrated wide variability in predictive power. For regression-based cell viability predictions, 

random forest models trained on the larger generalized dataset were found to produce low variation in 

predicted cell viability values while linear regression resulted in no variation in cell viability prediction. 

Regression models trained with the intrastudy dataset resulted in unrealistic cell viability trends with 

random forest regression predicting increasing cell viability with increased polymer precursor 
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concentration while linear regression modeling predicting identical and negative cell viability values at 

different concentrations. All classification models resulted in the same viability predictions of being 

acceptable with experimental validation input values, indicating a defaulting mechanism when input 

conditions not present in datasets. Furthermore, low variation and no variation in cell viability 

regression and classification prediction models indicate lack of strong correlative effects amongst all 

input parameters used in training datasets to cell viability outcomes as shown through feature 

importance scoring. Overall, the cell viability range predicted for material concentration ranges tested 

based on random forest regression models are within experimental cell viability values of different non-

primary mammalian cells printed at the same material concentrations.  

Printability assessment via resultant filament diameter values indicated that random forest 

regression demonstrated predictive abilities that minimized error predictions while also demonstrating 

wider range of predicted results compared to linear regression models. Similar to cell viability 

experimental validation results, the filament diameter linear regression model trained on the intrastudy 

dataset resulted in predicted values that are vastly smaller than actual results. This indicated the 

filament diameter values of the specific literature used for intrastudy dataset creation demonstrated 

opposite physical trends compared to results of the majority of work used in the larger generalized 

dataset. 

Extrusion pressure condition recommendations demonstrated the need for more data or variable 

consideration. Random forest regression models demonstrated closer prediction accuracy to actual 

pressures used at lower polymer precursor concentrations while demonstrating prediction defaulting at 

higher concentrations. Linear regression models provided more accurate prediction values at higher 

polymer precursor concentrations as opposed to lower ones. Classification models besides the random 

forest classifier resulted in acceptable extrusion pressure prediction for all polymer precursor 

concentrations used, indicating a lack of prediction robustness. At gelatin concentrations above 5% 
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(w/v), all extrusion pressure predictions were deemed unacceptable, similar to the random forest 

regression model defaulting to a specific pressure value.  

Compared to physical models of filament diameter, machine learning models described in this 

work takes into consideration post-processing parameters, particularly crosslinking variables, printbed 

and substrate temperature, and duration of culturing in cell culture media. Whereas physical filament 

diameter models derive diameter values during the extrusion process, ML models can predict values at 

extended times post-printing (> 1 hour), providing higher robustness in usage. The robustness of ML 

models also applies for cell viability estimations. Thus far, major cell viability correlations developed in 

EBB have focused either on extrusion process-based variables (extrusion pressure, shear stress, 

residence time, and viscosity) [37,48,51,79] or one aspect of post-printing processing, such as 

crosslinking duration [80]. ML models developed here encompasses aforementioned printing and post-

printing parameters to provide cell viability value predictions of which a singular correlation cannot.  

5.2 Future Work 
 

  As with general cases of improving ML model robustness, increasing training dataset size with 

diverse input combinations is a straightforward method to greater represent general EBB experimental 

parameters and results. A method to expedite the manual scrapping process used for dataset creation in 

this work would be to implement natural language processing tools to scrape quantitative input and 

output variable values, such as extrusion pressure and cell viability respectively, as well as deploying 

image processing platforms that can gather quantitative values of graphs and filament diameters of 

construct images. The development of first principle-based data generation, such as the usage of non-

Newtonian index values of specific polymer precursors for extrusion pressure can accelerate dataset 

expansion. It should be noted that the inclusion of in silico generated data may alter the predictive 

performance of applied ML algorithms, where the base first-principle equation(s) used will heavily 

influence pattern recognition. Image-processing based ML and deep learning models such as 
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convoluted neural networks can be used to provide cell proliferation and ECM formation image 

predictions to supplement quantitative biological outcomes, as well as surface morphology of printed 

constructs to predict under and over-deposition of materials through surface roughness imaging and 

filament diameter variation along deposited filament. 

      Exploring the effect of the amount of missing values for individual variables can clarify the 

size-based impact of value imputation on outcome prediction. Notably for cell viability model creation, 

there are several input parameters, including extrusion pressure, syringe temperature, crosslinking 

duration, and printbed temperature that contained large portions (> 15%) of null instances as compared 

to other variables with null instances within the preprocessed dataset. In the case of this study, tuning 

the hyperparameter of number of neighbors in k-nearest neighbor imputation may also reveal 

limitations of using the chosen imputation method. A broader, long-term approach to reducing the 

frequency of null instances associated with experimental parameters during dataset expansion is to set a 

reporting guideline for the EBB field to report quantifiable and categorical experimental parameters 

[14].  

  Another research article using using alginate-gelatin composite hydrogels can be used as the 

intrastudy dataset source as a comparison to the selected literature used for this study. In particular, 

filament shrinkage and reduced filament swelling observed over time post-printing from the intrastudy 

dataset source counters our empirical observations as well as other alginate-gelatin-based EBB 

literature [5,81,82], which may provide inaccurate representation of the predictive effectiveness of ML 

models built through smaller, specified datasets. This potential endeavor can provide greater 

understanding of the effect of using a smaller, specified dataset.  
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6. Contributions 

 
The work described in this thesis has been published as two peer-reviewed journal articles. 

Information in the literature review section is covered in a literature review published in Bioprinting 

focusing on optimization and standardization of EBB procedures from material and cellular selection to 

post-printing analysis [14]. ML-based findings and experimental validation results and discussions are 

described in a research article published in Micromachines [83]. The research described in this thesis is 

novel due to four major aspects: 

1. it provides machine-readable datasets of parameters reported in published studies generated by 

different research groups as compared to existing approached which only utilize data generated in-

house by one research group; 

2. it utilizes both classification and regression-based modeling as compared to existing approaches 

which focus on regression-based modeling only; 

3. it examines cellular outcomes and input optimization of extrusion pressure as compared to existing 

approaches which mainly focus only on printability metrics; 

4. it provides experimental validation of the trained machine learning models as compared to existing 

approaches that only provide only computational testing outcomes.  
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9. Appendix A: Supplemental Figures and Tables 

 

 

Figure S1. Cell viability regression model performance based on coefficients of determination (R2) 

values under 5-fold cross validation. The upper and lower bounds of the error plots represent the 

maximum and minimum R2 values produced amongst the five testing and training combinations. 

 

Figure S2. Cell viability regression model performance based on mean squared error (MSE) 

values under 5-fold cross validation. The upper and lower bounds of the error plots represent the 

maximum and minimum MSE values produced amongst the five testing and training combinations.  
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Figure S3. Cell viability classification model performance based on accuracy scores under 5-fold 

cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 

 

Figure S4. Cell viability classification model performance based on precision scores under 5-fold 

cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 
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Figure S5. Cell viability classification model performance based on recall scores under 5-fold 

cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 

 

Figure S6. Filament diameter regression model performance based on coefficient of determination 

(R2) values under 5-fold cross validation. The upper and lower bounds of the error plots represent 

the maximum and minimum R2 and MSE values produced amongst all 5 combinations of one fold 

being trained and tested on the remaining 4 folds. 
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Figure S7. Filament diameter regression model performance based on mean squared error (MSE) 

values under 5-fold cross validation. The upper and lower bounds of the error plots represent the 

maximum and minimum R2 and MSE values produced amongst all 5 combinations of one fold 

being trained and tested on the remaining 4 folds. 

 

Figure S8. Filament diameter classification model performance based on accuracy scores under 5-

fold cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 
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Figure S9. Filament diameter classification model performance based on precision scores under 5-

fold cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 

 

 

Figure S10. Filament diameter classification model performance based on recall scores under 5-

fold cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 
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Figure S11. Coefficient of determination (R2) values of cell viability regression models based on 

the number of folds tested for random forest regression. The upper and lower bounds of the error 

plots represent the maximum and minimum R2 values produced for each fold division. 

 

 

Figure S12. Coefficient of determination (R2) values of cell viability regression models based on 

the number of folds tested for linear regression. The upper and lower bounds of the error plots 

represent the maximum and minimum R2 values produced for each fold division. 
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Figure S13. Coefficient of determination (R2) values of cell viability regression models based on 

the number of folds tested for support vector regression. The upper and lower bounds of the error 

plots represent the maximum and minimum R2 values produced for each fold division. 

 

Figure S14. Mean squared error (MSE) values of cell viability regression models based on the 

number of folds tested for random forest regression. The upper and lower bounds of the error 

plots represent the maximum and minimum mean square error values produced for each fold 
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division. 

 

Figure S15. Mean squared error values of cell viability regression models based on the number of 

folds tested for linear regression. The upper and lower bounds of the error plots represent the 

maximum and minimum mean square error values produced for each fold division. 

 

Figure S16. Mean squared error values of cell viability regression models based on the number of 

folds tested for support vector regression. The upper and lower bounds of the error plots 

represent the maximum and minimum mean square error values produced for each fold division. 
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Figure S17. Accuracy performance of the random forest classification cell viability model on 

different k-fold cross validation tests. The upper and lower bounds of the error plots represent the 

maximum and minimum metric values produced for each fold division. 

 

Figure S18. Precision performance of the random forest classification cell viability model on 

different k-fold cross validation tests. The upper and lower bounds of the error plots represent the 

maximum and minimum metric values produced for each fold division. 
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Figure S19. Recall performance of the random forest classification cell viability model on 

different k-fold cross validation tests. The upper and lower bounds of the error plots represent the 

maximum and minimum metric values produced for each fold division. 

 

 

Figure S20. Coefficient of determination (R2) scores of filament diameter regression models based 

on the number of folds tested for random forest regression. The upper and lower bounds of the 

error plots represent the maximum and minimum R2 produced for each fold division. 
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Figure S21. Coefficient of determination (R2) scores of filament diameter regression models based 

on the number of folds tested for linear regression. The upper and lower bounds of the error plots 

represent the maximum and minimum R2 produced for each fold division. 

 

Figure S22. Mean squared error (MSE) scores of filament diameter regression models based on 

the number of folds tested for random forest regression. The upper and lower bounds of the error 

plots represent the maximum and minimum mean squared error produced for each fold division.  
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Figure S23. Mean squared error scores (MSE) of filament diameter regression models based on 

the number of folds tested for linear regression. The upper and lower bounds of the error plots 

represent the maximum and minimum mean squared error produced for each fold division.  

 

 

Figure S24. Accuracy scores of filament diameter classification models based on the number of 

folds tested for random forest regression models. The upper and lower bounds of the error plots 

represent the maximum and minimum accuracy produced for each fold division. 
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Figure S25. Accuracy scores of filament diameter classification models based on the number of 

folds tested for logistic regression models. The upper and lower bounds of the error plots represent 

the maximum and minimum accuracy produced for each fold 

 

Figure S26. Precision scores of filament diameter classification models based on the number of 

folds tested for random forest regression models. The upper and lower bounds of the error plots 

represent the maximum and minimum precision produced for each fold division.  
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Figure S27. Precision scores of filament diameter classification models based on the number of 

folds tested for logistic regression models. The upper and lower bounds of the error plots represent 

the maximum and minimum precision produced for each fold division.  

 

Figure S28. Recall scores of filament diameter classification models based on the number of folds 

tested for random forest regression models. The upper and lower bounds of the error plots 

represent the maximum and minimum recall produced for each fold division. 
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Figure S29. Recall scores of filament diameter classification models based on the number of folds 

tested for logistic regression models. The upper and lower bounds of the error plots represent the 

maximum and minimum recall produced for each fold division. 

 

 

Figure S30. Extrusion pressure regression model performance based on coefficient of 

determination (R2) values under 5-fold cross validation. The upper and lower bounds of the error 

plots represent the maximum and minimum R2 and MSE values produced amongst all 5 

combinations of one fold being trained and tested on the remaining 4 folds. 
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Figure S31. Extrusion pressure regression model performance based on coefficient of 

determination (R2) values under 5-fold cross validation. The upper and lower bounds of the error 

plots represent the maximum and minimum R2 and MSE values produced amongst all 5 

combinations of one fold being trained and tested on the remaining 4 folds. 

 

Figure S32. Extrusion pressure classification model performance based on accuracy scores under 

5-fold cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 
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Figure S33. Extrusion pressure classification model performance based on precision scores under 

5-fold cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 

 

Figure S34. Cell viability classification model performance based on recall scores under 5-fold 

cross validation. The upper and lower bounds of the error plots represent the maximum and 

minimum scores produced amongst all 5 combinations of one fold being trained and tested on the 

remaining 4 folds. 
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Figure S35. Live/dead images taken on through the imaging plate reader immediately after 

extrusion of 3/4 Alg/Gel. White borders indicate boundaries of the filament. 
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Figure S36. Live/dead images taken on through the imaging plate reader immediately after 

extrusion of 3/7 Alg/Gel. White borders indicate boundaries of the filament. 
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Figure S37. Total/dead top-view confocal imaging immediately after extrusion of A) 3/4 Alg/Gel and 

B) 3/7 Alg/Gel. The frames of images are 1.4 by 1.4 mm in dimension. 
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Figure S38. Isometric view of total/dead confocal imaging for A) 3/4 Alg/Gel and B) 3/7 Alg/Gel 

immediately after extrusion (nozzle geometry = conical, nozzle diameter = 410 μm). The frames of 

images are 1.4 by 1.4 mm by 0.5 mm in dimension. 
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Table S1. Predicted cell viability and actual cell viability comparison of 3/4 and 3/7 Alg/Gel constructs printed (nozzle geometry = 

conical, nozzle diameter = 410 μm). 

Cell viability 

prediction model 

Material 

concentration (%w/v) 

Predicted cell viability 

acceptability (Yes/No) 

Actual cell viability 

acceptability (Yes/No) 

Random forest 

classification 

3/4 Alg/Gel Yes Yes 

3/7 Alg/Gel Yes No 

Logistic regression 3/4 Alg/Gel Yes Yes 

3/7 Alg/Gel Yes No 

Support vector 

classification 

3/4 Alg/Gel Yes Yes 

3/7 Alg/Gel Yes No 
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Table S2. Predicted tolerance and actual tolerance comparison of 3/4 and 3/7 Alg/Gel constructs printed (nozzle geometry = conical, 

nozzle diameter = 410 μm). 

Cell viability 

prediction model 

Material 

concentration 

(%w/v) 

Predicted 

tolerance 

condition 

Percent 

error from 

nozzle 

diameter 

(410 μm) 

(%) 

Actual tolerance 

condition 

Random forest 

classification 

3/4 Alg/Gel Not within 

tolerance 

126 Not within 

tolerance 

3/7 Alg/Gel Not within 

tolerances 

72.5 Not within 

tolerance 

Logistic 

regression 

3/4 Alg/Gel Yes 126 Yes 

3/7 Alg/Gel Yes 72.5 No 

Support vector 

classification 

3/4 Alg/Gel Yes 126 Yes 

3/7 Alg/Gel Yes 72.5 No 
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Table S3. Predicted extrusion pressure classifications compared against experimental outcomes for corresponding material 

concentrations of Alg/Gel. Actual values represent the mean ± standard deviation for all samples (n = number of batches). 

Extrusion pressure 

prediction model 

Material and material 

concentration (%w/v) 

Acceptable extrusion 

pressure predicted 

(Yes/No) 

Actual extrusion 

pressure acceptability 

(Yes/No) 

Random forest 

classification 

3/4 Alg/Gel Yes Yes 

3/7 Alg/Gel No Yes 

8/20 Alg/Gel No No 

Logistic regression 

3/4 Alg/Gel Yes Yes 

3/7 Alg/Gel Yes Yes 

8/20 Alg/Gel Yes No 

Support vector 

classification 

3/4 Alg/Gel Yes Yes 

3/7 Alg/Gel Yes Yes 

8/20 Alg/Gel Yes No 
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Tables S4-9 indicate results of random forest regression-based filament diameter predictions. The 

following parameters for outcome prediction are set constant to the following values and conditions 

unless the specific variable is varied to examine its effect on filament diameter prediction: 

1. Physical crosslinking duration = 60 seconds 

2. Photocrosslinking duration = 0 seconds  

3. Inner nozzle outer diameter = 0 µm,  

4. Outer nozzle inner diameter = 410 µm 

5. Cell density = 106 cells/mL,  

6. Syringe temperature = 22.5 °C.  

7. Printing temperature = 22.5 °C  

8. Days observed = 0 days, 

9. Solvent = cell culture medium only 

10. Extrusion pressure = 101.3 kPa 
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Table S4. Effect of alginate concentration on filament diameter predictions through random forest 

regression modeling using the generalized dataset. Gelatin concentration was set to a constant value of 

3% (w/v). 

Alginate (%w/v) Filament Diameter (µm) 

0 734.4677 

1 734.4677 

2 734.4677 

3 734.4677 

4 734.4677 

5 734.4677 

6 734.4677 

7 734.4677 

8 734.4677 

9 734.4677 

10 734.4677 

11 734.4677 

12 734.4677 

13 734.4677 

14 734.4677 

15 734.4677 

16 734.4677 

17 734.4677 

18 734.4677 

19 734.4677 

20 734.4677 
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Table S5. Effect of gelatin concentration on filament diameter predictions through random forest 

regression modeling using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v). 

Gelatin (%w/v) Filament Diameter (µm) 

0 734.4677 

1 734.4677 

2 734.4677 

3 734.4677 

4 734.4677 

5 734.4677 

6 734.4677 

7 734.4677 

8 734.4677 

9 734.4677 

10 734.4677 

11 734.4677 

12 734.4677 

13 734.4677 

14 734.4677 

15 734.4677 

16 734.4677 

17 734.4677 

18 734.4677 

19 734.4677 

20 734.4677 
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Table S6. Effect of physical crosslinking duration on filament diameter predictions through random 

forest regression modeling using the generalized dataset. Alginate and gelatin concentrations were set 

to a constant value of 3% (w/v). 

Physical Crosslinking Duration (s) 

(3/3 % w/v Alg/Gel) 

Filament Diameter (µm) 

60 734.4677 

120 734.4677 

180 734.4677 

240 734.4677 

300 734.4677 

360 734.4677 

420 734.4677 

480 734.4677 

540 734.4677 

600 640.1937 

660 640.1937 

720 640.1937 

780 640.1937 

840 640.1937 

900 640.1937 

960 640.1937 

1020 640.1937 

1080 640.1937 

1140 640.1937 

1200 640.1937 

1260 640.1937 

1320 640.1937 

1380 640.1937 

1440 640.1937 

1500 640.1937 

1560 640.1937 

1620 640.1937 

1680 640.1937 

1740 640.1937 

1800 640.1937 
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Table S7. Effect of extrusion pressure on filament diameter predictions through random forest 

regression modeling using the generalized dataset. Alginate and gelatin concentrations were set to a 

constant value of 3% (w/v). 

 

Extrusion Pressure (kPa) Filament Diameter (µm) 

0 1132.115 

10 1132.115 

20 1132.115 

30 885.5386 

40 885.5386 

50 885.5386 

60 885.5386 

70 885.5386 

80 847.3622 

90 734.4677 

100 734.4677 

110 734.4677 

120 734.4677 

130 734.4677 

140 734.4677 

150 734.4677 

160 734.4677 

170 734.4677 

180 734.4677 

190 734.4677 

200 734.4677 

210 734.4677 

220 734.4677 

230 734.4677 

240 734.4677 

250 734.4677 

260 734.4677 

270 734.4677 

280 734.4677 

290 734.4677 

300 734.4677 
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Table S8. Effect of nozzle diameter on filament diameter predictions through random forest regression 

modeling using the generalized dataset. Alginate and gelatin concentrations were set to a constant value 

of 3% (w/v). 

 

Outer Nozzle Inner Diameter 

(µm) 

Filament Diameter 

(µm) 

0 419.1145 

100 419.1145 

200 419.1145 

300 460.7804 

400 734.4677 

500 1114.694 

600 1114.694 

700 1151.751 

800 1151.751 

900 1262.503 

1000 1262.503 

1100 1262.503 

1200 1262.503 

1300 1262.503 

1400 1262.503 

1500 1262.503 

1600 1262.503 

1700 1262.503 

 

 

Table S9. Effect of standard nozzle diameters correlating to standard on filament diameter predictions 

through random forest regression modeling using the generalized dataset. Alginate and gelatin 

concentrations were set to a constant value of 3% (w/v). 

 

Outer Nozzle Inner Diameter (µm) Filament Diameter (µm) 

250 419.1145 

260 460.7804 

410 734.4677 

413 734.4677 

510 1114.694 

610 1151.751 

690 1151.751 

840 1151.751 

860 1151.751 
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The following variables do not result in filament diameter prediction differences:  

1. Syringe temperature.  

2. Substrate temperature 

3. The use of cell culture medium or saline solution  

4. CaCl2 concentration 

 

For above variables at a constant polymer precursor concentration of 3/3 Alg/Gel, a filament diameter 

of 734.4677 µm is always predicted. 

 

 

Tables S10-15 indicate results of linear regression-based filament diameter predictions. The following 

parameters for outcome prediction are set constant to the following values and conditions unless the 

specific variable is varied to examine its effect on filament diameter prediction: 

1. Physical crosslinking duration = 60 seconds 

2. Photocrosslinking duration = 0 seconds  

3. Inner nozzle outer diameter = 0 µm,  

4. Outer nozzle inner diameter = 410 µm 

5. Cell density = 106 cells/mL,  

6. Syringe temperature = 22.5 °C.  

7. Printing temperature = 22.5 °C  

8. Days observed = 0 days, 

9. Solvent = cell culture medium only 

10. Extrusion pressure = 101.3 kPa 
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Table S10. Effect of syringe temperature on filament diameter predictions through linear regression 

modeling trained using the generalized dataset. Alginate and gelatin concentrations were set to a 

constant value of 3% (w/v). 

Syringe Temp (°C)  Filament Diameter (µm) 

4 1129.376 

5 1120.131 

6 1110.886 

7 1101.641 

8 1092.396 

9 1083.151 

10 1073.907 

11 1064.662 

12 1055.417 

13 1046.172 

14 1036.927 

15 1027.682 

16 1018.437 

17 1009.192 

18 999.947 

19 990.7021 

20 981.4572 

21 972.2122 

22 962.9673 

23 953.7223 

24 944.4774 

25 935.2325 

26 925.9875 

27 916.7426 

28 907.4976 

29 898.2527 

30 889.0078 

31 879.7628 

32 870.5179 

33 861.2729 

34 852.028 

35 842.7831 

36 833.5381 

37 824.2932 

38 815.0483 

39 805.8033 
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Table S11. Effect of substrate temperature on filament diameter predictions through linear regression 

modeling trained using the generalized dataset. Alginate and gelatin concentrations were set to a 

constant value of 3% (w/v). 

Substrate Temp (°C)  Filament Diameter (µm) 

4 1187.459 

5 1185.518 

6 1183.576 

7 1181.634 

8 1179.692 

9 1177.751 

10 1175.809 

11 1173.867 

12 1171.925 

13 1169.984 

14 1168.042 

15 1166.1 

16 1164.158 

17 1162.217 

18 1160.275 

19 1158.333 

20 1156.391 

21 1154.45 

22 1152.508 

23 1150.566 

24 1148.624 

25 1146.683 

26 1144.741 

27 1142.799 

28 1140.857 

29 1138.916 

30 1136.974 

31 1135.032 

32 1133.09 

33 1131.149 

34 1129.207 

35 1127.265 

36 1125.323 

37 1123.382 

38 1121.44 

39 1119.498 

40 1117.556 
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Table S12. Effect of solvent used on filament diameter predictions through linear regression modeling 

trained using the generalized dataset. Alginate and gelatin concentrations were set to a constant value of 

3% (w/v). 

Solvent Used Filament Diameter (µm) 

DMEM 1151.537 

Saline Solution 

 

958.3448 

 

 

Table S13. Effect of alginate concentration on filament diameter predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentrations were set to a constant value of 

3% (w/v). 

Alginate Concentration (%w/v) Filament Diameter (µm) 

0 1064.045 

1 1093.209 

2 1122.373 

3 1151.537 

4 1180.701 

5 1209.865 

6 1239.029 

7 1268.193 

8 1297.357 

9 1326.521 

10 1355.685 

11 1384.849 

12 1414.013 

13 1443.177 

14 1472.341 

15 1501.505 

16 1530.67 

17 1559.834 

18 1588.998 

19 1618.162 

20 1647.326 
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Table S14. Effect of gelatin concentration on filament diameter predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentrations were set to a constant value of 

3% (w/v). 

Gelatin Concentration (%w/v) Filament Diameter (µm) 

0 1159.236 

1 1156.67 

2 1154.103 

3 1151.537 

4 1148.971 

5 1146.404 

6 1143.838 

7 1141.272 

8 1138.705 

9 1136.139 

10 1133.573 

11 1131.006 

12 1128.44 

13 1125.874 

14 1123.307 

15 1120.741 

16 1118.175 

17 1115.608 

18 1113.042 

19 1110.476 

20 1107.909 

 

Table S15. Effect of CaCl2 concentration on filament diameter predictions through linear regression 

modeling trained using the generalized dataset. Alginate and gelatin concentrations were set to a 

constant value of 3% (w/v). 

CaCl2 Concentration (mM) Filament Diameter (µm) 

0 1204.1 

100 1151.537 

200 1098.974 

300 1046.41 

400 993.8469 

500 941.2836 

600 888.7202 

700 836.1568 

800 783.5935 

900 731.0301 

1000 678.4667 
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Table S16. Effect of physical crosslinking duration on filament diameter predictions through linear 

regression modeling trained using the generalized dataset. Alginate and gelatin concentrations were set 

to a constant value of 3% (w/v). 

Physical Crosslinking Duration (s)  Filament Diameter (µm) 

30 1151.537 

60 1140.062 

90 1128.588 

120 1117.113 

150 1105.638 

180 1094.164 

210 1082.689 

240 1071.215 

270 1059.74 

300 1048.265 

330 1036.791 

360 1025.316 

390 1013.841 

420 1002.367 

450 990.8921 

480 979.4174 

510 967.9428 

540 956.4681 

570 944.9935 

600 933.5188 

630 922.0442 

660 910.5696 

690 899.0949 

720 887.6203 

750 876.1456 

780 864.671 

810 853.1964 

840 841.7217 

870 830.2471 

900 818.7724 

930 1151.537 

960 1140.062 

990 1128.588 

1020 1117.113 

1050 1105.638 

1080 1094.164 

1110 1082.689 

1140 1071.215 

1170 1059.74 

1200 1048.265 

1230 1036.791 

1260 1025.316 

1290 1013.841 
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1320 1002.367 

1350 990.8921 

1380 979.4174 

1410 967.9428 

1440 956.4681 

1470 944.9935 

1500 933.5188 

1530 922.0442 

1560 910.5696 

1590 899.0949 

1620 887.6203 

1650 876.1456 

1680 864.671 

1710 853.1964 

1740 841.7217 

1770 830.2471 

1800 818.7724 

 

Tables S17-27 indicate results of linear regression-based extrusion pressure predictions. The following 

parameters for outcome prediction are set constant to the following values and conditions unless the 

specific variable is varied to examine its effect on extrusion pressure prediction: 

1. Physical crosslinking duration = 60 seconds 

2. Photocrosslinking duration = 0 seconds  

3. Inner nozzle outer diameter = 0 µm,  

4. Outer nozzle inner diameter = 410 µm 

5. Cell density = 106 cells/mL,  

6. Syringe temperature = 22.5 °C.  

7. Printing temperature = 22.5 °C  

8. Days observed = 0 days, 

9. Solvent = cell culture medium only 

10. Cell viability = 90% 
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Table S17. Effect of cell viability on extrusion pressure predictions through linear regression modeling 

trained using the generalized dataset. Alginate and gelatin concentrations were set to a constant value of 

3% (w/v). 

Cell Viability (%) Extrusion Pressure Predicted (kPa) 

0 261.4062 

10 247.866 

20 234.3258 

30 220.7855 

40 207.2453 

50 193.7051 

60 180.1649 

70 166.6247 

80 153.0845 

90 139.5443 

100 126.0041 

 

Table S18. Effect of cell viability on extrusion pressure predictions through linear regression modeling 

trained using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) 

and gelatin concentration was set to a constant value of 5% (w/v). 

Cell Viability (%) Extrusion Pressure Predicted (kPa) 

0 277.0516 

10 263.5114 

20 249.9712 

30 236.431 

40 222.8908 

50 209.3506 

60 195.8104 

70 182.2702 

80 168.73 

90 155.1898 

100 141.6496 
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Table S19. Effect of cell viability on extrusion pressure predictions through linear regression modeling 

trained using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) 

and gelatin concentration was set to a constant value of 7% (w/v). 

 

Cell Viability (%) Extrusion Pressure Predicted (kPa) 

0 292.6971 

10 279.1569 

20 265.6166 

30 252.0764 

40 238.5362 

50 224.996 

60 211.4558 

70 197.9156 

80 184.3754 

90 170.8352 

100 157.295 
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Table S20. Effect of syringe temperature on extrusion pressure predictions through linear regression 

modeling trained using the generalized dataset. Alginate and gelatin concentrations were set to a 

constant value of 3% (w/v). 

Syringe Temp (°C) Extrusion Pressure Predicted (kPa) 

4 183.2356 

5 181.7196 

6 180.2036 

7 178.6876 

8 177.1716 

9 175.6557 

10 174.1397 

11 172.6237 

12 171.1077 

13 169.5917 

14 168.0757 

15 166.5597 

16 165.0437 

17 163.5277 

18 162.0117 

19 160.4957 

20 158.9797 

21 157.4637 

22 155.9478 

23 154.4318 

24 152.9158 

25 151.3998 

26 149.8838 

27 148.3678 

28 146.8518 

29 145.3358 

30 143.8198 

31 142.3038 

32 140.7878 

33 139.2718 

34 137.7559 

35 136.2399 

36 134.7239 

37 133.2079 

38 131.6919 

39 130.1759 

40 128.6599 
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Table S21. Effect of cell density on extrusion pressure predictions through linear regression modeling 

trained using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) 

and gelatin concentration was set to a constant value of 5% (w/v). 

 

Cell Density (106 cells/mL) Extrusion Pressure Predicted (kPa) 

0.5 155.9832 

1 155.1898 

1.5 154.3963 

2 153.6028 

2.5 152.8094 

3 152.0159 

3.5 151.2225 

4 150.429 

4.5 149.6355 

5 148.8421 

5.5 148.0486 

6 147.2551 

6.5 146.4617 

7 145.6682 

7.5 144.8748 

8 144.0813 

8.5 143.2878 

9 142.4944 

9.5 141.7009 

10 140.9075 

10.5 140.114 

11 139.3205 

11.5 138.5271 

12 137.7336 

12.5 136.9402 

13 136.1467 

13.5 135.3532 

14 134.5598 

14.5 133.7663 

15 132.9728 

15.5 132.1794 

16 131.3859 

16.5 130.5925 

17 129.799 

17.5 129.0055 

18 128.2121 

18.5 127.4186 

19 126.6252 

19.5 125.8317 

20 125.0382 
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Table S22. Effect of substrate temperature on extrusion pressure predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 5% (w/v). 

. 

Substrate Temperature (°C) Extrusion Pressure Predicted (kPa) 

4 216.8359 

5 213.5037 

6 210.1715 

7 206.8392 

8 203.507 

9 200.1748 

10 196.8426 

11 193.5103 

12 190.1781 

13 186.8459 

14 183.5137 

15 180.1814 

16 176.8492 

17 173.517 

18 170.1848 

19 166.8525 

20 163.5203 

21 160.1881 

22 156.8559 

23 153.5236 

24 150.1914 

25 146.8592 

26 143.527 

27 140.1948 

28 136.8625 

29 133.5303 

30 130.1981 

31 126.8659 

32 123.5336 

33 120.2014 

34 116.8692 

35 113.537 

36 110.2047 

37 106.8725 

38 103.5403 

39 100.2081 

40 96.87584 
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Table S23. Effect of alginate concentration on extrusion pressure predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentration was set to a constant value of 3% 

(w/v). 

 

Alginate Concentration (% w/v) Extrusion Pressure Predicted (kPa) 

0 149.9042 

1 146.4509 

2 142.9976 

3 139.5443 

4 136.091 

5 132.6377 

6 129.1845 

7 125.7312 

8 122.2779 

9 118.8246 

10 115.3713 

11 111.918 

12 108.4647 

13 105.0115 

14 101.5582 

15 98.10488 

16 94.6516 

17 91.19831 

18 87.74503 

19 84.29174 

20 80.83845 
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Table S24. Effect of alginate concentration on extrusion pressure predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentration was set to a constant value of 5% 

(w/v). 

 

Alginate Concentration (% w/v) Extrusion Pressure Predicted (kPa) 

1 165.5496 

2 162.0963 

3 158.643 

4 155.1898 

5 151.7365 

6 148.2832 

7 144.8299 

8 141.3766 

9 137.9233 

10 134.47 

11 131.0168 

12 127.5635 

13 124.1102 

14 120.6569 

15 117.2036 

16 113.7503 

17 110.297 

18 106.8438 

19 103.3905 

20 99.93719 
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Table S25. Effect of gelatin concentration on extrusion pressure predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v). 

Gelatin Concentration (% w/v) Extrusion Pressure Predicted (kPa) 

0 116.0761 

1 123.8989 

2 131.7216 

3 139.5443 

4 147.367 

5 155.1898 

6 163.0125 

7 170.8352 

8 178.6579 

9 186.4807 

10 194.3034 

11 202.1261 

12 209.9488 

13 217.7715 

14 225.5943 

15 233.417 

16 241.2397 

17 249.0624 

18 256.8852 

19 264.7079 

20 272.5306 
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Table S26. Effect of gelatin concentration on extrusion pressure predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

5% (w/v). 

 

Gelatin Concentration (% w/v) Extrusion Pressure Predicted (kPa) 

0 109.1696 

1 116.9923 

2 124.815 

3 132.6377 

4 140.4605 

5 148.2832 

6 156.1059 

7 163.9286 

8 171.7514 

9 179.5741 

10 187.3968 

11 195.2195 

12 203.0423 

13 210.865 

14 218.6877 

15 226.5104 

16 234.3331 

17 242.1559 

18 249.9786 

19 257.8013 

20 265.624 

 

Table S27. Effect of nozzle size on extrusion pressure predictions through linear regression modeling 

trained using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) 

and gelatin concentration was set to a constant value of 5% (w/v). 

Outer Nozzle Inner Diameter (µm)  Extrusion Pressure Predicted (kPa) 

0 146.6149 

100 148.7063 

200 150.7977 

300 152.8892 

400 154.9806 

500 157.0721 

600 159.1635 

700 161.2549 

800 163.3464 

900 165.4378 

1000 167.5293 
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Tables S28-35 indicate results of random forest regression-based extrusion pressure predictions. The 

following parameters for outcome prediction are set constant to the following values and conditions 

unless the specific variable is varied to examine its effect on extrusion pressure prediction: 

1. Physical crosslinking duration = 60 seconds 

2. Photocrosslinking duration = 0 seconds  

3. Inner nozzle outer diameter = 0 µm,  

4. Outer nozzle inner diameter = 410 µm 

5. Cell density = 106 cells/mL,  

6. Syringe temperature = 22.5 °C.  

7. Printing temperature = 22.5 °C  

8. Days observed = 0 days, 

9. Solvent = cell culture medium only 

10. Cell viability = 90% 

 

Table S28. Effect of cell viability on extrusion pressure predictions through random forest regression 

modeling trained using the generalized dataset. Alginate and gelatin concentrations were set to a 

constant value of 3% (w/v). 

 

Cell Viability (%) Extrusion Pressure Predicted (kPa) 

0 253.9683 

10 253.9683 

20 253.9683 

30 253.9683 

40 256.9041 

50 233.0358 

60 188.4042 

70 63.83094 

80 63.44139 

90 68.82862 

100 68.82862 
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Table S29. Effect of syringe temperature on extrusion pressure predictions through random forest 

regression modeling trained using the generalized dataset. Alginate and gelatin concentrations were set 

to a constant value of 3% (w/v). 

 

Syringe Temp (°C)  Extrusion Pressure Predicted (kPa) 

4 72.06411 

5 72.06411 

6 72.06411 

7 72.06411 

8 68.82862 

9 68.82862 

10 68.82862 

11 68.82862 

12 68.82862 

13 68.82862 

14 68.82862 

15 68.82862 

16 68.82862 

17 68.82862 

18 68.82862 

19 68.82862 

20 68.82862 

21 68.82862 

22 68.82862 

23 68.82862 

24 68.82862 

25 68.28807 

26 68.28807 

27 68.28807 

28 68.28807 

29 68.28807 

30 68.28807 

31 68.28807 

32 68.28807 

33 68.28807 

34 68.28807 

35 68.28807 

36 68.28807 

37 69.17102 

38 69.17102 

39 69.17102 

40 69.17102 
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Table S30. Effect of substrate temperature on extrusion pressure predictions through random forest 

regression modeling trained using the generalized dataset. Alginate concentration was set to a constant 

value of 3% (w/v) and gelatin concentration was set a constant value of 5% (w/v). 

 

Substrate Temperature  Extrusion Pressure Predicted (kPa) 

4 217.715 

5 217.715 

6 217.715 

7 217.715 

8 220.0268 

9 220.0268 

10 220.0268 

11 220.0268 

12 220.0268 

13 219.9848 

14 219.9848 

15 219.9848 

16 219.9848 

17 218.7992 

18 216.9612 

19 216.9612 

20 122.1777 

21 102.3297 

22 102.3297 

23 102.9544 

24 102.8891 

25 102.8891 

26 102.8891 

27 102.8891 

28 102.8891 

29 102.8891 

30 102.8891 

31 102.8891 

32 102.8891 

33 102.8891 

34 102.8891 

35 102.8891 

36 102.8891 

37 102.8891 

38 102.8891 

39 102.8891 

40 102.8891 
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Table S31. Effect of cell density on extrusion pressure predictions through random forest regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set a constant value of 5% (w/v). 

 

Cell Density (106 cells/mL) Extrusion Pressure Predicted (kPa) 

0.5 124.4639 

1 102.3297 

1.5 101.6715 

2 101.1057 

2.5 101.344 

3 101.344 

3.5 101.344 

4 101.344 

4.5 101.344 

5 102.034 

5.5 98.96097 

6 98.05187 

6.5 98.05187 

7 98.05187 

7.5 98.05187 

8 98.05187 

8.5 98.05187 

9 98.05187 

9.5 98.05187 

10 98.05187 

10.5 98.05187 

11 98.05187 

11.5 98.05187 

12 98.05187 

12.5 98.05187 

13 98.05187 

13.5 98.05187 

14 98.05187 

14.5 98.05187 

15 98.05187 

15.5 101.2649 

16 101.2649 

16.5 101.2649 

17 101.2649 

17.5 101.2649 

18 122.8052 

18.5 122.8052 

19 122.8052 

19.5 122.8052 

20 122.8052 
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Table S32. Effect of gelatin concentration on extrusion pressure predictions through random forest 

regression modeling trained using the generalized dataset. Alginate concentration was set to a constant 

value of 3% (w/v). 

 

Gelatin Concentration (%w/v) Extrusion Pressure Predicted (kPa) 

0 68.82862 

1 68.82862 

2 68.82862 

3 68.82862 

4 71.93072 

5 102.3297 

6 104.8197 

7 104.8197 

8 109.2507 

9 109.2507 

10 109.2507 

11 109.2507 

12 109.2507 

13 111.6162 

14 111.6162 

15 111.6162 

16 111.6162 

17 111.6162 

18 111.6162 

19 111.6162 

20 111.6162 
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Table S33. Effect of gelatin concentration on extrusion pressure predictions through random forest 

regression modeling trained using the generalized dataset. Alginate concentration was set to a constant 

value of 5% (w/v). 

 

Gelatin Concentration (%w/v) Extrusion Pressure Predicted (kPa) 

0 68.82862 

1 68.82862 

2 68.82862 

3 68.82862 

4 71.93072 

5 102.8997 

6 105.3897 

7 105.3897 

8 110.5807 

9 110.5807 

10 110.5807 

11 110.5807 

12 110.5807 

13 112.9462 

14 112.9462 

15 112.9462 

16 112.9462 

17 112.9462 

18 112.9462 

19 112.9462 

20 112.9462 
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Table S34. Effect of alginate concentration on extrusion pressure predictions through random forest 

regression modeling trained using the generalized dataset. Gelatin concentration was set to a constant 

value of 3% (w/v). 

Alginate Concentration (%w/v) Extrusion Pressure Predicted (kPa) 

0 70.49031 

1 69.30904 

2 67.35239 

3 68.82862 

4 68.82862 

5 68.82862 

6 68.82862 

7 70.31568 

8 70.31568 

9 70.31568 

10 70.31568 

11 70.31568 

12 70.31568 

13 70.31568 

14 70.31568 

15 70.31568 

16 70.31568 

17 70.31568 

18 70.31568 

19 70.31568 

20 70.31568 
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Table S35. Effect of alginate concentration on extrusion pressure predictions through random forest 

regression modeling trained using the generalized dataset. Gelatin concentration was set to a constant 

value of 5% (w/v). 

Alginate Concentration (%w/v) Extrusion Pressure Predicted (kPa) 

0 103.5224 

1 102.3412 

2 100.9006 

3 102.3297 

4 102.8997 

5 102.8997 

6 102.8997 

7 108.8321 

8 108.8321 

9 108.8321 

10 108.8321 

11 108.8321 

12 108.8321 

13 108.8321 

14 108.8321 

15 108.8321 

16 108.8321 

17 108.8321 

18 108.8321 

19 108.8321 

20 108.8321 

 

Table S36. Effect of nozzle size on extrusion pressure predictions through random forest regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set a constant value of 5% (w/v). 

 

Outer Nozzle Inner Diameter (µm) Extrusion Pressure Predicted (kPa) 

0 87.70909 

100 87.70909 

200 86.75659 

300 92.39011 

400 101.9994 

500 102.6386 

600 102.6386 

700 102.6386 

800 102.6386 

900 102.6386 

1000 102.6386 
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Tables S37-42 indicate results of random forest regression-based cell viability predictions. The 

following parameters for outcome prediction are set constant to the following values and conditions 

unless the specific variable is varied to examine its effect on cell viability prediction: 

1. Physical crosslinking duration = 60 seconds 

2. Photocrosslinking duration = 0 seconds  

3. Inner nozzle outer diameter = 0 µm,  

4. Outer nozzle inner diameter = 410 µm 

5. Cell density = 106 cells/mL,  

6. Syringe temperature = 22.5 °C.  

7. Printing temperature = 22.5 °C  

8. Days observed = 0 days, 

9. Solvent = cell culture medium only 

10. Extrusion pressure = 95.2 kPa 

11. CaCl2 concentration = 100 mM 
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Table S37. Effect of alginate concentration on cell viability predictions through random forest 

regression modeling trained using the generalized dataset. Gelatin concentration was set to a constant 

value of 0% (w/v). 

Alginate Concentration (%w/v) Cell Viability (%) 

0 82.42586 

1 81.59861 

2 81.59861 

3 81.59861 

4 81.59861 

5 81.59861 

6 81.59861 

7 81.59861 

8 81.59861 

9 81.59861 

10 81.59861 

11 81.59861 

12 81.59861 

13 81.59861 

14 81.59861 

15 81.59861 

16 81.59861 

17 81.59861 

18 63.85928 

19 63.85928 

20 63.85928 
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Table S38. Effect of alginate concentration on cell viability predictions through random forest 

regression modeling trained using the generalized dataset. Gelatin concentration was set to a constant 

value of 3% (w/v). 

Alginate Concentration (%w/v) Cell Viability (%) 

0 82.42586 

1 81.59861 

2 81.59861 

3 81.59861 

4 81.59861 

5 81.59861 

6 81.59861 

7 81.59861 

8 81.59861 

9 81.59861 

10 81.59861 

11 81.59861 

12 81.59861 

13 81.59861 

14 81.59861 

15 81.59861 

16 81.59861 

17 81.59861 

18 63.85928 

19 63.85928 

20 63.85928 
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Table S39. Effect of alginate concentration on cell viability predictions through random forest 

regression modeling trained using the generalized dataset. Gelatin concentration was set to a constant 

value of 5% (w/v). 

Alginate Concentration (%w/v) Cell Viability (%) 

0 82.42586 

1 81.59861 

2 81.59861 

3 81.59861 

4 81.59861 

5 81.59861 

6 81.59861 

7 81.59861 

8 81.59861 

9 81.59861 

10 81.59861 

11 81.59861 

12 81.59861 

13 81.59861 

14 81.59861 

15 81.59861 

16 81.59861 

17 81.59861 

18 63.85928 

19 63.85928 

20 63.85928 

 

 

Table S40. Effect of nozzle size on cell viability predictions through random forest regression 

modeling trained using the generalized dataset. Alginate concentration was set to 2% (w/v) and gelatin 

concentration was set to a constant value of 0% (w/v). 

Outer Nozzle Inner Diameter (µm) Cell Viability (%) 

0 80.07774 

100 80.07774 

200 81.59861 

300 81.59861 

400 81.59861 

500 81.59861 

600 81.59861 

700 81.59861 

800 81.59861 

900 81.59861 

1000 81.59861 
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Table S41. Effect of standard nozzle sizes used in the EBB field on cell viability predictions through 

random forest regression modeling trained using the generalized dataset. Alginate concentration was set 

to 2% (w/v) and gelatin concentration was set to a constant value of 0% (w/v). 

Outer Nozzle Inner Diameter (µm) Cell Viability (%) 

250 81.59861 

260 81.59861 

410 81.59861 

413 81.59861 

510 81.59861 

610 81.59861 

690 81.59861 

840 81.59861 

860 81.59861 
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Table S42. Effect of standard nozzle sizes used in the EBB field on cell viability predictions through 

random forest regression modeling trained using the generalized dataset. Alginate concentration was set 

to 2% (w/v) and gelatin concentration was set to a constant value of 3% (w/v). 

Extrusion Pressure (kPa) Cell Viability (%) 

0 79.58217 

10 79.58217 

20 79.58217 

30 79.58217 

40 79.58217 

50 79.58217 

60 79.58217 

70 79.58217 

80 79.58217 

90 79.58217 

100 79.58217 

110 79.58217 

120 79.58217 

130 79.58217 

140 79.58217 

150 80.61875 

160 81.68637 

170 81.68637 

180 81.68637 

190 81.68637 

200 81.68637 

210 81.68637 

220 81.68637 

230 81.68637 

240 81.68637 

250 81.68637 

260 81.68637 

270 81.68637 

280 74.03073 

290 74.03073 

300 74.03073 

 

 

It is clear from these approaches that random forest regression provides a very discretized way to 

predict values, which does not reflect actual cell prediction values. 

 

 

 



147  

Tables S43-60 indicate results of linear regression-based cell viability predictions. The following 

parameters for outcome prediction are set constant to the following values and conditions unless the 

specific variable is varied to examine its effect on extrusion pressure prediction: 

1. Physical crosslinking duration = 60 seconds 

2. Photocrosslinking duration = 0 seconds  

3. Inner nozzle outer diameter = 0 µm,  

4. Outer nozzle inner diameter = 410 µm 

5. Cell density = 106 cells/mL,  

6. Syringe temperature = 22.5 °C.  

7. Printing temperature = 22.5 °C  

8. Days observed = 0 days, 

9. Solvent = cell culture medium only 

10. Extrusion pressure = 95.2 kPa 

11. CaCl2 concentration = 100 mM 

Table S43. Effect of alginate concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentration was set to a constant value of 0% 

(w/v). 

 

Alginate Concentration (%w/v) Cell Viability (%) 

0 73.55403 

1 73.23163 

2 72.90922 

3 72.58682 

4 72.26441 

5 71.942 

6 71.6196 

7 71.29719 

8 70.97479 

9 70.65238 

10 70.32998 

11 70.00757 

12 69.68517 

13 69.36276 

14 69.04036 

15 68.71795 

16 68.39555 

17 68.07314 

18 67.75074 

19 67.42833 

20 67.10593 
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Table S44. Effect of alginate concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentration was set to a constant value of 3% 

(w/v). 

 

Alginate Concentration (%w/v) Cell Viability (%) 

0 74.20701 

1 73.88461 

2 73.5622 

3 73.2398 

4 72.91739 

5 72.59499 

6 72.27258 

7 71.95018 

8 71.62777 

9 71.30537 

10 70.98296 

11 70.66056 

12 70.33815 

13 70.01575 

14 69.69334 

15 69.37094 

16 69.04853 

17 68.72613 

18 68.40372 

19 68.08132 

20 67.75891 
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Table S45. Effect of alginate concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentration was set to a constant value of 5% 

(w/v). 

 

Alginate Concentration (%w/v) Cell Viability (%) 

0 74.64234 

1 74.31993 

2 73.99753 

3 73.67512 

4 73.35272 

5 73.03031 

6 72.70791 

7 72.3855 

8 72.0631 

9 71.74069 

10 71.41829 

11 71.09588 

12 70.77347 

13 70.45107 

14 70.12866 

15 69.80626 

16 69.48385 

17 69.16145 

18 68.83904 

19 68.51664 

20 68.19423 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150  

Table S46. Effect of alginate concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Gelatin concentration was set to a constant value of 7% 

(w/v). 

 

Alginate Concentration (%w/v) Cell Viability (%) 

0 75.07766 

1 74.75526 

2 74.43285 

3 74.11044 

4 73.78804 

5 73.46563 

6 73.14323 

7 72.82082 

8 72.49842 

9 72.17601 

10 71.85361 

11 71.5312 

12 71.2088 

13 70.88639 

14 70.56399 

15 70.24158 

16 69.91918 

17 69.59677 

18 69.27437 

19 68.95196 

20 68.62956 
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Table S47. Effect of nozzle size on cell viability predictions through linear regression modeling trained 

using the generalized dataset. Alginate concentration was set to a constant value of 2% (w/v) and 

gelatin concentration was set to a constant value of 0% (w/v). 

Outer Nozzle Inner Diameter (µm) Cell Viability (%) 

0 75.64393 

100 74.97693 

200 74.30992 

300 73.64292 

400 72.97592 

500 72.30892 

600 71.64192 

700 70.97491 

800 70.30791 

900 69.64091 

1000 68.97391 

 

Table S48. Effect of nozzle size on cell viability predictions through linear regression modeling trained 

using the generalized dataset. Alginate concentration was set to a constant value of 2% (w/v) and 

gelatin concentration was set to a constant value of 3% (w/v). 

Outer Nozzle Inner Diameter (µm) Cell Viability (%) 

0 76.29691 

100 75.62991 

200 74.96291 

300 74.29591 

400 73.6289 

500 72.9619 

600 72.2949 

700 71.6279 

800 70.9609 

900 70.29389 

1000 69.62689 
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Table S49. Effect of nozzle size on cell viability predictions through linear regression modeling trained 

using the generalized dataset. Alginate concentration was set to a constant value of 2% (w/v) and 

gelatin concentration was set to a constant value of 5% (w/v). 

Outer Nozzle Inner Diameter (µm) Cell Viability (%) 

0 76.73224 

100 76.06523 

200 75.39823 

300 74.73123 

400 74.06423 

500 73.39723 

600 72.73022 

700 72.06322 

800 71.39622 

900 70.72922 

1000 70.06222 
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Table S50. Effect of syringe temperature on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 5% (w/v). 

Syringe Temp (°C) Cell Viability (%) 

4 77.42513 

5 77.22242 

6 77.01972 

7 76.81702 

8 76.61432 

9 76.41161 

10 76.20891 

11 76.00621 

12 75.8035 

13 75.6008 

14 75.3981 

15 75.19539 

16 74.99269 

17 74.78999 

18 74.58729 

19 74.38458 

20 74.18188 

21 73.97918 

22 73.77647 

23 73.57377 

24 73.37107 

25 73.16836 

26 72.96566 

27 72.76296 

28 72.56026 

29 72.35755 

30 72.15485 

31 71.95215 

32 71.74944 

33 71.54674 

34 71.34404 

35 71.14133 

36 70.93863 

37 70.73593 

38 70.53323 

39 70.33052 

40 70.12782 
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Table S51. Effect of syringe temperature on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 7% (w/v). 

Syringe Temperature (°C) Cell Viability (%) 

4 77.86045 

5 77.65775 

6 77.45504 

7 77.25234 

8 77.04964 

9 76.84694 

10 76.64423 

11 76.44153 

12 76.23883 

13 76.03612 

14 75.83342 

15 75.63072 

16 75.42801 

17 75.22531 

18 75.02261 

19 74.81991 

20 74.6172 

21 74.4145 

22 74.2118 

23 74.00909 

24 73.80639 

25 73.60369 

26 73.40098 

27 73.19828 

28 72.99558 

29 72.79288 

30 72.59017 

31 72.38747 

32 72.18477 

33 71.98206 

34 71.77936 

35 71.57666 

36 71.37395 

37 71.17125 

38 70.96855 

39 70.76585 

40 70.56314 
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Table S52. Effect of substrate temperature on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 5% (w/v). 

Substrate Temperature (°C) Cell Viability (%) 

4 86.93854 

5 86.2216 

6 85.50466 

7 84.78771 

8 84.07077 

9 83.35383 

10 82.63689 

11 81.91995 

12 81.20301 

13 80.48607 

14 79.76912 

15 79.05218 

16 78.33524 

17 77.6183 

18 76.90136 

19 76.18442 

20 75.46748 

21 74.75053 

22 74.03359 

23 73.31665 

24 72.59971 

25 71.88277 

26 71.16583 

27 70.44889 

28 69.73194 

29 69.015 

30 68.29806 

31 67.58112 

32 66.86418 

33 66.14724 

34 65.4303 

35 64.71335 

36 63.99641 

37 63.27947 

38 62.56253 

39 61.84559 

40 61.12865 
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Table S53. Effect of substrate temperature on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 7% (w/v). 

Substrate Temperature (°C) Cell Viability (%) 

4 87.37386 

5 86.65692 

6 85.93998 

7 85.22304 

8 84.5061 

9 83.78915 

10 83.07221 

11 82.35527 

12 81.63833 

13 80.92139 

14 80.20445 

15 79.48751 

16 78.77056 

17 78.05362 

18 77.33668 

19 76.61974 

20 75.9028 

21 75.18586 

22 74.46892 

23 73.75197 

24 73.03503 

25 72.31809 

26 71.60115 

27 70.88421 

28 70.16727 

29 69.45033 

30 68.73338 

31 68.01644 

32 67.2995 

33 66.58256 

34 65.86562 

35 65.14868 

36 64.43174 

37 63.71479 

38 62.99785 

39 62.28091 

40 61.56397 
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Table S54. Effect of CaCl2 concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 3% (w/v). 

CaCl2 Concentration (mM) Cell Viability (%) 

0 73.53324 

100 73.2398 

200 72.94636 

300 72.65293 

400 72.35949 

500 72.06605 

600 71.77262 

700 71.47918 

800 71.18574 

900 70.89231 

1000 70.59887 

 

Table S55. Effect of CaCl2 concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 5% (w/v). 

CaCl2 Concentration (mM) Cell Viability (%) 

0 73.96856 

100 73.67512 

200 73.38169 

300 73.08825 

400 72.79481 

500 72.50138 

600 72.20794 

700 71.9145 

800 71.62107 

900 71.32763 

1000 71.0342 
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Table S56. Effect of CaCl2 concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v) and gelatin concentration was set to a constant value of 7% (w/v). 

CaCl2 Concentration (mM) Cell Viability (%) 

0 74.40388 

100 74.11044 

200 73.81701 

300 73.52357 

400 73.23014 

500 72.9367 

600 72.64326 

700 72.34983 

800 72.05639 

900 71.76295 

1000 71.46952 

 

 

Table S57. Effect of physical crosslinking duration on cell viability predictions through linear 

regression modeling trained using the generalized dataset. Alginate concentration was set to a constant 

value of 3% (w/v) and gelatin concentration was set to a constant value of 5% (w/v). 

Physical Crosslinking Duration (s) Cell Viability (%) 

30 73.68288 

60 73.67512 

90 73.66736 

120 73.6596 

150 73.65185 

180 73.64409 

210 73.63633 

240 73.62857 

270 73.62081 

300 73.61305 

330 73.60529 

360 73.59753 

390 73.58977 

420 73.58202 

450 73.57426 

480 73.5665 

510 73.55874 

540 73.55098 

570 73.54322 

600 73.53546 

630 73.5277 

660 73.51994 

690 73.51219 

720 73.50443 
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Physical Crosslinking Duration (s) Cell Viability (%) 

750 73.49667 

780 73.48891 

810 73.48115 

840 73.47339 

870 73.46563 

900 73.45787 

930 73.45011 

960 73.44235 

990 73.4346 

1020 73.42684 

1050 73.41908 

1080 73.41132 

1110 73.40356 

1140 73.3958 

1170 73.38804 

1200 73.38028 

1230 73.37252 

1260 73.36477 

1290 73.35701 

1320 73.34925 

1350 73.34149 

1380 73.33373 

1410 73.32597 

1440 73.31821 

1470 73.31045 

1500 73.30269 

1530 73.29494 

1560 73.28718 

1590 73.27942 

1620 73.27166 

1650 73.2639 

1680 73.25614 

1710 73.24838 

1740 73.24062 

1770 73.23286 

1800 73.22511 
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Table S58. Effect of extrusion pressure on cell viability predictions through linear regression modeling 

trained using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) 

and gelatin concentration was set to a constant value of 5% (w/v). 

Extrusion Pressure (kPa) Cell Viability (%) 

0 76.86298 

5 76.66374 

10 76.4645 

15 76.26526 

20 76.06602 

25 75.86678 

30 75.66754 

35 75.46829 

40 75.26905 

45 75.06981 

50 74.87057 

55 74.67133 

60 74.47209 

65 74.27285 

70 74.0736 

75 73.87436 

80 73.67512 

85 73.47588 

90 73.27664 

95 73.0774 

100 72.87816 

105 72.67892 

110 72.47967 

115 72.28043 

120 72.08119 

125 71.88195 

130 71.68271 

135 71.48347 

140 71.28423 

145 71.08498 

150 70.88574 

155 70.6865 

160 70.48726 

165 70.28802 

170 70.08878 

175 69.88954 

180 69.6903 

185 69.49105 

190 69.29181 

195 69.09257 

200 68.89333 

205 68.69409 

210 68.49485 
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Extrusion Pressure (kPa) Cell Viability (%) 

215 68.29561 

220 68.09636 

225 67.89712 

230 67.69788 

235 67.49864 

240 67.2994 

245 67.10016 

250 66.90092 

255 66.70167 

260 66.50243 

265 66.30319 

270 66.10395 

275 65.90471 

280 65.70547 

285 65.50623 

290 65.30699 

295 65.10774 

300 64.9085 

 

Table S59. Effect of gelatin concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

0% (w/v). 

Increasing gelatin concentration saw increased cell viability. 

Gelatin Concentration (% w/v) Cell Viability (%) 

0 73.55403 

1 73.77169 

2 73.98935 

3 74.20701 

4 74.42468 

5 74.64234 

6 74.86 

7 75.07766 

8 75.29532 

9 75.51298 

10 75.73064 

11 75.94831 

12 76.16597 

13 76.38363 

14 76.60129 

15 76.81895 

16 77.03661 

17 77.25427 

18 77.47194 

19 77.6896 

20 77.90726 
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Table S60. Effect of gelatin concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

3% (w/v). 

Gelatin Concentration (% w/v) Cell Viability (%) 

0 72.58682 

1 72.80448 

2 73.02214 

3 73.2398 

4 73.45746 

5 73.67512 

6 73.89278 

7 74.11044 

8 74.32811 

9 74.54577 

10 74.76343 

11 74.98109 

12 75.19875 

13 75.41641 

14 75.63407 

15 75.85174 

16 76.0694 

17 76.28706 

18 76.50472 

19 76.72238 

20 76.94004 
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Table S61. Effect of gelatin concentration on cell viability predictions through linear regression 

modeling trained using the generalized dataset. Alginate concentration was set to a constant value of 

5% (w/v). 

Gelatin Concentration (% w/v) Cell Viability (%) 

0 71.942 

1 72.15967 

2 72.37733 

3 72.59499 

4 72.81265 

5 73.03031 

6 73.24797 

7 73.46563 

8 73.6833 

9 73.90096 

10 74.11862 

11 74.33628 

12 74.55394 

13 74.7716 

14 74.98926 

15 75.20693 

16 75.42459 

17 75.64225 

18 75.85991 

19 76.07757 

20 76.29523 
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Table S62. Effect of cell density on cell viability predictions through linear regression modeling trained 

using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) and 

gelatin concentration was set a constant value of 3% (w/v). 

Cell Density (106/mL) Cell Viability (%) 

0.5 72.74688 

1 72.87102 

1.5 72.99516 

2 73.1193 

2.5 73.24344 

3 73.36758 

3.5 73.49172 

4 73.61586 

4.5 73.74 

5 73.86414 

5.5 73.98828 

6 74.11242 

6.5 74.23657 

7 74.36071 

7.5 74.48485 

8 74.60899 

8.5 74.73313 

9 74.85727 

9.5 74.98141 

10 75.10555 
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Table S63. Effect of cell density on cell viability predictions through linear regression modeling trained 

using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) and 

gelatin concentration was set a constant value of 5% (w/v). 

Cell Density (106/mL) Cell Viability (%) 

0.5 73.21686 

1 73.341 

1.5 73.46514 

2 73.58928 

2.5 73.71342 

3 73.83756 

3.5 73.9617 

4 74.08584 

4.5 74.20998 

5 74.33412 

5.5 74.45826 

6 74.5824 

6.5 74.70654 

7 74.83068 

7.5 74.95482 

8 75.07896 

8.5 75.2031 

9 75.32724 

9.5 75.45138 

10 75.57552 
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Table S64. Effect of cell density on cell viability predictions through linear regression modeling trained 

using the generalized dataset. Alginate concentration was set to a constant value of 3% (w/v) and 

gelatin concentration was set a constant value of 7% (w/v). 

Cell Density (106/mL) Cell Viability (%) 

0.5 73.68684 

1 73.81098 

1.5 73.93512 

2 74.05926 

2.5 74.1834 

3 74.30754 

3.5 74.43168 

4 74.55582 

4.5 74.67996 

5 74.8041 

5.5 74.92824 

6 75.05238 

6.5 75.17652 

7 75.30066 

7.5 75.4248 

8 75.54894 

8.5 75.67308 

9 75.79722 

9.5 75.92136 

10 76.0455 
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Appendix B: Python code used for ML model training, 

evaluation, and prediction of cell viability and extrusion pressure 
 

Importing Packages and Functions 

import pandas as pd 
import numpy as np 
from numpy import mean 
import matplotlib as mp 
import matplotlib.pyplot as plt 
import os 
from sklearn.compose import make_column_transformer 
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder 
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier 
from sklearn.svm import SVC, SVR 
from sklearn.metrics import accuracy_score, precision_score, recall_score, 
confusion_matrix, classification_report, f1_score, mean_absolute_error, 
mean_squared_error, roc_auc_score, plot_confusion_matrix 
from sklearn.impute import SimpleImputer, KNNImputer 
from sklearn.model_selection import train_test_split, KFold, LeaveOneOut, 
cross_validate, cross_val_score, GridSearchCV, RepeatedStratifiedKFold 
from sklearn.linear_model import LinearRegression, LogisticRegression, 
Ridge, Lasso, SGDRegressor, SGDClassifier #LogisticRegression is a 
classification model 
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier 
from sklearn import tree 
from sklearn.tree import export_graphviz, DecisionTreeClassifier, 
DecisionTreeRegressor 
from sklearn.pipeline import Pipeline 
 

%matplotlib inline 

Loading Dataset 
Load the dataset for analysis and training in the code below. Change the file path if needed 

 

bioprint_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/20210429/Classification and Regression 
Database (617 instances) 20210429.csv') #change the .csv file path to the 
current location of the dataset 
 

#Setting references column in bioprint_df as the row indices 
bioprint_df = bioprint_df.set_index(bioprint_df['Reference']) 
bioprint_df = bioprint_df.drop(['Reference'], axis = 1) 

Print the first 5 instances of data as well as general dataset array information and how many blank values there 

are per variable 
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#bioprint_df.head(5) 
#bioprint_df.shape 
bioprint_df.isna().sum()  

Data Preprocessing and analysis 
Imputting mode temperatures 

imputer_mode = SimpleImputer(missing_values = np.nan, strategy = 
'most_frequent') #imputing mode value into missing values for temperatures 
bioprint_df.loc[:,['Syringe_Temperature_(°C)','Substrate_Temperature_(°C)']
] = 
imputer_mode.fit_transform(bioprint_df.loc[:,['Syringe_Temperature_(°C)','S
ubstrate_Temperature_(°C)']])  

Analyzing Numerical (Continuous) Data 

Dropping Variables and Instances 

#Drop certain material concentration as no concentration values exist in 
papers 
bioprint_df = bioprint_df.drop(['Fiber_Diameter_(µm)'], axis = 1) #drop for 
extrusion pressure dataset creation 
bioprint_df = 
bioprint_df.drop(['CaCl2_Conc_(mM)','NaCl2_Conc_(mM)','BaCl2_Conc_(mM)','Sr
Cl2_Conc_(mM)','Physical_Crosslinking_Durantion_(s)','Photocrosslinking_Dur
ation_(s)'], axis = 1) #drop these variables to create the extrusion 
pressure dataset from the cell viability dataset 

#Variables where more than 50% of all instances have null values are 
dropped 
#This amounts to variables with 309 or more null instances for the cell 
viability dataset with 617 instances 
#bioprint_df = bioprint_df.dropna(axis = 1, thresh=309) 
 
#Variables where more than 50% of all instances have null values are 
dropped 
#This amounts to variables with 177 or more null instances #Extrusion 
Pressure with 354 instances 
bioprint_df = bioprint_df.dropna(axis = 1, thresh=177) 
 
 

#Drop redundant variables for Mondal Intrastudy dataset creation 
#bioprint_df = 
bioprint_df.drop(['Cell_culture_medium_used?','DI_water_used?','Precrosslin
king_solution_used?','Saline_solution_used?','EtOH_solution_used?','Photoin
itiator_used?','Enzymatic_Crosslinker_used?','Matrigel_used?','Conical_or_S
traight_None','Primary/Not_Primary'], axis = 1) 
 
#Drop instances without cell viability values 
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bioprint_df = 
bioprint_df[bioprint_df['Viability_at_time_of_observation_(%)'].notna()] 
 

#Drop nonprinting instances (instances were extrusion pressure is zero) 
bioprint_df = bioprint_df.drop(bioprint_df[bioprint_df['Extrusion_Pressure 
(kPa)'] == 0 ].index) 
bioprint_df = bioprint_df[bioprint_df['Extrusion_Pressure (kPa)'].notna()] 
#used to create extrusion pressure dataset 

bioprint_df.head(10) 

bioprint_df.shape 
#bioprint_df.isna().sum() 

(354, 45) 

Feature Selection Through Correlation 
This does not require imputing null values yet 

corr = bioprint_df.corr() 
 

display(corr) 

fig, ax = plt.subplots(figsize = (20, 16)) 
sns.heatmap(corr, xticklabels = corr.columns, yticklabels = corr.columns, 
linewidths=0.1) 

abs(bioprint_df.corr()["Viability_at_time_of_observation_(%)"]) 

Create the independent variables (x) set and the dependent variable (y) set from the training dataset. The cell 

viability or other variable name for y need to be change to the full variable name in the dataset used. 

#Drop for cell viability, extrusion pressure, and Intrastudy dataset 
creation 
bioprint_df = 
bioprint_df.drop(['Final_PEGTA_Conc_(%w/v)','Final_PEGMA_Conc_(%w/v)'], 
axis = 1) 

Imputing Values 

bioprint_df.isna().sum() #produces a list of each variable’s number of 
null values = 

Imputation of numerical/continuous values databases 

imputer_knn = KNNImputer(n_neighbors = 30, weights = "uniform") #imputing 
mode value into missing values 
 

#bioprint_df.iloc[:,0:28] = 
imputer_knn.fit_transform(bioprint_df.iloc[:,0:28]) #used for cell 
viability dataset preprocessing 
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bioprint_df.iloc[:,0:22] = 
imputer_knn.fit_transform(bioprint_df.iloc[:,0:22]) #used for extrusion 
pressure dataset preprocessing 
 

Imputation of categorical values in databases 
Missing categorical data is replaced with the most common value 

bioprint_df = 
bioprint_df.fillna(bioprint_df['Conical_or_Straight_Nozzle'].value_counts()
.index[0]) 

#bioprint_df.shape 

bioprint_df.isna().sum() #check if the imputation code works by generating 
a list of the number of null values for each variable 

#Drop categorical or numerical cell viability column depending on which 
type of prediction model is desired (regression versus classification) 
bioprint_df = bioprint_df.drop(['Viability_at_time_of_observation_(%)'], 
axis = 1) 
#bioprint_df = bioprint_df.drop(['Acceptable_Viability_(Yes/No)'], axis = 
1) 
bioprint_df = bioprint_df.drop(['Extrusion_Pressure (kPa)'], axis = 1) 
#bioprint_df = bioprint_df.drop(['Acceptable_Pressure_(Yes/No)'], axis = 1) 

Normalizing/Scalarizing and Encoding Continuous and 

Categorical Data 

#x = bioprint_df.drop("Viability_at_time_of_observation_(%)", axis = 1) 
#y = bioprint_df["Viability_at_time_of_observation_(%)"].values 
 
#x = bioprint_df.drop("Acceptable_Viability_(Yes/No)", axis = 1) 
#y = bioprint_df["Acceptable_Viability_(Yes/No)"].values 
 

#x = bioprint_df.drop("Acceptable_Viability_(Y/N)", axis = 1) 
#y = bioprint_df["Acceptable_Viability_(Y/N)"].values 
 
#x = bioprint_df.drop("Extrusion_Pressure (kPa)", axis = 1) 
#y = bioprint_df["Extrusion_Pressure (kPa)"].values 
 

x = bioprint_df.drop("Acceptable_Pressure_(Yes/No)", axis = 1) 
y = bioprint_df["Acceptable_Pressure_(Yes/No)"].values 
 
#Use MinMaxScaler() function to normalize input values for performance 
metric evaluation. DO NOT USE for value prediction for cell viability and 
extrusion pressure                                                      
#x.iloc[:,0:28] = MinMaxScaler().fit_transform(x.iloc[:,0:28]) # Used for 
cell viability generalized dataset 
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#x.iloc[:,0:29] = MinMaxScaler().fit_transform(x.iloc[:,0:29]) #Used for 
intrastudy dataset 
x.iloc[:,0:22] = MinMaxScaler().fit_transform(x.iloc[:,0:22]) #Used for 
extrusion pressure dataset 
#y = y.reshape(-1,1) #used for extracting mean squared error 
#y = MinMaxScaler().fit_transform(y) #used for extracting mean squared 
error 
 
#x = column_trans.fit_transform(x) 
 
x_ohencoded = pd.get_dummies(x, columns 
=['Cell_Culture_Medium_Used?','DI_Water_Used?','Precrosslinking_Solution_Us
ed?','Saline_Solution_Used?','EtOH_Solution_Used?','Photoinitiator_Used?','
Enzymatic_Crosslinker_Used?','Matrigel_Used?','Conical_or_Straight_Nozzle',
'Primary/Not_Primary']) #one-hot encoding is used to encode 
binary/categorical data in datasets 
 

#x_ohencoded.head() 
#x.head() 
#x.shape 
 
 
#x.isna().sum() 
y_ohencoded = pd.get_dummies(y) 
y_ohencoded.isna().sum() 

x_ohencoded.shape 
#x_ohencoded.isna().sum() 

#x_ohencoded.to_csv('C:/Users/Shuyu/Desktop/export_dataframe.csv', index = 
False, header=True) #exports a .csv dataset file with one hot encoded 
variables 

Machine Learning Algorithms for Regression Modeling 
1. Random Forest Regressor 

def rfr_model_optimization(x, y): 
     
# Perform Grid-Search to find the optimal hyperparameters of random forest 
regression models 
    gsc = GridSearchCV( 
        estimator=RandomForestRegressor(random_state=42), 
        param_grid={ 
            'max_depth': range(3,7), 
            'n_estimators': (10, 50, 100), 
        }, 
        cv=10, scoring='r2', verbose=0,  
n_jobs=-1) #verbose controls how many messages are returned 
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    grid_result = gsc.fit(x, y) 
    best_params = grid_result.best_params_ 
     
    #rfr 
=DecisionTreeRegressor(max_depth=best_params["max_depth"],random_state=42) 
    rfr =RandomForestRegressor(max_depth=best_params["max_depth"], 
n_estimators=best_params["n_estimators"], random_state=42, verbose=False) 
# Perform K-Fold CV 
    scores = cross_val_score(rfr, x, y, cv=10, scoring='r2') 
    return best_params,scores 

rfr_model(x_ohencoded,y) 
 
 

y = np.ravel(y) 
#x_train, x_test, y_train, y_test =  
x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 

#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) #Used for intrastudy dataset since there are no 
categorical variables in the intrastudy dataset to one hot encode 

 
#rfr = RandomForestRegressor(max_depth=3,random_state = 42, 
n_estimators=100) #Use for intrastudy dataset 
#rfr = RandomForestRegressor(max_depth=5,random_state = 42, 
n_estimators=10) #Use for cell viability dataset 
rfr = RandomForestRegressor(max_depth=6,random_state = 42, n_estimators=10) 
#Use for extrusion pressure dataset 
 

rfr.fit(x_train,y_train) 
 
 
pred_rfr = rfr.predict(x_test) #runs label prediction on the test set 
rfr_score = rfr.score(x_tets, y_test) #returns the coefficient of 
determination of the model 

#aur = roc_auc_score(y_test,pred_rfr)  
#mae = mean_absolute_error(y_test,pred_rfr) 
#mse = mean_squared_error(y_test,pred_rfr) 
#print(mae) 
#print(mse) 
print(rfr_score) #coefficient of determination scoring 
 

# Used to create random forest based decision tree 
#plt.rcParams['figure.figsize'] = [20,10] 
#plt.rcParams['font.size']= 10 
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#fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (10,10), dpi=1000) 
#_ = tree.plot_tree(rfr.estimators_[9],feature_names = x_ohencoded.columns, 
class_names = ['Cell viability (%)'], filled=True, fontsize = 12) 

 

# Used to create random forest based feature importance ranking graph 

features = x_train.columns 
importances = rfr.feature_importances_ 
indices = np.argsort(importances) 
 
# customized number of the most important features 
num_features = 10  
 

#plt.figure(figsize=(10,100)) 
#plt.title('Random Forest Regression Feature Importances') 
# only plot the customized number of features 

#Plots a bar graph of the relative feature importance values of the most 
importance features 
plt.barh(range(num_features), importances[indices[-num_features:]], 
color='b', align='center') 
plt.yticks(range(num_features), [features[i] for i in indices[-
num_features:]]) 
plt.xlabel('Relative Importance') 
plt.xlim(0,0.6) 
plt.show() 

 

#Calculates for coefficient of determination (r2) and mean squared error 
values based on the number of cross-validation folds 

def rfr_model(): 
    #model = RandomForestRegressor(max_depth = 3, random_state = 42, 
n_estimators=100) 
    #model = RandomForestRegressor(max_depth = 5, random_state = 42, 
n_estimators=10) #cell viability 617 instances 
    model = RandomForestRegressor(max_depth = 6, random_state = 42, 
n_estimators=10) #extrusion pressure 354 instances 
    return model #model already defined 

def rfr_model_performance(cv): #cv is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = rfr_model() 
    # evaluate the model, scoring can change from ‘r2’ to 
‘neg_mean_squared_error’’ 
    scores = cross_val_score(model, x_ohencoded, y, scoring='r2',  cv=cv, 
n_jobs=-1) 
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    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
rfr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in rfr_folds: 
    # define the folding configuration to test 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) 
    #cv is the # of folds   

    # evaluate k value 
    k_mean, k_min, k_max = rfr_model_performance(cv) # report performance 
    print('> folds=%d, r2=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(rfr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
#plt.plot(rfr_folds, [ideal for _ in range(len(rfr_folds))], color='r', 
label = 'Ideal Mean Squared Error') 
plt.title("Number of Cross Validation Folds vs R2", fontsize = 20) 
plt.xlabel('Folds tested on', fontsize = 20) 
plt.ylabel('R2', fontsize = 20) 
#plt.rcParams.update({'font.size': 10}) 
#plt.legend(loc='upper left') 
plt.rcParams["figure.figsize"] = (10,7) 
# show the plot 
plt.show() 

2. Linear Regression 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) #Used for intrastudy dataset 

 
lr = LinearRegression() 
lr.fit(x_train,y_train) 
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pred_lr = lr.predict(x_test) #runs label prediction on the test set 
lr_score = lr.score(x_test,y_test) #returns the coefficient of 
determination of the model 
#aur = roc_auc_score(y_test,pred_rfr) 
#mae = mean_absolute_error(y_test,pred_rfr) 
#mse = mean_squared_error(y_test,pred_rfr) 
#print(mae) 
#print(mse) 
print(lr_score) #prints the coefficient of determination of the model 

def lr_model(): 
     model = LinearRegression() 
     return model  

def lr_model_performance(cv): #crossval is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = lr_model() 
    # evaluate the model, scoring can change from ‘r2’ to 
‘neg_mean_squared_error’ 
    scores = cross_val_score(model, x_ohencoded, y, scoring='r2', cv=cv, 
n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
lr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in lr_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) cv is the number 
of folds  
    # evaluate k value 
    k_mean, k_min, k_max = lr_model_performance(cv)  
    # report performance 
    print('> folds=%d, mse=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(lr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
plt.plot(lr_folds, [ideal for _ in range(len(lr_folds))], color='b', label 
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= 'Ideal Mean Squared Error') 
plt.title("Folds vs R2") 
plt.xlabel('Folds tested on') 
plt.ylabel('R2') 
#plt.legend() 
plt.rcParams.update({'font.size': 10}) 
# show the plot 
plt.show() 

3. Support Vector Regression 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) #Used for intrastudy dataset  

svr = SVR(kernel = 'rbf') 
svr.fit(x_train,y_train) 
 
pred_svr = svr.predict(x_test) #runs label prediction on the test set 
svr_score = svr.score(x_test,y_test) #returns the coefficient of 
determination of the model 
#aur = roc_auc_score(y_test,pred_svr) 
#mae = mean_absolute_error(y_test,pred_svr) 
#mse = mean_squared_error(y_test,pred_svr) 
#print(mae) 
#print(mse) 
print(svr_score) #prints the coefficient of determination of the model 

def svr_model(): 
     model = SVR(kernel = 'rbf') 
     return model #model already defined 

def svr_model_performance(cv): #crossval is the cross-validation type ex: 
10 fold, loocv, stratified, etc 
    model = svr_model() 
    # evaluate the model, scoring can change from ‘r2’ to 
‘neg_mean_squared_error’ 
    scores = cross_val_score(model, x_ohencoded, y, scoring='r2', cv=cv, 
n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
#svr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 
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# evaluate each k value 
for k in svr_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) # cv is the 
number of folds     

    # evaluate k value 
    k_mean, k_min, k_max = svr_model_performance(cv) 
    # report performance 
    print('> folds=%d, r2=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(svr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
plt.plot(svr_folds, [ideal for _ in range(len(svr_folds))], color='b', 
label = 'Ideal accuracy') 
plt.title("R2 vs Folds tested on") 
plt.xlabel('Folds tested on') 
plt.ylabel('R2') 
#plt.legend() 
plt.rcParams.update({'font.size': 10}) 
# show the plot 
plt.show() 

Classification Models 
1. Random Forest Classifier 

def rfc_model(x, y): 
     
# Perform Grid-Search to find the optimal hyperparameters of a random 
forest classification model 
    gsc = GridSearchCV( 
        estimator=RandomForestClassifier(random_state=42), 
        param_grid={ 
            'max_depth': range(3,7), 
            'n_estimators': (10, 50, 100, 1000), 
        }, 
        cv=3, scoring='accuracy', verbose=0,  
n_jobs=-1) #verbose controls how many messages are returned 
     
    grid_result = gsc.fit(x, y) 
    best_params = grid_result.best_params_ 
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    rfc = RandomForestClassifier(max_depth=best_params["max_depth"], 
n_estimators=best_params["n_estimators"], random_state=42, verbose=False) 
# Perform K-Fold cross validation 
    scores = cross_val_score(rfc, x, y, cv=10, scoring='accuracy') 
    #plt.rcParams['figure.figsize'] = [30,20] 
    #plt.rcParams['font.size']= 20 
    #_ = tree.plot_tree(rfr.estimators_[9],feature_names = 
x.columns,filled=True) # plots a decision tree from the random forest model 
 
    return best_params,scores 

rfc_model(x_ohencoded,y_ohencoded) 
#rfc_model(x,y) #Used for intrastudy dataset 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) #Used for intrastudy dataset 
 
 

#rfc = RandomForestClassifier(max_depth = 3, random_state = 42, 
n_estimators=100) #Used for cell viability dataset 
#rfc = RandomForestClassifier(max_depth = 3, random_state = 42, 
n_estimators=10) #Used for intrastudy dataset 
rfc = RandomForestClassifier(max_depth = 6, random_state = 42, 
n_estimators=50) #Used for extrusion pressure dataset 
 

rfc.fit(x_train,y_train) 
 

pred_rfc = rfc.predict(x_test) 
rfc_score = rfc.score(x_test,y_test) 
print(rfc_score) 
 

#Confusion matrix generation from trained model 

disp = plot_confusion_matrix(rfc, x_test, y_test, 
                            
display_labels=['Unacceptable_CV','Acceptable_CV'], 
                            cmap=plt.cm.Blues) 
print(disp.confusion_matrix) 
 

#plt.rcParams['figure.figsize'] = [30,20] 
#plt.rcParams['font.size']= 20 
#_ = tree.plot_tree(rfc.estimators_[9],feature_names = x.columns, 
class_names = y, filled=True, fontsize = 12) 

features = x_train.columns 
importances = rfc.feature_importances_ 
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indices = np.argsort(importances) 
 

# customized number of the most important features 
num_features = 10  
 
#plt.figure(figsize=(10,100)) 
#plt.title('Random Forest Classification Feature Importances') 
# only plot the customized number of features 

#Plots a bar graph of the relative feature importance values of the most 
importance features 
plt.barh(range(num_features), importances[indices[-num_features:]], 
color='b', align='center') 
plt.yticks(range(num_features), [features[i] for i in indices[-
num_features:]]) 
plt.xlabel('Relative Importance') 
plt.xlim(0, 0.6) 
plt.show() 

def rfc_model(): 
    #model = RandomForestClassifier(max_depth = 3, random_state = 42, 
n_estimators=50) #Intrastudy dataset 
    #model = RandomForestClassifier(max_depth = 3, random_state = 42, 
n_estimators=100) #617 cell viability instances 
    model = RandomForestClassifier(max_depth = 6, random_state = 42, 
n_estimators=100) #354 extrusion pressure instances 
    return model #model already defined 

#scoring = ['accuracy','precision', 'recall'] 
def rfc_model_performance(cv): #crossval is the cross-validation type ex: 
10 fold, loocv, stratified, etc 
    # get the model 
    model = rfc_model() 
    #scoring = 'accuracy','f1','precision','recall','roc_auc' 
    # evaluate the model 
    scores = cross_val_score(model, x_ohencoded, y, scoring='recall', 
cv=cv, n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
#rfc_folds = range(2,11) 
rfc_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in rfc_folds: 
    # define the test condition 
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    cv = KFold(n_splits=k, shuffle=True, random_state=42) # cv is the 
number of folds 
    # evaluate k value 
    k_mean, k_min, k_max = evaluate_rfc_model(cv)                      

    # report performance 
    print('> folds=%d, recall=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, 
k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(rfc_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
plt.plot(rfc_folds, [ideal for _ in range(len(rfc_folds))], color='b', 
label = 'Ideal accuracy') 
plt.title("Number of Cross Validation Folds vs Recall") 
plt.xlabel('Folds tested on') 
plt.ylabel('Recall') 
plt.legend(loc='lower left') 
plt.rcParams.update({'font.size': 10}) 
# show the plot 
plt.show() 

scoring = {'acc': 'accuracy', 
           'prec_macro': 'precision_macro', 
           'rec_micro': 'recall_macro', 
           'f1':'f1'} 
scores = cross_validate(get_rfc_model(), x, y, scoring=scoring, 
                         cv=10, return_train_score=True) 
print(scores.keys()) 
print(scores['test_acc'])   

#Displays a decision tree from the random forest classification model 

#rfc = RandomForestClassifer(max_depth = 3, n_estimators = 100, 
random_state=42, verbose=False) 
#plt.rcParams['figure.figsize'] = [30,20] 
#plt.rcParams['font.size']= 20 
#_ = tree.plot_tree(rfr.estimators_[9],feature_names = 
x.columns,filled=True) 

2. Logistic Regression 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
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#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) 
#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.3, 
random_state = 42) #Mondal 
 

logr = LogisticRegression()  
logr.fit(x_train,y_train) 
 
 

#Confusion matrix generation from trained model 

#pred_logr = logr.predict(x_test) 
#logr_score = logr.score(x_test,y_test) 
#print(classification_report(y_test,pred_logr)) 
#print(confusion_matrix(y_test,pred_logr)) 

disp = plot_confusion_matrix(logr, x_test, y_test, 
                            
display_labels=['Unacceptable_CV','Acceptable_CV'], 
                            cmap=plt.cm.Blues) 
#disp.ax_.set_title(title) 
 

#print(title) 
print(disp.confusion_matrix) 
 
plt.show() 

def lr_model(): 
    model = LogisticRegression(solver='liblinear') 
    return model  

def lr_model_performance(cv): #crossval is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = lr_model() 

    #scoring = 'accuracy','f1','precision','recall','roc_auc' 
    # evaluate the model 
    scores = cross_val_score(model, x_ohencoded, y, scoring='recall', 
cv=cv, n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
lr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in lr_folds: 
    # define the test condition 
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    cv = KFold(n_splits=k, shuffle=True, random_state=42) # cv is the 
number of folds 
    # evaluate k value 
    k_mean, k_min, k_max = lr_model_performance(cv)     

    # report performance 
    print('> folds=%d, recall=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, 
k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(lr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
plt.plot(lr_folds, [ideal for _ in range(len(lr_folds))], color='b', label 
= 'Ideal accuracy') 
plt.title("Number of Cross Validation Folds vs Recall") 
plt.xlabel('Folds tested on', fontsize = 15) 
plt.ylabel('Recall', fontsize = 15) 
plt.legend(loc = "upper left") 
#plt.rcParams.update({'font.size': 20}) 
# show the plot 
plt.show() 

3. Support Vector Classification 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
#x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.3, 
random_state = 42) #Mondal 
svc = SVC(kernel = 'rbf') 
svc.fit(x_train,y_train) 
 
 

pred_svc = svc.predict(x_test) #runs label prediction on the test set 
svc_score = svc.score(x_test,y_test) #returns coefficient of determination 
of the model 
print(svc_score) 
#print(classification_report(y_test,pred_svc)) 
print(confusion_matrix(y_test,pred_svc)) #displays the confusion matrix of 
the model 

def svc_model(): 
     model = SVC(kernel = 'rbf') 
     return model #model already defined 
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def svc_model_performance(cv): #crossval is the cross-validation type ex: 
10 fold, loocv, stratified, etc 
    model = svc_model() 
    #scoring = 'accuracy','f1','precision','recall','roc_auc' 

    # evaluate the model 
    svc_scores = cross_val_score(model, x_ohencoded, y, scoring='recall', 
cv=cv, n_jobs=-1) 
    # return scores 
    return mean(svc_scores), svc_scores.min(), svc_scores.max() 

# define folds to test 
svc_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in svc_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) # cv is the 
mumber of folds 

    # evaluate k value 
    k_mean, k_min, k_max = svc_model_performance(cv)     

    # report performance 
    print('> folds=%d, recall=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, 
k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(svc_folds, means, yerr=[mins, maxs], fmt='o',markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
plt.plot(svc_folds, [ideal for _ in range(len(svc_folds))], color='b', 
label = 'Ideal accuracy') 
plt.title("Number of Cross Validation Folds vs Recall") 
plt.xlabel('Folds tested on') 
plt.ylabel('Recall') 
plt.legend(loc = "upper left") 
plt.rcParams.update({'font.size': 10}) 
#plt.rcParams["figure.figsize"] = (15,10) 
# show the plot 
plt.show() 
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Generating Value Predictions 

x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) 
#rfc.fit(x_train,y_train) 
#pred_rfc = rfc.predict(x_test) 

     print(classification_report(y_test,pred_rfc)) 

#The prediction .csv file can be set to any variable combinations that uses 
the same variables 

predict_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/Cell Viability Prediction Set.csv') #This 
is the predicting dataset  
#predict_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/Mondal Intrastudy Dataset Test Set.csv') 
#This is the predicting set 
#predict_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/Extrusion Pressure Prediction Set.csv') 
#This is the predicting set 
#predict_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/Extrusion Pressure Prediction Set No 
Viability No Sub Temp.csv') 
 

#Dropping the predicted variable from the prediction dataset 

#predict_df = predict_df.drop(['Viability_at_time_of_observation_(%)'], 
axis = 1) 
#predict_df = 
predict_df.drop(['Acceptable_Viability_(N)','Acceptable_Viability_(Y)'], 
axis = 1) 
predict_df = predict_df.drop(['Acceptable_Viability_(Y/N)'], axis = 1) 
#predict_df = predict_df.drop(['Condition','Acceptable_Viability_(Y/N)'], 
axis = 1) #Mondal 
#predict_df = 
predict_df.drop(['Condition','Viability_at_time_of_observation_(%)'], axis 
= 1) #Mondal 
  
 

#train the desired model used for predictions 

#rfr.fit(x_ohencoded,y) 
#rfc.fit(x_ohencoded,y) 
#lr.fit(x_ohencoded,y) 
logr.fit(x_ohencoded,y) 
#svr.fit(x_ohencoded,y) 
#svc.fit(x_ohencoded,y) 
 
#rfr.fit(x,y) #for Intrastudy dataset 
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#lr.fit(x,y) #for Intrastudy dataset 
#svr.fit(x,y) #for Intrastudy dataset 
 

#rfc.fit(x,y) #for Intrastudy dataset 
#logr.fit(x,y) #for Intrastudy dataset 
#svc.fit(x,y) #for Intrastudy dataset 
 
#xnew returns the independent variables of the output .csv with predicted 
values  

#xnew = predict_df.drop(['Acceptable_Viability_(Y/N)'], axis = 1) 
xnew = predict_df.drop(['Viability_at_time_of_observation_(%)'],axis = 1) 
#xnew = predict_df.drop(['Extrusion_Pressure (kPa)'],axis = 1) 
 

#xnew = 
predict_df.drop(['Acceptable_Viability_(N)','Acceptable_Viability_(Y)'],axi
s = 1) 
#xnew.head() 

#ynew returns the predicted output variable of the output .csv  

 

#ynew = rfr.predict(xnew) 
#ynew = rfc.predict(xnew) 
#ynew = lr.predict(xnew) 
ynew = logr.predict(xnew) 
#ynew = svr.predict(xnew) 
#ynew = svc.predict(xnew) 
#xnew_ohencoded.head() 
 

xnew['Acceptable_Viability_(Y/N)'] = ynew #Appends the output variable onto 
the .csv file with prediction values 
#xnew['Viability_at_time_of_observation_(%)']=ynew 
#xnew['Extrusion_Pressure (kPa)']=ynew 
 
export_df = pd.DataFrame(xnew) #creates the dataframe with corresponding 
input and predicted variable values 
export_df.to_csv(r'C:/Users/Shuyu/Desktop/export_dataframe.csv', index = 
False, header=True) #exports the dataframe as a .csv file to a location on 
the computer 
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Appendix C: Python code used for ML model training, 

evaluation, and prediction of filament diameter 
 

Importing Packages and Functions 

import pandas as pd 
import numpy as np 
from numpy import mean 
import matplotlib as mpl 
import matplotlib.pyplot as plt 
import os 
from sklearn.compose import make_column_transformer 
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder 
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier 
from sklearn.svm import SVC, SVR 
from sklearn import svm,tree 
from sklearn.metrics import accuracy_score,precision_score, recall_score, 
confusion_matrix, classification_report, f1_score, mean_absolute_error, 
mean_squared_error, roc_auc_score, plot_confusion_matrix 
from sklearn.impute import SimpleImputer, KNNImputer 
from sklearn.model_selection import train_test_split, KFold, LeaveOneOut, 
cross_validate, cross_val_score, GridSearchCV 
from sklearn.linear_model import LinearRegression, LogisticRegression 
#LogisticRegression is a classification model 
from sklearn import tree 
 

%matplotlib inline 

Loading Dataset 
Load the dataset for analysis and training in the code below. Change the file path if needed 

 

bioprint_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/20210429/Filament Diameter with Existing 
Instances (340 instances) 20210503.csv') #This is the training dataset. The 
.csv file path can be changed to the current location of the dataset 

#Setting references column as the row indices 
bioprint_df = bioprint_df.set_index(bioprint_df['Reference']) 
bioprint_df = bioprint_df.drop(['Reference'], axis = 1) 

Print the first 5 instances of data as well as general dataset array information and how many blank values there 

are per variable 

#bioprint_df.head(5) 
#bioprint_df.info() 
bioprint_df.isna().sum() 

Data Preprocessing and analysis 
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Imputting mode temperatures 

imputer_mode = SimpleImputer(missing_values = np.nan, strategy = 
'most_frequent') #imputing mode value into missing values 
bioprint_df.loc[:,['Syringe_Temperature_(°C)','Substrate_Temperature_(°C)']
] = 
imputer_mode.fit_transform(bioprint_df.loc[:,['Syringe_Temperature_(°C)','S
ubstrate_Temperature_(°C)']]) 

Analyzing Numerical (Continuous) Data 

Dropping Variables and Instances 

#Variables where more than 50% of all instances have null values are 
dropped 
 
#This amounts to variables with 170 or more null instances 
bioprint_df = bioprint_df.dropna(axis = 1, thresh=170) 

bioprint_df.head(5) 

bioprint_df.shape 

Imputing Values 

bioprint_df.isna().sum() 

Imputing of numerical/continuous values in the database 

imputer_knn = KNNImputer(n_neighbors = 30, weights = "uniform") #imputing 
mode value into missing values 
bioprint_df.iloc[:,0:30] = 
imputer_knn.fit_transform(bioprint_df.iloc[:,0:30]) 

Imputing of categorical values in the database 
Missing categorical data is replaced with the most common value 

bioprint_df = 
bioprint_df.fillna(bioprint_df['Conical_or_Straight_Nozzle'].value_counts()
.index[0]) 

bioprint_df.head(10) 

bioprint_df.isna().sum() 

bioprint_df = bioprint_df.drop("Filament_Diameter_(µm)", axis = 1) 
#bioprint_df = bioprint_df.drop("Acceptable_Filament_Diameter_(Yes/No)", 
axis = 1) 

Normalizing/Scalarizing and Encoding Continuous and 

Categorical Data 
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#x = bioprint_df.drop("Filament_Diameter_(µm)", axis = 1) 
#y = bioprint_df["Filament_Diameter_(µm)"].values 
 

x = bioprint_df.drop("Acceptable_Filament_Diameter_(Yes/No)", axis = 1) 
y = bioprint_df["Acceptable_Filament_Diameter_(Yes/No)"].values 
 

#Use MinMaxScaler() function to normalize input values for performance 
metric evaluation. DO NOT USE for value prediction for filament diameter                                                      
#x.iloc[:,0:31] = MinMaxScaler().fit_transform(x.iloc[:,0:31]) #249 
instances 
#x.iloc[:,0:29] = MinMaxScaler().fit_transform(x.iloc[:,0:29]) #339 
instances 
#y = y.reshape(-1,1) 
#y = MinMaxScaler().fit_transform(y) 
 
x_ohencoded = pd.get_dummies(x, columns 
=['Cell_Culture_Medium_Used?','DI_Water_Used?','Precrosslinking_Solution_Us
ed?','Saline_Solution_Used?','EtOH_Solution_Used?','Photoinitiator_Used?','
Enzymatic_Crosslinker_Used?','Conical_or_Straight_Nozzle']) 
 

#x_ohencoded.head(5) 
 
#x_ohencoded.isna().sum() 
#y_ohencoded = pd.get_dummies(y) 

print(x) 

Normalizing/Scalarizing and Encoding Categorical Data 
Our nominal data can be binary encoded through one hot encoding and continous data can be scalarized 

1. Random Forest Regressor 

def rfr_model_optimization(x, y): 
     
# Perform Grid-Search to find the optimal hyperparameters of random forest 
regression models 
    gsc = GridSearchCV( 
        estimator=RandomForestRegressor(random_state=42), 
        param_grid={ 
            'max_depth': range(3,7), 
            'n_estimators': (10, 50, 100, 1000), 
        }, 
        cv=10, scoring=r2', verbose=0,  
n_jobs=-1) #verbose controls how many messages are returned 
     
    grid_result = gsc.fit(x, y) 
    best_params = grid_result.best_params_ 
 
    rfr =RandomForestRegressor(max_depth=best_params["max_depth"], 
n_estimators=best_params["n_estimators"], random_state=42, verbose=False) 
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# Perform K-Fold CV 
    scores = cross_val_score(rfr, x, y, cv=10, scoring='r2') 
     
    return best_params,scores 

rfr_model_optimization(x_ohencoded,y) 

x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = 0.1, 
random_state = 42) 
rfr = RandomForestRegressor(max_depth=3,random_state = 42, n_estimators=10) 
#340 instances 
rfr.fit(x_train,y_train) 
 
pred_rfr = rfr.predict(x_test) #runs label prediction on the test set 
rfr_score = rfr.score(x_test,y_test) #returns the coefficient of 
determination of the model 
#aur = roc_auc_score(y_test,pred_rfr) 
 
#mae = mean_absolute_error(y_test,pred_rfr) 
#mse = mean_squared_error(y_test,pred_rfr) 
#print(mae) 
#print(mse) 
print(rfr_score) 
 
# Displays a decision tree used in the random forest regression model 
#plt.rcParams['figure.figsize'] = [20,10] 
#plt.rcParams['font.size']= 10 
#fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (10,10), dpi=1000) 
#_ = tree.plot_tree(rfr.estimators_[9],feature_names = x_ohencoded.columns, 
class_names = ['Filament_Diameter_(µm)'], filled=True, fontsize = 13.5) 

# Used to create random forest based feature importance ranking graph 

features = x_train.columns 
importances = rfr.feature_importances_ 
indices = np.argsort(importances) 
 

# customized number of the most important features 
num_features = 10  
 

#plt.figure(figsize=(10,100)) 
#plt.title('Random Forest Regression Feature Importances') 
# only plot the customized number of features 
 

#Plots a bar graph of the relative feature importance values of the most 
importance features                    
plt.barh(range(num_features), importances[indices[-num_features:]], 
color='b', align='center') 
plt.yticks(range(num_features), [features[i] for i in indices[-
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num_features:]]) 
#plt.xlabel('Relative Importance') 
plt.xlim(0,0.6) 
plt.show() 

def rfr_model(): 
    model = RandomForestRegressor(max_depth = 3, random_state = 42, 
n_estimators=10)  
    return model #model already defined 

def rfr_model_performance(cv): #cv is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = get_rfr_model() 
    # evaluate the model, scoring can change from ‘r2’ to ‘mse’ 
    scores = cross_val_score(model, x_ohencoded, y, scoring='r2', cv=cv, 
n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
rfr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in rfr_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) 
    # evaluate k value 
    k_mean, k_min, k_max = rfr_model_performance(cv) #cv is the number of 
folds 
    # report performance 
    print('> folds=%d, r2=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(rfr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
#plt.plot(rfr_folds, [ideal for _ in range(len(rfr_folds))], color='r', 
label = 'LeaveOneOut Mean Squared Error') 
plt.title("Number of Cross Validation Folds vs R2") 
plt.xlabel('Folds tested on') 
plt.ylabel('R2') 
#plt.rcParams.update({'font.size': 10}) 
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plt.rcParams["figure.figsize"] = (10,7) 
#plt.legend() 
# show the plot 
plt.show() 

2. Linear Regression 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
lr = LinearRegression() 
lr.fit(x_train,y_train) 
 
pred_lr = lr.predict(x_test) #runs label prediction on the test set 
lr_score = lr.score(x_test,y_test) #returns the coefficient of 
determination of the model 
#aur = roc_auc_score(y_test,pred_rfr) 
 

#mae = mean_absolute_error(y_test,pred_lr) 
#mse = mean_squared_error(y_test,pred_lr) 
#print(mae) 
#print(mse) 
print(lr_score) #returns coefficient of determination (r2)  

def lr_model(): 
   model = LinearRegression() 
   return model  

def lr_model_performance(cv): #crossval is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = lr_model() 
    # evaluate the model, scoring can change from ‘r2’ to 
‘neg_mean_squared_error’ 
    scores = cross_val_score(model, x_ohencoded, y, scoring='r2', cv=cv, 
n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
lr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in lr_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) #cv is the number 
of folds   
    # evaluate k value 
    k_mean, k_min, k_max = lr_model_performance(cv) 
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    # report performance 
    print('> folds=%d, r2=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(lr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
#plt.plot(lr_folds, [ideal for _ in range(len(lr_folds))], color='r', label 
= 'Ideal accuracy') 
plt.title("Number of Cross Validation Folds vs R2") 
plt.xlabel('Folds tested on') 
plt.ylabel('R2') 
#plt.legend() 
plt.rcParams["figure.figsize"] = (10,7) 
# show the plot 
plt.show() 

3. Support Vector Regression 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 1) 
svr = SVR(kernel='poly') 
svr.fit(x_train,y_train) 
 

pred_svr = svr.predict(x_test) #runs label prediction on the test set 
svr_score = svr.score(x_test,y_test) #returns the coefficient of 
determination of the model 
#aur = roc_auc_score(y_test,pred_rfr) 
 

#mae = mean_absolute_error(y_test,pred_lr) 
#mse = mean_squared_error(y_test,pred_lr) 
#print(mae) 
#print(mse) 
print(svr_score) #coefficient of determination scoring 

def svr_model(): 
    model = SVR(kernel='rbf') 
    return model #model already defined 

def evaluate_svr_model(cv): #crossval is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = svr_model() 
    # evaluate the model 
    scores = cross_val_score(model, x_ohencoded, y, 
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scoring='neg_mean_squared_error', cv=cv, n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
svr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in svr_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) #cv is the number 
of folds                 
  

    # evaluate k value 
    k_mean, k_min, k_max = svr_model_performance(cv)  
    # report performance 
    print('> folds=%d, mse=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, k_max)) 
    # store mean accuracy 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(svr_folds, means, yerr=[mins, maxs], fmt='o', markersize = 5, 
color = 'black', linewidth = 3) 
# plot the ideal case in a separate color 
#plt.plot(svr_folds, [ideal for _ in range(len(svr_folds))], color='r', 
label = 'Ideal accuracy') 
plt.title("Number of Cross Validation Folds vs Mean Squared Error") 
plt.xlabel('Folds tested on') 
plt.ylabel('Mean Squared Error') 
#plt.legend() 
# show the plot 
plt.rcParams["figure.figsize"] = (10,7) 
plt.show() 

Classification Models 
1. Random Forest Classifier 

def rfc_model(x, y): 
     
# Perform Grid-Search to find the optimal hyperparameters of a random 
forest classification model 
    gsc = GridSearchCV( 
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        estimator=RandomForestClassifier(random_state=42), 
        param_grid={ 
            'max_depth': range(3,7), 
            'n_estimators': (10, 50, 100, 1000), 
        }, 
        cv=10, scoring='accuracy', verbose=0,  
n_jobs=-1) #verbose controls how many messages are returned 
     
    grid_result = gsc.fit(x, y) 
    best_params = grid_result.best_params_ 
     
    rfr = RandomForestClassifier(max_depth=best_params["max_depth"], 
n_estimators=best_params["n_estimators"], random_state=42, verbose=False) 
# Perform K-Fold CV 
    scores = cross_val_score(rfr, x, y, cv=10, scoring='accuracy') 
    return best_params,scores 

     rfc_model(x_ohencoded,y) 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
rfc = RandomForestClassifier(max_depth = 6, random_state = 42, 
n_estimators=10) #339 instances 
rfc.fit(x_train,y_train) 
 

pred_rfc = rfc.predict(x_test) 
rfc_score = rfc.score(x_test,y_test) 
print(classification_report(y_test,pred_rfc)) 
print(confusion_matrix(y_test,pred_rfc)) 
#aur = roc_auc_score(y_test,pred_rfr) 
 

#mae = mean_absolute_error(y_test,pred_rfr) 
#mse = mean_squared_error(y_test,pred_rfr) 
##print(mae) 
#print(mse) 
#print(rfr_score) 
 
 

#Displays a decision tree used in the random forest classification model  

#plt.rcParams['figure.figsize'] = [30,20] 
#plt.rcParams['font.size']= 20 
#_ = tree.plot_tree(rfc.estimators_[9],feature_names = x_ohencoded.columns, 
class_names = y, filled=True, fontsize = 12) 

importances = rfc.feature_importances_ 
std = np.std([rfc.feature_importances_ for tree in rfc.estimators_], 
             axis=0) 
indices = np.argsort(importances)[::-1] 
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# Print the feature ranking 

features = x_train.columns 
importances = rfc.feature_importances_ 
indices = np.argsort(importances) 
 

# customized number of the most important features 
 

num_features = 10  
 

#plt.title('Random Forest Classification Feature Importances') 
# only plot the customized number of features 

 

#Plots a bar graph of the relative feature importance values of the most 
importance features 
plt.barh(range(num_features), importances[indices[-num_features:]], 
color='b', align='center') 
plt.yticks(range(num_features), [features[i] for i in indices[-
num_features:]]) 
plt.xlabel('Relative Importance') 
plt.xlim(0,0.6) 
plt.show() 

def rfc_model(): 
    model = RandomForestClassifier(max_depth = 6, random_state = 42, 
n_estimators=10) 
    return model #model already defined 

 
def rfc_model_performance(cv): #crossval is the cross-validation type ex: 
10 fold, loocv, stratified, etc 
    model = rfc_model() 
    # evaluate the model                                                   
#scoring = ['accuracy','precision', 'recall'] 
    scores = cross_val_score(model, x_ohencoded, y, scoring='accuracy', 
cv=cv, n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
rfc_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in rfc_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) # cv is the 
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number of folds 
    # evaluate k value 
    k_mean, k_min, k_max = evaluate_rfc_model(cv)  
    # report performance 
    print('> folds=%d, accuracy=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, 
k_max)) 
    # store mean accuracy 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(rfc_folds, means, yerr=[mins, maxs], fmt='o', markersize = 20, 
color = 'black', linewidth = 10) 
# plot the ideal case in a separate color 
plt.plot(rfc_folds, [ideal for _ in range(len(rfc_folds))], color='r', 
label = 'Ideal accuracy') 
plt.title("Fold vs Accuracy") 
plt.xlabel('Fold tested on') 
plt.ylabel('Accuracy score') 
plt.legend(loc='upper left') 
plt.rcParams["figure.figsize"] = (20,20) 
# show the plot 
plt.show() 

scoring = {'acc': 'accuracy', 
           'prec_macro': 'precision_macro', 
           'rec_micro': 'recall_macro', 
           'f1':'f1'} 
scores = cross_validate(get_rfc_model(), x, y, scoring=scoring, 
                         cv=10, return_train_score=True) 
print(scores.keys()) 
print(scores['test_acc'])   

2. Logistic Regression 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42) 
 

logr = LogisticRegression() 
logr.fit(x_train,y_train) 
 
 

pred_logr = logr.predict(x_test) 
logr_score = logr.score(x_test,y_test) 
print(classification_report(y_test,pred_logr)) 
print(confusion_matrix(y_test,pred_logr)) 
#aur = roc_auc_score(y_test,pred_rfr) 
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def lr_model(): 
    model = LogisticRegression() 
    return model  

def lr_model_performance(cv): #crossval is the cross-validation type ex: 10 
fold, loocv, stratified, etc 
    model = lr_model() 
    # evaluate the model 

#scoring = ['accuracy','precision', 'recall'] 
    scores = cross_val_score(model, x_ohencoded, y, scoring='recall', 
cv=cv, n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# define folds to test 
lr_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 

# evaluate each k value 
for k in lr_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) #cv is the number 
of folds 
    # evaluate k value 
    k_mean, k_min, k_max = lr_model_performance(cv)  
    # report performance 
    print('> folds=%d, recall=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, 
k_max)) 
    # store mean accuracy 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(lr_folds, means, yerr=[mins, maxs], fmt='o',color = 'black') 
# plot the ideal case in a separate color 
plt.plot(lr_folds, [ideal for _ in range(len(lr_folds))], color='r', label 
= 'Ideal accuracy') 
plt.title("Fold vs Recall") 
plt.xlabel('Fold tested on') 
plt.ylabel('Accuracy score') 
plt.legend(loc = "upper left") 
plt.rcParams["figure.figsize"] = (15,10) 
# show the plot 
plt.show() 
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3. Support Vector Classification 

x_train, x_test, y_train, y_test = train_test_split(x_ohencoded,y,test_size 
= 0.1, random_state = 42, shuffle='false') 
svc = SVC(kernel = 'rbf') 
svc.fit(x_train,y_train) 
 
pred_svc = svc.predict(x_test) 
svc_score = svc.score(x_test,y_test) 
print(classification_report(y_test,pred_svc)) 
print(confusion_matrix(y_test,pred_svc)) 
#aur = roc_auc_score(y_test,pred_rfr) 

# Plots a confusion matrix of support vector classifier performance 
 

disp = plot_confusion_matrix(svc, x_test, y_test, 
                            display_labels=['FD out of tolerance','FD 
within tolerance'], 
                            cmap=plt.cm.Blues) 
#disp.ax_.set_title(title) 
 

print(title) 
print(disp.confusion_matrix) 
 

plt.show() 

def svc_model(): 
     model = SVC(kernel = 'rbf') 
     return model #model already defined 

def svc_model_performance(cv): #crossval is the cross-validation type ex: 
10 fold, loocv, stratified, etc 
    model = svc_model() 
    # evaluate the model 

#scoring = ['accuracy','precision', 'recall'] 
    scores = cross_val_score(model, x_ohencoded, y, scoring='recall', 
cv=cv, n_jobs=-1) 
    # return scores 
    return mean(scores), scores.min(), scores.max() 

# calculate the ideal test condition 
ideal, _, _ = evaluate_svc_model(LeaveOneOut()) 
print('Ideal: %.3f' % ideal) 

# define folds to test 
svc_folds = [2,5,10] 

# record mean and min/max of each set of results 
means, mins, maxs = list(),list(),list() 
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# evaluate each k value 
for k in svc_folds: 
    # define the test condition 
    cv = KFold(n_splits=k, shuffle=True, random_state=42) #cv is the number 
of folds 
    # evaluate k value 
    k_mean, k_min, k_max = evaluate_svc_model(cv)  
    # report performance 
    print('> folds=%d, recall=%.3f (%.3f,%.3f)' % (k, k_mean, k_min, 
k_max)) 
    # store mean score 
    means.append(k_mean) 
    # store min and max relative to the mean 
    mins.append(k_mean - k_min) 
    maxs.append(k_max - k_mean) 

# line plot of k mean values with min/max error bars 
plt.errorbar(svc_folds, means, yerr=[mins, maxs], fmt='o',color = 'black') 
# plot the ideal case in a separate color 
plt.plot(svc_folds, [ideal for _ in range(len(svc_folds))], color='r', 
label = 'Ideal accuracy') 
plt.title("Fold vs Accuracy") 
plt.xlabel('Fold tested on') 
plt.ylabel('Accuracy score') 
plt.legend(loc = "upper left") 
plt.rcParams["figure.figsize"] = (15,10) 
# show the plot 
plt.show() 

Generating Value Predictions 

#The prediction .csv file can be set to any variable combinations that uses 
the same variables 

predict_df = pd.read_csv('C:/Users/Shuyu/Desktop/20201229 Bioink 
Database/20210406/Final Database/Filament Diameter Prediction Set 340 
Instances.csv') #This is the predicting set 
 

#rfr.fit(x_ohencoded,y) 
#lr.fit(x_ohencoded,y) 
#svr.fit(x_ohencoded,y) 
 
#rfc.fit(x_ohencoded,y) 
#logr.fit(x_ohencoded,y) 
svc.fit(x_ohencoded,y) 
 
#Dropping filament diameter variable from the prediction dataset                      
x = bioprint_df.drop("Acceptable_Filament_Diameter_(Yes/No)", axis = 1) 
y = bioprint_df["Acceptable_Filament_Diameter_(Yes/No)"].values 
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#xnew returns the independent variables of the output .csv with predicted 
values 

xnew = predict_df.drop(['Filament_Diameter_(µm)'],axis = 1) 
#xnew = predict_df.drop([‘Acceptable_Filament_Diameter_(Yes/No)”, axis =1)  
 

#ynew returns the predicted output variable of the output .csv  

#ynew = rfr.predict(xnew) 
#ynew = lr.predict(xnew) 
#ynew = svr.predict(xnew) 
 
#ynew = rfc.predict(xnew) 
#ynew = logr.predict(xnew) 
ynew = svc.predict(xnew) 
#xnew_ohencoded.head() 
 
 

xnew['Filament_Diameter_(µm)'] = ynew 
 

export_df = pd.DataFrame(xnew) #creates the dataframe with corresponding 
input and predicted variable values 
export_df.to_csv(r'C:/Users/Shuyu/Desktop/export_dataframe_FD.csv', index = 
False, header=True) #exports the dataframe as a .csv file to a location on 
the computer 
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