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Customizing skills for assistive robotic
manipulators, an inverse reinforcement
learning approach with error-related potentials
Iason Batzianoulis 1,5, Fumiaki Iwane1,2,3,5, Shupeng Wei 1,5, Carolina Gaspar Pinto Ramos Correia1,

Ricardo Chavarriaga2, José del R. Millán 2,3,4,6✉ & Aude Billard 1,6✉

Robotic assistance via motorized robotic arm manipulators can be of valuable assistance to

individuals with upper-limb motor disabilities. Brain-computer interfaces (BCI) offer an

intuitive means to control such assistive robotic manipulators. However, BCI performance

may vary due to the non-stationary nature of the electroencephalogram (EEG) signals. It,

hence, cannot be used safely for controlling tasks where errors may be detrimental to the

user. Avoiding obstacles is one such task. As there exist many techniques to avoid obstacles

in robotics, we propose to give the control to the robot to avoid obstacles and to leave to the

user the choice of the robot behavior to do so a matter of personal preference as some users

may be more daring while others more careful. We enable the users to train the robot

controller to adapt its way to approach obstacles relying on BCI that detects error-related

potentials (ErrP), indicative of the user’s error expectation of the robot’s current strategy to

meet their preferences. Gaussian process-based inverse reinforcement learning, in combi-

nation with the ErrP-BCI, infers the user’s preference and updates the obstacle avoidance

controller so as to generate personalized robot trajectories. We validate the approach in

experiments with thirteen able-bodied subjects using a robotic arm that picks up, places and

avoids real-life objects. Results show that the algorithm can learn user’s preference and adapt

the robot behavior rapidly using less than five demonstrations not necessarily optimal.
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Individuals with spinal cord injury (SCI) often experience
permanent neurological deficits and severe motor disabilities,
which impair their ability to perform even the simplest

everyday tasks, such as reaching-to-grasp objects. Assistance from
robots may enable patients to recover some of their lost dexterity
by letting a robotic system to perform these task on their behalf.
In those cases where residual muscular capabilities are not reliable
enough, a way to control such assistive robotic system is through
brain–computer interfaces (BCIs)1,2.

A BCI measures and decodes the subject’s neural activity,
translating their motor intention into the corresponding actions
of a robot arm. These BCIs decode cortical correlates of move-
ment parameters such as velocity3–5 or position6,7, thus providing
direct control of the robot arm. Nevertheless, even after rather
long training sessions, BCI performance still suffers from large
variability over time and is significantly slower than the corre-
sponding human actions.

Moreover, operation of the system relies on a continuous
modulation of the brain signals to control the robot’s motion.
Such intense level of concentration may not be amenable to all
users. Involuntary changes in the user’s mental state, as well as
fatigue and workload, may deteriorate BCI performance8,9.
Such continuous modulation of the brain signals is therefore
meant to be imprecise and cannot be used reliably for tasks that
require fast reactivity and high precision, such as when avoid-
ing obstacles. Hence, to facilitate user’s learning and control, we
propose to grant some authority to the robotic system, by
developing a shared-control paradigm for obstacle avoidance
that exploits a high-level cognitive brain signal, generic enough
for different intended robot movements, combined with the
ability of the robotic systems to plan and execute safe and
efficient trajectories to reach the intended goals.

Motion planning has reached a high level of maturity for the
control of robot arms10. A branch of motion planning is trajec-
tory generation driven by dynamical systems (DS), where robot’s
reaching motion toward a target is modeled through a vector field
with one attractor located at the target (Fig. 1a). Once the target is
defined, the robot’s velocity depends only on its position with
respect to the target. The benefits of this method are, among
others, that it enables real-time adaptation of the robot’s
trajectory11. This makes it a natural framework for obstacle
avoidance12, which exhibits high reactivity even in the presence of
moving obstacles13.

Such a framework would avoid BCI depending solely on the
user’s brain signals to drive the robotic arm, as the robot trajectories
could be generated autonomously. However, these automatic tra-
jectories might not be acceptable from the user’s perspective: the
robot may approach the obstacle too closely or avoid it too sharply
for their liking. We, therefore, propose a method that combines
robot learning and BCI techniques by which the user can train the
system to learn the obstacle-avoidance behaviors that suit her/his
individual preferences.

A critical component of our approach is how to gather users’
preferences. Consider a situation where the default trajectories bring
the robot very closely to the object (Fig. 1b). From where the user
stands, this motion may appear as too risky or even leading to a
collision. The user does not need to indicate such a perceived
misbehavior explicitly, something that people suffering from severe
motor disabilities can hardly do; it can be detected directly from the
user’s error-related potentials (ErrP)14,15. Error-related potentials
are time-locked brain potentials elicited when actions do not match
users’ expectations15–18. ErrPs are employed in BCIs for correcting
or adapting brain decoders15,19,20 and recently have been intro-
duced for robot control21–24. While in previous works ErrPs were
triggered by robot actions that are erroneous according to some
explicit criteria, here we show that ErrPs are also elicited by error

expectation—i.e., robot actions during its continuous movement
that the user considers will lead to erroneous trajectories because
they will not meet the user’s preferred obstacle avoidance behavior.

In our framework, upon detecting the occurrence of ErrPs, the
system adjusts its control policy to generate future trajectories
that may better fit the user’s implicit reward function. For this
purpose, we rely on inverse reinforcement learning (IRL), an
approach that uses demonstrations from experts to both learn a
reward function and to produce the optimal trajectory according
to this reward25–28. IRL can hence be used in conjunction with
ErrPs to determine when and how to update the intelligent robot
controller, as illustrated in Fig. 2.

We validate this ErrP-IRL approach with 13 subjects in two
series of experiments, as illustrated in Supplementary Fig. 1. In a
first experiment, 8 subjects interacted with the robot arm via
minimal commands delivered with a joystick to start the robot’s
motion (deflecting the joystick toward the rough desired direc-
tion) and to signal error expectation (releasing the joystick). After
the onset of the motion, the robot moved autonomously from left
to right, or vice versa, using its dynamical system to avoid a wine
glass sitting in the middle of the trajectory. We show that our
IRL-ErrP approach derives the preferred trajectories for each
subject. Then, in a second experiment, 5 additional participants
used the same joystick to make the robot arm perform pick-and-
place tasks, while avoiding obstacles, similar to daily tasks in a
cluttered table. Picking and releasing an object was done by
pressing the joystick button. Results not only show the feasibility
of our approach and the rapid incremental learning of desired
robot motion from a short number of demonstrations, but also
that our approach enables the customization of robot trajectories
according to the user’s individual preferences.

Results
Electrophysiological signature of ErrPs. As hypothesized, error
expectation (i.e., perception of an eventual collision) elicited
ErrPs in subjects’ brain. Figure 3a and Supplementary Fig. 2
illustrate the grand average of all the data collected during the
first and second experiments over all subjects (N= 13) of the
EEG channel FCz, located in the fronto-central midline, for tra-
jectories where the subject released the joystick to avoid a per-
ceived collision (in red, N= 110 ± 32 per subject) and for
trajectories where subjects did not feel the urge to stop the robot
(in blue, N= 295 ± 25 per subject). This ErrP grand average has
been obtained with a causal filter (4th order bandpass Butter-
worth filter with cut-off frequencies [1, 12] Hz) that is necessary
for online real-time analysis of the EEG. Such a causal filter
distorts the signal, what explains why the grand average does not
resemble the usual waveform of an ErrP. Supplementary Fig. 3
reports the grand-averaged signals with the equivalent non-causal
filtering (forward and backward, using the same Butterworth filter
as for the causal version) that clearly exhibits the presence of the
error-related negativity followed by a positive peak, which cor-
responds to the typical waveform of ErrPs although with different
timing as reported in Fig. 3a. The reason for the appearance of the
negative and positive peaks earlier than usual is that, in our case,
EEG is synchronized to joystick release and not to the onset of the
robot action that makes the subject judge the trajectory as risky.
In line with previous works15,21, the sequential negative and
positive deflections were observed for the erroneous condition.
Also, as shown in the scalp-wide topographical representations
(Fig. 3b, top-right and bottom-middle), the first positive peak at
0.15 s and the following negative at 0.5 s were strongly modulated
over the fronto-central area.

A potential confounding factor that may give rise to the EEG
potential associated with erroneous trials is that subjects released
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Fig. 1 Overview of the control architecture and experimental protocol. a The robot follows trajectories generated from a planar dynamical system. The
workspace of the robot (i.e., the table) is modeled with a vector-field and the robot’s trajectories are generated from the position initial position. Therefore,
the robot follows a specific vector to reach its target. b An illustration of our approach. The robot moves towards the cube autonomously avoiding the glass
with trajectories generated by a dynamical system. However, some trajectories (red dashed line) pass very close to the glass, creating a feeling of
uncertainty to the user as the robot may collide with the glass (i.e., obstacle). This error expectation elicits ErrPs in the brain activity of the user and the
output of the ErrPs decoder is associated with the robot trajectories. The desired trajectories are computed with the use of IRL. c The experimental protocol
on the first experiment. The robot moves from left to right and vice versa performing an obstacle avoidance. The dashed dark lines correspond to the
random trajectories of the robot, some of them could result in collision with the obstacle. The subject can deflect the joystick right or left to direct the robot
accordingly or release the joystick for correcting the motion. This protocol corresponds to the calibration session of the second experiment too. d The
experimental protocol in the second experiment. The subject commands the robot to grasp the object and place it on one of the four target positions
(dashed circles) by pushing the joystick left, right, back or forward. The crimson objects correspond to the different obstacles placed in between the target
positions. The green dashed line presents the target options for the user.

Fig. 2 Information flow for training the robot’s controller. For each demonstration, the output of the ErrP decoder is converted into a weight and
introduced to the IRL method together with the demonstration. Then, IRL infers a new trajectory that would lead to high reward on the basis of previous
demonstrations. The resulting trajectory is afterward used to configure the DS-modulation parameters (ρ, η) using gradient descent. Finally, the controller
uses these parameters to generate the next robot’s trajectory, based on a dynamical system approach, that should better reflect user’s preferences and
guarantee obstacle avoidance.
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Fig. 3 ErrP decoding results. a Grand average over all subjects (N= 13) of the EEG channel FCz, located in the fronto-central midline, for erroneous
trajectories (N= 110 ± 32 per subject, in red) and for correct trajectories (N= 295 ± 25 per subject, in blue) during the calibration phase of the two
experiments. For erroneous trials, time 0 s corresponds to the moment where subjects released the joystick; while for correct trials, the blue trace
corresponds to the average EEG potential in the period [1.25, 2.5] s with respect to the onset of the robot motion. Gray area represents the time
interval used for building the ErrP decoder. Inset: Topographical representation of EEG amplitude over the subjects scalp for erroneous trials at three
different time points with respect to the onset; i.e., 0.00, 0.15, and 0.50 s. b Time-frequency analysis of the FCz channel, grand average over all
erroneous trials and subjects. Time 0 s corresponds to the moment where subjects released the joystick. c Classification performance in four different
conditions (mean ± std). The red, blue, green, and purple bars represent averaged time-locked classification accuracy of offline recordings, continuous
classification accuracy of offline recordings, time-locked classification accuracy of online recordings, and continuous classification accuracy of online
recordings, respectively. The vertical dotted line separates subjects who participated in the first experiment (S01-S08) from subjects who did in the
second experiment (S09-S13). *p < 0.01. d Latency to detect ErrPs during continuous robot motion in the online phase (N= 73 ± 22 per subject). The
box plot represents the distribution of the decoding latency with respect to the moment when subjects released the joystick (time 0 s). Vertical dotted
line as in c. e Averaged correct and erroneous robot trajectories obtained during the calibration phase (mean ± std) of the two experiments. Black
dashed line indicates the averaged release time, and the rectangles of each color indicate the time window used for computing the decoder (see
section “Decoding the error-related potentials” for detail). f Error rate over 10% intervals of the calibration phase of the two experiments. Each dot
corresponds to error rate of a subject during the specific time period of calibration, and the box plot illustrates the distribution of error rate for each
interval of the calibration phase.
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the joystick. Such a change in motor behavior should be
accompanied by modulations of the mu and beta rhythms
(broadly [8, 30] Hz) over the controlateral motor cortex that
could extend over adjacent areas, the fronto-central midline FCz
in particular. However, as depicted in Fig. 3b, the main
modulations observed in FCz is an increase of the theta rhythm
([4, 8] Hz), which is considered as the main oscillatory pattern of
error monitoring15,17,29. We have further addressed the effect of
joystick usage in a control experiment that compared the neural
correlates of error expectation when participants either used the
joystick as in the calibration phase of the two experiments or just
monitored the robot trajectories while someone else controlled
the joystick (see subsection “Effects of joystick usage on ErrP”).

ErrP-decoder performance. Figure 3c reports classification
accuracy of the ErrP decoder in four different conditions. Sup-
plementary Figs. 4 and 5 report individual confusion matrices of
the four conditions for the first and the second experiments,
respectively. We collected 61 ± 18 correct and 11 ± 4 erroneous
trials in the first, and 88 ± 42 correct and 18 ± 15 erroneous trials
in the second experiment per subject. On average across all
subjects, 84 ± 8%, 71 ± 9%, 83 ± 11%, and 70 ± 13% (mean ± std)
of classification accuracy was obtained for Offline-Timelock,
Offline-Continuous, Online-Timelock and Online-
Continuous decodings, respectively. Offline performance
measures were determined with data from the calibration phase
performing a 10-fold cross validation, while Online decodings
report classification accuracy achieved during the adaptation
phase when performing the classification analysis either in a time-
lock or in a continuous manner. As expected, Timelock
reached the highest performance for Offline and Online
conditions as it was evaluated on the time-locked windows used
to build the ErrP decoder. This accuracy substantially decreases
during the continuous evaluation of the decoder along the
robot trajectory in the adaptation phase. Nevertheless, Online-
Continuous did not further decrease with respect to Offline-
Continuous. Furthermore, as illustrated in Fig. 3d, despite this
lower online performance, the mean latency across all 13 subjects
in decoding ErrPs with respect to the moment when subjects
released the joystick was 0.76 ± 0.15 s. This value was very close to
the latency of the decoding with the Time-Lock approach, 0.5 s.
The rationale for this latency of the Timelock approach
was because the decoder was trained with the time window of
[0.0, 0.5] s with respect to the release of the joystick. Decoding
latency was similar between the two experiments, 0.78 ± 0.14 and
0.73 ± 0.18 s, respectively.

In order to assess statistical differences of the classification
accuracy across the four different conditions, we performed a two-
way repeated-measures ANOVA, the first factor is Offline or
Online, while the second factor is Timelock or Continuous.
The ANOVA revealed a significant difference between Timelock
and Continuous (F(1, 12)= 27.1, p < 0.001), but not between
Offline and Online (F(1, 12)= 0.55, p= 0.47), nor a significant
interaction between the two factors (F(1, 12)= 0.004, p= 0.95). The
subsequent post-hoc analysis with Bonferroni’s critical value
correction revealed significant differences between Timelock
and Continuous in both Offline and Online conditions, but
not between other pairs of conditions (Fig. 3d and Table 1).

We further analyzed the relationship between the ErrP
classification performance and the release rate during the
adaptation phase of the two experiments by performing Pearson’s
correlation coefficient analysis for the conditions Online-
Continuous (r(13)=−0.655, p(13)= 0.015) and Online-
Timelock (r(13)=−0.770, p(13)= 0.002) (Supplementary
Fig. 6). As expected, subjects with lower ErrP classification

performance had a higher release rate of the joystick due to
inaccurate weighting of the robot trajectories.

Learning the desired parameters with inverse reinforcement
learning. In the first experiment, we investigated the robot tra-
jectories with or without the release, and the error rate of the
calibration phase to understand when and how often participants
released the mouse over the course of the calibration phase. As
shown in Fig. 3e, participants released the joystick when the robot
was moving along a lower trajectory, and so passing closer to the
obstacle, compared to the trajectory in which participants did not
release the joystick. The rationale for this behavior is that these
lower trajectories elicited error expectation. Upon the release, we
observed an elbow shape in the trajectory to avoid the obstacle
without collision. The number of collisions was 4 ± 1 per subject
during the first batch with random modulation parameters, i.e.,
before the modulation parameters were generated by IRL.
Additionally, we analyzed the release rate during the calibration
phase to examine if there was a trend in the subjects’ behavior
over time. Figure 3f illustrates the error rate for each 10% interval
of the calibration phase; a Pearson’s correlation revealed no trend
of the release rate across subjects during the course of calibration
(r(130)= 0.037, p(130)= 0.67), endorsing no effect of habitua-
tion on releasing the joystick.

As shown in the previous subsection, the performance of the
ErrP decoder varies among the subjects, and its accuracy
decreases during online operation. If the output of the ErrP
decoder were used directly to control the assistive robotic arm, its
low performance would result in inconsistent and unreliable
trajectories. Here, we present a method for dealing with this issue
and increasing the efficiency of the robot. Figure 2 illustrates the
control approach. To learn the preferred trajectories for each
subject, we associate each demonstrated trajectory with a weight
coming from the posterior probability of the ErrP decoder
(W= 1− PostProb(ErrP)). Then, we employ an IRL method with
these demonstrations to converge to the desired trajectory.

The first step of the IRL consists of an update of the reward
function. The reward function is an implicit model of the subject’s
costs function. In our implementation, IRL expresses the reward
function as a weighted linear combination of Gaussian kernels,
which are radial basis functions, centered on the obstacle. Each
kernel has a different width. The superposition of the kernels
delineates the preferred regions around the obstacle. As learning
proceeds, the width for each kernel changes and the region may be
enlarged or shrunk to reflect the subject’s preference.

Figure 4a illustrates the evolution of the reward function after
three consecutive rounds of IRL adaptation for one of the
subjects. As mentioned, updates are influenced by the probability
of having decoded an ErrP. The lower the probability, the higher
importance is given to the trajectory. This is visible by looking at
the first two learning rounds (first two graphs in Fig. 4a). The
introduction of a demonstration with a significantly higher
weight than the previous one moves the area with high reward
(yellow ring) closer to this demonstration. As more demonstra-
tions are introduced, the size of the area with high reward
increases (third graph of Fig. 4a), covering the demonstrations of
high weight and rejecting the demonstration with lower weight.
Thus, the generated trajectory (gray dashed line in Fig. 4a) is
closer to the trajectories of high weight.

In practice, the ErrP decoder may assign quite different weights
to similar trajectories as depicted in Fig. 4b-i. Although the
trajectories (black and red lines) are similar, the ErrP decoder
assigns a significantly smaller weight to the red trajectory with
respect to the two black trajectories (0.91 and 0.81 to the black
trajectories and 0.35 to the red trajectory). Nevertheless, the
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weighted IRL tolerates this inconsistency and generates a
trajectory (i.e., green dashed line) in between the trajectories
the system considers to be correct. Figure 4d further illustrates
how our IRL module handles the variability of the ErrP decoder,
which not always assign the correct weights to the trajectories.
The ErrP-decoder assigned small weights to 4 out of the 5 first
demonstrations (Fig. 4d-i). As a result, the new generated
trajectory lies in-between these four demonstrations and the
uncorrected demonstration to which the ErrP decoder assigned a
weight of 1. For the next 5 robot trajectories (Fig. 4d-ii), the
subject applied no correction although the ErrP-decoder assigned
different weights to each of the trajectories, indicating differences
in the subjective evaluation of their quality. Hence, the IRL-based
learning scheme manages to produce a trajectory closer to the
preferred trajectory for this subject. Furthermore, although no
corrections were applied by the subject, 2 out of the 5 robot
trajectories in Fig. 4d-ii had weights less than 0.4, likely indicating
cases of false positives. Similar to the previous case, the weighted
IRL tolerates the inconsistency of the ErrP-decoder.

Besides the above case of false positives, the variability of the
EEG signals could also make the ErrP decoder generate false
negatives; i.e., the decoder fails to detect the ErrP associated to a
robot trajectory which the subject did correct. Figure 4b-ii shows
such a case where the subject applied a correction to the red
trajectory that leads to a sharp change of direction. However, the
ErrP decoder falsely assigned a large weight (0.84%) to this
trajectory, in the same range as the black continuous trajectory for
which the subject did not apply any correction. Still, the
erroneously classified trajectory had only a minor influence on
the new trajectory generated by the IRL module, which remains in
close proximity to the other two (correct) trajectories. Thus, the
weighted IRL approach exhibits a high tolerance to inconsistencies
of the ErrP decoder.

The approach is not only robust to the natural variability and
sub-optimal performance of the ErrP decoder, but it also converges
rather quickly. Indeed, once the modulation parameters are
generated by our learning scheme (i.e., after the first 3 or 5
trajectories, depending on the experiment), the subject did not need
to correct the robot motion in the large majority of the ensuing
trajectories, as shown in Fig. 4c. In both experiments, the number of
corrections during adaptation is significantly lower than before IRL
initialization (i.e., initial trajectories during the calibration phase
generated with random modulation parameters). Specifically, a two-
sample t-test on the ratio of the number of corrections over the
overall trials before and during adaptation returned p < 0.001 in the
first experiment (60 corrections out of 224 trials before adaptation
and 9 out of 336 during iterative adaptation, over all eight subjects),
regardless of the number of trials used for IRL initialization, and
p= 0.0443 in the second experiment (41 corrections out of 192
trials before adaptation and 24 out of 320 during adaptation, over
all five subjects). Supplementary Fig. 7 presents the percentage of
corrections of each subject. Interestingly, in the first experiment, the
subjects corrected the robot trajectories 2.2 ± 1.0% and 2.5 ± 1.3% of

the adaptation trials when using 3 and 5 demonstrations for IRL
initialization, respectively. A two-sample t-test between the number
of corrections when the number of trials used for IRL initialization
was 3 or 5 showed no significant differences (p= 0.87). This
indicates that 3 demonstrations are efficient for identifying the
subject’s preferred trajectories. Furthermore, no significant differ-
ences were noticed between the frequency of corrections and the
stage of the adaptation phase; the corrections were not concentrated
on specific sets of trials (one-sample t-test over the frequency of
correction occurrences over all subjects, p= 0.78 for the 3
demonstrations and p= 0.65 for the 5 demonstrations).

We further evaluated this assumption of fast IRL convergence
in the second experiment, where the subjects were asked to
interact with the robot to perform more complex pick-and-place
tasks. The subjects corrected 8.25 ± 3% of the adaptation trials,
3.75 times more than in the first experiment (p= 0.04). The
increase in the number of corrections was expected due to the
increase on the task complexity, since this protocol not only
involved avoiding obstacles, but also picking and moving objects
to multiple targets. In addition, the subject’s viewpoint to the
robot motion affected the number of corrections. Although no
significant differences were noticed on the frequency of correc-
tions among the different robot motions (p= 0.58, one-way
ANOVA), the subjects corrected on average 65.9% less the robot
motion when the motion direction was perpendicular to the
subject’s field of view (perpendicular to the sagittal plane) than
sideways. No significant differences were noticed between the
frequency of corrections and the stage of the adaptation phase;
the corrections were not concentrated on specific sets of trials
(p= 0.58, an one-sample t-test over the frequency of correction
occurrences over all subjects). Moreover, all the subjects drove the
robot to all of the four potential targets, for more details see
Supplementary Fig. 8.

Furthermore, it is worth noting that our approach enables the
customization of robot trajectories according to the subject’s
preference. Figure 5a presents the final trajectories of two subjects
for the four sets of adaptation trials (i.e., the learned trajectories at
the end of each evaluation) in experiment 1 when using 3 initial
demonstrations. The trajectories of subject 5 pass closer to the
obstacle than those of subject 4 who prefers a more conservative
robot behavior. Also, and importantly, the learned trajectories for
each subject are consistent. Customization to individual prefer-
ences is also depicted on the distribution of the learned DS-
modulation parameters (Fig. 5b) for the two subjects, which are
different. This is also the case across all subjects as illustrated in
Fig. 5c. Supplementary Figs. 9 and 10 provide more details on the
learned parameters for all subjects in experiment 1. Although,
given the small number of parameters, there is an overlap across
subjects, the values of the parameters still result in different
personalized trajectories. Moreover, as shown in Fig. 5d, the
convergence to individual parameters is not arbitrary, but reflects
the actual behavior of the subjects during the calibration phase.
Taking as a reference the subjects’ behavior during the calibration

Table 1 Results of the post-hoc analysis between each pair of conditions, indicating the estimated difference between the
corresponding two marginal means of classification performance, the standard error of the estimated difference, and the
corresponding p-value.

Condition 1 Condition 2 Estimated difference [%] Standard error [%] p-value

Offline-Timelock Offline-Continuous 12.7 1.8 <0.001
Online-Timelock Online-Continuous 12.9 3.3 0.002
Offline-Timelock Online-Timelock 1.0 1.6 0.55
Offline-Continuous Online-Continuous 1.27 1.8 0.49

Statistically significant p-values are in bold
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phase (400 trajectories of which 25% were perceived as erroneous
by subjects) used for calibration of the individual ErrP decoders,
the KL-divergence is significantly lower between the distributions
of the modulation parameters learned by the IRL method and the
parameters accepted by the subject during the calibration phase
than between the distributions of learned parameters and the
parameters corrected by the subject during the calibration phase
(two-sample t-test, p < 10−3). This indicates that the learned
parameters correspond indeed to a subset of the parameters the
subject considers acceptable.

Effects of joystick usage on ErrP. Although the neural correlate
of error expectation when participants released the joystick have
the properties of an ErrP, the question arises as to whether error
expectation without the use of the joystick would have the same
neural correlate. To answer this question, and rule out that the
neural correlate of error expectation is not elicited by the inter-
action with the joystick or overlapping components, we per-
formed a control experiment in a setup identical to the calibration
phase of the two experiments, where the robot arm moved
from one side of the table to the other while avoiding an obstacle

Fig. 4 Evolution of the reward function and of the robot’s trajectories during learning. a Representative example of the evolution of the reward function
when increasing the number of demonstrations. The warmer color corresponds to the areas with high reward whilst the cooler color to areas of low reward.
Since the Gaussian kernels are centered on the position of the obstacle, the area with a high reward becomes circular. The gray dashed lines correspond to
the trajectory generated by the IRL method and the red, green, and black line correspond to the successive adaptation trajectories. b Two examples of
addressing the uncertainty of the ErrP decoder. The IRL infers the green dashed line on the basis of the two black (continuous and dashed) and the red
lines. In both examples, the output of the ErrP decoder for red trajectories is inconsistent with respect to the other trajectories. i. Although the red
trajectory is very similar to the black trajectories with large weights, the ErrP decoder assigns a small weight to the red one. ii. Despite the red trajectory
corresponds to a correction from the subject, the ErrP decoder assigns it a large weight. Nevertheless, the inconsistencies of the ErrP decoder have no
effect on the inferred trajectory; it remains closer to the dark trajectories than to the red trajectories. c Average ratio and standard error between the
number of corrected trials over the number of overall trials before (i.e., during the calibration phase) and during the adaptation phase of the IRL method for
the first and second experiments. Subjects corrected the robot motion significantly less times during the adaptation of IRL for both the first and second
experiment: p < 0.001 and p= 0.0443, respectively. d Representative example of the effect of the ErrP-decoder output. The generated trajectories are
between to the demonstrations with higher weights (smaller output from the ErrP-decoder) and the demonstrations with a lower weight. Left graph: the
demonstrations and their weights that have been used to generate the preferred trajectory with our IRL approach. Right graph: the generated trajectories
during iterative learning.
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in the middle. In this control experiment participants either used
the joystick as before (condition “with-joystick”) or monitored
the robot trajectories while an operator utilized the joystick,
never releasing it even if the robot arm collided with the object
(condition “without-joystick”).

Supplementary Fig. 11 shows the grand-averaged signals of the
two classes, i.e., erroneous and correct, in the two conditions, i.e.,
with-joystick and without-joystick. We collected 232 ± 39 correct
and 64 ± 34 erroneous trials in the with-joystick condition, as well
as 272 ± 16 correct and 31 ± 15 erroneous trials in the without-
joystick condition. We observed a reduced number of erroneous
trials in the without-joystick condition as participants indicated
their subjective preferences retrospectively, i.e., after completing a
trial. The number of collisions between the end-effector and the
obstacle was 3 ± 2 times in the with-joystick condition, whereas it
was 6 ± 2 times in the without-joystick condition. To confirm
whether these time-locked neural responses are significantly
different due to the motor action of releasing the joystick, we
performed a Wilcoxon’s signed-rank test for each time sample of
the signals between the with- and without-joystick conditions for
each class, followed by a Benjamini–Hochberg false discovery
rate correction30,31. The statistical analysis revealed no significant
difference between the two conditions for both the erroneous and
correct classes. Furthermore, we computed the Pearson’s correlation
coefficient of the two conditions within the time window of [−0.1
0.4] s, independently for each class (erroneous: r(256)= 0.869,
p(256) < 0.001; correct: r(256)= 0.006, p(256)= 0.93). These results
confirm that the neural correlate of error expectation is elicited by
the perception of an erroneous trajectory that leads to a collision
and not by the interaction with the joystick or multiple overlapping
components.

Supplementary Table 2 presents an overall summary of the
experiments and their results. Supplementary Video 1 presents an

overview of our methods and results together with our robotic
implementation.

Discussion
We have described and experimentally validated a novel approach
for assistive robotic manipulators that people with residual motor
capabilities, although lacking fine control, can easily operate
and rapidly train to perform desired behaviors. Our approach
combines inverse reinforcement learning (IRL) techniques and
brain–computer interfaces (BCI) that decode error-related poten-
tials (ErrP), enabling the robotic system to infer a reward function
from the subject’s ErrP that leads to individual preferred control
policies without requiring the participant to make it explicit. Such a
combination avoids the need to collect optimal demonstrations,
something that people suffering from severe motor disabilities can
hardly do. Instead, the intelligent robotic manipulator automatically
generates trajectories that are weighted by the output of the ErrP
decoder, indicating whether or not the user considers them
appropriate. These weighted trajectories are continuously fed to the
IRL module to achieve seamless adaptation to the user’s preferences.

Results not only show the feasibility of our ErrP-IRL approach
and the rapid incremental learning of desired robot motion from
a short number of demonstrations (Fig. 4), but also that our
approach enables the customization of robot trajectories
according to the subject’s individual preferences (Fig. 5). Criti-
cally, the learned parameters reflect the actual behavior of the
subjects during the calibration phase. Furthermore, since our
approach requires a small number of training samples, it scales
very well, and exhibits good generalization capabilities, to more
complex tasks like in our second experiment where the systems
learns the subject’s preferred trajectories in 8 different conditions
for pick-and-place tasks while avoiding other objects on the table.

Fig. 5 Final parameters and robot’s trajectories after learning. a Example of preferred trajectories for two subjects in experiment 1 (Subjects 4 and 5).
Subject 5 prefers trajectories closer to the obstacle. b The distributions of the learned modulation parameters for Subjects 4 and 5. The preferences of the
two subjects are depicted on the different distributions of the learned parameters. The distribution of the learned parameters for Subject 4 occupies a
higher region than the one of Subject 5. c Map of Hellinger distances among the distributions of the learned modulation parameters between all the
subjects of experiment 1. d Comparison of the KL-divergence (mean ± std) between the distributions of the modulation parameters learned by the IRL
method against the parameters corrected and the parameters accepted by the subject during the calibration phase (400 trajectories of which ~25% were
perceived as erroneous by subjects) used for calibration of the ErrP decoder. **p < 10−3.
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Another key property of our approach is its robustness to the
natural variability and sub-optimal performance of the ErrP
decoder when deployed online and in a continuous manner.

In contrast to other brain-controlled robot studies4,5,7, our
approach does not require assistance from a virtual interface for
controlling the robot. The increased authority on the autonomous
robotic system reduces subject’s efforts to control the robot. This is
advantageous over other approaches where the subject was required
to continuously modulate the brain activity for controlling
position6,7,24 and orientation22 of the end-effector. Correcting
discrete erroneous robot actions with ErrPs and RL methods has
shown great potentials in robot control23,32,33. Here, we extend the
use of ErrPs in a number of ways: (i) they are associated not only to
explicit erroneous actions, but also to error expectation; (ii) they can
be decoded also during continuous robot motion; and (iii) they
carry enough information to learn the subject’s preferred robot
trajectories rather than only the motion direction.

In the present study, ErrP were not elicited when participants
observed an explicit erroneous robot action, but by an error
expectation—i.e., the moment during the robot continuous move-
ment that the user considers will lead to an erroneous trajectory
because it will not meet the participant’s preferred obstacle avoid-
ance behavior. The results of the control experiment show that the
neural correlate of error expectation is similar no matter whether
subjects use a joystick to interact with the arm robot or not. This
neural correlate is an event-related potential whose morphology and
topography corresponds to an ErrP, as it consists of the two well-
known electrophysiological negative and positive deflection around
the fronto-central area of the brain, i.e., error-related negativity
(ERN) and error positivity (Pe)34,35. ERN started deflecting even
before the release of the joystick (around −0.1 s before the release,
see Fig. 3a and Supplementary Fig. 3), and peaked around 0.01 s, a
timing considered too early to rely on external sensory feedback36.
Pe was observed around 0.3 s after the release, following ERN. It has
been suggested that Pe may be a delayed parietal P300 associated
with the perception of erroneous actions37–39, a hypothesis sup-
ported by the covariation of the Pe amplitude after errors in a
Simon task to the P300 amplitude in response to variations in the
inter-trial interval40.

Although ErrP has been previously exploited for teaching
robots21,23,24, in these previous works the robot made discrete
movements that facilitated the elicitation and decoding of the ErrP.
Here we demonstrate the presence of ErrP even during continuous
robot motion (Fig. 3), a challenge in the BCI field. Indeed, when
exactly the subject considers that the robot motion is erroneous
may well be an incremental decision-making process, whereby
evidence is accumulated over time41, which varies across trajectories
and subjects. To better characterize this decision, our experimental
protocol asked subjects to release the joystick used for interaction in
order to avoid a perceived collision. Individual ErrP decoders were
trained by aligning EEG data to the time of joystick release, and
then deployed in a continuous manner during the online trajectory-
adaptation phase. Despite the expected decrease in performance,
online continuous decoding was stable and did not further degrade
with respect to the estimated offline-continuous performance with
data collected during the calibration phase. Furthermore, ErrP
decoding exhibited a short latency, which was very close to the
latency of the optimal decoding with the Time-Lock approach
(Fig. 3d).

Previous works have explored the presence of ErrPs during
continuous tasks42–48, but in most of them, erroneous events
were still generated in a discrete manner such as sudden dis-
crepancies in the execution of commands delivered by the sub-
jects. Omedes et al.47 took a step further and analyzed ErrPs
arising from robot trajectories that gradually deviate from targets.
Nevertheless, in their experimental protocol, the deviations

happened always at the same moment along the trajectories,
which facilitated the offline analysis. In our work, the robotic
manipulator followed a variety of trajectories, spanning a large
workspace. Deviations were variable and happened when subjects
determined so, according to risks of collision. More importantly,
our work is the first to have demonstrated in an online setting the
possibility to decode in real-time the presence of ErrP elicited
during continuous robot movements (see also recent work by
Lopes-Dias et al.48, where ErrP were also decoded during con-
tinuous robot movements, but elicited by robot failures (stop
movement) followed by a large perpendicular displacement with
respect to its direction of movement).

To learn the preferred adaptation of the robot trajectories
according to the subject, we integrated the output of the ErrP-BCI
into an IRL scheme. Levine et al.26,27 show that Gaussian-Process
IRL (GPIRL) is able to learn a reward function, representative of the
task, even with sub-optimal demonstrations. Deriving from this
outcome, we associate the demonstrations with a weight, coming
from the ErrP-BCI, which defines the level of optimality of the
demonstrations. Different from the original formulation, we assume
that we have access to this information, as conveyed by the prob-
abilistic output of the BCI. This allows us to take advantage of both
the GPIRL and the availability of naturally elicited brain signals to
modulate the learning. The original GPIRL employs a modular log-
likelihood which makes it vulnerable to the initial random para-
meters of the optimization. Although this case was rarely noticed in
our experiments, a re-initialization is needed to converge to an
optimum.

In our experiments, the subject directs the robot using a joystick,
which is a frequent practice in controlling robot arms from indi-
viduals with motor disabilities49–51. However, it requires some
residual distal muscle activity on the upper limb, which makes it
inaccessible to subjects with severe motor impairments like paralysis
(e.g., high spinal cord injury) or degenerative conditions (e.g., ALS,
MS). In our experimental set-up, the joystick serves solely as a
reliable indicator of the ground-truth, critical for the evaluation of
our approach, and a target definition for the robot. Moreover, our
learning scheme for the preferred robot trajectories avoids any input
from the joystick, and depends only on the output of the ErrP
decoder and the robot demonstrations. Hence, the joystick interface
could be replaced with another interface, e.g., a eye-tracker, for
target selection, without modifying our control approach. There is
evidence that gaze and visual guidance can be used for the selection
of robot actions52–54. Since the subject is not required to constantly
modulate the brain signals in our approach, using an additional
module for target selection based on vision should not increase
subject’s fatigue to unacceptable levels.

Generating robot trajectories using dynamical systems (DS)
provides the robotic system with the flexibility to rapidly modify
the robot trajectories for avoiding the obstacles, whilst guaran-
teeing the system’s convergence to the goal. Since the trajectory
modification depends on two parameters, we exploit this char-
acteristic for relating the output of the ErrP-decoder to the
desired robot trajectories. In our work, we modulate an originally
linear DS based on these two parameters in order to avoid convex
obstacles. Since this method guarantees the stability of the system,
our approach could be further expanded to the modulation of
non-linear dynamical systems12 and to non-convex obstacles13.
However, the obstacle avoidance method modifies the trajectories
of the end-effector of the robotic manipulator, whilst the overall
configuration of the robotic manipulator depends on an inverse-
kinematics solver (e.g., ik-solver). As the ik-solver is agnostic of
the obstacle’s position and shape, the solution from the ik-solver
might result in the collision of the obstacle with another robot-
link. In this work, we address this issue by letting the robotic
manipulator move above the obstacles, assuming that all the
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objects and obstacles are placed on a plane. The introduction of
the obstacles’ characteristics into the ik-solver decrease the pos-
sibility of collision55,56. The incorporation of these approaches to
our system could enable the obstacle avoidance in the joint-level
of the robotic manipulation without removing the benefits of
trajectory generation of the robot’s end-effector from a DS.

Another limitation of our approach is that, in our current
implementation, obstacles were static and located in pre-defined
positions. To bring this work closer to a real-world application,
the robot should be able to detect the targets and obstacles
automatically, possibly through vision, exploiting recent advances
in object detection57 and localization58. Once the moving obstacle
detected, our control algorithm can be used again as it can safely
avoid moving obstacles13. As object recognition may not be
perfect, subjects may need to correct further the robot’s behavior,
this time with IRL acting on the perception. Such an extension is
part of our future work.

The position of the robotic manipulator with respect to the
subject is an important component of an assistive robotic system. In
our experiments, the subjects were outside the workspace of the
robot manipulator due to safety reasons. This set-up is, however,
different from a typical set-up of a robotic manipulator being
attached to a wheelchair of an individual with disabilities. Having a
robot manipulator close to the user may have a positive or a negative
effect on the user’s perception of erroneous robot motion: because of
the proximity errors might be perceived easier and with a larger
valence or, on the contrary, create distractions and loss of focus due
to the operation of the robot (e.g., noise coming from the robot).
Moving forward to a real-life application, it would be important to
test the proposed learning scheme on these real-life conditions.

Looking towards the future, we aim to further design and
develop teaching and control methods for increasing the dexterity
of external prostheses whilst facilitating the interaction for the
subject. Future assistive robotic manipulators should involve
autonomous grasping for an increased grasp stability in a larger
variety of objects. The ultimate goal will be to introduce a
seamless human-machine coordination, capable for performing
complex tasks in real-world environments. This would, however,
dramatically increase the number of variables of the control
system that can be tuned. While learning in our experiments was
quick and required few initial demonstrations, increasing the
number of variables may lead to ambiguities during learning and
far more training time and examples. We will require novel
machine learning and BCI paradigms to prune the search space of
robot’s parameters and rapidly identify those that subjects con-
sider relevant and require to be updated.

Methods
Experimental protocol. Thirteen able-bodied subjects, within 20 to 34 y/o
(24.8 ± 3.2), with no prior knowledge of neurological disorder participated in the
study. Experimental protocols were approved by the local ethics commission
(Cantonal Ethical Committee, PB_2017-00295) and all experiments were carried
out in accordance with the approved guidelines. Informed consent was obtained
from all participants that volunteered to perform the experiments.

We conducted two experiments with different tasks. Eight subjects participated
in the first experiment and five subjects did in the second experiment. In these
experiments, the subject always directed the end-effector of the robot arm with the
joystick, while the robot autonomously performed an obstacle avoidance of an
object placed in the middle of the trajectory, as described in the subsection
“Dynamical system and obstacle avoidance”. Each experiment consisted of two
phases; namely, the decoder-calibration phase and the trajectory-adaptation phase.

In the decoder-calibration phase of the two experiments, the subject made the
robot go left or right by deflecting the joystick roughly in that direction. The robot
moved as long as the joystick was pressed while attempting to avoid an obstacle. The
two DS-modulation parameters that determine the robot trajectory were chosen at
random (sampled from homogeneous distributions) for each trial. This design was
chosen to ensure that we would generate a diversity of trajectories around the object.
We also allowed the robot arm to hit the object lightly. When the subject felt that the
robot motion was not desirable (i.e., risk of a potential collision), s/he released the
joystick. Releasing the joystick immediately modified the parameters of the DS

modulation in order to increase the distance from the object and avoid a collision. A
trial ended once the robot reached one of the two targets (A or B in Supplementary
Fig. 1). We recorded approximately 400 trials, 295 ± 25 trials without release of the
joystick (correct trials), and 110 ± 32 trials with joystick release (erroneous trials) for
each subject. This recording was performed in a single session lasting 40min. The
average duration of a trial was 3.72 ± 0.04 s, and the averaged reaction time to release
the joystick was 1.03 ± 0.10 s with respect to onset of the robot movement. At the end
of this phase, the recorded EEG signals were used to train an ErrP decoder. We
observed collisions between the end-effector of the robot and the obstacle for
8 subjects, 4 ± 1 times per subject, during the calibration phase.

Once the ErrP decoder was trained, we continued to the trajectory-adaptation
phase, where the IRL method was combined with the output of the ErrP decoder to
learn the preferable DS-modulation parameters. To ensure that the experimental
conditions remained comparable across the calibration and adaptation phases,
subjects were instructed to interact with the robot in the same way in both phases.
Specifically, the subject directed the robot to go left or right with the joystick, whilst
the robot was attempting to perform an obstacle avoidance. The subjects were
allowed to release the joystick and correct the robot trajectories, if they perceived a
potential collision (note that IRL will not necessarily lead to learning preferred DS
parameters similar to this automatic, safety behavior of the controller upon joystick
release (i.e., DS parameters that increase the distance to objects), since it accepts the
robot trajectories and not the corrected DS-modulation parameters.) As IRL
requires a batch of demonstrations to initiate the adaptation process, we evaluated
two batch-sizes: 3 or 5 demonstrations. For this initial batch of demonstrations, the
DS-modulation parameters were chosen randomly. Afterward, the DS-modulation
parameters for the following trials were generated from our weighted-IRL method.

In this second phase, we evaluated (1) the output of the ErrP decoder and (2)
the performance of the control approach with the utilization of IRL. Hence, the
trajectory-adaptation phase corresponded to our testing phase. The metric of
performance for the learning of the preferred trajectories was the number of trials
in which the subjects modified the DS modulation (by releasing the joystick) after
the IRL method was initially trained with the first batch of demonstrations.

In the first experiment, the trajectory-adaptation phase consisted of eight sets of
ten trials. In four out of the eight sets of trials, the batch size for the IRL was 5
demonstrations and for the remaining four sets of trials the batch size was 3.

In the trajectory-adaptation of the second experiment, we increased the
complexity of the robot motion bringing it closer to a real application. Specifically,
the subject controlled the robot to pick and place objects from/to four positions,
releasing the joystick in case of error expectation. We placed different obstacles in
between the target positions, letting the robot perform obstacle avoidance
autonomously. The subject selected the target position with the joystick and to
grasp or release the object by pressing the joystick downwards. Since this
experimental setup involved more targets, the IRL method learned trajectories for
eight conditions; one for each set of targets times the factor grasping/not-grasping
the object for each target. Specifically, IRL learned two preferred trajectories for
each target position; one when the gripper was grasping the object and one when
the gripper was open (i.e., without grasping an object). Figure 1c shows the location
of targets and obstacles and the functionality of the joystick. The subject freely
directed the robot to move towards one of the four targets and to grasp or release
the object. Once a batch of 3 demonstrations for each condition were acquired,
using random DS-modulation parameters, the IRL method was trained and
produced the preferable modulation for each condition. Afterward, the subject
performed 40 additional trials, where the latest five demonstrations were used
iteratively to retrain the IRL method for the chosen condition. Subjects repeated the
trajectory-adaptation phase of the second experiment twice.

Dynamical system and obstacle avoidance. The robot trajectories are generated
from a linear first-order autonomous dynamical system (DS):

_ξ ¼ f ðξÞ ð1Þ

where f:ℜd→ℜd is a linear continuous and continuously differentiable function

with a single equilibrium point _ξ
? ¼ f ðξ?Þ ¼ 0. The equilibrium point represents

the target’s position. The use of autonomous dynamical systems enables the gen-
eration of the robot trajectories in real-time utilizing only the current robot’s state
(i.e., the position of the end-effector) and the target’s position. Therefore, once the
location of the target is defined, the end-effector of the robot arm moves towards
the target following linear trajectories.

To avoid obstacles, the initial linear dynamical system can be modulated locally
around the object12,13. In our implementation, we model the obstacles’ boundary
with a sphere centered on the object ξo and with diameter ro, which can be
computed rapidly at run time. By applying this modulation to the dynamical
system, the Eq. (1) becomes:

_ξ ¼ Mðξ; ξo; ro; ρ; ηÞf ðξÞ ð2Þ
The modulation factor M(ξ; ξo, ro, ρ, η) deforms locally the original dynamics f

such that the end-effector of the robot moves around the object. The avoidance
trajectories can be customized by two parameters; the safety factor (η) and the
reactivity (ρ). The parameter η corresponds to the safety margin from the obstacle
whilst ρ effects the magnitude of the modulation.
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In our approach, we define a priori the parameters of the obstacle and let the
subject customize the DS-modulation parameters ρ and η exploiting the ErrPs
elicited from their brain activity.

Inverse reinforcement learning. Let us say that a task is defined by continuous
states x ¼ ðx1; :::; xT ÞT and continuous actions u ¼ ðu1; :::; uT ÞT , such that the next
state is a result of the previous state and the corresponding action:

F ðxt�1; utÞ ¼ xt ð3Þ
The actions of each state are defined by a policy π as a result of a reward

function r(xt, ut). inverse reinforcement learning (IRL) utilizes the observations of
optimal behaviors from experts in order to learn a reward function that describes
the human actions59. The observations correspond to sample paths of an agent that
follows an underline policy π⋆. In this paper, we employ IRL for learning the most
preferable robot trajectories according to the subject.

In our approach, the agent corresponds to the end-effector of the robot while
the observations are the demonstrations of the robot motion, i.e., the trajectories of
the end-effector. Let us define the state as the position of the end-effector ξ and its
velocity _ξ as the action u. Due to the non-linear trajectories of the demonstrations,
we employ a Gaussian process (GP) as the reward function for mapping the feature
values to rewards, similar to the approach of Levine et al.26,27. Specifically, the GP
covariance Kij is a variant of the radial basis function kernel:

kðf i; f jÞ ¼ βexp � 1
2
∑
k
λk½ðf i � f jÞ2 þ 1i≠jσ

2�
� �

ð4Þ

where σ2 is the regularized noise. We introduce a set of features F ¼ ½f1:::fn�T to
the GP, which are induced from the points of the demonstrated trajectories, and
learn the output noiseless trajectory y together with the kernel parameters λ and β.
To induce the features, we use an elliptical base function (EBF) kernel, so that the
corresponding features fi of a point are:

f i ¼ exp � ζ

2
ðξ � μÞTΛðξ � μÞ

� �
ð5Þ

where ζ and Λ correspond to hyper parameters. The center points of the EBF
kernel are the center of the obstacle. We put three kernels at each obstacles, with
different width ζ and covariance matrix Λ. More kernels lead to more computation
time and three kernels is sufficient in our experiment.

In order to find the preferred trajectories, we need to maximize the following
GP likelihood:

L ¼ logPðy; λ; βjFÞ ¼ � 1
2
yTK�1y � 1

2
logjKj þ logPðλ; βjFÞ ð6Þ

where P(λ, β∣F) corresponds to hyper parameters prior that guarantees the sparsity
of λ and prevents degeneracies that occur when y→ 0. Following the work of
Levine et al.27, we select this prior to be:

logPðλ; βjFÞ ¼ � 1
2
trðK�2Þ �∑

k
logðλk þ 1Þ ð7Þ

Once the likelihood is optimized, we can use the reward to retrieve the expert’s
policy. The reward at a feature point f(xt, ut) is given by the GP posterior mean:

rðxt ;utÞ ¼ KT
?;yK

�1y ð8Þ
where K⋆,y is the covariance between f(xt, ut) and the inducing points. In the case
of multiple demonstrations, we maximize the sum of the accumulated likelihood:

LN ¼ ∑
n
Li ð9Þ

with n being the number of demonstrations introduced to the method.
A fundamental assumption of IRL stands on the optimality of the provided

demonstrations. However, this is rarely the case, especially in control methods that
require input from neurophysiological signals due to their low signal-to-noise ratio.
In this work, we address this uncertainty by assigning a weight wi to the provided
demonstration in relation to the brain activity of the subject. Thus, the optimized
likelihood becomes:

LN ¼ ∑
n
wiLi ð10Þ

where wi= 1− PPErrP, with PPErrP being the posterior probability that outputs the
ErrP decoder.

Once we learn the reward function from IRL, we compute the corresponding
modulation of the DS. Since the modulation is described by a pair of parameters
(ρ, η), we employ the basic gradient-free gradient descent, using non-linear
simplex, to compute the modulation parameters which give the closest reward to
the one computed by IRL. The gradients of ρ and η for each step i (gρi and gηi
accordingly) are given from the formulas below:

gρi ¼
Rðρ; ηÞ � Rðρþ ϵ; ηÞ

ϵ
ð11Þ

gηi ¼
Rðρ; ηÞ � Rðρ; ηþ εÞ

ϵ
ð12Þ

where ϵ and R correspond to the learning step (selected to be 10−3) and the learned
reward accordingly. In our experiments, GP-IRL required 10–15 iterations for
producing a trajectory, regardless of the number of demonstrations introduced (3
or 5). The computational time required for the generation of a new set of DS-
modulation parameters was between 10 and 40 s; 13 ± 2.4 and 32 ± 5.8 s when the
initial batch consisted of 3 demonstrations and 5 demonstrations, respectively.

We further investigate the differences among three types of modulation
parameters across subjects: (1) the parameters of the trajectories corrected by the
subjects during the calibration phase used to calibrate the individual ErrP decoders,
considered as erroneous parameters; (2) the parameters of the trajectories that the
subjects did not correct during the calibration phase, considered as correct
parameters; and (3) the parameters learned by the IRL method, or learned
parameters. For each subject, we model the parameters of each of the above three
clusters with Gaussian distributions. We use the Kullback–Leibler divergence (KL-
divergence)60 for exploring the similarities among the distributions for each
subject. KL-divergence is a relative measure of similarity between two distributions
and, in our case, it reveals whether the learned parameters are more similar to the
correct parameters than the erroneous parameters.

Additionally, we examine whether the IRL method converges to the same
parameters for all the subjects or it offers a customized solution for each individual
subject. To do so, we use another type of f-divergence metric, namely the squared
Hellinger distance60. In contrast to the KL-divergence, the squared Hellinger
distance is bounded with values between 0 and 1, where 0 indicates that the means
of the distributions are identical, and reaches its maximum value 1 when the
distributions do not overlap.

Decoding the error-related potentials. We recorded 16 EEG and 3 electro-
oculogram (EOG) signals at 512 Hz via two g.USBAmps (g.tec medical technol-
ogies, Austria). EEG electrodes were located at Fz, FC3, FC1, FCz, FC2, FC4, C3,
C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 (10/10 international system), while
the 3 EOG electrodes were placed at above the nasion and below the outer canthi of
the eyes. The ground electrode was placed on the forehead (AFz) and the reference
on the left earlobe. The EEG and EOG signals were notch filtered at 50 Hz to
eliminate the power noise. To reduce signal contamination, participants were asked
to restrict eye movements and blinks during experiments.

Before the experiment, participants underwent 90 s of recording in which they
were asked to perform clockwise and counter-clockwise rolling of eyeballs, vertical
and horizontal eye movements and repeated eye blinks. This data was subsequently
used to compute coefficients to linearly subtract EOG artifacts from EEG signals
based on the autocovariance matrix of EEG and EOG signals61.

We removed trials in which subjects miss-operated the joystick. Specifically, for
each subject, an erroneous trial was considered anomalous and removed if it was
associated with a joystick release time that deviated from the mean reaction time
for that subject more than a pre-defined threshold; i.e., mean-absolute deviation
(MAD) > 3.

Time-frequency analysis. Main components of the ErrPs were identified by
performing a time-frequency analysis with the Stockwell transform62, S-transform,
on the data recorded during the decoder-calibration phase of the first and second
experiments. To remove baseline drift, we firstly applied a 2nd order causal But-
terworth high-pass filter with the cut-off frequency of 1 Hz. The reason for
employing a causal filter is to emulate the signal processing conditions of online
decoding analysis. Then, EEG signals were epoched in the time window [−0.5 1.0]
s with respect to the onset of the joystick release in erroneous trials, or [1.0 2.5] s
with respect to the onset of the robot movement in correct trials. S-transform
Sx(τ, f) of EEG signals x(t) is defined as follows:

Wxðτ; dÞ ¼
Z1
�1

xðtÞwðt � τ; dÞdt ð13Þ

Sxðτ; f Þ ¼ exp i2πf τ
� �

Wxðτ; dÞ ð14Þ
whereWx(τ, d) is the wavelet transform of signal x(t) and the mother wavelet w(t, f)
is:

wðt; f Þ ¼ jf jffiffiffiffiffi
2π

p exp � t2f 2

2

� �
expð�j2πftÞdt ð15Þ

Sðτ; f Þ ¼ jf jffiffiffiffiffi
2π

p
Zþ1

�1

exp ��ðτ � tÞ2f 2
2

� �
expð�2iπftÞxðtÞdt: ð16Þ

We used two different time windows for erroneous and correct trials because,
while joystick release is a natural marker for erroneous trials, no such marker exists
for correct trials. For these correct trials, we opted to follow a common technique,
which is to arbitrarily choose a segment of the EEG signal18,47,48. We employed the
time window [1.5 2.0] s with respect to the onset of the robot movement, as this is
the period before the robot passes around the obstacle and where the subjects
should closely monitor the situation, i.e., the robot, the obstacle, and the distance
between them.
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The final step for the time-frequency analysis was to compute the event-related
spectral perturbation (ERSP)63 of the erroneous trials (used as the event-related
spectral, ERS) relative to the baseline ν:

ERSPðf ; tÞ ¼ 10log 10
ERSðf ; tÞ
νðf Þ

� �
ð17Þ

where the baseline is the averaged power of correct trials in the time window [1.5
2.0] s with respect to the onset of robot movement, which corresponds to the time
window of correct trials in subsequent classification analysis. The rationale for the
baseline time window was to avoid the presence of visually-evoked event-related
potentials at the beginning of the trajectory, and keep the consistency with the time
window used to create the ErrP classifier (see below). The range of time and
frequency was set to [−0.5 1.0] s and [1 30] Hz, respectively. Since the ErrP is
known to appear over the fronto-central area15–17, this analysis was performed on
the EEG signal at the FCz channel (Fig. 3b).

ErrP decoding. During the IRL trajectory-adaptation phase of the first and second
experiments, we decoded the presence of ErrPs online to weigh robot trajectories in
a seamless fashion. To build the individually customized ErrP decoder, which infers
the presence or absence of ErrPs in a continuous manner, we used the data from
each participant’s individual calibration session. We first applied a 4th order causal
Butterworth bandpass filter with the cut-off frequencies [1 12] Hz. Then, EEG
signals were segmented into epochs: for erroneous trials, we selected the window
[0.0 0.5] s with respect to the onset of joystick release, whereas for correct trials the
window was [1.5 2.0] s with respect to the onset of the robot movement, which
corresponds to the start of a trial. Figure 3e shows these time windows as well as
the grand average of robot trajectories for erroneous and correct trials during the
calibration phase of the first and second experiments.

To enhance the signal-to-noise ratio (SNR) of the EEG signals, we applied a
spatial filter based on canonical correlation analysis64–66. This spatial filter method
transforms the averaged ErrPs to a subspace containing different ERP components.
Only the first three components were kept for further analysis. For every trial, we
extracted three different types of features: the EEG voltage per time sample after
downsampling the data to 32 Hz (48 temporal features); power spectral densities
(PSD) per EEG component (15 PSD features); and features based on the
Riemannian geometry, which computes a low-dimensionality manifold
representation from a non-linear combination of the EEG component space67 (21
covariance features); thus, 84 features in total. In order to extract Riemannian
features based on the spatial covariance matrix between EEG components while
preserving information of temporal dynamics of the waveform, the epoch X was
augmented with an individual template T representing the grand average of
erroneous trials.

Z ¼ ½XT� ð18Þ

CZ ¼ 1
s
ZTZ ¼ 1

s

XTX XTT

TTX TTT

 !
ð19Þ

where s denotes number of time samples of an epoch. The covariance between X
and T allows to capture the temporal dynamics of multi-component EEG signals
with respect to the template. The covariance matrix was then projected on the
tangent space, which was computed based only on the calibration data set68. All
computed features were concatenated and normalized within the range [0, 1].
Similar to our previous study69, we examined classification performance of
different combinations of these three features, (1) temporal; (2) PSD, and (3)
covariance-based features. Although we observed that temporal is the most
informative feature, and temporal features alone yields similar cross-validation
performance to the combined features, we decided to add PSD and covariance-
based features because, based on our experience, they can slightly enhance the
classification performance by taking into account the frequency power modulation
and the spatial covariance of the extracted components. From this feature vector x,
we computed the posterior probability of the presence of an ErrP, p(error∣x) using
diagonal linear discriminant analysis:

pðerrorjxÞ ¼ 1
1� exp�ðw0xþbÞ ð20Þ

To compute the posterior probability of the calibration data without overfitting,
the aforementioned signal processing was performed in a 10-fold cross-validation
manner. Training folds were used to create an ErrP decoder, while the testing fold
was used to estimate continuous modulation of the posterior probability during the
robot trajectory with a sliding window at 32 Hz. In order to avoid visually-evoked
potentials when the robot started to move, we removed from the analysis the first
0.25 s with respect to the onset of trials; thus, the first estimated posterior
probability was obtained on the time window [0.25 0.75] s from the onset of trials.
This process to estimate the posterior probability continued with a sliding window
approach until the robot reached to the end point (3.72 ± 0.04 s on average). Based
on the computed posterior probability, 2 hyper parameters were individually
optimized besides the ErrP decoder, also based only on data collected during the
calibration phase: smoothing factor and decision threshold. The smoothing factor
indicates the length of the time window for a moving average filter, ranging from 1
to 16 with a step of 1. The decision threshold determines whether the subject

considered a trajectory erroneous during a trial, ranging from 0 to 1 with a step of
0.01. The classification algorithm infers the presence of an ErrP if the smoothed
continuous posterior probability exceeds the decision threshold during the robot
movement. For each pair of hyperparameters we computed the Matthew’s
correlation coefficient (MCC), obtaining a 16 × 101 matrix for each testing fold.
The pair of parameters with the highest MCC, averaged over the 10 testing folds,
was chosen as the optimal. By using these parameters, a sigmoid function was fitted
to make the decision threshold be 0.5. Once the optimal hyper parameters were
determined, we used all the available calibraion data to build the ErrP decoder to be
deployed online during the trajectory-adaptation phase.

To assess the classification performance of the ErrP decoder, we computed the
two-class confusion matrices individually for the four different decoding
modalities: Offline-Timelock, Offline-Continuous, Online-
Timelock and Online-Continuous. Ground-truth of a trial was given by
subjects’ behavior, release (erroneous) or no-release (correct) of the joystick.
Offline performances were computed based only on the calibration data using
10-fold cross validation; while Online performances were extracted from the data
of the adaptation phase in which the robot adjusted its trajectory based on ErrP-
BCI output. Timelock represents the classification accuracy of the EEG epochs
used to build the ErrP decoder; i.e., in the case of erroneous trials, EEG signals time
locked to the onset of joystick release. Continuous represents the classification
accuracy of the ErrP decoder continuously applied over the whole robot trajectory
using the sliding window approach described above.

To assess the classification performance during the first and second experiments
of each decoding modality, we performed a two-way repeated measures ANOVA,
the first factor being Offline or Online, while the second factor was Timelock
or Continuous. We collected the four different values from each subject (one
value per modality). For statistical analysis of the classification performance, we
combined the performance measures from the decoder-calibration and trajectory-
adaptation phases of the first and second experiments as they are identical to each
other. Importantly, we did not observe a significant discrepancy of the classification
performance in the adaptation phases of the two experiments, i.e., Online-
Continuous condition (two-sample t-test; p= 0.657).

Effects of joystick usage on ErrP. To rule out that the neural correlate of error
expectation is not elicited by the interaction with the joystick or overlapping
components, we performed a control experiment in a setup identical to the cali-
bration phase of the two previous experiments, where the robot arm moved from
one side of the table to the other while avoiding an obstacle in the middle. Seven
able-bodied subjects (same age distribution than in the main two experiments,
27.3 ± 1.5) took part in the control experiment; data of one of these subjects could
not be analyzed due to a hardware problem that prevented synchronization of EEG
recordings, joystick and robot trajectories.

We recorded the subjects’ EEG and EOG while they interacted with the arm
robot in two conditions, namely, with or without the joystick. In the with-joystick
condition, subjects used the joystick to make the robot arm go left or right,
releasing it if they perceived the risk of a collision. In the without-joystick
condition, subjects were instructed to observe the robot’s movements and pay
attention to how well the robot was avoiding the glass. Only the experimenter used
the joystick. Importantly, in the without-joystick condition, the experimenter never
released the joystick along trajectories even if the robot arm collided with the
object. Furthermore, in the without-joystick condition, subjects had to report their
subjective preference on the performed robot trajectories in the range [1 10], with
values [1 3] for trajectories they would have released the joystick and values above 4
if they would have kept the joystick pressed. This subjective assessment was used to
classify the trials. Trials associated with the subjective report of [1 2 3] were
considered erroneous trials, while trials with values [4 10] were deemed to be
correct trials. In this control experiment, we recorded two runs of 150 trials for
each condition while alternating the order of the conditions. The experiment
always started with a run of with-joystick condition for the subjects to get
accustomed to evaluate the robot trajectories.

We firstly applied a 4th order non-causal Butterworth bandpass filter with the
cut-off frequencies [1 12] Hz. Then, EEG signals were segmented into epochs for
each condition (with- or without-joystick): for the correct trials of both conditions,
we chose the time window [1.5 2.0] s with respect to the onset of the robot
movement. For the erroneous trials, the time windows depended on the condition:
for the with-joystick condition, we used the time window [−0.1 0.4] s with respect
to the release of the joystick (the reason for choosing an earlier time window with
respect to the analysis in the two experiments is that here we use a non-causal filter,
while in the latter we utilize a causal filter for online implementation, which
introduces a delay); whereas for the without-joystick condition, we used the time
window [−0.1 0.4] s with respect to the onset of the per-subject average reaction
time to release the joystick in the with-joystick condition. Subsequently, we
performed cross-correlation analysis between the per-subject average EEG for
erroneous trials at FCz in the with- and without-joystick conditions to re-align the
temporal waveforms of the EEG signals of the two conditions, while restricting the
maximum temporal shift to be twice the standard deviation of the individual
reaction time. The maximum temporal shift was chosen to cover 95% of the
distribution of the actual release time in the with-joystick condition
(mean ± 1.96 × std). We performed statistical tests to compare the grand-averaged
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signals of each class, i.e., erroneous and correct, between the two conditions based
on Wilcoxon’s signed-rank test followed by the Benjamini–Hochberg false
discovery rate correction. Additionally, we computed the similarity of the grand-
averaged signals between the two conditions with Pearson’s correlation analysis
independently for the two classes.

Data availability
The source data for graphs and chars are available as Supplementary Data. All
physiological and empirical data is available at https://zenodo.org/record/3627015.

Code availability
Custom code to implement obstacle avoidance movement is available at https://
github.com/epfl-lasa/IRL_DS_obstacle_avoidance. Physiological analysis was performed
by using MATLAB R2018b using the BioSig toolbox (http://biosig.sourceforge.net). Code
for stockwell transform is available at https://www.mathworks.com/matlabcentral/
fileexchange/51808-time-frequency-distribution-of-a-signal-using-s-transform-
stockwell-transform. For the decoding analysis, the covariance toolbox is available at
https://github.com/alexandrebarachant/covariancetoolbox.
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