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Abstract

This research has developed a parallel algorithm to compute 3-Dimensional

Jacobi moments with high efficiency and accuracy. The algorithm was imple-

mented in CUDA C. Our developing progress was in the order of Legendre

moments, Gegenbauer moments, and Jacobi moments investigated on the

2-D image. Then, we extended research from 2-D to 3-D image. To ver-

ify the algorithm’s performance, we have implemented image reconstruction

from higher orders up to 500 on testing image sized at 512× 512× 512. The

experiment was deployed on Nvidia Tesla V100, which restrained computa-

tional time within 400 milliseconds, and the PSNR value of reconstructed

image reached up to 53.6382.

Keywords: Fast moment computing, Jacobi moments, 3-D image recon-

struction, GPU acceleration.
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Chapter 1

Introduction

Since Hu first proposed the concept of digital image moments invariant[10],

different types of continuous orthogonal moments defined in a rectangular re-

gion have been investigated as unique image features in many scientific fields,

such as image analysis and pattern recognition. However, some computa-

tional issues have obstructed the further development of efficient applications

driven by Legendre, Gegenbauer and Jacobi moment based techniques. The

objective of this research is to exploit the feasible method that can address

the compuational efficiency and accuracy of Jacobi moment.

As the basic one of orthogonal moments set defined in a rectangular re-

gion, Legendre moment has been investigated in early research since 1980

[28][29][15]. In recent years, 256 × 256 image reconstruction via Legendre

moments was implemented in 2014[5]. Gegenbauer moments have drawn

more attention popular in recent 20 years[4][14][8][13][7][2]. However, the

Jacobi moment is studied limitedly due to its complexity[32][26]. In 2018,

a CPU-based parallel matrix multiplication algorithm was implemented for

image reconstruction via Legendre, Gegenbauer, and Jacobi moments which

shortens the computational time within 5 seconds while image size and mo-

ments order are up to 1024 and 1000[20]. Although orthogonal moment

computation has been developed over multiple decades by many researchers,
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the result of applications’ computational time remains on the seconds level

due to the time-consuming computation.

In previous researches, there has commonly been a dilemma between im-

proving efficiency and improving accuracy. In contrast, our parallel algorithm

has addressed this issue. The mathematical approaches we utilized contain

recurrent polynomial, k × k × k numerical scheme, and symmetric proper-

ties. In addition, coalesced memory access, tiled matrix multiplication, and

heterogeneous computation are considered for optimizing the performance of

computation on GPU. By implementing parallel computation, the computa-

tional times of 1024×1024 sized and 512×512×512 sized image reconstruc-

tions via Jacobi moments can be restrained within 20 and 400 milliseconds,

respectively.

Chapter 2 will give a mathematical overview of Legendre, Gegenbauer,

and Jacobi moments and their corresponding reconstruction functions. k×k

numerical scheme, symmetric property, and matrix-cuboid multiplication ap-

proach will be introduced in Chapter 3. The conceptual overview of gen-

eral purpose GPU computing and its optimization methods are introduced

in Chapter 4. Parallel algorithms including polynomial computing, matrix

transpose, and tiled matrix-cuboid multiplication, will be presented in Chap-

ter 5. To verify the performance of our program, we have conducted a series

of reconstructed images and digitalized verification in Chapter 6. Finally,

Chapter 7 will conclude the entire paper.
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Chapter 2

Orthogonal Moments

Applying a moment weighting kernel ψm,n(x, y), the general two-dimensional

continuous moment with the (m + n)-th order of an image function f(x, y)

defined in the rectangular region is given by

Ψm,n =

∫
x

∫
y

ψm,n(x, y)f(x, y)dxdy, (1)

where m,n are non-negative integers. When the kernel function ψm,n(x, y)

is an orthogonal polynomial, Ψm,n are the set of orthogonal moments.

2.1 Legendre Moments

The n-th order Legendre polynomial is defined in Rodrigues-type format [25]

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, (2)

with the recurrent formula

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x), (3)

where P0(x) = 1 and P1(x) = x.

The (m + n)-th order of Legendre moment of an image function f(x, y)
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is defined on the square [−1, 1]× [−1, 1]

λm,n =
(2m+ 1)(2n+ 1)

4

∫ +1

−1

∫ +1

−1

f(x, y)Pm(x)Pn(y) dxdy, (4)

where m,n = 0, 1, 2, ....

2.2 Gegenbauer Moments

The Gegenbauer polynomial, which is also called Ultraspherical polynomial,

of degree α and order n is defined in the interval [−1, 1] as

G(α)
n (x) =

[n/2]∑
k=0

(−1)kΓ(n− k + a)(2x)n−2k

Γ(a)k!(n− 2k)!
, α > −0.5, (5)

where Γ(.) is the Gamma function, [n/2] is either (n − 1)/2 or n/2 for odd

or even values of n, respectively.

The orthogonal Gegenbauer polynomial G
(α)
n (x) obeys the recursive rela-

tion

G
(α)
n+1(x) =

2(n+ α)

n+ 1
xG(α)

n (x)− (n+ 2α− 1)

(n+ 1)
G

(α)
n−1(x) (6)

with G
(α)
0 (x) = 1 , and G

(α)
1 (x) = 2αx.

The (m+ n)-th order of 2-D Gegenbauer moments are defined as

Am,n =
1

C
(α)
m C

(α)
n

∫ 1

−1

∫ 1

−1

f(x, y)G(α)
m (x)G(α)

n (y)w(α)(x)w(α)(y)dxdy. (7)
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where C
(α)
n is the normalization constant

C(α)
n =

2πΓ(n+ 2a)

22αn!(n+ a)[Γ(a)]2
. (8)

2.3 Jacobi Moments

The Jacobi polynomial, occasionally called hypergeometric polynomial, of

the n-th order is defined via the hypergeometric function as follow [16]

Pα,β
n (x) =

(α + 1)n
n!

2F1(−n, 1 + α + β + n;α + 1;
1− x
2

), (9)

where α, β ≥ -1, the hypergeometric function 2F1 is defined as

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
=

Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
, (10)

and the Pochhammer symbol (α)n is

(α)n = α(α + 1)(α + 2), ..., (α + n− 1) =
Γ(α + n)

Γ(α)
, (11)

with n = 1, 2, 3, ..., and (α)0 = 1.

The Jacobi polynomial can also be written in Rodrigues-type format [32]

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β d

n

dxn

[
(1− x)n+α(1 + x)n+β

]
. (12)
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Likewise, Jacobi polynomial obeys the recurrence relation

P (α,β)
n (x) =

1

n(n+ α + β)

[
2n− 1 + α + β

2

(
(2n+α+β)x+

α2 − β2

2n− 2 + α + β

)
P

(α,β)
n−1 (x)− (n− 1 + α)(n− 1 + β)(2n+ α + β)

2n− 2 + α + β
P

(α,β)
n−2 (x)

]
, (13)

where P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) = 1

2

[
α− β + (α + β + 2)x

]
.

For α ≥ −1 and β ≥ -1, a set of Jacobi polynomials satisfies the orthog-

onality condition [23]

∫ +1

−1

w(α,β)(x)P (α,β)
m (x)P (α,β)

n (x)dx = ρ(α,β)n δmn, (14)

with the weight function

w(α,β)(x) = (1− x)α(1 + x)β, (15)

where δmn is the Kronecker symbol, and ρ
(α,β)
n is the normalization constant

ρ(α,β)n =
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ α + β + 1)n!
, (16)

and Γ(.) is the Gamma function.

To simplify the computation, normalization constant ρ
(α,β)
n is transformed to

recurrent formula

ρ
(α,β)
n+1 =

(n+ α + 1)(n+ β + 1)(2n+ α + β + 1)

(n+ 1)(n+ α + β + 1)(2n+ α + β + 3)
ρ(α,β)n , (17a)
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ρ
(α,β)
0 = 2(α+β+1)Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
, (17b)

with n ≥ 0.

Additionally, the symmetric property of Jacobi polynomial is applied for

convenient calculation when α = β [27]

P (α,β)
n (−x) = (−1)nP (β,α)

n (x). (18)

As a matter of fact, Jacobi polynomials are a class of classical orthogonal

polynomials, which can represent the Legendre and Gegenbauer polynomials

as their special cases[3]. For example,

Pn(x) = G
( 1
2
)

n (x) = P (0,0)
n (x), (19)

and

Gλ
n(x) =

Γ(λ+ 1
2
)Γ(n+ 2λ)

Γ(2λ)Γ(n+ λ+ 1
2
)
P

(λ− 1
2
,λ− 1

2
)

n (x). (20)

The 2-D orthogonal (m+ n)-th order of Jacobi moments are defined as

Jm,n =
1

ρ
(α,β)
m ρ

(α,β)
n

∫ +1

−1

∫ +1

−1

f(x, y)P (α,β)
m (x)P (α,β)

n (y)w(α,β)(x)w(α,β)(y)dxdy,

(21)

where m,n = 0, 1, 2, ....

Due to the orthogonality of the Jacobi moments, the image reconstruction
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function of the image f(x, y) from its Jacobi moments can be expressed as

f(x, y) =
∞∑

m=0

m∑
n=0

Jm−n,n P
(α,β)
m−n (x)P

(α,β)
n (y). (22)

When Jacobi moments of certain order ≤ Mmax are provided, the image

function f(x, y) can be approximated by a truncated series

f(x, y) ≃ fMmax(x, y) =
Mmax∑
m=0

m∑
n=0

Jm−n,n P
(α,β)
m−n (x)P

(α,β)
n (y). (23)

Since Legendre and Gegenbauer polynomials are the special cases of Ja-

cobi polynomials, the Legendre and Gegenbauer moments can be seen as

members of Jacobi moments. Therefore, in this research, we will focus our

investigation on Jacobi moments. Furthermore, all results can be extended

to Legendre and Gegenbauer moments by choosing the specified values of

parameters α and β.
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2.4 3-D Jacobi Moments

Referring to (21), the 3-D orthogonal (m+n+o)-th order of Jacobi moments

are defined as

Jm,n,o =
1

ρ
(α,β)
m ρ

(α,β)
n ρ

(α,β)
o

∫ +1

−1

∫ +1

−1

∫ +1

−1

f(x, y, z)

P (α,β)
m (x)P (α,β)

n (y)P (α,β)
o (z)w(α,β)(x)w(α,β)(y)w(α,β)(z)dxdydz. (24)

Similarly, a 3-D image function f(x, y, z) can be reconstructed from an infi-

nite series of its Jacobi moments

f(x, y, z) =
∞∑

m=0

m∑
n=0

n∑
o=0

Jm−n,n−o,o P
(α,β)
m−n (x)P

(α,β)
n−o (y)P (α,β)

o (z). (25)

When certain order ≤ Mmax Jacobi moments are provided, the image func-

tion f(x, y, z) can be approximated by a truncated series

f(x, y, z) ≃ fMmax(x, y, z) =
Mmax∑
m=0

m∑
n=0

n∑
o=0

Jm−n,n−o,o

P
(α,β)
m−n (x)P

(α,β)
n−o (y)P (α,β)

o (z). (26)
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Chapter 3

Improving Accuracy and Efficiency

For a 2-dimensional digital image sized M × N , the image function f(x, y)

becomes its discrete version f(xi, yi) defined in [−1, 1]×[−1, 1] region. There-

fore, the double integration in (1) will transform to a formula approximated

by double summation. The approximate moment Ψ̂m,n can be expressed as

Ψ̂m,n =
∑
x

∑
y

ψm,n(xi, yj)f(xi, yj)∆x∆y, (27)

where ∆x and ∆y are the sampling intervals

∆x = xi − xi−1, (28a)

∆y = yj − yj−1, (28b)

with the constant values ∆x = 2
M

and ∆y = 2
N
.

3.1 k × k sub-regions

Suppose the value of ∆x∆y is used directly to approximate the double in-

tegration over each image pixel in (27), in that case, significant computing

errors of polynomial value in [−1, 1] × [−1, 1] region will be observed when

the moment orders increase[5]. To improve the computational accuracy of
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moments in rectangular region, in this research, a more accurate approximate

formula is applied [12]

Ψ̂m,n =
∑
x

∑
y

f(xi, yj)hm,n(xi, yj), (29)

where

hm,n(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

ψ(x, y) dxdy. (30)

Thus, the 2-dimensional Jacobi moments defined in (21) can be rewritten

as

Ĵm,n =
1

ρ
(α,β)
m ρ

(α,β)
n

M∑
i=1

N∑
j=1

f(xi, yj)hm,n(xi, yj), (31)

where

hm,n(xi, yj) =

∫ xi+
∆x
2

xi−∆x
2

∫ yj+
∆y
2

yj−∆y
2

f(x, y)P (α,β)
m (x)P (α,β)

n (y)w(α,β)(x)w(α,β)(y)dxdy.

(32)

Although several numerical techniques can be applied to calculate the

double integrations in (32), in this research, we have adopted the numerical

scheme of dividing a pixel into k × k sub-regions with the same weights to

improve the accuracy of moments computing [31].

Since the Jacobi polynomials P
(α,β)
m (x) and P

(α,β)
n (y) are independent, the

18



integrals in (32) can be replaced by

hm,n(xi, yj) =
4

k2MN

k∑
r=1

P (α,β)
m (xi,r)w

(α,β)(xi,r)
k∑

s=1

P (α,β)
n (yj,s)w

(α,β)(yj,s),

(33)

where

xi = −1 + (i− 1

2
)
∆x

k
, (34a)

yj = 1− (j − 1

2
)
∆y

k
, (34b)

i = 1, 2, 3, ..., kM and j = 1, 2, 3, ..., kN for an M ×N image.

3.2 Matrix Multiplication

Although applying the k × k numerical scheme can improve moment com-

puting accuracy, it will significantly increase the computational time in most

situations [12].

To address the issue of computational inefficiency, an approach of apply-

ing matrix multiplications on computing moments defined in the rectangular

region was proposed[20]. In our research, we have further improved this

approach by implementing a parallel algorithm to apply the computational

enhancement of GPU.

Substitute (33) into (31), we can express Ĵm,n in the form of matrix

multiplications

19



Ĵm,n =
4

k2MN

1

ρ
(α,β)
m ρ

(α,β)
n

HmGITn , (35)

where (m + n) ≤ Mmax. For different m and n, Ĵm,n can be represented in

the matrix format

Ĵm,n =



J0,0 J0,1 J0,2 . . . J0,Mmax

...
...

...
...

...

JMmax−2,0 JMmax−2,1 JMmax−2,2 . . . 0

JMmax−1,0 JMmax−1,1 0 . . . 0

JMmax,0 0 0 . . . 0


, (36)

G =
M∑
i=1

N∑
j=1

f(xi, yj) =



f1,1 f1,2 f1,3 . . . f1,N

f2,1 f2,2 f2,3 . . . f2,N

f3,1 f3,2 f3,3 . . . f3,N
...

...
...

. . .
...

fM,1 fM,2 fM,3 . . . fM,N


, (37)

20



Hm =
k∑

r=1

P (α,β)
m (xi,r)w

(α,β)(xi,r)

=



P
(α,β)
0 (x1,r)w

(α,β)(x1,r) P
(α,β)
0 (x2,r)w

(α,β)(x2,r) . . . P
(α,β)
0 (xM,r)w

(α,β)(xM,r)

P
(α,β)
1 (x1,r)w

(α,β)(x1,r) P
(α,β)
1 (x2,r)w

(α,β)(x2,r) . . . P
(α,β)
1 (xM,r)w

(α,β)(xM,r)

P
(α,β)
2 (x1,r)w

(α,β)(x1,r) P
(α,β)
2 (x2,r)w

(α,β)(x2,r) . . . P
(α,β)
2 (xM,r)w

(α,β)(xM,r)

...
...

. . .
...

P
(α,β)
Mmax

(x1,r)w
(α,β)(x1,r) P

(α,β)
Mmax

(x2,r)w
(α,β)(x2,r) . . . P

(α,β)
Mmax

(xM,r)w
(α,β)(xM,r)


,

(38)

In =
k∑

s=1

P (α,β)
n (yj, r)w

(α,β)(yj, r)

=



P
(α,β)
0 (y1,r)w

(α,β)(y1,r) P
(α,β)
0 (y2,r)w

(α,β)(y2,r) . . . P
(α,β)
0 (yN,r)w

(α,β)(yN,r)

P
(α,β)
1 (y1,r)w

(α,β)(y1,r) P
(α,β)
1 (y2,r)w

(α,β)(y2,r) . . . P
(α,β)
1 (yN,r)w

(α,β)(yN,r)

P
(α,β)
2 (y1,r)w

(α,β)(y1,r) P
(α,β)
2 (y2,r)w

(α,β)(y2,r) . . . P
(α,β)
2 (yN,r)w

(α,β)(yN,r)

...
...

. . .
...

P
(α,β)
Mmax

(y1,r)w
(α,β)(y1,r) P

(α,β)
Mmax

(y2,r)w
(α,β)(y2,r) . . . P

(α,β)
Mmax

(yN,r)w
(α,β)(yN,r)


.

(39)

G, Hm, and In are M × N , (Mmax + 1) × M , and (Mmax + 1) × N

matrix, respectively. T is the transpose of a matrix. The Jacobi polynomials

P
(α,β)
m (xi,r) and P

(α,β)
n (yj,s) in (38) and (39) are the sum of k × 1 vectors.

21



P (α,β)
m (xi,r)w

(α,β)(xi,r) = P (α,β)
m (xi, 1)w

(α,β)(xi, 1)

+ P (α,β)
m (xi, 2)w

(α,β)(xi, 2) + ... + P (α,β)
m (xi,k)w

(α,β)(xi,k) (40)

and

P (α,β)
n (yj,s)w

(α,β)(yj,s) = P (α,β)
n (yj,1)w

(α,β)(yj,1)

+ P (α,β)
n (yj,2)w

(α,β)(yj,2) + ... + P (α,β)
n (yj,k)w

(α,β)(yj,k). (41)

3.3 Matrix-Cuboid Multiplication

In a 3-D image domain, the 2-D Jacobi moments expressed in (36) can be

regarded as the x − y plane of a 3-D moment cuboid, and the 2-D moment

matrix extends to the 3-D moment cuboid.

Referring to (35), Ĵm,n,o can be expressed as

Ĵm,n,o =
8

k3MNO

1

ρ
(α,β)
m ρ

(α,β)
n ρ

(α,β)
o

Zo(HmGITn ), (42)

where O is the length on z axis and (m+ n+ o) ≤Mmax.

Figure 2 shows an example of 3-D matrix multiplications in (42), where

M = N = O = 4, and Mmax = 3.
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Figure 1: Example of 3-D matrix multiplication

Matrix multiplications in (35) have been extended to matrix-cuboid mul-

tiplications in (42). (Note: matrix-cuboid multiplication can be understood

as matrix A multiply each matrix in the cuboid B on certain plane.)

Similarly, the polynomial matrix Zo on z axis can be expressed as

Zo =
k∑

l=1

P (α,β)
o (zq, l)w

(α,β)(zq, l)

=



P
(α,β)
0 (z1,l)w

(α,β)(z1,l) P
(α,β)
0 (z2,l)w

(α,β)(z2,l) . . . P
(α,β)
0 (zO,l)w

(α,β)(zO,l)

P
(α,β)
1 (z1,l)w

(α,β)(z1,l) P
(α,β)
1 (z2,l)w

(α,β)(z2,l) . . . P
(α,β)
1 (zO,l)w

(α,β)(zO,l)

P
(α,β)
2 (z1,l)w

(α,β)(z1,l) P
(α,β)
2 (z2,l)w

(α,β)(z2,l) . . . P
(α,β)
2 (zO,l)w

(α,β)(zO,l)

...
...

. . .
...

P
(α,β)
Mmax

(z1,l)w
(α,β)(z1,l) P

(α,β)
Mmax

(z2,l)w
(α,β)(z2,l) . . . P

(α,β)
Mmax

(zO,l)w
(α,β)(zO,l)


,

(43)

where each of the Jacobi polynomials in (43) is the sum of the k × 1 vector

P (α,β)
o (zq,l)w

(α,β)(zq,l) = P (α,β)
o (zq, 1)w

(α,β)(zq, 1)

+ P (α,β)
o (zq, 2)w

(α,β)(zq, 2) + ... + P (α,β)
o (zq,k)w

(α,β)(zq,k). (44)
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Figure 2 shows diagrams of 3 phases of matrix-cuboid multiplication in

the process of moment calculation. Referring to (42), Hm ·G, G · ITn , and

Zo ·G are calculated in phases 1, 2, and 3, respectively. Phases 1 and 2 are

conducted on the x− y plane, while phase 3 is executed on the x− z plane.

. =Phase 1: 𝑥 axis

Phase 2: 𝑦 axis

Phase 3: 𝑧 axis

. =

. =

Figure 2: Diagram of 3 phases of matrix-cuboid multiplication in moments
computing

After 3 phases of matrix-cuboid multiplication, each element of cuboid

executes the rest part of (42) . Then, the element with (m+ n+ o) > Mmax

are assigned to 0. Figure 3 shows a 3-D moment cuboid with Mmax = 7.
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Figure 3: An example of 3-D moments cuboid

The planes of y − z and x− z of moments cuboid can be expressed as

Ĵm,n,o =



J0,0,Mmax . . . J0,0,2 J0,0,1 J0,0,0
...

. . .
...

...
...

0 . . . J0,Mmax−2,2 J0,Mmax−2,1 J0,Mmax−2,0

0 . . . 0 J0,Mmax−1,1 J0,Mmax−1,0

0 . . . 0 0 J0,Mmax,0


, (45)

and

Ĵm,n,o =



J0,0,Mmax 0 0 . . . 0

J0,0,Mmax−1 J1,0,Mmax−1 0 . . . 0

J0,0,Mmax−2 J2,0,Mmax−2 J2,0,Mmax−2 . . . 0

...
...

...
. . .

...

J0,0,0 J1,0,0 J2,0,0 . . . JMmax,0,0


. (46)
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Figure 4 demonstrates diagrams of 3 phases of matrix-cuboid multiplica-

tion in the process of image reconstruction.

Phase 4: 𝑦 axis

Phase 5: 𝑥 axis

Phase 6: 𝑧 axis

. =

. =

. =

Figure 4: Diagram of 3 phases of matrix-cuboid multiplication in image
reconstruction
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Chapter 4

General Purpose of CUDA Computing

In this research, our parallel algorithms are implemented using CUDA(Compute

Unified Device Architecture) which was introduced by NVIDIA. This chapter

will introduce the basic CUDA features that are important in our program,

including coalesced memory access, memory allocation, barrier synchroniza-

tion and memory limitation.

4.1 Memory Overview

Figure 5: Overview of GPU memory[11]
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In modern CUDA-GPU, a block assigned to a Streaming Multiprocessor

is divided into 32 threads units called warps. To sufficiently consume each

thread of warps, we assign Tile width to 8 for tiled matrix-cuboid multipli-

cation, so 512 threads per block are allocated.

Figure 5 demonstrates an overview of GPU memory. Table 1 depicts the

features of different memory regarding speed, capacity, and scope. Compared

with off-chip global memory, shared memory has more bandwidth and is ac-

cessible among threads of the same block but holds less storage. Additionally,

accessing the register is fast but only accessible to threads, so register is a

good technique to fetch data from shared memory.

Table 1: Summary of Features of different Memory.
Memory type Speed Capacity Scope
Global memory Slow Large Grid
Shared memory Fast Small Block
Register Fast Small Thread

4.2 Memory limitation

Block size limitation regarding on-chip memory (e.g., shared memory and

registers) is a critical issue determining the feasibility of the CUDA program.

When block size is assigned to 8, there will be 64 and 512 threads allocated

to each block for 2D and 3D respectively. For single-precision floating point

operations, 2D array and 3D array will allocate 256 bytes and 2304 bytes

separately in each block. Besides, maximum number of threads per block is

1024 on modern GPU.
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GPU Tesla K80 Tesla V100
Archeticture Kepler Volta
CUDA cores 2496 5120

Global Memory(GB) 12 16
Shared Memory per Block(bytes) 49152 49152

Figure 6: General Comparison between two classic GPU

4.3 Coalesced Memory Access

Figure 7: Uncoalesced memory access pattern[11]

Figure 7 and Figure 8 shows the uncoalesced and coalesced memory access

respectively. For example, in Figure 8, array A is accessed in the manner as:

A[ph ∗ width+ threadIdx.x]

Since adjacent threads have consecutive threadIdx.x values, the approach
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Figure 8: Coalesced memory access pattern[11]

described in Figure 8 will make threads accessible with consecutive ad-

dresses(a.k.a., coalesced memory access).

4.4 Barrier Synchronization

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Time

_ _𝑆𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠()

Block 0

Figure 9: Diagram of Barrier Syncronization
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As shown in Figure 9, each thread will not reach the next instruction and

start execution at same time within one block. To deal with this issue, we

call barrier synchronization statement(i.e., syncthreads()) to synchronize

execution, which means threads that arrive at this statement early will wait

for threads that reach it late. When all threads finish the instruction and

reach the statement, they are ready to concurrently go to the next instruction

simultaneously.
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Chapter 5

Implementation of GPU-Accelerated Algorithms

In this research, we have developed the GPU-accelerated algorithms for 3-D

Jacobi moments computing and image reconstructions. Primarily, three par-

allel algorithms are developed on the GPU platform, including polynomial

computation, matrix transpose, and matrix-cuboid multiplication. In addi-

tion, due to its nature of sequential computation, we have also implemented

a CPU algorithm to apply (17a) and (17b).

5.1 Parallel Polynomial Computation

Algorithm 1 gives the pseudocode of parallel polynomial computation ac-

cording to the recurrent Jacobi Polynomial in (13) with k schemes. On-chip

memory is utilized in this section. Since on-chip memory will be typically ap-

plied in matrix-cuboid multiplication, we will discuss more details in Section

5.3.

CUDA Intrinsic Math Function is a library only available in device code.

Compared with normal math function, it features with fast speed but less

accuracy[1]. Through our experiments, the PSNR value is not affected when

pow(x, y) is changing to powf(x, y).
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Polynomial values utilized in image reconstruction will conduct a similar

algorithm, but there is no need to apply the k schemes.

Algorithm 1 Parallel computing of polynomial

1: Define 0th and 1st order polynomial 0th x k and 1st x k with k-scheme
2: Allocate k×32 to arrays JP 0th sm, JP 1st sm and weight w in shared

memory.
3: JP 0th sm← 0th x k
4: JP 1st sm← 1st x k
5: w(α,β)(x)← (1− x)α(1 + x)β

6: for h← 1 to k do
7: row 0← row 0 + JP 0th sm ∗ w(α,β)(x)
8: row 1← row 1 + JP 1st sm ∗ w(α,β)(x)
9: end for

10: X JP [0th order]← row 0
11: X JP [1st order]← row 1
12: Previous2nd poly ← 0th x k
13: Previous1st poly ← 1st x k
14: for n← 2 to Mmax do
15: current poly ← substitute Previous2nd poly and Previous1st poly
16: Define JP curr sm on shared memory
17: JP curr sm← current poly
18: row n← 0
19: for h← 1 to k do
20: row n← row n+ JP curr sm ∗ w(α,β)(x)
21: end for
22: X JP [nth order]← row n
23: Previous2nd poly ← Previous1st poly
24: Previous1st poly ← JP curr sm
25: end for
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5.2 Parallel Matrix Transpose

0 1 2 3

0

1

2

3

Figure 10: Diagram of parallel matrix transpose

Figure 10 shows the diagram of parallel matrix transpose. Referring to (42),

Hm yielded from Algorithm 1 is transposed. The odd columns of the trans-

posed matrix times −1 to apply the symmetric property in (18) and yields

to ITn .

Similar to Hm, Zo is polynomials of the positive axis as well. Thus, Hm

can substitute Zo and index on the x − z plane to execute corresponding

matrix-cuboid multiplication.
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5.3 Parallel Matrix-Cuboid Multiplication

As expressed in 42, we have extended the matrix multiplication to matrix-

cuboid multiplication for 3-D Jacobi moments computation and image re-

construction. Since the matrix-cuboid multiplication algorithm holds the

majority calculation amount of the whole program, we adopted the tiled

matrix-cuboid multiplication method to exploit the on-chip memory to opti-

mize the computational efficiency.

Algorithm 2 depicts the pseudocode of the tiled matrix-cuboid multipli-

cation, and Figure 11 shows the diagram of multiplication between matrix A

and cuboid B with 2 tiling width.

𝐴!,! 𝐴!,# 𝐴!,$ 𝐴!,%

𝐴#,! 𝐴#,# 𝐴#,$ 𝐴#,%

𝐵!,!,! 𝐵!,#,!

𝐵#,!,! 𝐵#,#,!

𝐵$,!,! 𝐵$,#,!

𝐵%,!,! 𝐵%,#,!

𝐶!,!,! 𝐶!,#,!

𝐶#,!,! 𝐶#,#,!

Figure 11: Example diagram of multiplication between matrix A and cuboid
B with 2 tiling width
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Algorithm 2 Tiled Matrix-Cuboid Multiplication

1: Define A sm and B sm in shared memory with Tile width
2: temp← 0
3: for ph← 0 to (width/T ile width) do
4: Loading A into A sm
5: Loading B into B sm
6: syncthreads()
7: for i← 0 to Tile width do
8: temp← temp +A sm[threadIdx.y][i]×

B sm[threadIdx.z][i][threadIdx.x]
9: end for

10: syncthreads()
11: end for
12: Result cuboid← temp

5.4 Implementation on CPU

Generally, GPU programming features the advantage of parallel computation

but the disadvantage of high memory latency, which can speed up programs

remarkably when the algorithm is highly parallel so that memory latency

is tolerable. By contrast, the CPU has higher efficiency on sequential com-

putation with low memory latency. Thus, modern GPU development often

advocates being deployed on heterogeneous platforms. Algorithm 3 demon-

strates the pseudocode of our CPU algorithm to compute (17a) and (17b).

As shown in Figure 12, starting from ρ
(α,β)
0 , each ρ

(α,β)
n is calculated via ρ

(α,β)
n−1

and assigned to 1-D array ρ array iteratively. Therefore, such sequential

computation optimally takes advantage of the mechanism of CPU.
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Algorithm 3 Computation of coefficient ρ
(α,β)
Mmax

1: ρ
(α,β)
0 ← (17b)

2: for n← 1 to Mmax do
3: ρ temp← substitute ρ

(α,β)
n−1 into 17a

4: ρ
(α,β)
n−1 ← ρ temp

5: ρ
(α,β)
n ← ρ temp

6: Assign ρ
(α,β)
n to ρ array

7: end for
8: return ρ array

ρ0
(𝛼,𝛽)

ρ1
(𝛼,𝛽)

ρ2
(𝛼,𝛽)

ρ𝑛
(𝛼,𝛽)… ρ𝑀𝑚𝑎𝑥

(𝛼,𝛽)…

Figure 12: Diagram of computing array ρ
(α,β)
m

5.5 Performance of GPU-Accelerated Algorithm on 2-

D Jacobi Moment Computing

To verify our newly proposed GPU-accelerated parallel algorithm, we have

performed the image reconstructions via the 2-dimensional Jacobi moments

applying our GPU methodology for a general comparison with those of the

CPU-main algorithm proposed in [20], where the computational time is

4.8221 seconds when Mmax = 1000, k = 23 and α = β = 0.3. The following

system is employed to perform this experiment.

� System I: an Amazon Web Service (AWS) instance equipped with

NVIDIA K80 GPU, 61 GB RAM and 12-core Intel Xeon E5-2686 2.93
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GHz;

Table 2 shows the computational time, in milliseconds, of image recon-

structions on a testing image sized at 1, 024 × 1, 024 from Jacobi moments

applying our new GPU-accelerated parallel algorithm. Compared with the

experimental results reported in [20], the GPU-based algorithm has substan-

tially improved the computational time over the CPU algorithm.

Table 2: The computational time(ms) of 1, 024×1, 024 image reconstructions
via the 1000-th order of Jacobi moments with α = 0.3 and β = 0.3 between
our GPU-based algorithm.

k/Mmax 100 200 400 600 800 1000
1× 1 5.4285 11.9645 29.2900 53.3869 87.1518 125.0830
3× 3 5.5239 11.9465 29.6824 53.7598 87.7610 125.0563
7× 7 5.6209 12.2677 30.0813 54.3206 88.5738 126.5641
11× 11 5.8006 12.3777 30.7504 54.7838 89.4475 126.4578
15× 15 5.9706 12.6044 30.8305 55.9036 90.5527 128.4940
19× 19 6.1716 12.9281 31.6762 56.5531 91.2469 117.4786
23× 23 6.3164 13.2126 32.0236 57.6629 92.6617 131.7593
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Chapter 6

Experimental Results and Analysis

In this research, for a more comprehensive study, we have conducted our

experimental tests on System II.

� System II: an Amazon Web Service (AWS) instance equipped with

NVIDIA Tesla V100 GPU, 61 GB RAM and 8-core Intel Xeon X5670

2.30GHz.

To assess the accuracy and efficiency of our GPU-based parallel method

regarding 3-D Jacobi moments, we have performed the image reconstructions

with k× k× k schemes from Jacobi moments up to orders of 500. An image

sized at 512× 512× 512 with 256 gray levels is utilized as the testing image,

which is shown in Figure 13.

To evaluate the quality of a reconstructed image, we have adopted Peak

Signal-to-Noise Ratio (PSNR) as the measurement. The PSNR is the ratio

between the maximum power of the signal and the affecting noise, and is

defined as

PSNR = 10log10
G2

max

MSE
, (47)

where G2
max is the maximum gray level of an image function, and MSE is

the Mean Square Error between the original M × N × O image function
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Figure 13: The tesing image of knee with size 512× 512× 512 and 256 gray
levels [24].

f(xi, yj, zt) and its reconstructed version f̂(xi, yj, zt)

MSE =
1

MNO

M∑
i=1

N∑
j=1

O∑
t=1

[ f(xi, yj, zt)− f̂(xi, yj, zt) ]2. (48)

In general, the higher PSNR values indicate that the better image recon-

struction performances have been conducted.

6.1 3-D Image Reconstruction

In this section, a series of 3-D knee images reconstructed from Jacobi mo-

ments with α = 0.3 and β = 0.3 are shown in Figure 14. Since the symmetric

property can not apply to the algorithm of Jacobi moments computing and

image reconstruction via Jacobi moments when α ̸= β, we demonstrate a set
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of 3-D knee images reconstructed from Jacobi moments with α = 0.3 and

β = 0.7 in Figure 15. Both experiments are deployed on System II.

To inspect the efficiency of our GPU-based algorithm, Table 3 and Table 5

demonstrates the computational times of computing the Jacobi moments of

Figure 13 and performing the image reconstructions from different orders of

Jacobi moments with various k × k × k numerical schemes. As shown in

Table 3 and Table 5, the total computational times to compute the 500-th

order of Jacobi moments with coefficients α = 0.3, β = 0.3 and α = 0.3,

β = 0.7, when k = 23, and perform the 3-D image reconstruction on an

image sized at 512× 512× 512 are 387.36 ms and 382.22, respectively.

To measure the accuracy of our GPU-based algorithm, Table 4 and Ta-

ble 6 shows the PSNR values of the reconstructed Figure 13 from different

orders of Jacobi moments of α = 0.3, β = 0.3 and α = 0.3, β = 0.7, with di-

verse k×k×k numerical schemes. When the order of Jacobi moments is 500,

and the 23×23×23 scheme is applied, the PSNR values of the reconstructed

images are 53.6382 and 52.2096 for both experiments.

In Figure 14 and Figure 15, we adopt Mmax orders from 100 to 500 and

k × k × k numerical schemes of k = 3, 15, and 23. When Mmax and k are

rising, the errors of reconstructed images are visually decreasing.
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6.1.1 α = 0.3 and β = 0.3

Table 3: The computational time, in millionseconds, of computing Jacobi
moments of Figure 13 with α = 0.3 and β = 0.3 and performing the image
reconstructions from different maximum orders and k × k × k schemes in
System II.

k/Mmax 100 200 300 400 500
1 34.14 86.05 156.49 260.32 381.16
3 31.64 79.75 151.34 264.50 382.56
7 34.14 82.66 143.23 264.17 395.09
11 34.14 76.64 157.07 262.18 392.44
15 31.58 86.12 154.35 263.35 391.03
19 34.18 82.98 159.79 241.76 391.46
23 34.19 83.56 151.32 261.98 387.36

Table 4: The PSNR values of the reconstructed Figure 13 from applying
different maximum orders of Jacobi moments computed by using α = 0.3
and β = 0.3.

k/Mmax 100 200 300 400 500
1 25.2091 28.0826 27.4947 24.6565 23.1343
3 25.3882 31.1975 35.8204 32.8885 32.9276
7 25.4009 31.3042 37.9227 45.6986 47.1008
11 25.4029 31.3189 38.0050 46.4260 51.8814
15 25.4035 31.3231 38.0389 46.6932 52.7366
19 25.4037 31.3250 38.0530 46.7840 53.4047
23 25.4038 31.3261 38.0599 46.8488 53.6382
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𝑀𝑚𝑎𝑥\𝑘 3 15 23 

100 

   
200 

   
300 

   
400 

   
500 

   

Figure 14: Some reconstructed images of Figure 13 from different maximum
orders of Jacobi moments with various k × k × k numerical schemes and
orders at α = 0.3 and β = 0.3.

43



6.1.2 α = 0.3 and β = 0.7

Table 5: The computational time, in millionseconds, of computing Jacobi
moments of Figure 13 with α = 0.3 and β = 0.7 and performing the image
reconstructions from different maximum orders and k × k × k schemes in
System II.

k/Mmax 100 200 300 400 500
1 34.77 87.31 154.77 263.90 388.54
3 34.73 87.19 161.93 244.22 390.33
7 31.87 86.14 151.55 266.56 372.75
11 34.53 81.08 148.74 244.32 388.13
15 34.79 87.30 145.37 266.43 371.74
19 34.83 84.28 160.94 260.52 387.55
23 34.63 86.79 159.83 247.81 382.22

Table 6: The PSNR values of the reconstructed Figure 13 from applying
different maximum orders of Jacobi moments computed by using α = 0.3
and β = 0.7.

k/Mmax 100 200 300 400 500
1 22.3991 26.3 27.1229 24.754 23.1449
3 22.5118 28.1887 33.2822 32.3055 33.193
7 22.5224 28.267 34.3804 41.9403 47.6815
11 22.5242 28.28 34.4314 42.2188 50.961
15 22.5248 28.2849 34.4512 42.3068 51.6275
19 22.5252 28.2874 34.4601 42.3463 52.0355
23 22.5254 28.2889 34.4651 42.3697 52.2096
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𝑀𝑚𝑎𝑥\𝑘 3 15 23 

100 

   
200 

   
300 

   
400 

   
500 

   

Figure 15: Some reconstructed images of Figure 13 from different maximum
orders of Jacobi moments with various k × k × k numerical schemes and
orders at α = 0.3 and β = 0.7.
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6.2 Image Slicing and Clipping

Base on the highly satisfied results of 3-D image reconstructions from Jacobi

moments, we can perform slicing and clipping to conduct image analysis.

Firstly, by employing the 3-D Jacobi moments of orders up to 500, 23×

23 × 23 numerical scheme, and coefficients sets of α = β = 0.3 and α =

0.3, β = 0.7, we have conducted various slicing positions on x− y, y − z and

x− z planes. With 20 distance, slicing positions are ranged from 190 to 270

shown in Figure 16 and Figure 18.

Figure 17 and Figure 19 demonstrates some of the clipped reconstructed

images from the 500-th order of 3-D Jacobi moments, α = β = 0.3 and

α = 0.3, β = 0.7 respectively, with k = 23. The 3-D images are clipped by

the planes shown above each of images. The clipping planes in each column

are parallel to others with 100 distance on the x axis.

The computational times to reconstruct all of the sliced image shown in

Figure 16 and Figure 18 are negligible, and our algorithm is able to provide

the real-time performance with the highly satisfied accuracy.

All 3-D image visualization in our experiments are implemented on Math-

ematica 12. Although the background of original Figure 13 is black, for the

convenience of 3-D image visualization, we have adjusted the background

of 3-D images to white in Figure 13, Figure 14, Figure 15, Figure 17, and

Figure 19.
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6.2.1 α = 0.3 and β = 0.3
 

Slice/Plane 𝑥 − 𝑦 𝑦 − 𝑧 𝑥 − 𝑧 

190 

   
210 

   
230 

   
250 

   
270 

   
 

Figure 16: Sliced image from reconstructed 3-D image on x − y, y − z and
x− z by Mmax = 500 and k = 23 at α = 0.3 and β = 0.3.
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−𝑥 + 𝑦 + 𝑧 = 200 −262144𝑥 − 262144𝑧 = −108003328 𝑥 + 𝑦 + 𝑧 = −100 

   

−𝑥 + 𝑦 + 𝑧 = 100 −262144𝑥 − 262144𝑧 = −134217728 𝑥 + 𝑦 + 𝑧 = 0 

   

−𝑥 + 𝑦 + 𝑧 = 0 −262144𝑥 − 262144𝑧 = −160432128 𝑥 + 𝑦 + 𝑧 = 100 

   

−𝑥 + 𝑦 + 𝑧 = −100 −262144𝑥 − 262144𝑧 = −186646528 𝑥 + 𝑦 + 𝑧 = 200 

   

 

 

Figure 17: Clipped 3-D reconstructed image from Jacobi moments by
Mmax = 500 and k = 23 at α = 0.3 and β = 0.3.
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6.2.2 α = 0.3 and β = 0.7
 

Slice/Plane 𝑥 − 𝑦 𝑦 − 𝑧 𝑥 − 𝑧 

190 

   
210 

   
230 

   
250 

   
270 

   
 

Figure 18: Sliced image from reconstructed 3-D image on x − y, y − z and
x− z by Mmax = 500 and k = 23 at α = 0.3 and β = 0.7.
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−𝑥 + 𝑦 + 𝑧 = 200 −262144𝑥 − 262144𝑧 = −108003328 𝑥 + 𝑦 + 𝑧 = −100 

   

−𝑥 + 𝑦 + 𝑧 = 100 −262144𝑥 − 262144𝑧 = −134217728 𝑥 + 𝑦 + 𝑧 = 0 

   

−𝑥 + 𝑦 + 𝑧 = 0 −262144𝑥 − 262144𝑧 = −160432128 𝑥 + 𝑦 + 𝑧 = 100 

   

−𝑥 + 𝑦 + 𝑧 = −100 −262144𝑥 − 262144𝑧 = −186646528 𝑥 + 𝑦 + 𝑧 = 200 

   

 

 
Figure 19: Clipped 3-D reconstructed image from Jacobi moments by
Mmax = 500 and k = 23 at α = 0.3 and β = 0.7.
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Chapter 7

Conclusion and Future Work

In conclusion, we have developed a parallel algorithm to compute 3-D Jacobi

moments in a rectangular region. The proposed algorithm mathematically

improves the efficiency by utilizing recurrent polynomial, symmetry proper-

ties, and k sub-regions. Also, the optimization related to GPU programming

includes coalesced memory access, tiled matrix-cuboid multiplication, and

heterogeneous computation.

Regarding the performance verification of our algorithm, we implement

the image reconstruction from higher orders up to 500 and k scheme up

to 23 on the test image sized at 512 × 512 × 512, and the PSNR value

between reconstructed images and the original image can reach around 53

at maximum. We also conducted a series of image clipping and slicing on

the optimally reconstructed image. Besides, we have addressed the dilemma,

which rising k will barely increase the computational time.

Since matrix multiplication is the most expensive algorithm in this re-

search. CUDA library cuBLAS is considered to be adopted to optimize the

matrix multiplication for future work.
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Code Snippets

This chapter depicts five kernels, including polynomial computing with k

scheme, polynomial computing without k scheme, symmetric property and

matrix transpose, and computation of ρ
(α,β)
n . Also, their corresponding func-

tion calls are listed in Snippet ??.

Apart from the function call, memory should be defined and allocated on

the host side before kernel launch. And necessary data need to transfer from

host to device via cudaMemcpy()(i.e., the test image in this program). After

kernel callings are completed, the computing result also needs to transfer back

to the host(i.e., reconstructed image in this program). Finally, we need to

free the memory that is allocated initially.

Snippet 1: Polynomial Computing with k scheme Kernels

1 __global__ void PositveIndex(float *kXArray , float *

kXArray_1st , float *kXArray_0th , float *d_xJacobiP , const

long d_k , const long order , float alpha , float beta)

2 {

3 int row = blockIdx.y * blockDim.y + threadIdx.y;

4 int col = blockIdx.x * blockDim.x + threadIdx.x;

5 float delta = 2. / IMG_SIZE;
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6 if ((row < d_k) && (col < IMG_SIZE))

7 {

8 kXArray[row * IMG_SIZE + col] = -1.f + (col * d_k + row +

1.f) * delta / (float)d_k;

9 kXArray_1st[row * IMG_SIZE + col] = 0.5 * (alpha - beta +

(alpha + beta + 2) * kXArray[row * IMG_SIZE + col]);

10 kXArray_0th[row * IMG_SIZE + col] = 1.f;

11 }

12 }

13

14 __global__ void PolynomialMatrix2(float *kXArray , float *

kXArray_1st , float *kXArray_0th , float *d_xJacobiP , const

long d_k , const long order , float alpha , float beta)

15 {

16 int row = blockIdx.y * blockDim.y + threadIdx.y;

17 int col = blockIdx.x * blockDim.x + threadIdx.x;

18 float kXArray_1 = 1 - kXArray[row * IMG_SIZE + col];

19 float kXArrayp_1 = 1 + kXArray[row * IMG_SIZE + col];

20 __shared__ float JP_0th_sm[k][ BLOCK_SIZE ];

21 __shared__ float JP_1st_sm[k][ BLOCK_SIZE ];

22 __shared__ float weight_s[k][ BLOCK_SIZE ];

23 if ((row < d_k) && (col < IMG_SIZE))

24 {

25 JP_0th_sm[threadIdx.y][ threadIdx.x] = kXArray_0th[row *

IMG_SIZE + col];

26 JP_1st_sm[threadIdx.y][ threadIdx.x] = kXArray_1st[row *

IMG_SIZE + col];

57



27

28 weight_s[threadIdx.y][ threadIdx.x] = alpha == 0 && beta

== 0 ? 1 : __powf(kXArray_1 , alpha) * __powf(kXArrayp_1 ,

beta);

29

30 if (row == 0)

31 {

32 float row_0 = 0.f;

33 float row_1 = 0.f;

34 for (int h = 0; h < d_k; ++h)

35 {

36 row_0 += JP_0th_sm[h][ threadIdx.x] * weight_s[h][

threadIdx.x];

37 row_1 += JP_1st_sm[h][ threadIdx.x] * weight_s[h][

threadIdx.x];

38 __syncthreads ();

39 }

40

41 d_xJacobiP [0 * IMG_SIZE + col] = row_0;

42 d_xJacobiP [1 * IMG_SIZE + col] = row_1;

43 }

44 }

45 }

46

47 __global__ void PolynomialMatrix3(float *kXArray , float *

kXArray_1st , float *kXArray_0th , float *kXArray_curr ,

float *d_xJacobiP , const long d_k , const long order ,
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unsigned int n, float *kXArray_prev , float alpha , float

beta)

48 {

49 int row = blockIdx.y * blockDim.y + threadIdx.y;

50 int col = blockIdx.x * blockDim.x + threadIdx.x;

51 if ((row < d_k) && (col < IMG_SIZE))

52 {

53 float kX_pre2 , kX_pre1 , kX = kXArray[row * IMG_SIZE + col

];

54 if (n == 2)

55 {

56 kX_pre2 = kXArray_0th[row * IMG_SIZE + col];

57 kX_pre1 = kXArray_1st[row * IMG_SIZE + col];

58 }

59 if (n == 3)

60 {

61 kX_pre2 = kXArray_1st[row * IMG_SIZE + col];

62 kX_pre1 = kXArray_curr[row * IMG_SIZE + col];

63 }

64 if (n > 3)

65 {

66 kX_pre2 = kXArray_prev[row * IMG_SIZE + col];

67 kX_pre1 = kXArray_curr[row * IMG_SIZE + col];

68 }

69 kXArray_prev[row * IMG_SIZE + col] = kX_pre1;

70 kXArray_curr[row * IMG_SIZE + col] = (1.f / (n * (n +

alpha + beta))) * (((2.f * n - 1.f + alpha + beta) / 2.f)
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* ((2.f * n + alpha + beta) * kX + ((alpha * alpha - beta

* beta) / (2.f * n + alpha + beta - 2.f))) * kX_pre1 - (((

n - 1.f + alpha) * (n - 1.f + beta) * (2.f * n + alpha +

beta) * kX_pre2) / (2.f * n - 2.f + alpha + beta)));

71 }

72 }

73

74 __global__ void PolynomialMatrix4(float *kXArray_curr , float

*d_xJacobiP , const long d_k , const long order , unsigned

int n, float *kXArray , float alpha , float beta)

75 {

76 int row = blockIdx.y * blockDim.y + threadIdx.y;

77 int col = blockIdx.x * blockDim.x + threadIdx.x;

78 float row_n;

79 float kXArray_1 = 1 - kXArray[row * IMG_SIZE + col];

80 float kXArrayp_1 = 1 + kXArray[row * IMG_SIZE + col];

81 __shared__ float JP_curr_sm[k][ BLOCK_SIZE ];

82 __shared__ float weight_s[k][ BLOCK_SIZE ];

83 if ((row < d_k) && (col < IMG_SIZE))

84 {

85 JP_curr_sm[threadIdx.y][ threadIdx.x] = kXArray_curr[row *

IMG_SIZE + col];

86 weight_s[threadIdx.y][ threadIdx.x] = alpha == 0 && beta

== 0 ? 1 : __powf(kXArray_1 , alpha) * __powf(kXArrayp_1 ,

beta);

87 if (row == 0)

88 {
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89 row_n = 0.f;

90 for (int h = 0; h < d_k; h++)

91 {

92 row_n += JP_curr_sm[h][ threadIdx.x] * weight_s[h][

threadIdx.x];

93 __syncthreads ();

94 }

95 d_xJacobiP[n * IMG_SIZE + col] = row_n;

96 }

97 }

98 }

99

100 //Host Side Calling function

101 PositveIndex <<<grid0 , block0 >>>(kXArray , kXArray_1st ,

kXArray_0th , d_xJacobiP , k, Mmax , alpha , beta);

102 PolynomialMatrix2 <<<grid0 , block0 >>>(kXArray , kXArray_1st ,

kXArray_0th , d_xJacobiP , k, Mmax , alpha , beta);

103 for (unsigned int n = 2; n <= Mmax; n++)

104 {

105 PolynomialMatrix3 <<<grid0 , block0 >>>(kXArray , kXArray_1st ,

kXArray_0th , kXArray_curr , d_xJacobiP , k, Mmax , n,

kXArray_prev , alpha , beta);

106 PolynomialMatrix4 <<<grid0 , block0 >>>(kXArray_curr ,

d_xJacobiP , k, Mmax , n, kXArray , alpha , beta);

107 }

Snippet 2: Polynomial Computing without k scheme Kernels

1 __global__ void IMGrec1(float *xlPoly , const long order ,
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float alpha , float beta)

2 {

3 int row = blockIdx.y * blockDim.y + threadIdx.y;

4 int col = blockIdx.x * blockDim.x + threadIdx.x;

5

6 if ((row == 0) && (col < IMG_SIZE))

7 {

8 float delta = 2. / IMG_SIZE;

9 float row_0;

10 float row_1;

11 float row_index;

12 row_index = -1.0f + 0.5f * delta + col * delta;

13 row_0 = 1.0f;

14 row_1 = 0.5 * (alpha - beta + (alpha + beta + 2) *

row_index);

15

16 xlPoly [0 * IMG_SIZE + col] = row_0;

17 xlPoly [1 * IMG_SIZE + col] = row_1;

18 float row_temp = 0.0f;

19 for (unsigned int n = 2; n <= order; n++)

20 {

21 row_temp = (1. / (n * (n + alpha + beta))) *

(((2. * n - 1. + alpha + beta) / 2.) * ((2. * n + alpha +

beta) * row_index + (( alpha * alpha - beta * beta) / (2. *

n + alpha + beta - 2.))) * row_1 - (((n - 1. + alpha) * (

n - 1. + beta) * (2. * n + alpha + beta) * row_0) / (2. *

n - 2. + alpha + beta)));
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22 xlPoly[n * IMG_SIZE + col] = row_temp;

23 row_0 = row_1;

24 row_1 = row_temp;

25 }

26 }

27 }

Snippet 3: Symmetric Property and Matrix Transpose Kernels

1 __global__ void PolyTranspose(float *d_xJacobiP , float *

d_yJacobiPT , const long order)

2 {

3 int row = blockIdx.y * blockDim.y + threadIdx.y;

4 int col = blockIdx.x * blockDim.x + threadIdx.x;

5 if (col < IMG_SIZE && row < (order + 1))

6 d_yJacobiPT[col * (order + 1) + row] = row % 2 == 0 ?

d_xJacobiP[col + row * IMG_SIZE] : -1 * d_xJacobiP[col +

row * IMG_SIZE ];

7 }

8

9 __global__ void IMGrec1Transpose(float *xlPoly , float *

xlPolyT , float *ylPoly , const long order)

10 {

11 int row = blockIdx.y * blockDim.y + threadIdx.y;

12 int col = blockIdx.x * blockDim.x + threadIdx.x;

13

14 if ((col < IMG_SIZE) && (row < (order + 1)))

15 {

16 xlPolyT[col * (order + 1) + row] = xlPoly[col + row *
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IMG_SIZE ];

17 }

18 if ((row < (order + 1)) && (col < IMG_SIZE))

19 ylPoly[row * IMG_SIZE + col] = row % 2 == 0 ? xlPoly[row

* IMG_SIZE + col] : -1 * xlPoly[row * IMG_SIZE + col];

20 }

Snippet 4: Matrix-Cuboid Multiplication Kernels

1 /* MatMul1: X-axis*/

2 __global__ void MatMul1(float *Left_Mat , float *Right_Cube ,

float *Result_Cube , const long Order_p1)

3 {

4 int row = blockIdx.y * blockDim.y + threadIdx.y;

5 int col = blockIdx.x * blockDim.x + threadIdx.x;

6 int plane = blockIdx.z * blockDim.z + threadIdx.z;

7

8 int tx = threadIdx.x;

9 int ty = threadIdx.y;

10 int tz = threadIdx.z;

11 __shared__ float ds_A[BLOCKDIM_8 ][ BLOCKDIM_8 ];

12 __shared__ float ds_B[BLOCKDIM_8 ][ BLOCKDIM_8 ][ BLOCKDIM_8

];

13 float temp = 0.0f;

14 for (int ph = 0; ph < ceil(IMG_SIZE / (float)BLOCKDIM_8);

++ph)

15 {

16 if ((row < Order_p1) && (ph * BLOCKDIM_8 + tx) <

IMG_SIZE)
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17 {

18 ds_A[ty][tx] = Left_Mat[row * IMG_SIZE + ph *

BLOCKDIM_8 + tx];

19 }

20 if ((ph * BLOCKDIM_8 + ty) < IMG_SIZE && col <

IMG_SIZE && plane < IMG_SIZE)

21 {

22 ds_B[tz][ty][tx] = Right_Cube[plane * IMG_SIZE *

IMG_SIZE + (ph * BLOCKDIM_8 + ty) * IMG_SIZE + col];

23 }

24 __syncthreads ();

25

26 for (int i = 0; i < BLOCKDIM_8; ++i)

27 {

28 temp += ds_A[ty][i] * ds_B[tz][i][tx];

29 }

30 __syncthreads ();

31 }

32

33 if ((row < Order_p1) && (col < IMG_SIZE) && (plane <

IMG_SIZE))

34 {

35 Result_Cube[plane * IMG_SIZE * Order_p1 + row *

IMG_SIZE + col] = temp;

36 }

37 }

38
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39 /* MatMul2: Y-axis*/

40 __global__ void MatMul2(float *Left_Cube , float *Right_Mat ,

float *Result_Cube , const long Order_p1)

41 {

42 int row = blockIdx.y * blockDim.y + threadIdx.y;

43 int col = blockIdx.x * blockDim.x + threadIdx.x;

44 int plane = blockIdx.z * blockDim.z + threadIdx.z;

45 int tx = threadIdx.x;

46 int ty = threadIdx.y;

47 int tz = threadIdx.z;

48 __shared__ float ds_A[BLOCKDIM_8 ][ BLOCKDIM_8 ][ BLOCKDIM_8

];

49 __shared__ float ds_B[BLOCKDIM_8 ][ BLOCKDIM_8 ];

50 float temp = 0.0f;

51

52 for (int ph = 0; ph < ceil(IMG_SIZE / (float)BLOCKDIM_8);

++ph)

53 {

54 if ((row < Order_p1) && (ph * BLOCKDIM_8 + tx) <

IMG_SIZE && plane < IMG_SIZE)

55 {

56 ds_A[tz][ty][tx] = Left_Cube[plane * Order_p1 *

IMG_SIZE + row * IMG_SIZE + ph * BLOCKDIM_8 + tx];

57 }

58 if ((ph * BLOCKDIM_8 + ty) < IMG_SIZE && col <

Order_p1)

59 {
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60 ds_B[ty][tx] = Right_Mat [(ph * BLOCKDIM_8 + ty) *

Order_p1 + col];

61 }

62 __syncthreads ();

63

64 for (int i = 0; i < BLOCKDIM_8; ++i)

65 {

66 temp += ds_A[tz][ty][i] * ds_B[i][tx];

67 }

68 __syncthreads ();

69 }

70

71 if (row < Order_p1 && col < Order_p1 && plane < IMG_SIZE)

72 Result_Cube[plane * Order_p1 * Order_p1 + row *

Order_p1 + col] = temp;

73 }

74 /* MatMul3: Z-axis*/

75

76 __global__ void MatMul3(float *Left_Mat , float *Right_Cube ,

float *Result_Cube , const long Order_p1 , float *rho_in)

77 {

78 int row = blockIdx.y * blockDim.y + threadIdx.y;

79 int col = blockIdx.x * blockDim.x + threadIdx.x;

80 int plane = blockIdx.z * blockDim.z + threadIdx.z;

81

82 int tx = threadIdx.x;

83 int ty = threadIdx.y;
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84 int tz = threadIdx.z;

85 __shared__ float ds_A[BLOCKDIM_8 ][ BLOCKDIM_8 ];

86 __shared__ float ds_B[BLOCKDIM_8 ][ BLOCKDIM_8 ][ BLOCKDIM_8

];

87

88 float temp = 0.0f;

89 for (int ph = 0; ph < ceil(IMG_SIZE / (float)BLOCKDIM_8);

++ph)

90 {

91 if (( plane < Order_p1) && (ph * BLOCKDIM_8 + tx) <

IMG_SIZE)

92 {

93 ds_A[tz][tx] = Left_Mat[plane * IMG_SIZE + ph *

BLOCKDIM_8 + tx];

94 }

95 if (row < Order_p1 && col < Order_p1 && (ph *

BLOCKDIM_8 + tz) < IMG_SIZE)

96 {

97 ds_B[tz][ty][tx] = Right_Cube [(ph * BLOCKDIM_8 +

tz) * Order_p1 * Order_p1 + row * Order_p1 + col];

98 }

99 __syncthreads ();

100

101 for (int i = 0; i < BLOCKDIM_8; ++i)

102 {

103 temp += ds_A[tz][i] * ds_B[i][ty][tx];

104 }
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105 __syncthreads ();

106 }

107

108 float mult1;

109 mult1 = 8. / (k * k * k * IMG_SIZE * IMG_SIZE * IMG_SIZE

* rho_in[row] * rho_in[col] * rho_in[plane ]);

110 Result_Cube[plane * Order_p1 * Order_p1 + row * Order_p1

+ col] = row + col + plane < Order_p1 ? temp * mult1 : 0.f

;

111 }

112

113 /* MatMul4: Image reconstruction on Y-axis*/

114 __global__ void MatMul4(float *Left_Mat , float *Right_Cube ,

float *Result_Cube , const long Order_p1)

115 {

116 int row = blockIdx.y * blockDim.y + threadIdx.y;

117 int col = blockIdx.x * blockDim.x + threadIdx.x;

118 int plane = blockIdx.z * blockDim.z + threadIdx.z;

119

120 int tx = threadIdx.x;

121 int ty = threadIdx.y;

122 int tz = threadIdx.z;

123 __shared__ float ds_A[BLOCKDIM_8 ][ BLOCKDIM_8 ];

124 __shared__ float ds_B[BLOCKDIM_8 ][ BLOCKDIM_8 ][ BLOCKDIM_8

];

125 float temp = 0.0f;

126
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127 for (int ph = 0; ph < ceil(Order_p1 / (float)BLOCKDIM_8);

++ph)

128 {

129 if ((row < IMG_SIZE) && (ph * BLOCKDIM_8 + tx) <

Order_p1)

130 {

131 ds_A[ty][tx] = Left_Mat[row * Order_p1 + ph *

BLOCKDIM_8 + tx];

132 }

133 if ((ph * BLOCKDIM_8 + ty) < Order_p1 && col <

Order_p1 && plane < IMG_SIZE)

134 {

135 ds_B[tz][ty][tx] = Right_Cube[plane * Order_p1 *

Order_p1 + (ph * BLOCKDIM_8 + ty) * Order_p1 + col];

136 }

137 __syncthreads ();

138

139 for (int i = 0; i < BLOCKDIM_8; ++i)

140 {

141 temp += ds_A[ty][i] * ds_B[tz][i][tx];

142 }

143 __syncthreads ();

144 }

145

146 if ((row < IMG_SIZE) && (col < Order_p1) && (plane <

IMG_SIZE))

147 {
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148 Result_Cube[plane * IMG_SIZE * Order_p1 + row *

Order_p1 + col] = temp;

149 }

150 }

151

152 /* MatMul5: Image reconstruction on X-axis*/

153 __global__ void MatMul5(float *Left_Cube , float *Right_Mat ,

float *Result_Cube , const long Order_p1)

154 {

155 int row = blockIdx.y * blockDim.y + threadIdx.y;

156 int col = blockIdx.x * blockDim.x + threadIdx.x;

157 int plane = blockIdx.z * blockDim.z + threadIdx.z;

158 int tx = threadIdx.x;

159 int ty = threadIdx.y;

160 int tz = threadIdx.z;

161 __shared__ float ds_A[BLOCKDIM_8 ][ BLOCKDIM_8 ][ BLOCKDIM_8

];

162 __shared__ float ds_B[BLOCKDIM_8 ][ BLOCKDIM_8 ];

163 float temp = 0.0f;

164 for (int ph = 0; ph < ceil(Order_p1 / (float)BLOCKDIM_8);

++ph)

165 {

166 if ((row < IMG_SIZE) && (ph * BLOCKDIM_8 + tx) <

Order_p1 && plane < IMG_SIZE)

167 {

168 ds_A[tz][ty][tx] = Left_Cube[plane * IMG_SIZE *

Order_p1 + row * Order_p1 + ph * BLOCKDIM_8 + tx];
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169 }

170 if ((ph * BLOCKDIM_8 + ty) < Order_p1 && col <

IMG_SIZE)

171 {

172 ds_B[ty][tx] = Right_Mat [(ph * BLOCKDIM_8 + ty) *

IMG_SIZE + col];

173 }

174 __syncthreads ();

175

176 for (int i = 0; i < BLOCKDIM_8; ++i)

177 {

178 temp += ds_A[tz][ty][i] * ds_B[i][tx];

179 }

180 __syncthreads ();

181 }

182

183 if ((row < IMG_SIZE) && (col < IMG_SIZE) && (plane <

Order_p1))

184 {

185 Result_Cube[plane * IMG_SIZE * IMG_SIZE + row *

IMG_SIZE + col] = temp;

186 }

187 }

188

189 /* MatMul6: Image reconstruction on Z-axis*/

190 __global__ void MatMul6(float *Left_Mat , float *Right_Cube ,

float *Result_Cube , const long Order_p1)
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191 {

192 int row = blockIdx.y * blockDim.y + threadIdx.y;

193 int col = blockIdx.x * blockDim.x + threadIdx.x;

194 int plane = blockIdx.z * blockDim.z + threadIdx.z;

195 int tx = threadIdx.x;

196 int ty = threadIdx.y;

197 int tz = threadIdx.z;

198 __shared__ float ds_A[BLOCKDIM_8 ][ BLOCKDIM_8 ];

199 __shared__ float ds_B[BLOCKDIM_8 ][ BLOCKDIM_8 ][ BLOCKDIM_8

];

200 float temp = 0.0f;

201 for (int ph = 0; ph < ceil(Order_p1 / (float)BLOCKDIM_8);

++ph)

202 {

203 if (( plane < IMG_SIZE) && (ph * BLOCKDIM_8 + tx) <

Order_p1)

204 {

205 ds_A[tz][tx] = Left_Mat[plane * Order_p1 + ph *

BLOCKDIM_8 + tx];

206 }

207 if (row < IMG_SIZE && col < IMG_SIZE && (ph *

BLOCKDIM_8 + tz) < Order_p1)

208 {

209 ds_B[tz][ty][tx] = Right_Cube [(ph * BLOCKDIM_8 +

tz) * IMG_SIZE * IMG_SIZE + row * IMG_SIZE + col];

210 }

211 __syncthreads ();
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212

213 for (int i = 0; i < BLOCKDIM_8; ++i)

214 {

215 temp += ds_A[tz][i] * ds_B[i][ty][tx];

216 }

217 __syncthreads ();

218 }

219

220 if ((row < IMG_SIZE) && (col < IMG_SIZE) && plane <

IMG_SIZE)

221 {

222 Result_Cube[plane * IMG_SIZE * IMG_SIZE + row *

IMG_SIZE + col] = temp;

223 }

224 }

Snippet 5: Computation of ρ
(α,β)
n

1 float *CoeforJacobi(int n, float alpha , float beta)

2 {

3 float rho_0 = pow(2., (alpha + beta + 1)) * (( tgamma(

alpha + 1.) * tgamma(beta + 1.)) / tgamma(alpha + beta +

2.));

4 static float rho_array[Mmax + 1];

5 rho_array [0] = rho_0;

6 float rho_temp;

7 for (int m = 1; m <= n; m++)

8 {

9 rho_temp = (((m + alpha) * (m + beta) * (2.f * m +
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alpha + beta - 1.f)) / (m * (m + alpha + beta) * (2.f * m

+ alpha + beta + 1.f))) * rho_0;

10 rho_0 = rho_temp;

11 rho_array[m] = rho_temp;

12 }

13 return rho_array;

14 }

75


