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ABSTRACT

This thesis work proposes a novel DL-based anomaly detection framework for IoT envi-

ronments, employing higher-capacity embedded devices as a first line of defense for the IoT edge

layer. In the proposed framework, embedded devices implement the DL anomaly detection engine

at the network gateway and adapt to potential attacks by retraining on incoming network traffic.

In order to test the feasibility of this framework, two neural network models, trained on variations

of the CICIDS 2018 Intrusion Detection Data Set, are deployed and tested on the Raspberry Pi 4.

Model performance metrics, including fit and evaluation time across various batch and data sizes,

are compared alongside those of identical models running on higher-capacity devices. Device

resource metrics of CPU and Memory usage are monitored for comparison across model varia-

tions, batch and data sizes.The potential benefit of retraining models at the edge is evaluated by

comparing performance of models executing consistent retraining.
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CHAPTER 1

INTRODUCTION

Internet of Things (IoT) refers to a system of interrelated, interconnected physical devices

that collect and transfer data over the Internet [2] [3]. IoT devices are generally limited in computa-

tional capability and so are often unable to incorporate or employ the various security mechanisms

and protocols used by more powerful systems. In recent years, the vulnerabilities posed by IoT

have made it a common target for malicious activity, and as a result, numerous IoT intrusion de-

tection systems (IDS) have been proposed to handle attacks on the IoT ecosystem [2] [4].

As the nature of attacks targeting the IoT continues to evolve, it is vital for reliable intrusion

detection systems to be autonomous and use contemporary techniques such as machine learning

(ML) and deep learning (DL) to inform the IDS [2]. Even so, machine and deep learning-based

intrusion detection is often regarded as an IoT security solution dependent on the incorporation

of fog or cloud systems in the IoT system architecture [5–7]. The reasoning is simple: machine

and deep learning algorithms require extensive computation, power, and storage capacity. Though

what is defined as an IoT device can range broadly in terms of resource capacity and wireless

capability, security solutions proposed for IoT often assume a level of capability inappropriate for

executing complex machine learning algorithms in real-time.

However, methods to reduce the dimenesionality of training and testing data, including

Principal Component Analysis (PCA), auto-encoders, and feature selection, are being proposed

as a solution to implementing such systems in the IoT [8–11]. Such methods reduce the number

of dimensions or features of the input data and, as a result, significantly reduce device memory

requirements, training time, and processing.
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The heterogeneity of IoT device capability, combined with dimensionality reduction meth-

ods and the nature of deep neural network models, present another option: pre-trained neural

network-based intrusion detection on embedded devices. Unlike traditional machine learning al-

gorithms, saved neural network models consist primarily of the architecture of the network and

the weights of connections between neurons. The storage and processing of such information is

beyond the capability of low-power wireless sensor nodes. But improving memory speed and

processor architecture over the last several decades has resulted in small, cheap, commercially-

available embedded devices with higher resource capacity. Regardless of whether or not this trend

in technological advancement continues, IoT system deployments currently and will continue to

have widely varying architectures and security needs, dependent upon their related enterprise and

application.

The purpose of this research is to propose and evaluate an experimental IDS framework

that implements its analysis engine at the edge layer, to serve as a first line of defense for IoT

environments. As such, it is necessary to determine the feasibility of implementing deep neural

network intrusion detection on limited-resource embedded devices, as well as the effect of dimen-

sionality reduction on model performance and speed. To this end, we have trained two deep neural

network models for binary classification using reduced versions and subsets of the Canadian In-

stitute for Cybersecurity Intrusion Detection System dataset (CICIDS) 2018 [12]. These models

will be deployed to devices of varying capacity, including the Raspberry Pi 4 8GB, XPS15-9570

personal computer with Intel Core i7-8750 CPU 2.20GHz and 16GB RAM, and University of Ten-

nessee, Chattanooga (UTC) Simcenter’s Firefly cluster, in order to examine and compare system

and model performance metrics
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1.1 Research Questions

In this thesis, we seek to address the following research questions:

• What is the trade-off of dimensionality reduction in terms of model performance, speed, and

system resources?

• Is it possible for resource-limited embedded devices to employ DL network flow-based anomaly

detection effectively?

• What are the optimal parameters, in terms of batch size and network flow collection rate, for

implementing such systems on resource-limited devices?

• Further, can anomaly detection models, implemented on such devices, adapt to network traffic

in a timely manner?

1.2 Motivation

Though lightweight classification algorithms are currently being proposed for securing the

IoT [13–15], research surrounding the testing and comparison of their performance on embedded

devices is still limited. In other efforts to circumvent the intensive computational demands of

machine learning algorithms, proposed ML-based IDS frameworks often implement classifiers on

more powerful remote systems in the cloud or fog layer [5–7].

In reviewing current literature surrounding these multi-layer framework proposals for im-

plementing ML-based intrusion detection in the IoT, a number of observations were made:

1. Multi-layer framework proposals handle the computational cost of ML algorithms by imple-

menting the classifier on servers outside the edge layer.

2. IDS implementations outside of the edge layer require that traffic anomalies go undetected

until associated flow records reach the fog or cloud layer for analysis.
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3. Though IDS implementation in the fog layer reduces bandwidth demands between the edge

and cloud, the trade-off is an increase in traffic between fog and edge layer.

4. Dependency on fog servers demands sufficient infrastructure and cost, and may not be ap-

propriate across all industries and applications that could make use of ML-based intrusion

detection for IoT environments.

5. Retraining ML models at the edge would tailor anomaly detection to local network traffic,

making the IDS more robust to attack.

In consideration of these observations alongside our research questions, the contributions

of this thesis work are listed below:

• Proposal of a novel IDS framework for IoT environment: The proposed framework im-

plements DL anomaly detection at the edge layer, refitting the model locally upon detection

of an anomaly. In this way, edge-layer devices can serve as a first line of defense by adapting

to incoming traffic in the interim between model updates.

• Development and testing of DL models for intrusion detection: Two models, trained on

normalized and PCA-reduced datasets are deployed to devices of varying resource capacity

in order to observe and compare performance metrics of average fit and evaluation time, and

average evaluation accuracy.

• Evaluation of the impact of deep learning models on embedded device resources: Re-

source metrics, including CPU load and memory, are monitored during fit and evaluation of

both models on the embedded device at various batch size and testing data interval values for

both DL models. Comparison of these metrics provides further insight into the impact of DL

on device resources.

• Evaluation of the significance of single-epoch refit to model performance: In order to

ascertain the value of retraining models on new data at the edge layer, evaluation accuracy of

4



static (unchanging) and dynamic (refit at each interval) models is observed for comparison

across various batch size and testing data interval values.

1.3 Organization

The remainder of this work is organized as follows: Chapter 2 covers background informa-

tion and key concepts. Chapter 3 reviews related work previously conducted in the field. Chapter

4 outlines the concept of operations behind our proposed system framework. Chapter 5 details the

stages of experimentation. Chapter 6 presents the results of testing and discusses their significance.

Finally, Chapter 7 presents the conclusion of this work and discusses future research directions.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 IoT and Embedded Devices

Internet of Things (IoT) is the interconnection or convergence of various smart devices or

‘things’ that can communicate with one another, via the Internet [2, 4, 16]. More specifically, IoT

devices can be defined as objects embedded with sensors, software, and in some cases, a perva-

sive user interface, connected to the Internet to relay and receive information to serve the broader

purpose of making some aspect of industry or daily life simpler. Some examples of IoT devices

include stand-alone embedded systems, such as the Raspberry Pi, Nvidia Jetson and Arduino prod-

ucts, low-power wireless sensor nodes for monitoring environmental conditions, as well as smart

home appliances, such as smart fridges, smart tea-kettles, Google Home and Amazon Alexa. The

‘things’ in IoT can range broadly in terms of resource capacity and communication methods across

a number of industries and applications.

This heterogeneity of IoT device capability, communication protocols and resources, in

proportion to their range of applications, presents a number of challenges to be overcome in

proposing appropriate security solutions. Inadequate security features in hardware, poorly de-

signed software with a range of vulnerabilities, default passwords and other design errors have

resulted in many IoT systems being much less secure than typical personal computer systems [17].

Further, the resource constraints of many IoT devices prevent them from utilizing existing security

mechanisms, such as group-signature based authentication, homomorphic encryption, and public-

key based solutions [18]. Many IoT devices do not even operate on the Internet Protocol (IP) as it

introduces considerable overhead, instead relying simpler communication protocols and upstream
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nodes to provide Internet access [17]. Studies of popular smart home devices have shown that due

to differing standards and communication stacks, limited computational power and high number of

interconnected devices, traditional security implementations are often not appropriate for IoT en-

vironments [16]. As the number of connected devices is projected to reach 75 billion by 2025 [19],

research into novel techniques for securing the IoT is both critical and ongoing.

2.1.1 IoT System Architecture

IoT devices are connected to the broader Internet at the edge layer via gateway devices.

As is shown in figure 2.1, IoT applications often function by collecting sensor data through these

IoT devices, and forwarding that information to higher layers for processing. The cloud, which

consists of powerful remote servers providing hosting services via virtual machines, is where most

IoT data processing takes place. The fog takes advantage of existing Internet infrastructure to push

some data processing geographically closer to the edge for more time-dependent IoT applications

[17, 20, 21].

2.2 Intrusion Detection System

Intrusion Detection Systems (IDS) are mechanisms that monitor and analyze network traf-

fic or device system calls in order to identify and protect against intrusions and potential malicious

traffic that may threaten the confidentiality, availability, and integrity of information systems [4].

The two primary categries of IDS are Network-based (NIDS) and Host-based (HIDS), defined for

their placement and detection mechanism. Where HIDS is designed to be implemented on a single

system, NIDS captures and analyzes traffic across the network [4]. Typical IDS is composed of

three distinct modules: network or host sensors, analysis engine, and reporting system [16]. De-

pending on the classification of IDS as network or host-based, sensors collect relevant information
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Figure 2.1 IoT system architecture

such as network traffic or host system calls and running processes. Information is then sent to the

analysis engine, which investigates and detects intrusions in the current data. Upon detection of

intrusion, the reporting system module alerts the network administrators [16].

2.2.1 Host-based Intrusion Detection

An HIDS exist on a singular device or ’host’, monitoring for malicious activity that may

be occurring within the system. It represents a more thorough approach to intrusion detection by

analysing system calls, running processes, file-system changes and application logs, in addition to

network traffic [16]. However HIDS can be computationally demanding and utilizes resources that

may be otherwise allocated to performing standard system functions. NIDS is therefore the more

common approach to securing IoT systems where device resources are limited [4, 6, 16].
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2.2.2 Network Flow-based Intrusion Detection

Traditional NIDS is designed to perform deep packet inspection (DPI) in order to inspect

the payload of every packet. Though DPI can provide greater insight into unusual behavior, the

practical application of such a method is extremely difficult for high-speed connections. Network

flow-based intrusion detection serves as a viable solution by analyzing flow records as opposed

to packet content, significantly reducing the amount of data to process and network overhead. As

such, routers from most major vendors come equipped with the capacity to perform flow account-

ing [1].

These network flow records, as defined in RFC 7011, consist of “a set of IP packets passing

an observation point in the network during a certain time interval. All packets belonging to a

particular flow have a set of common properties.” Such common properties include source and

destination addresses and port numbers [22].

The architecture of flow-based intrusion detection, illustrated in Figure 2.2, incorporates

two primary modules: a flow exporter and a flow collector. The flow exporter, otherwise known

as the observation point, captures and creates flow records from observed traffic on the network by

applying timestamps to packet header information. Flow exporter continually sends expired flow

records to the collector, determining expired records via packet header FIN (finish) and RST (reset)

flags, or timeout thresholds [1]. TCP (Transmission Control Protocol) flags FIN and RST both

signify that the connection is ended between hosts, either intentionally (FIN), or potentially as the

result of a faulty connection (RST). The inactive timeout threshold determines expiration of flows

for which no new packets have appeared in the allotted time. Active timeout threshold determines

the expiration of active flows after a much longer period has passed. Default inactive and active

thresholds for Cisco NetFlow, for example, are 15 seconds and 30 minutes, respectively [1]. Upon

receiving expired flow records, the flow collector performs network monitoring and analysis.
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Figure 2.2 Architecture of flow-based network monitoring, adapted from [1]

2.2.3 Anomaly Detection

The two primary detection methods employed in IDS are signature-based and anomaly-

based [4]. Signature-based detection approaches focus on matching network behavior to known

attack signatures (specific traffic patterns or indicators of malware) stored in the IDS database.

Anomaly-based IDS employs a detection strategy that compares current traffic patterns to a profile

of normal behavior based on, and continually updated by, normal use network traffic data [2,4,16].

Anomalies are unusual behaviors in the network picked up by the classifier, located at the flow

collector in the case of network flow-based intrusion detection systems. The principal benefit of

anomaly-based detection, over signature-based, is in its potential to detect unknown, or zero-day

attacks [14]. The issue with anomaly-based approaches, however, is the high false-positive rate

that results from normal traffic behavior not matching the established pattern, as establishing the

scope of all normal network behavior demands processing of a considerable amount of data. For

this reason, researchers commonly employ the use of statistical and machine learning techniques

in training anomaly-based IDS [16].
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2.3 Machine Learning

In general terms, machine learning (ML) is the process of training a mathematical model

to return accurate predictions from provided input, ‘learning’ primarily through optimization al-

gorithms such as gradient descent, that seek to minimize the average ‘cost’ or ‘loss’ of the model.

Cost is a function that represents the deviation between achieved and expected output. Though

research into the field dates back to the late 1950s, recent exponential growth in computing power

and data generation and collection has given machine learning algorithms greater significance to

modern-day applications [23]. Machine learning models can be broken down into two major cate-

gories relating to the method by which the model is trained: supervised learning and unsupervised

learning. In supervised learning, values relating the input and output relationship are available in

the training data. In other words, training data is labelled. The goal is then to learn a function that

best approximates the relationship between input and output, in order to make accurate predictions

on future unlabelled input. In contrast, unsupervised learning techniques use unlabelled data in

order to understand the underlying characteristics and relationships between observations [23,24].

Supervised learning is the common approach for tackling classification tasks such as anomaly-

based intrusion detection [23]. Establishing a profile of normal traffic requires that training data

provide distinct examples of what can be considered ’normal’ and ’abnormal’ behavior, meaning

each flow record of an IDS dataset used for training classifiers must be labelled appropriately by

the provider.

2.3.1 Deep Learning

Deep learning is a category of machine learning models that seek to mimic our understand-

ing of the biological neural networks of the human brain [13]. Though research into the potential

of deep learning has existed for some time, the computational complexity and data requirements

of training artificial neural networks has hindered the adoption and application of deep learning for
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solving complex regression and classification tasks. In recent years, the development of advanced

processing units and exponential increase in data collection have facilitated a resurgence in deep

learning research [23, 24].

The basic structure of deep neural networks (DNNs), illustrated in Figure 2.3 consists of

multiple hidden layers of neurons, or parallel elements connected via links and working in parallel

to process data [13]. Neurons work by taking weighted input or ‘activations’ from the dataset or

from output connections of previous layers, summing weighted activations together and employ-

ing an function to shape the summed value and output to neurons in the subsequent layer. Each

connecting link between neurons carries the related weight value. The optimization of a neural

network model is dependent on these weights and activation function. As such, training of DNNs

consists of determining which weights and bias values best fit the model to the data according to

resulting accuracy or loss [13, 23]. Referring to Figure 2.3 below, the example feed-forward DL

model shown is trained on data consisting of 10 features or principal components, which corre-

spond to the nodes of the input layer. The two subsequent hidden layers consist of 16 neurons

each and are referred to as ‘dense’ layers, meaning each neuron is connected to every neuron of

the previous and subsequent layers. The final output layer consists of a single neuron for binary

classification. The output of this neuron determines whether or not the final result for input record

is closer to 1 or 0, labelling it accordingly.

2.3.2 Terminology

Machine learning terminology used throughout this work will be clarified here:

• Classifier: In this work, the classifier refers to the model performing the classification task.

Binary classification refers to potential model output of 0, 1 (benign or anomalous). Muilti-

class classification spans a number of possible outputs equal to the input data labels (classes).
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Figure 2.3 DNN feed-forward binary classifier: 10 principal components, 2 hidden layers, 16
neurons per layer

• Model: It is also important to distinguish the model from the underlying algorithm. The

model is the result of training an algorithm on given data, making predictions on, or classify-

ing, new input data.

• Evaluate: Evaluation, in reference to deep learning classifiers, is defined here as the pro-

cess of a model performing classification over a number of records, labelling them as either

anomalous or benign. In determining evaluation accuracy, the resulting labels are compared

against those provided in the original data.

• Fitting/Refitting: Fitting refers to the process of training the model, or ’fitting’ it to the given

data. To refit is to retrain the model on new data.

• Batch/Batch size: Batch size is a variable provided to a machine learning model for training

and evaluation. It represents the number of samples for which gradient descent is calculated
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before updating model parameters. Higher batch sizes result in a more direct path to con-

vergence (minimum loss), as more information is provided between parameter updates. The

detriment to high batch size, in terms of limited-resource computing, is an increased demand

in memory.

• Optimizer: Optimizer is the specific algorithm used to achieve the minimum loss of a DL

model. Optimizers commonly employ some variation of gradient descent. Gradient descent

is an algorithm which calculates the derivative, or ‘slope’ of the loss at a given point, to

determine the direction (positive or negative) parameters must be adjusted by a learning rate

variable to achieve lower loss. This process is repeated over a number of batches and epochs

until it is determined that the model has reached its lowest potential loss value.

• Epoch: An epoch is a single pass of all training data through the neural network, through

which weights are adjusted to reach minimum loss. Multiple epochs are generally necessary

to optimize a DL model.

• Features: Features are the data that describe a record or sample. They can be visualized as

the columns of a 2-dimensional array of samples. In deep learning, features are the input to

the first layer of the model, meaning that reducing the number of features reduces the input

and amount of data to be processed by the model.

• Dimensionality: The dimensionality of a dataset refers to the number of features per sample.

Dimensionality reduction is the process of lowering this number of features. However, dimen-

sionality and feature reduction are not necessarily equivalent. Where some feature reduction

techniques use specific criteria to select a number of best features from those available, many

dimensionality reduction techniques, such as PCA, generate an entirely new set of features

based on the original data.
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2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a commonly-used linear dimensionality reduction

technique which uses linear combinations to explain the variance - covariance of number of vari-

ables, the end result being a new set of features which cumulatively account for some amount

of variation in the data [25]. More specifically, the PCA() function, imported from the Python

scikit-learn decomposition library and used in testing, centers the input data with a mean 0 be-

fore employing Singular Value Decomposition (SVD) to project that data to a given dimensional

space [26].

The fundamental concept of PCA dimensionality reduction is projection of a dataset X with

n features or dimensions onto a subspace with k or fewer dimensions while retaining the majority

of the variation of the original dataset [11]. The steps of this process are outlined below.

1. Features of the original dataset must be normalized and centered around a mean 0, with a

standard deviation of 1. The method of normalization commonly used in data preprocessing

for PCA is the min-max approach, demonstrated in Formula 2.1, in which X represents a

feature of the dataset and X i represents the i-th sample of that feature. max and min stand for

the maximum and minimum values of the feature X in the data.

X i =
X i −min

max−min
(2.1)

2. After features are centered around a mean zero, with standard deviation 1, the covariance ma-

trix Covm is calculated according to Formula 2.2, where m represents the number of instances

or records in the original dataset X and X(i) are the data points [11].

Covm =
1
m

Σ(X(i))(X(i))
T (2.2)

3. The Eigen-vectors and corresponding Eigen-values of Covm are then calculated and Eigen-

vectors are sorted by decreasing Eigen-values. In order to project to a subspace of dimension-
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ality k, the first k Eigen-vectors (having the largest Eigen-values) are chosen to form matrix

W [11].

4. Matrix W is then used to transform each sample onto the new subspace via Formula 2.3,

in which X is an n× 1 dimensional vector representing a single sample and y is the trans-

formed k×1 dimensional vector representing the transformed sample in the new subspace of

k dimensions [11].

y =W T ×X (2.3)
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CHAPTER 3

RELATED WORK

Chapter 3 examines the related work that has already been conducted in the field. Sec-

tion 3.1 explores the various methods by which researchers have proposed to implement machine

learning intrusion detection in IoT security. Subsections 3.1.1 and 3.1.2 discuss framework solu-

tions and comparative results of lightweight machine learning algorithms, respectively. Subsection

3.1.3 discusses the methods of dimensionality reduction used to reduce machine learning model

training time and complexity and their varying effects on resulting model performance. Section

3.2 presents a summary and discussion of the literature.

3.1 Machine Learning Intrusion Detection System for IoT

Three major approaches to handling the computational requirements of implementing ma-

chine learning in IoT security have emerged in the research. Among these are novel approaches to

the detection system architecture, employing the use of more powerful systems to take the brunt

of the computational load involved; research and development of lighter-weight machine learn-

ing algorithms for use on more resource-limited devices; and feature and dimensionality reduction

techniques to extract the most essential information from the data, reducing cost to evaluate without

significantly impacting model performance.
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3.1.1 Novel Framework Solutions

Common solutions to deep and machine learning-based intrusion detection for IoT systems

incorporate the use of more powerful cloud and fog servers for both data storage and classification

[5–7]. Samy et al. propose an attack detection framework implementing DNN models on fog-

layer system clusters. The fog layer exists between the edge and cloud layers of typical IoT system

architecture, comprising many connected domains containing virtualized servers, routers, simple

data centers, and services [5]. Authors of [5] take advantage of this infrastructure to keep DL-based

distributed IDS nearer the edge layer, providing lower latency, greater scalability, and high-speed

response. The proposed architecture framework consists of IoT smart gateways at the edge layer,

server clusters to implement the IDS in the fog layer, and more powerful cloud servers to run IDS

performance monitoring and update.

Maharaja et al. propose a three-fold mechanism for securing IoT systems, employing VPN

techniques for protecting the communication channels, ML-based traffic analysis for classification,

and a challenge-response authentication mechanism to validate suspicious sources. In order to ad-

dress the potential latency and response times of cloud-focused architectures, authors implement

their decision-tree based traffic analysis and authentication control units in fog servers, offloading

excess traffic to the cloud during peak volume periods. Testing found that the proposed frame-

work achieved lower network cost and response times at higher traffic volumes than a pure-cloud

implementation [7].

3.1.2 Lightweight ML-based Intrusion Detection for IoT

There has been some significant research into existing machine learning algorithms to de-

termine which may serve as viable options for lightweight intrusion detection on resource-limited

devices.

Authors of [27] assessed the performance of multiple ensemble and single ML classifiers on
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CIDDS-001 [28], UNSW-NB15 [29], and NSL-KDD [30] intrusion detection datasets. Classifiers

tested include Random Forest (RF), AdaBoost (AB), Gradient Boosted Machine (GBM), Extreme

Gradient Boosting (XGB), Extremely Randomized Trees (ETC), Classification And Regression

Trees (CART), and Multi-Layer Perceptron (MLP). Metrics for evaluation and validation include

averages for accuracy, specificity, sensitivity and false positive rate. In addition, researchers ob-

served and compared average response time of classifiers across each dataset when implemented

on Raspberry Pi 3 Model B+, finding that while all classifiers perform similarly across all perfor-

mance metrics, CART outperformed other models’ accuracy by .01%, with the lowest false postive

rate and average response time on the Raspberry Pi.

In another study, [31], authors used a portion of the CICIDS2017 dataset to compare Sup-

port Vector Machine (SVM) to DL methods for informing machine learning-based intrusion de-

tection systems, specifically in detecting port scan attempts. They compare various neuron and

hidden layer numbers for finding optimal conditions for their deep learning model and performed

no feature extraction or dimensionality reduction on the dataset before running SVM, using all 80

of the original features. The study showed that deep learning methods outperformed SVM by a

significant margin along accuracy, precision, recall, and F1 score performance metrics in detecting

port scan attempts using this dataset. Though researchers provide the device specifications used

in testing, there is no comparison of execution time in their table of performance metrics for each

algorithm.

Additionally, lightweight neural network architectures are being proposed and tested. Au-

thors of [15] proposed a lightweight 12-neuron recurrent Random Neural Network (RNN) for sat-

isfactory performance with minimal computations and potential power consumption. They trained

and tested their RNN on a Bot-IoT dataset using 1,177 samples from the dataset 10 “best” features,

generated in [32], via coefficient and entropy techniques. Their results indicated that a lightweight

RNN could serve as an appropriate solution to intrusion detection on resource-limited devices.
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However, it should be noted that their experiment description made no mention of the specific

devices used for testing, nor their relative resource capacity.

3.1.3 Dimensionality Reduction Methods

Various methods of dimensionality and feature reduction for the purpose of increasing the

computational speed of training machine learning and deep learning-based intrusion detection sys-

tems have been explored in the literature.

The authors of [8] used gini importance, permutation importance, and drop-column im-

portance to provide a detailed selection of the most important features for intrusion detection in

the CICIDS2017 dataset, and found that permutation importance can be used to show 10 features

represent approximately 99% of the cumulative importance in the data. Authors then tested the

original dataset alongside a reduced dataset of only 10 features determined via permutation impor-

tance to compare feature reduction impact on performance metrics in attack detection, concluding

that the difference in F1 score, false positive and false negative rates where negligible.

In [9], the authors compare Decision Tree (DT), RF, and SVM multiclass classifiers across

the performance metrics of accuracy, precision, recall, and training time. Additionally, they use

PCA to reduce the dimensionality of their dataset, testing the training time, training accuracy

and testing accuracy of the RF model for different dimensions of: 3, 5, 10, 15, 20, 50, and 100.

Authors used the IoT Network Intrusion Detection dataset from which they extracted 115 features

categorized into 3 different classifications of attacks: Man in the Middle (MitM), Mirai, and Scan,

alongside a minority of benign traffic. Researchers found that training the entire dataset at 15

features reduced using PCA optimized training time at approximately 1/6 the training time of

the original dataset with minimal detraction to testing accuracy, though 10 features is optimal for

both training time and accuracy across all subsets. Results of the study showed that RF identifies

and classifies attacks and benign data at higher accuracy with a lower training time in all cases,
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and that 10 principal components allow a significant reduction in computational resources without

compromising the quality of the detection rate.

In [10], the authors compared the effect of PCA reduction on softmax regression and k-

nearest neighbor classifiers using the KDD Cup 99 Data Set. Testing softmax regression on 3,

6, and 10 features. They found 10 to achieve the optimal detection rate, with KNN performing

significantly slower at a negligible increase in accuracy. They concluded that, given computa-

tional complexity and speed, softmax regression on reduced dataset was the preferred algorithm

for intrusion detection in IoT.

The authors of [11] compare PCA and auto-encoders as methods to reduce the dimension-

ality of the CICIDS2017 dataset. Similar to [8], the authors used PCA to reduce the dimensionality

of the original dataset to 10 principal components. Using auto-encoders, they reduce the number

of features to 56. They then tested the resulting reduced datasets using an RF classifier, finding that

RF trained on the PCA-reduced dataset was able to achieve a maximum precision value of 99.6%.

They conclude that PCA is the superior and faster method of dimensionality reduction.

3.2 Summary and Discussion

Among dimensionality reduction methods, principal component analysis stands out in its

capacity to significantly reduce computational resource requirements for building the model with-

out compromising resulting model performance metrics [9–11]. The current literature surrounding

novel framework approaches to implementing ML-based intrusion detection in the IoT is limited in

applicability. In other words, reliance upon fog systems for intrusion detection may not prove ap-

propriate across all industries and applications that can benefit from ML-based intrusion detection

for IoT environments. Additionally, such frameworks suffer from a number of drawbacks includ-

ing increased traffic between the edge and fog layers, and anomalous traffic remaining undetected

until reaching the fog or cloud layer. Research comparing lightweight machine learning algorithms
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and dimensionality reduction techniques often limit performance metrics to the accuracy and pre-

cision of the resulting model, without consideration of the time, complexity, and resource usage

in practical application [14, 15, 27, 31]. As such, further research into additional IDS frameworks,

performance metrics and resource demands across multiple devices is necessary.
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CHAPTER 4

PROPOSED FRAMEWORK METHODOLOGY

Chapter 4 outlines the concept of operations behind the proposed deep learning intrusion

detection system. Section 4.1 provides a brief overview of the concept of operations and the

remaining sections examine each stage in greater detail.

4.1 Concept of Operations

Figure 4.1 illustrates some differences between the proposed architecture (a) and those pre-

sented in the literature (b), adapted from [5]. Both frameworks rely upon more powerful remote

servers for further analysis of attack detection information and IDS performance monitoring and

updates (represented by the red and blue arrows, respectively). However, where previous frame-

works relied upon fog layer servers to implement the traffic analysis module, the proposed architec-

ture performs anomaly detection at the edge layer by implementing the neural network classifier

at the gateway. Further detail regarding the order of operations for the proposed framework is

provided in Figure 4.2.

The concept of operations for the proposed framework consists of 4 primary phases:

1. Initial Model Training and Deployment: The initial deep learning model is trained on the

remote server to be deployed to edge-layer gateways throughout the network for anomaly

detection.

2. Network Flow Export and Collection: Gateways generate flow records of the network traf-
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fic for analysis, normalizing and reducing data through PCA for processing.

3. Flow Record Evaluation: Gateways employ deep learning model to evaluate and label in-

coming flow record data as anomalous or benign, sending subsequently labelled flow records

to the remote server upon detection of an anomaly.

4. Model Update: Gateways periodically refit the model to local network traffic, to strengthen

anomaly detection classifier. Upon receiving flow records from gateways, the remote server

determines attacks, then updates and redeploys the initial model as necessary.

4.2 Initial Model Training and Deployment

This phase, represented in the first box of Figure 4.2, will require the collection of data.

For the purpose of binary classification anomaly detection, training data must include sufficient

number of labelled records, being diverse and robust in attack range and benign traffic patterns.

Though intrusion Detection datasets or data generation methods used for initial model training

may vary, it is pertinent that finalized training datasets include identical features to the normalized

and reduced flow records later evaluated by the flow collector unit. Training of the initial model

will comprise multiple epochs, parameters tuning as described in Section 2.3, and train/test split

methods to optimize model performance.

4.3 Network Flow Export and Collection

In reference to terminology provided in Section 2.2, the network flow exporter and network

flow collector units describe separate roles both performed by the IoT gateway. In this phase,

represented in the second box of Figure 4.2, the flow exporter unit will observe network traffic

and generate timestamped flow records, using flow accounting software such as CICFlowmeter

used in [12]. The first timeout interval here represents the exporter’s inactive and active flow
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record timeout settings discussed in Section 2.2. The exporter unit will send expired records to the

collector unit for network monitoring and analysis. The flow collector unit of the IoT gateway will

continually aggregate, normalize and reduce data received from the flow exporter, in order to be

consistent with the format of data determined in the initial model training phase.

4.4 Flow Record Evaluation

In this phase, represented in the third box of Figure 4.2, the gateway IDS will evaluate

data to determine anomalous traffic using the resulting model from the training and deployment

phase, classifying flow records as either benign or anomalous (potentially malicious). Detection

of an anomaly in the current batch of flow records will trigger sending of all saved labelled flow

records to the remote server for anomaly classification, initial model performance evaluation and

possible retraining. In the event that no anomalies are detected in the current batch of evaluated

flow records, the model may be refit on all labelled records saved on the device. The second time

interval of Figure 4.2 here represents a timeout to determine if enough labelled data has aggregated

to refit the model without degrading resulting model performance metrics.

4.5 Model Update

Two processes are distinguished for updating the anomaly detection classifier. One instance

of model refitting will occur at the remote server, triggered by reception of anomalous-labelled

flow records from a gateway in the network. The resulting model is considered the primary, that

will be distributed to all edge layer gateways when training is complete. The other instance is the

secondary, or local model refit, which occurs at the gateway between primary model updates.
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4.5.1 Primary Model Update

The process of updating the primary anomaly detection classifier, shown in final box of

Figure 4.2, is divided into 3 stages: anomaly classification, model performance monitoring and

evaluation, and model retraining and redeployment.

4.5.1.1 Anomaly Classification

Flow records received by the remote server will be evaluated using a separate multi-class

classifier to provide further insight regarding potential malicious traffic. Anomalous flow records

that do not match attack types may be reclassified as benign. The binary classifier model would

then be retrained on relabelled data and redeployed to gateways, as described in the model retrain-

ing and redeployment stage, in order to facilitate the introduction of new technologies and benign

traffic patterns to the network. In addition to alerting systems administrators, attack identification

by the multi-class classifier triggers primary model performance evaluation and update. Additional

triggers for performance evaluation may include scheduled updates, discovery of new exploits, or

high ratio of anomalous to benign-labelled aggregated records.

4.5.1.2 Model Performance Monitoring

In the performance monitoring stage, the primary binary classifier will evaluate the newly

aggregated labelled flow records, monitoring model performance metrics of accuracy, precision,

false positive and negative rates. Should the evaluation indicate a drop in these metrics from those

achieved in the initial training phase, retraining of the primary model will be triggered. In the case

that performance metrics achieved in this evaluation are equal to or greater than those achieved in

initial model training, no further action will be taken, as the IDS is functioning properly.
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4.5.1.3 Model Retraining and Redeployment

Unlike secondary model refit, retraining the primary model comprises some elements of

initial model training and deployment, including multiple epochs, parameters tuning, with train/test

split and early stopping mechanisms to optimize model performance without overfitting to the new

data. Optimal performance metrics of precision, F1 score, false positive and false negative rates

will be prioritized. Achieving greater performance metrics in training than those of the initial

model will trigger model save and redeployment to gateways throughout the network.

4.5.2 Secondary Model Update

Secondary model update, shown in the third box of Figure 4.2, occurs intermittently at edge

layer gateways to further normalize the benign traffic patterns of the local network. In secondary

model update, the binary classifier is simply refit on saved labelled records at the gateway. The

end result of performing this local refit is a model that is gradually customized at each gateway

between primary model updates, making it more robust to traffic that does not align with the

patterns established by local network devices.

Additional epochs and performance monitoring are avoided in order to prevent the retrain-

ing process from interfering with other intrusion detection operations on the resource-limited gate-

way device. An issue with this method of single-epoch refit is the potential for model performance

to degrade. As such, the purpose of the second timeout interval, discussed in Section 4.3, is to

allow a sufficient amount of labelled data to accumulate before refitting. A higher timeout interval

value will result in more data accumulated, and more consistently high performance. However,

should the model degrade regardless, a higher timeout value will also result in a longer period dur-

ing which the model is performing sub-optimally. Additionally, performing a refit task over larger

amounts of data may take significantly longer, utilizing time and resources that may be better al-

located to other gateway operations. Thus a range of timeout interval values will be examined in
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testing to compare their resulting time to fit, resources used, and average evaluation accuracy upon

refit.
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(a) Previous

(b) Proposed

Figure 4.1 IDS Architectures
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Figure 4.2 Proposed Framework Order of Operations
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CHAPTER 5

TESTING

This chapter details the steps involved in the data preparation and testing processes. Sec-

tion 5.1 discusses the devices of varying capacity used in testing. Section 5.2 covers the initial

stages of data collection and preprocessing for future testing. Section 5.3 reviews the scaling and

dimensionality reduction methods used to generate two distinct datasets and models for compari-

son. Section 5.4 details the methods by which initial neural network architectures were determined

and resulting models were trained. Section 5.5 details the process of generating record timestamps

for flow export interval simulation. Section 5.6 outlines the method by which performance metrics

were collected in testing.

5.1 Devices Used

In order to examine the potential for gateway devices to implement deep learning network

flow-based intrusion detection, the Raspberry Pi 4 was chosen for its ease of use, low price and

commercial availability. Though the Raspberry Pi 4 with 8GB RAM borders the edge of what may

currently be considered IoT, the 64-bit Raspbian OS, in beta at the time of writing, is critical to the

operation of later versions of TensorFlow used in testing.

Fit and evaluate times and accuracy were also monitored on an an XPS15-9570 personal

computer with Intel Core i7-8750 CPU 2.20GHz and 16GB using CPU-enabled TensorFlow, and

the University of Tennessee Chattanooga’s (UTC) SimCenter Firefly cluster, which consists of 4

compute nodes based on the Intel Xeon Gold 6148 CPU (each node equipped with four Nvidia
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Tesla 32GB V100s) [33], in order to establish a baseline representing architectures more heavily

reliant upon cloud and fog-based solutions for traffic evaluation. Additionally, UTC’s Firefly clus-

ter was used to expedite the processes of determining best neural network architecture for both

models as well as the potential benefit of continuous single-epoch refit to model performance.

All programming for this thesis work was done in Python, employing Scikit-learn [34],

TensorFlow [35], and Keras [36] libraries for model development and testing.

5.2 Data and Preprocessing

The data used for training and testing neural network models is drawn from the CICIDS

2018 Intrusion Detection Dataset, a series of CSVs converted from network traffic files collected

over the course of a month [12]. Each file is composed of 79 distinct features and together account

for 7 different attack scenarios including 15 distinctly labelled attack types across 15,831,819 sam-

ples [12]. This dataset was chosen for its consideration and inclusion of the critical characteristics

of a complete and efficient intrusion detection dataset: diversity of attacks, anonymity, available

protocols, complete network traffic, complete network interaction, feature set, labeled data sam-

ples, heterogeneity, and metadata [37]. Additionally, it includes a vast distribution of records

among a variety of attack types, and its 79 features allow for a greater difference to be examined

between standard and reduced-dimension datasets.

The processing of this data comprised the removal and subsequent addition of a number

of features, random sampling of specific attack types, data normalization using min-max feature

scaling, and dimensionality reduction via Principal Component Analysis.

It was determined by [8] that eight features of the CICIDS 2017 Dataset, which CICFlowme-

ter collects by default, are flags set to zero across the entire dataset and thus have no impact on

model results. After confirming this consistency with CICIDS 2018, these features were removed.

In addition, all categorical features from the original dataset were initially removed, as categorical
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features are unfit for feature scaling and PCA reduction, and encoding these features would add

time and processing to models, counterproductive to the goal of determining feasibility for embed-

ded devices. However, after testing models trained with and without the “destination port” feature,

it was found that models which incorporated destination ports into their training data achieved

consistently higher accuracy, and were thus used exclusively in later testing.

Attack types for training and testing data were chosen for the number of samples included

in the original dataset, so as to have a sufficient number of records of each attack type for training

the model. Those including fewer than 10,000 records were removed. Of the 10 remaining attack

types, 5,500 records were randomly sampled, distributing 1,000 records to training and the remain-

der to the testing dataset. Two exceptions include DoS-Goldeneye attack records, only 30,000 of

which were included in testing, and DoS-Slowloris attack records, of which the 10,000 randomly

sampled were distributed evenly across training and testing data. Intent behind sampling was to

provide a generally even distribution of as many attack types as possible.

These data were then concatenated with 100,000 and 400,000 records of randomly sam-

pled benign-labelled data to provide even distribution of benign and malicious data, emphasizing

the importance of the accuracy metric in binary classification. The resulting training and testing

datasets, consisting of 69 features and comprising 200,000 and 800,000 records, respectively, were

relabelled ‘0’ and ‘1’, with ‘0’ to indicate benign records and ‘1’ for malicious.

5.3 Scaling and Dimensionality Reduction

Data normalization, and more specifically, min-max scaling, is a commonly-practiced step

in preprocessing data for machine learning and PCA as the range of data can vary widely across

features [10, 11]. Min-max feature scaling normalizes the data to a range of [0,1] by subtracting

the value of the feature minimum from the current element, and dividing that number by the fea-

ture range (maximum value - minimum value). Features were scaled by this method prior to the
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application of PCA, in which data was centered with a mean of zero. Figure 5.1 shows the ex-

plained variance ratio, or percentage of variance represented, for each principal component of the

transformed 69-feature training dataset.

Figure 5.1 Amount of variation represented by each principal component of the 69-feature
training data

The final dataset consists of 10 principal components, cumulatively accounting for approx-

imately 93% of the variation in data. This number of principal components, previously shown to

maintain high performance metrics for models trained on CICIDS 2017, was chosen to achieve a

high Reduction Ratio of 10:69, while still accounting for a high percentage of variation in the input

data [10, 11].
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5.4 Model Architecture Determination and Training

For comparison of time to fit and resulting accuracy, two models were trained on variations

of the 200,000-sample dataset. The first model training and testing data consists of the 69 features

maintained from the original dataset and normalized using min-max feature scaling, and the second

model, 10 principal components derived from the first variation. All models incorporate a sequen-

tial, feed-forward architecture, with an input layer matching the features of its training dataset, and

an output layer of a single neuron. For the model trained on 69 features, Rectified Linear Unit

(ReLU) was used as the activation function for its relative computational simplicity and resulting

speed [38]. For the model trained on 10 principal components, hyberbolic tangent (tanh) activation

function was used to ensure prediction consistency for negative input values [39]. The formulas

for ReLU and and tanh activation are shown in Formula 5.1, and Formula 5.2 respectively, where

x represents the input data and f (x) the output at each neuron.

f (x) = max(x,0) (5.1)

f (x) = tanh(x) =
2

1+ e−2x −1 (5.2)

Number of hidden layers and number of neurons per hidden layer for final models were

determined via an iterative program, using a train-test split ratio of 80% to 20% to train neural

networks of varying architectures to a maximum of 10 epochs, with early stopping mechanisms

prioritizing the maximum validation accuracy. The number of hidden layers and neurons per layer

ranged from 1 to 6 and 5 to 100, respectively. Sequential feed-forward architecture, number of

epochs, hidden layer and neuron ranges were chosen to expedite the process of determining ar-

chitecture with highest validation accuracy, while limiting the size and complexity of the resulting

model, so as to still be appropriate for embedded devices. The resulting models for 69 full and

10 PCA-reduced datasets, summarized in Figure 5.1, achieve initial validation accuracy of 95.40%
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and 94.29%, and consist of five hidden layers each and 81 and 86 neurons per layer, respectively.

Each row of the tables below represents a layer of the model. The first column of each table shows

the name or label of the layer and its type. All layers for both models are of the ’dense’ type, de-

scribed in Chapter 2. The second column of each table shows the number of neurons that comprise

each layer, 81 for hidden layers of the 69-feature model, and 86 for those of the PCA-reduced

model. The final column of each table provides the number of trainable parameters (weights and

biases) associated with that layer, corresponding to the number of input and output connections at

each neuron of the layer.

Subsequent model creation and training incorporated these determined best architecture

hidden layer and neuron numbers with a train-test split ratio of 80% to 20% on the same 200,000-

sample training datasets. Maximum number of training epochs was set to 1,000, with early stop-

ping mechanisms prioritizing model validation accuracy to avoid overfitting the input data. Result-

ing trained models for 69-feature and 10-principal component datasets achieved validation accu-

racy of 95.61% and 95.25%, respectively.

To accurately discern the affects of PCA reduction on model task completion time and

system resources on the Raspberry Pi 4, a third model, trained on the 69-feature dataset and using

the same architecture and tanh activation function of the PCA-reduced model was generated. This

model achieved a validation accuracy of 95.88% in training.

5.5 Record Timestamp Generation

Simulation of network traffic influx for a network flow-based IDS demands the generation

of timestamps for records to imitate the number of records captured between instances of refitting

the model. Record timestamps were provided in the original dataset, but removed for the pur-

pose of nomalizing features and deriving principal components. Additionally the concatenation of

data spanning multiple days, and subsequent sampling and randomization of data for training and
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Table 5.1 Resulting best neural network architectures for IDS models

(a) Standard, 69-features model architecture

(b) Reduced, 10-principal components model architecture
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testing dataset generation would render the attempted reintroduction of the original timestamps

meaningless. As such, new timestamps were generated for the 800,000-sample testing datasets to

approximate the traffic influx during each of the 10 attacks included in the final testing data.

The authors of [12] have included attack start and end times in their description of CICIDS

2018. The number of seconds per attack were calculated and summed in instances of attack types

spanning multiple distinct attacks. This number was then multiplied by the ratio of records of

the corresponding attack type included in the final testing data to records of the same attack type

included in the original concatenated CSV files, then divided by the number records of that attack

type included in the final testing data. The resulting value was then incremented across its cor-

responding number of records in the final testing data. Table 5.2 shows the values calculated at

each step of simulated timestamp generation. Four attacks types which included fewer than 10,000

records in the original training data, were excluded from sampling and timestamp generation.

As benign data is dispersed between attacks across all provided CSV files for CICIDS

2018, the rate of benign traffic was simulated using the purely benign traffic CSV file included in

CICIDS 2017 by dividing the approximate number of seconds spanning the traffic capture by the

number of included flow records. The final testing dataset timestamps span approximately 10.52

hours, beginning at 0 and ending at 37888.0763354195. Table 5.3 shows the average number of

records, over which fit and evaluation tasks are executed for each interval value tested.

5.6 Model Evaluation and Fit Testing

The following subsections detail the processes by which comparable metrics were drawn in

system and model performance testing. Changing variables to be compared include device, binary

classifier (being either 69 feature or 10 principal component), batch size and interval value, and

CPU stress. Metrics for variable comparison include fit and evaluation time, evaluation accuracy,

CPU load percentage and memory. The final subsection outlines the method by which CPU stress
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Table 5.2 Values for Simulated Timestamp Generation

Table 5.3 Average Records per Interval Value

simulation was implemented in testing. In order to simulate various inactive and active threshold

flow exporter settings, interval variables representing 5, 10, 15, 30, 60, 120, 180, 240, 300, and

600 seconds were tested. These same interval values were used in testing fit time and evaluation

accuracy to simulate the second timeout interval of the proposed framework.
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5.6.1 Fit and Evaluation Time

Trained models and final testing datasets were deployed to each of the three systems for

testing, alongside a number of Python scripts to test model fit and evaluation times at various

interval and batch sizes. Fit and evaluation times were approximated by calling the performance

counter function of the Python Time library before and after the Keras fit or evaluate, subtracting

the former value from the latter. The performance counter function returns the value, in fractional

seconds, of a system’s performance counter to measure a short duration [40]. Fit and evaluation

times across both models and all interval and batch size values were drawn from each of the three

devices for speed comparison.

In addition, the 69-feature model utilizing tanh activation was deployed to the Raspberry

Pi 4, to compare fit and evaluation times to those of the PCA-reduced model.

5.6.2 Fit and Evaluation Accuracy

Accuracy of a machine learning model is calculated as the ratio of correctly predicted sam-

ples (True Positive + True Negative) to all predictions (True Positive + True Negative + False

Positive + False Negative). In order to observe and quantify the performance trade-off of dimen-

sionality reduction, fit and evaluation validation accuracy were calculated at each interval for all

interval and batch size values. An issue to be observed in refitting locally, without a performance

monitoring trigger or additional epochs prioritizing model performance, is the potential for accu-

racy to degrade upon refit. For this reason, both refit and evaluation accuracy of the initial model

was monitored at every interval in order to compare their respective averages. Higher average refit

accuracy would indicate performing local refit in this way has merit. To ensure consistency be-

tween model fit accuracy and validation accuracy upon fit, additional tests were run on the Firefly

cluster, pulling evaluation accuracy from a static (unchanging) version of the initial model, along-

side evaluation accuracy from before and after refitting a dynamic (changing) model, which was
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saved upon refit. To prevent redundant refitting in these additional tests, 50 distinct but initially

identical dynamic models were generated for testing each interval value and batch size, for both

normalized and reduced datasets.

5.6.3 Device Resource Metrics

In order to observe and compare resource demands of both models at varying batch size

and interval values for the Raspberry Pi 4, the ‘dstat’ application was run simultaneously with

each Python script, collecting computational load and RAM at single-second intervals. ‘Dstat’ is

a command-line application for monitoring system resource statistics [41]. CPU usage was cal-

culated by combining user and system usage percentages for each core. System usage represents

the amount of CPU time used by the kernel for low-level processes. User usage percentage repre-

sents the time used by higher-level processes in the user space, such as applications. To establish a

baseline value for this method of load calculation, ‘dstat’ was run on the Raspberry Pi 4 over a 60-

second period while the system was otherwise idle. Average CPU utilization over this period was

3.212862069% (of 400). Over the same idle period average memory utilization was established at

274.538389 MB.

5.6.4 Stress Simulation

Determining the feasibility of embedded devices as deep learning intrusion detection-

enabled flow collector units demands the comparison of fit and evaluation speed and performance

metrics as additional load or stress is placed on the device. To this end, ‘stress-ng’, a terminal-

based application for stress testing computer systems [42], was employed to run simultaneously

during additional testing for every Python script. ‘Stress-ng’ was enabled to run on all 4 cores of

the Rasperry Pi’s ARM Cortex-A72 processor simultaneously to maximize CPU load at 400%. It
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is expected that stress testing will show a significant increase in fit and evaluation times, where any

changes in model fit and evaluation accuracy will remain statistically insignificant. Nevertheless,

all resource and model performance metrics were drawn for comparison to the initial tests.
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CHAPTER 6

RESULTS AND DISCUSSION

Chapter 6 presents an analysis and discussion of experiment results. Section 6.1 provides

an overview of processed results and methodology for data interpretation. Section 6.2 examines

the affect of batch size and PCA dimensionality reduction on device memory and CPU utilization.

Section 6.3, presents an analysis of the accuracy of static and dynamic models to ascertain the po-

tential benefit of local model refitting in the proposed framework. Section 6.4 presents a summary

and discussion of the results.

6.1 Results Processing and Comparison

Table 6.1 Raspberry Pi batch-interval profiles for results analysis
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Resource metrics were averaged alongside number of records collected at each interval, as

well as fit and evaluation times, to provide a comparable profile for each batch and interval size

for each model on the Raspberry Pi 4. Examples of such record profiles are provided in Table 6.1.

In addition, batch-interval profiles including fit and evaluation time and accuracy averages were

generated for each interval value and batch size on the XPS15 and Firefly cluster. Upon discovery

of a testing error, a number of batch sizes for 15-second intervals, all results pertaining to this

interval value were removed. Table 6.2 presents how comparison of these finalized data provide

insight into initial research questions.

Table 6.2 Methods for results analysis

6.2 Device Average Task Speed Comparison and Analysis

Aside from the obvious significant reductions and increases in task completion time in

relation to device capacity and amount of data processed, respectively, a number of trends are
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observed from the results data that conform to the understanding of DL evaluation and training

operation established in Chapter 2. First, in comparing time values across Figure 6.1 through

Figure 6.8, we find that greater deviation in task completion time exist between batch sizes at higher

interval values. The simple explanation is that increases in the amount of data to be processed

places greater significance on the amount of data processed in a single step. Second, fit times

are consistently higher than evaluate times and greater deviation exists between batch sizes. This

is also expected as the training process requires observation and adjustment of neural network

parameters. Additionally, higher batch sizes mean fewer instances of parameter adjustment across

a single epoch.

The effect of Principal Component Analysis on task completion time is minimal for both

fitting and evaluating models. In fact, time-to-complete for the reduced dataset is increased in some

instances of evaluation and fitting. A likely explanation for the minimal affect of PCA is the tanh

activation function utilized in the reduced model. The increased computation complexity of the

tanh function over ReLU is compounded across each neuron. Figure 6.5 and Figure 6.6 confirm

this explanation, as the 69-feature ReLU and tanh models are compared, with time-to-evaluate

consistently higher for the tanh model.

Time-to-fit is more consistent with expectations, as distinctions between reduced and stan-

dard models are slightly more pronounced, and reduced model fitting is consistently faster at lower

batch sizes. This is to be expected as PCA is shown to reduce model training time [9, 11]. How-

ever, as batch size increases, so to does time-to-fit for the reduced model in relation to that of the

standard model, surpassing it in some instances. Further, Figure 6.7 and Figure 6.8 show higher

fit times for the 69-feature ReLU model than those of the tanh at batch size 16. At this batch size,

only 16 records of the testing data interval are fed through the model before adjusting parameters,

making the number of trainable parameters significantly more important to fit time.
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.1 Evaluation task completion time (in seconds) for 5, 10, 30, and 60-second intervals of
testing data across batch sizes 16, 32, 64, 128, and 256 (models include 69-feature
ReLU activation and 10-feature tanh activation)

6.3 Effect of PCA, Batch Size on Embedded System Resources

Further insight into possible explanations for the limited impact of PCA on fit and evalua-

tion speed may be gained through observation of device resources during task execution. Section

6.3.1 and Section 6.3.2 examine the relationships of model reduction, batch size and interval val-

ues, to system memory and CPU usage, respectively. Section 6.3.3 discusses observations made

from comparison of normal execution metrics to those monitored under stress.
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.2 Evaluation task completion time (in seconds) for 120, 180, 240, 300, and 600-second
intervals of testing data across batch sizes 16, 32, 64, 128, and 256 (models include
69-feature ReLU activation and 10-feature tanh activation)

6.3.1 Memory

As is shown in Figure 6.9, Figure 6.12, PCA significantly reduces fit and evaluation RAM

usage at a consistent percentage. Where standard model usage maintains above one 1,000 MB
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.3 Fit task completion time (in seconds) for 5, 10, 30, and 60-second intervals of testing
data across batch sizes 16, 32, 64, 128, and 256 (models include 69-feature ReLU
activation and 10-feature tanh activation)

of RAM across lower interval values of 300 and 600 seconds, just under at higher intervals, the

reduced model usage stays approximately 600 MB throughout. Considering the established idle of

275 MB alongside the greater range of signed values in the reduced dataset, this ratio is compatible

with expectations.

Figure 6.13 and Figure 6.14 compare the RAM usage of fit and evaluation tasks for 69-

feature ReLU and tanh models. Here it can be seen that tahn model RAM is slightly higher for

fit and evaluation tasks, a result of differing architectures. The tanh model includes an additional

5 neurons per hidden layer and with these, the associated trainable parameters. In other words,

there are simply more values to store and update for the tanh model. It is also significant to note

that RAM usage appears to trend slightly lower at much higher interval sizes. Interval value does
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.4 Fit task completion time (in seconds) for 120, 180, 240, 300, and 600-second intervals
of testing data across batch sizes 16, 32, 64, 128, and 256 (models include 69-feature
ReLU activation and 10-feature tanh activation)

not increase the amount of data processed simultaneously (represented by batch size), but rather

the number of times simultaneous data processing must occur, depending on the batch size. In

other words, the number of records in the interval period, divided by the batch size, is roughly
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.5 Evaluation task completion time (in seconds) for 5, 10, 30, and 60-second intervals of
testing data across batch sizes 16, 32, 64, 128, and 256 on the Raspberry Pi 4 (models
include 69-feature ReLU activation, 69-feature tanh activation, and 10-feature tanh
activation)

equivalent to the number of times a data processing task occurs over a single epoch. Thus, batch

size, as mentioned in Chapter 2, should be a greater contributing factor in determining the feasibil-

ity of performing such tasks on lower-memory systems. Even so, Figure 6.9 through Figure 6.12

show that the deviation of memory usage across batch sizes is not significant for either model, as

deviation across batch sizes is in the order of tens of MB.
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.6 Evaluation task completion time (in seconds) for 120, 180, 240, 300, and 600-second
intervals of testing data across batch sizes 16, 32, 64, 128, and 256 on the Raspberry Pi
4 (models include 69-feature ReLU activation, 69-feature tanh activation, and
10-feature tanh activation)

6.3.2 CPU Load

In examining computational load values presented in Figure 6.15 and Figure 6.16, a num-

ber of trends emerge in relation to model dimensionality, task performed, batch size and interval
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.7 Fit task completion time (in seconds) for 5, 10, 30, and 60-second intervals of testing
data across batch sizes 16, 32, 64, 128, and 256 on the Raspberry Pi 4 (models include
69-feature ReLU activation, 69-feature tanh activation, and 10-feature tanh activation)

values. The first trend observed is that CPU usage is higher over periods of fitting than those of

evaluation. The simple explanation relates to the computational cost of calculating and adjusting

model parameters upon processing every batch, an aspect of training that is not present in model

evaluation.

Another, more immediately apparent trend, is that CPU usage, while performing fit and

evaluate tasks over the PCA reduced model, is consistently higher than that of the standard models,

deviation between these values increasing at higher intervals. Two possible explanations relate to

the differences in activation function and input data of these models: First, the primary contributing

factor is resulting in higher CPU usage among tanh models is the increased computational com-

plexity of the tanh activation function over ReLU. Multiplying this complexity increase across all
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.8 Fit task completion time (in seconds) for 120, 180, 240, 300, and 600-second intervals
of testing data across batch sizes 16, 32, 64, 128, and 256 on the Raspberry Pi 4
(models include 69-feature ReLU activation, 69-feature tanh activation, and 10-feature
tanh activation)

activation occurring over a batch of predictions increases CPU load. However, the PCA-reduced

model maintains a higher load for fit and evaluation tasks than its 69-feature tanh counterpart.

Aside from the changes in architecture resulting from a lower number of features, the distinction
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.9 Memory usage (in MB on Raspberry Pi 4) of fit and evaluation tasks for 5, 10, 30, and
60-second intervals of testing data across batch sizes 16, 32, 64, 128, and 256 (models
include 69-feature ReLU activation alongside the same model running under stress)

between these models is the nature of the input testing data. Where the values of the 69-feature

input data range from 0 to 1 across all features, principal components evaluated by the reduced

model have a higher range of both positive and negative values centered about a mean of 0. The

computation of this larger range of signed values may add additional load to the model.

6.3.3 Stress Comparison

Though stressed device memory usage, represented in Figure 6.9 through Figure 6.12, is

consistently higher than that of the device running normally, the margin of difference is in the order

of tens of MB and may be explained by the memory cost of running the stress-ng application. CPU
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.10 Memory usage (in MB on Raspberry Pi 4) of fit and evaluation tasks for 120, 180,
240, 300, and 600-second intervals of testing data across batch sizes 16, 32, 64, 128,
and 256 (models include 69-feature ReLU activation alongside the same model
running under stress)

load for tasks under stress was not considered for analysis, as stress-ng seeks to maximize load

across all cores for its duration. Thus little insight would be gained from comparison of this metric

across models, tasks, batch and interval sizes under stress.
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.11 Memory usage (in MB on Raspberry Pi 4) of fit and evaluation tasks for 5, 10, 30, and
60-second intervals of testing data across batch sizes 16, 32, 64, 128, and 256 (models
include 10-feature tanh activation alongside the same model running under stress)

Figure 6.17 through Figure 6.20 compare the standard (ReLU) and reduced model evalu-

ation and fit times while running the ‘stress-ng’ application. It is made clear in both figures that

sharing the CPU with the ‘stress-ng’ application increases task completion time across all intervals

and batch sizes, more than doubling it in some instances. Additionally, trends observed in the task

speed comparison of Section 6.2 remain consistent for the device running under stress. The ratio

of task-completion-time to time-interval is at its highest in fitting and evaluating 5 seconds of data

at batch size 16. It is worth noting that both fit and evaluation at this interval and batch size are

completed in under 1 second even under stress, meaning it is feasible for the Raspberry Pi 4 to

perform evaluation at a five-second flow record expiration timeout setting, even under stress, at a

batch size of 16.
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.12 Memory usage (in MB on Raspberry Pi 4) of fit and evaluation tasks for 120, 180,
240, 300, and 600-second intervals of testing data across batch sizes 16, 32, 64, 128,
and 256 (models include 10-feature tanh activation alongside the same model running
under stress)

6.4 Accuracy Analysis for Static and Dynamic Models

Figure 6.21 shows average validation accuracy achieved across 92 distinct models. Two

static models, being the same described in Section 5.4 and used throughout testing, performed
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.13 Memory usage (in MB on Raspberry Pi 4) of fit and evaluation tasks for 5, 10, 30,
and 60-second intervals of testing data across batch sizes 16, 32, 64, 128, and 256
(models include 69-feature ReLU activation, 69-feature tanh activation)

evaluation across all represented batch size and interval values. The remaining 90, initially identi-

cal to static models, were refit and saved after each evaluation to simulate adaptation to continuous

anomalous traffic. Distinct models for each interval-batch pair ensures no model retrains on the

same data twice.

Results show static accuracy for both standard and reduced to be identical across all batch

sizes of a given interval to be identical, as would be expected. Though batch size is a considerable

parameter in training, no parameters are adjusted in evaluation. Additionally, standard deviation

in accuracy across all interval values for both static models were in the order of 5 decimal places.

Despite principal components representing a cumulative 93% of the variation in training data, static

accuracy for the reduced model was considerably lower than that of the standard, so much as to
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.14 Memory usage (in MB on Raspberry Pi 4) of fit and evaluation tasks for 120, 180,
240, 300, and 600-second intervals of testing data across batch sizes 16, 32, 64, 128,
and 256 (models include 69-feature ReLU activation, 69-feature tanh activation)

be impractical for detecting anomalies. It should be noted that models were trained on a minority

(20%) of the overall data.
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.15 CPU usage (in percent of 400 on 4 cores of Raspberry Pi 4) of fit and evaluation tasks
for 5, 10, 30, and 60-second intervals of testing data across batch sizes 16, 32, 64,
128, and 256 (models include 69-feature ReLU activation, 69-feature tanh activation,
10-feature tanh activation)

Further examination of accuracy averages, provided in Table 6.3, show that average ac-

curacy of our 69-feature dynamic models steadily improves as batch size increases, surpassing

average static model accuracy at 256 samples. This conforms to the understanding of batch size in

model training provided in Chapter 2. Higher batch sizes represent a greater number of samples

over which gradient descent is calculated before adjusting tensor weights, meaning faster conver-

gence. Though average accuracy of the dynamic reduced models is less predictable in this regard,

Table 6.3 show it to be higher than that of the standard static model across most batch sizes.
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.16 CPU usage (in percent of 400 on 4 cores of Raspberry Pi 4) of fit and evaluation tasks
for 120, 180, 240, 300, and 600-second intervals of testing data across batch sizes 16,
32, 64, 128, and 256 (models include 69-feature ReLU activation, 69-feature tanh
activation, 10-feature tanh activation)

6.5 Summary and Discussion

Results of testing indicate network edge DL-based anomaly detection via the proposed

framework is feasible for embedded devices such as the Raspberry Pi 4. While fit and evaluate
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.17 Evaluation task completion time (in seconds) for 5, 10, 30, and 60-second intervals of
testing data across batch sizes 16, 32, 64, 128, and 256 (models include 69-feature
ReLU activation and 10-feature tanh activation, alongside both models running under
stress)

Table 6.3 Average static, dynamic accuracy for both models
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.18 Evaluation task completion time (in seconds) for 120, 180, 240, 300, and 600-second
intervals of testing data across batch sizes 16, 32, 64, 128, and 256 (models include
69-feature ReLU activation and 10-feature tanh activation, alongside both models
running under stress)

times are considerably higher than those of of the XPS15 and Firefly cluster, an average of only

.2 seconds is required for the Raspberry Pi to retrain models over 5 seconds of aggregated data,

representing the highest task-to-interval ratio of 4%. In addition, resource metrics collected show
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(a) 5 Seconds (b) 10 Seconds

(c) 30 Seconds (d) 60 Seconds

Figure 6.19 Fit task completion time (in seconds) for 5, 10, 30, and 60-second intervals of testing
data across batch sizes 16, 32, 64, 128, and 256 (models include 69-feature ReLU
activation and 10-feature tanh activation, alongside both models running under stress)

that though dimensionality reduction significantly reduces memory usage, it has negligible impact

on processing requirements and resulting time required to process data. Rather, choice of neural

network architecture and activation functions are of greater importance to these metrics. Finally

performance testing of static and dynamic models show improved average accuracy from perform-

ing single epoch refit at higher batch sizes. As resource monitoring has indicated batch size has

little impact on system memory usage, batch size of 256 is both achievable and preferable for edge

network anomaly detection.
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(a) 120 Seconds (b) 180 Seconds

(c) 240 Seconds (d) 300 Seconds

(e) 600 Seconds

Figure 6.20 Fit task completion time (in seconds) for 120, 180, 240, 300, and 600-second
intervals of testing data across batch sizes 16, 32, 64, 128, and 256 (models include
69-feature ReLU activation and 10-feature tanh activation, alongside both models
running under stress)
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Figure 6.21 Comparison of static and dynamic model accuracy across all batch sizes
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CHAPTER 7

CONCLUSION

7.1 Closing Thoughts

In this work, we have proposed a novel framework for implementing DL-based anomaly

detection at the edge layer. It relies on embedded devices for performing network monitoring and

classification and adapts to potential malicious traffic by retraining upon detection of anomalies.

To determine the feasibility of the framework, we trained two neural network models of varying

dimenionality for binary classification, and monitored model performance and resource demands

on the Raspberry Pi 4. In addition, validation accuracy of both models was tested upon consistent

refitting to various intervals of testing data. In the experiments conducted, the trade-off of PCA

dimensionality reduction in terms of model accuracy and speed is often negligible, in some cases

even detrimental, though accuracy upon refit was found to be more consistent than in other models.

In terms of system resources, memory usage of the reduced model was roughly half of its coun-

terpart for a dimensionality reduction ratio 10:69. Additionally, the highest batch size of 256 and

higher timeout intervals for refitting are shown to be achievable and to facilitate consistently higher

model accuracy upon refit. Further, refitting upon the lowest tested inactive record timeout value

requires only 4% of the amount of time taken to accumulate data. Together, these results indicate

that it is not only feasible of resource-limited devices to employ DL network flow-based anomaly

detection effectively, but that anomaly detection models, implemented on such devices can adapt

to network traffic in a timely manner.
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7.2 Future Work

Though it has been shown that the Raspberry Pi 4 can utilize more complex DL models

for anomaly detection effectively, further evaluation of the effect of PCA reduction on model and

device resource metrics is necessary. Additionally, while testing has shown batch size to have in-

significant impact on device memory usage, a deeper examination into its affect on paging, L1,

L2 cache memory should be conducted. Future testing will emphasize identical neural network

architecture, additional model performance metrics, and feature a range of dimensionality reduc-

tion techniques. Furthermore, though performing single-epoch refit can improve the accuracy of

the current model, it is not clear that a higher-accuracy classifier would benefit. As the current

ratio of fit-time to interval period permits, future testing will seek to determine a practical limit for

multi-epoch training in real time.
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[19] L. S. Vailshery, “Number of iot devices 2015-2025,” Nov 2016. [Online]. Available:
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

[20] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of
things,” Proceedings of the first edition of the MCC workshop on Mobile cloud computing -
MCC 12, 2012.

[21] Li, Guo, Ma, Mao, and Guan, “Online workload allocation via fog-fog-cloud cooperation to
reduce iot task service delay,” Sensors, vol. 19, no. 18, p. 3830, 2019.

[22] “Rfc 7011.” [Online]. Available: https://www.tech-invite.com/y70/tinv-ietf-rfc-7011.html

[23] C. Gambella, B. Ghaddar, and J. Naoum-Sawaya, “Optimization problems for machine
learning: A survey,” European Journal of Operational Research, vol. 290, no. 3,
pp. 807–828, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S037722172030758X

[24] A. Ghumro, A. Kanwal, I. Memon, and I. Simming, “A review of mitigation of attacks in iot
using deep learning models,” vol. 18, pp. 36–42, 01 2021.

70



[25] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent develop-
ments,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and En-
gineering Sciences, vol. 374, no. 2065, p. 20150202, 2016.

[26] “sklearn.decomposition.pca.” [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

[27] A. Verma and V. Ranga, “Machine learning based intrusion detection systems for iot
applications,” Nov 2019. [Online]. Available: https://link.springer.com/article/10.1007/
s11277-019-06986-8
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