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Abstract

Real-world datasets contain errors, missing values, and poor representations. Data cleaning is a
critically important step in any data-related task. Over the past few decades, many algorithms
and systems have been presented to clean data. However, most of these solutions are either pure
statistical or machine learning models that do not consider the underlying structure of the data
or they are rule-based logical methods. In both cases, they fall short in effectively cleaning and
finding errors in structured data sets.

Many errors cannot be detected or repaired without taking into account the underlying struc-
ture and dependencies in the dataset. One way of modeling the structure of the data is graphical
models. Graphical models combine probability theory and graph theory in order to address one
of the key objectives in designing and fitting probabilistic models, which is to capture depen-
dencies among relevant random variables. Structure representation helps to understand the side
effect of the errors or it reveals correct interrelationships between data points. Hence, principled
representation of structure in prediction and cleaning tasks of dirty data is essential for the qual-
ity of downstream analytical results. Existing structured prediction research considers limited
structures and configurations, with little attention to the performance limitations and how well
the problem can be solved in more general settings where the structure is complex and rich.

In this dissertation, I present the following thesis: By leveraging the underlying dependency
and structure in machine learning models, we can effectively detect and clean errors via prag-
matic structured predictions techniques. To highlight the main contributions: I investigate pre-
diction algorithms and systems on dirty data with a more realistic structure and dependencies to
help deploy this type of learning in more pragmatic settings. Specifically, We introduce a few-
shot learning framework for error detection that uses structure-based features of data such as
denial constraints violations and Bayesian network as co-occurrence feature. I have studied the
problem of recovering the latent ground truth labeling of a structured instance. Then, I consider
the problem of mining integrity constraints from data and specifically using the sampling meth-
ods for extracting approximate denial constraints. Finally, I have introduced an ML framework
that uses solitary and structured data features to solve the problem of record fusion.
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Chapter 1

Introduction

Businesses have been generating and collecting more data than ever in order to build significant
data sources to enable powerful models and analytics. Using significant data enriches the accu-
racy of downstream processes. Big data is a term for any collection of large or complex datasets
that is difficult to process using traditional data management techniques. Data collection and
acquisition often introduce errors in data, e.g., missing values, typos, mixed formats, replicated
entries for the same real-world entity, and violations of business and data integrity rules. Also,
such errors are expected to grow as the size of data increases. Since data collection is often
error-prone, establishing trust in data is a challenge.

With the popularity of data science, it has become increasingly evident that data curation,
unification, preparation, and cleaning are critical enablers in unleashing the value of data [108].
Gartner predicted that more than 25% of critical data in the world’s top companies is flawed
[191]. Poor data across businesses and the government costs the U.S. economy $3.1 trillion a
year [43]. In general, data cleaning is a process or a chain of processes that detect data errors and
repair them by predicting the correct values.

Developing effective and efficient data cleaning solutions is challenging and requires the
solution of deep theoretical and engineering problems. The purpose of data cleaning is to increase
the quality level of data such that it can reliably be used for the production of statistical models
or statements. Regardless of the type of data errors, data cleaning activities usually consist of
four phases:

• Data Preparation and acquisition, where change data representation to be used for analyti-
cal tasks; domain experts’ suggestions help to select the data curation approach.
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• Error detection, where various errors and violations are identified and possibly validated
by experts.

• Error repair, where updates to the database are applied (or suggested to human experts) to
bring the data to a cleaner state suitable for downstream applications and analytics.

• Feedback, where a result-based module suggests changes on any previous modules to im-
prove the performance of the data quality system.

1.1 Structured Prediction and Data Cleaning

Regardless of the data model (relational, graph, RDF, etc.), the values in a database are not
independent of each other. Consider that each attribute/entity pair (e.g., a cell in a relational
table) is a node in a graph. The edge between two nodes represents a dependency that governs
how their values are assigned—these graph structure models include constraints such as keys,
and functional dependencies.

Naı̈ve prediction techniques ignore this underlying structure or assume that the structure is
simple. We leverage the underlying rich structure in this thesis. Expressive structures diminish
the approximation errors, so they enrich the prediction processes (Figure 1.1).
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Figure 1.1: Underlying data structure examples. Data constraints specify hyper-edges between
cell values indicating more complex dependency between cell values. (Edges with “+” indicate
variables here to take the same value, while “−” indicate different values.)
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In this thesis “structure” refers to the “dependency” among different units of data (e.g., cells,
properties,. . . ) as the underlying structure. This is in contrast to the modeling of data structure
(e.g., relations, graphs, JSON records) that is used to represent the data.

1.2 Approximation on Data Cleaning

Data approximation is a recent, fast-growing research area. It deals with the problem of recon-
structing an unknown function from given complex data. Naturally, it has many applications,
such as surface reconstruction [114], database operations [111, 143] , the numerical solution of
partial differential equations [74, 181], kernel learning [188], and parameter estimation [10], to
name a few. These applications come from different fields such as applied mathematics, com-
puter science, biology, etc. Especially in the last decades, with appearance on large datasets,
data approximation becomes a more challenging topic. In practical applications over a wide
field of study one often faces the problem of reconstructing an unknown function f from a fi-
nite set of discrete data. These data consist of data sites X = {x1, . . . , xN} and data values
fj = f(xj), 1 ≤ j ≤ N , and the reconstruction has to approximate the data values at the data
sites. In other words, a function s is sought that either interpolates the data, i.e. that satisfies
s(xj) = fj, 1 ≤ j ≤ N , or at least approximates the data, s(xj) ≈ fj .

An end-to-end data cleaning process starts with an optional discovery and profiling step, an
error detection step, and an error repair step. When the data is large, approximation can be
used in each of these steps. In data profiling, there is a process of discovering denial constraints
(DC), a universally quantified first-order logic formalism. Pure schema-driven approaches for
DC discovery are less applicable since DCs involve non-symmetric predicates and checking the
validity of the space of all DCs systematically is difficult. FASTDC [39] is an instance-driven
algorithm. It follows a depth-first search procedure to exhaustively search for all minimal set
covers and includes multiple optimizations and pruning opportunities based on the properties
of DCs to speed up the search procedure. FASTDC is able to prune the search space, that the
number of returned DCs can still be too large. Thus, it uses a scoring function to approximate
the value of the DCs based on their size and their support from the data. In data repair, the
HoloClean [177] system uses the observed dataset to build a probabilistic model capable of
predicting the most likely value for cells identified as (possibly) noisy. It uses factor graphs
to encode various kinds of features and inputs to the repair process, such as denial constraints,
statistical properties, minimality, and external master data. However, the factor graph on denial
constraints represents hyper-dimensional functions, for which it is a hard to find the optimal
point. It also needs more data to learn. Holoclean approximates these factor graphs by relaxing
denial constraints. SampleClean [123] targets the problem of answering aggregate queries when
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the input data is dirty. Since cleaning a large dirty dataset is usually time-consuming and requires
human expertise, SampleClean aims at answering a query only by cleaning a sample of the dirty
dataset while providing confidence interval guarantees for the query results. So, it approximates
the answer of the query by choosing a subset of the data. It assumes that there are two types of
errors in the input: attribute error and duplication error. A row in a relational table is said to have
an attribute error if one of the attributes has a missing or incorrect value. A relational table is said
to have an duplication error if there exist a row with a duplication. The challenge is to remove
the effect of the duplication from sampled data.

1.3 Structured Prediction

Structured prediction refers to machine learning models that predict multiple interrelated and de-
pendent quantities. These models are commonly used in computer science to accurately reflect
prior knowledge, task-specific relations, and constraints [153]. They are expressive and power-
ful, but exact computation in these models is often intractable. This difficulty, paired with the
practical significance, has resulted in a broad research effort in recent years to design structured
prediction models and approximate inference and learning procedures that are computationally
efficient.

Loss Functions and Decision Rules A generally accepted standard for evaluating the quality
of a given model is that of the expected loss of the model as a function of the true generating
probability distribution q(x, y) and a loss function1 l : Y(x)×Y(x)→ R, where Y refers to the
finite but exponentially large output space of the models. The distribution q(x, y) is distribution
for sampling we encounter when using the model y = f(x), where y ∈ Y(x) is a our model
prediction. q is unknown, but a convention assumption is that we can obtain independent and
identically distributed (iid) samples from it. The loss function l(z, y) quantifies—on an arbitrary
but fixed scale—the loss suffered if z happens to be the truth, and we decide y. The characteristic
of a structured prediction model can now be quantified as the risk,

R(f, q, l) = E(x,y)∼q[l(y, f(x))]

Because R depends on the unknown distribution q, the expectation is approximated using a
dataset D = {(x(i), y(i))}i=1,...,N sampled iid from q, yielding the empirical risk,

Remp(f, q, l) =
1

N

N∑

i=1

l(y(i), f(x)(i)) (1.1)
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While there are different opinions concerning how to build structured prediction models and
which loss function to apply for a given application, equation 1.1 is widely adopted. The best
possible risk, which is the lowest possible, is recognized as the Bayes risk. It is defined by
making the optimal decisions with the information of q, that is, RBayes(q, l) = R(fBayes, q, l),
where fBayes is the Bayes-optimal predictor,

fBayes(f, q, l) = arg min
y∈Y(x)

Ez∼q(z|x)[l(z, y)]. (1.2)

Evaluation For expressing function f , different options exist. One approach is to represents
f(x) as the maximizer of an auxiliary optimization problem (which can be considered as a po-
tential function),

f(x) = arg max
y∈Y(x)

F (x, y, θ), (1.3)

where θ ∈ Θ are model parameters. In many utilization, solving equation 1.3 corresponds
to solving a combinatorial optimization problem. The function F (x, y, θ) to be maximized is
commonly parameterized as a linear form,

F (x, y, θ) = 〈ϕ(x, y), θ〉 (1.4)

where Θ = Rd and ϕ(x, y) is a joint feature map, transforming x and y into a large but fixed-size
feature vector. The class of functions is now indexed by θ, and we have

F = {F (., ., θ)|θ ∈ Rd} (1.5)

Another strategy to constructing structured prediction functions is starting with a probabilistic
model and applying Bayesian decision theory [13]. For this, we assume that we have a model
for the conditional distribution p(y|x; θ) over Y(x). Given a loss function l, we can then use the
Bayes decision rule,

f(x) = arg min
y∈Y(x)

Ez∼q(z|x)[l(z, y)] (1.6)

This rule is the same as equation 1.2, except the unknown distribution q is replaced with model
p. Intuitively equation 1.6 chooses our prediction so that we minimize our expected loss under
every feasible z, weighted by our beliefs about the state of the world as encoded in p(z|x). The
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association between equations 1.6 and 1.2 implies that if p equals the correct distribution q, then
our decisions conceived using the Bayes decision rule will be optimal; that is, they will obtain
the Bayes risk.

Using either equation 1.2 or 1.3, we can define the structured prediction. In the following,
we define it using equation 1.2.

Definition 1.3.1 (Structured Prediction). Given an observation x ∈ X , make a prediction y ∈
Y(x) as y = f(x). Y(x) is typically finite but exponentially large. For representing the function
f , defines it as the maximizer of an auxiliary optimization problem in equation 1.3, where θ ∈ Θ
are model parameters. Depending on the structure of F and Y(x), we need to develop approx-
imate inference methods. The models can be learned with regularized risk minimization from a
given dataset of i.i.d. samples by minimizing regularized empirical risk,

f̂ = arg min
f∈F

Ω(f) +
1

N

N∑

i=1

l(y(i), f(x(i))). (1.7)

Here Ω(f) is a regularizer that controls the capacity of the learned model f̂ .

Globerson [82] considers the statistical problem of recovering a hidden “ground truth” binary
labeling for the vertices V of a graph up to low Hamming error from noisy edge and vertex
measurements. Hamming error for f ∈ F defines as follow,

L =
∑

v∈V

1(y(v) 6= f(x(v))) (1.8)

The structure complexity in this research is limited to square grid lattices. It has been proven
that the statistical complexity of the problem is essentially determined by the number of cuts
with a cutset of size k, where k ranges over non-negative integers. This observation, together
with clever use of planar duality, enables the determination of the optimal Hamming error for
the square grid. Chen et al. [32] have recently considered exact recovery for edges in this setting
for sparse graphs such as grid and rings. They consider the case where there are multiple i.i.d
observations of edge labels. In contrast, we focus on the case where there is a single (noisy)
observation for each edge, on side information, and on partial recovery. More recently, Foster et
al. [76] introduced an approximate inference algorithm based on tree decompositions that achieve
low expected Hamming error for general graphs with bounded tree-width.
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1.4 Challenges for Structured Prediction on Dirty Data

In general, the task of structured prediction on dirty datasets introduces multiple challenges in-
volving scalability, cleaning accuracy, and the supported complexity of structure patterns. To
achieve scalability, a common practice is to consider simple or small graph structures. Consid-
ering simple structures decreases accuracy by eliminating essential information that can save as
important context in recovering wrong and missing values. Statistical methods cannot be used
for small structures since there is insufficient data to support the learning models and learning
accuracy decreases. On the other hand, Statistical models can achieve an accurate prediction on
complex structures that can only apply to small datasets. For each specific task, it is unknown
how to balance accuracy and scalability, or even how to develop data cleaning models for simple
structures like trees [82]. Despite the high accuracy of the traditional methods on relational data,
converting structure information to tables is not promising because of unbounded dimensional
reduction [54].

1.5 Dissertation’s Hypothesis

In this dissertation, we consider structured prediction as the source of revealing hidden properties
of data that describe interrelationship among data records (what we refer to as structure); and
propose that data cleaning tasks can achieve high-quality results by considering these features.
The solutions presented in this dissertation adopt the following principles:

• Using noise-free training data allows the learning algorithm to be trained from the correct
version of the data generator. In agnostic learning, the training data might have some errors
due to the effects of noise, the total error is impacted. In this work, we have assumed that
the domain experts that generate training data do not introduce any data annotation errors.

• Domain experts provide correct data integrity rules. Some algorithms use a set of data
rules that help models to understand the underlying structure of the records. Errors in
these rules leads to structural errors, which is out of the scope of this dissertation.

• The data distribution is fixed during models training and prediction and the given data is
obtained by uniform sampling from the support of this distribution. Data generators create
data with a distribution that can be fixed or change over time. In this dissertation, the
assumption is that the distribution is fixed.
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1.6 Contributions and Outline

This thesis proposes frameworks for data cleaning on structured data, with guarantees for clean-
ing accuracy and scalability, while preserving the underlying structure. The contributions are the
following:

1. Error detection using structured featurization Data errors are common in all real-world
datasets. Errors are generated in different ways. Heterogeneity of errors makes error
detection a difficult task. Previous solutions focus on a subset of the side effects and
properties of the data. A more effective approach is to leverage data-dependency and
structure-based properties. We develop practical, scalable error detection models in the
presence of pragmatic challenges such as the lack of sufficient training data to learn the
structure and the prediction model [96]. (Chapter 2)

2. Correctness of inference using structured information Using graphical models on a
dataset with categorical attributes has been popular in the last few years. However, there
is no good theoretical work to support non-binary attributes. We address this problem
and fulfill the missing theoretical piece. For a given structure complexity, the effect of
statistical inference and approximation on scalability and data cleaning accuracy are in-
vestigated [94]. (Chapter 3)

3. Sampling from data with structured rules Integrity constraints represent graphical struc-
tures over the dataset. Often, however, these rules are not explicitly provided and have to
be discovered from the given data instance [39]. We propose a method to mine approx-
imate denial constraints (representing the underlying structure) to be fed explicitly into
data cleaning models that can leverage this structure [136]. We also provide a theoretical
analysis on the proposed algorithm. (Chapter 4)

4. Sampling method for data with structured noise It is common to sample large datasets
and use an unbiased estimator to measure estimation. When the dataset has noise that
can influence the structure of the data, simple sampling schemes do not work. Data du-
plication is an example of errors that changes the structure of the data. The problem of
sampling from data with duplicate records defines a structure over data points where each
pair representing the same real-world entity has an edge connecting them. Therefore, each
connected component corresponds to one real-world entity, and its size directly affects the
probability of being selected in the sample. This problem has theoretical and experimental
aspects. We develop practical sampling methods on dirty data based on theoretical analysis
that avoid the expensive data cleaning task. (Chapter 5)
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5. Framework for fusing datasets using structured featurization When multiple datasets
representing a set of real-world entities are merged, conflicting data require a decision pro-
cess to select the correct value(s) [59, 60]. Many of the previous data fusion algorithms
assume a set of homogeneous features and use the concept of source trustworthiness. We
propose a new model for the record fusion problem that uses structured prediction to pre-
dict the canonical representation of entities (cluster of records). (Chapter 7)
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Chapter 2

HoloDetect: Few-Shot Learning for Error
Detection

Error detection is a natural first step in every data analysis pipeline [107,157]. Data inconsisten-
cies due to incorrect or missing data values can have a severe negative impact on the quality of
downstream analytical results. However, identifying errors in a noisy dataset can be a challeng-
ing problem. Errors are often heterogeneous and exist due to a diverse set of reasons (e.g., typos,
integration of stale data values, or misalignment), and in many cases can be rare. This makes
manual error detection prohibitively time consuming.

Several error detection methods have been proposed in the literature to automate error de-
tection [56, 68, 107, 166]. Most of the prior works leverage the side effects of data errors to
solve error detection. For instance, many of the proposed methods rely on violations of in-
tegrity constraints [107] or value-patterns [113] or duplicate detection [66, 149] and outlier de-
tection [47,165,201] methods to identify erroneous records. While effective in many cases, these
methods are tailored to specific types of side effects of erroneous data. As a result, their recall
for identifying errors is limited to errors corresponding to specific side effects (e.g., constraint
violations, duplicates, or attribute/tuple distributional shifts) [2].

One approach to address the heterogeneity of errors and their side effects is to combine differ-
ent detection methods in an ensemble [2]. For example, given access to different error detection
methods, one can apply them sequentially or can use voting-based ensembles to combine the
outputs of different methods. Despite the simplicity of ensemble methods, their performance can
be sensitive to how different error detectors are combined [2]. This can be either with respect
to the order in which different methods are used or the confidence-level associated with each
method. Unfortunately, appropriate tools for tuning such ensembles are limited, and the burden
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of tuning these tools is on the end-user.

A different way to address heterogeneity is to cast error detection as a machine learning (ML)
problem, i.e., a binary classification problem: given a dataset, classify its entries as erroneous
or correct. One can then train an ML model to discriminate between erroneous and correct
data. Beyond automation, a suitably expressive ML model should be able to capture the inherent
heterogeneity of errors and their side effects and will not be limited to low recall. However,
the end-user is now burdened with the collection of enough labeled examples to train such an
expressive ML model.

2.1 Challenges Overview

We propose a few-shot learning framework for error detection based on weak supervision [172,
176], which exploits noisier or higher-level signals to supervise ML systems. We start from this
premise and show that data augmentation [162, 206], a form of weak supervision, enables us to
train high-quality ML-based error detection models with minimal human involvement.

Our approach exhibits significant improvements over a comprehensive collection of error
detection methods: we show that our approach is able to detect errors with an average precision of
∼94% and an average recall of∼93%, obtaining an average improvement of 20 F1 points against
competing error detection methods. At the same time, our weakly supervised methods require
access to 3× fewer labeled examples compared to other ML approaches. Our ML-approach also
needs to address multiple technical challenges:

• [Model] The heterogeneity of errors and their side effects makes it challenging to identify
the appropriate statistical and integrity properties of the data that should be captured by
a model in order to discriminate between erroneous and correct cells. These properties
correspond to attribute-level, tuple-level, and dataset-level features that describe the distri-
bution governing a dataset. Hence, we need an appropriately expressive model for error
detection that captures all these properties (features) to maximize recall. We introduce a
template ML-model to learn a representation that captures attribute-, tuple-, and dataset-
level features that describe a dataset. We demonstrate that representation learning obviates
the need for feature engineering. Finally, we show via ablation studies that all granularities
need to be captured by error detection models to obtain high-quality results.

• [Imbalance] Often, errors in a dataset are limited. ML algorithms tend to produce un-
satisfactory classifiers when faced with imbalanced datasets. The features of the minority
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class are treated as noise and are often ignored. Thus, there is a high probability of misclas-
sification of the minority class as compared to the majority class. To deal with imbalance,
one needs to develop strategies to balance classes in the training data. Standard methods
to deal with the imbalance problem such as resampling can be ineffective due to error
heterogeneity as we empirically show in our experimental evaluation. We show how to
use data augmentation to address data imbalance. Data augmentation proceeds as follows:
Given a small set of labeled data, it allows us to generate synthetic examples or errors
by transforming correct examples in the available training data. This approach minimizes
the amount of manually labeled examples required. We show that in most cases a small
number of labeled examples are enough to train high-quality error detection models.

• [Heterogeneity] Heterogeneity amplifies the imbalance problem as certain errors and
their side effects can be underrepresented in the training data. Resampling the training
data does not ensure that errors with different properties are revealed to the ML model dur-
ing training. While active learning can help counteract this problem in cases of moderate
imbalance [30, 67], it tends to fail in the case of extreme imbalance [92] (as in the case of
error detection). This is because the lack of labels prevents the selection scheme of active
learning from identifying informative instances for labeling [92]. Different methods that
are robust to extreme imbalance are needed. We present a weakly supervised method to
learn data transformations and data augmentation policies (i.e., the distribution over those
data transformation) directly from the noisy input dataset. The use of different transforma-
tions during augmentation provides us with examples that correspond to different types of
errors, which enables us to address the aforementioned heterogeneity challenge.

A solution that addresses the aforementioned challenges needs to: (1) introduce an expressive
model for error detection, while avoiding explicit feature engineering; and (2) propose novel
ways to handle the extreme imbalance and heterogeneity of data in a unified manner.

2.2 Preliminaries

We review basic background material for the problems and techniques discussed in this chapter.

2.2.1 Error Detection

The goal of error detection is to identify incorrect entries in a dataset. Existing error detec-
tion methods can be categorized in three main groups: (1) Rule-based methods [37, 46] rely on
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integrity constraints such as functional dependencies and denial constraints, and suggest errors
based on the violations of these rules. Denial Constraints (DCs) are first order logic formulas that
subsume several types of integrity constraints [35]. Given a set of operators B = {=, <,>, 6=,≤
,≈}, with ≈ denoting similarity, DCs take the form ∀ti, tj ∈ D : ¬(P1 ∧ · · · ∧ Pk ∧ · · · ∧ PK)
where D is a dataset with attributes A = {A1, A2, . . . , AN}, ti and tj are tuples, and each predi-
cate Pk is of the form (ti[An] op tj[Am]) or (ti[An] op α) where An, Am ∈ A, α is a constant and
op ∈ B. (2) Pattern-driven methods leverage normative syntactic patterns and identify erro-

neous entries such as those that do not conform with these patterns [113]. (3) Quantitative error
detection focuses on outliers in the data and declares those to be errors [98]. A problem related
to error detection is record linkage [56,66,149], which tackles the problem of identifying if mul-
tiple records refer to the same real-world entity. While it can also be viewed as a classification
problem, it does not detect errors in the data and is not the focus of this work.

2.2.2 Data Augmentation

Data augmentation is a form of weak supervision [176] and refers to a family of techniques
that aim to extend a dataset with additional data points. Data augmentation is typically applied
to training data as a way to reduce overfitting of models [206]. Data augmentation methods
typically consist of two components: (1) a set of data transformations that take a data point
as input and generate an altered version of it, and (2) an augmentation policy that determines
how different transformations should be applied, i.e., a distribution over different transforma-
tions. Transformations are typically specified by domain experts while policies can be either
pre-specified [162] or learned via reinforcement learning or random search methods [45,174]. In
contrast to prior work, we show that for error detection both transformations and policies can be
learned directly from the data.

2.2.3 Representation Learning

The goal of representation learning is to find an appropriate representation of data (i.e., a set of
features) to perform a machine learning task [11]. In our error detection model we build upon
three standard representation learning techniques:

Neural Networks Representation learning is closely related to neural networks [86]. The most
basic neural network takes as input a vector x and performs an affine transformation of the input
wx + b. It also applies a non-linear activation function σ (e.g., a sigmoid) to produce the output
σ(wx+b). Multiple layers can be stacked together to create more complex networks. In a neural
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Figure 2.1: Overview of Error Detection with Augmentation.

network, each hidden layer maps its input data to an internal representation that tends to capture
a higher level of abstraction.

Highway Neural Networks Highway Networks, adapt the idea of having “shortcut” gates that
allow unimpeded information to flow across non-consecutive layers [189]. Highway Networks
are used to improve performance in many domains such as speech recognition [207] and language
modeling [117], and their variants called Residual networks have been useful for many computer
vision problems [93]

Distributed Representations Distributed representations of symbolic data [100] were first used
in the context of statistical language model [12]. The goal here is to learn a mapping of a to-
ken (e.g., a word) to a vector of real numbers, called a word embedding. Methods to gener-
ate these mappings include neural networks [145], dimensionality reduction techniques such as
PCA [130], and other probabilistic techniques [81].

2.3 Framework Overview

We formalize the problem of error detection and provide an overview of our solution to error
detection.

2.3.1 Problem Statement

The goal of our framework is to identify erroneous entries in a relational dataset D. We denote
A = {A1, A2, . . . , AN} the attributes of D. We follow set semantics and consider D to be a set
of tuples. Each tuple t ∈ D is a collection of cells Ct = {t[A1], t[A2], . . . , t[AN ]} where t[Ai]

14



denotes the value of attribute Ai for tuple t. We use CD to denote the set of cells contained in D.
The input dataset D can also be accompanied by a set of integrity constraints Σ, such as Denial
Constraints as described in Section 2.2.1.

We assume that errors in D appear due to inaccurate cell assignments. More formally, for
a cell c in CD we denote by v∗c its unknown true value and vc its observed value. We define an
error in D to be each cell c with vc 6= v∗c . We define a training dataset T to be a set of tuples
T = {(c, vc, v∗c )}c∈CT where CT ⊂ CD. T provides labels (i.e., correct or erroneous) for a subset
of cells in D. We also define a variable Ec for each cell c ∈ CD with Ec = −1 indicating that
the cell is erroneous and with Ec = 1 indicating that the cell is correct. For each Ec we denote
e∗c its unknown true assignment.

Our goal is stated as follows: given a datasetD and a training dataset T find the most probable
assignment êc to each variable Ec with c ∈ CD \ CT . We say that a cell is correctly classified as
erroneous or correct when êc = e∗c .

2.3.2 Model Overview

Prior models for error detection focus on specific side effects of data errors. For example, they
aim to detect errors by using only the violations of integrity constraints or aim to identify outliers
with respect to the data distribution that are introduced due to errors. Error detectors that focus
on specific side effects, such as the aforementioned ones, are not enough to detect errors with a
high recall in heterogeneous datasets [3]. This is because many errors may not lead to violations
of integrity constraints, nor appear as outliers in the data. We propose a different approach: we
model the process by which the entries in a dataset are generated, i.e., we model the distribution
of both correct and erroneous data. This approach enables us to discriminate better between these
two types of data.

We build upon our recent Probabilistic Unclean Databases (PUDs) framework that intro-
duces a probabilistic framework for managing noisy relational data [182]. We follow the abstract
generative model for noisy data from that work, and introduce an instantiation of that model to
represent the distribution of correct and erroneous cells in a dataset.

We consider a noisy channel model for databases that proceeds in two steps: First, a clean
database is sampled from a probability distribution I∗. Distribution I∗ captures how values
within an attribute and across attributes are distributed and also captures the compatibility of
different tuples (i.e., it ensures that integrity constraints are satisfied). To this end, distribution
I∗ is defined over attribute-, tuple-, and dataset-level features of a dataset. Second, given a
clean database sampled by I∗, errors are introduced via a noisy channel that is described by a
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Figure 2.2: (A) A diagram of the representation model Q. Models associated learnable layers
that are jointly trained with classifier M . (B) Architecture diagram of the learnable layers in Q.
(C) The architecture of classifier M.

conditional probability distribution R∗. Given this model, I∗ characterizes the probability of the
unknown true value P (v∗c ) of a cell c and R∗ characterizes the conditional probability P (vc|v∗c )
of its observed value. Distribution I∗ is such that errors in dataset D lead to low probability
instances. For example, I∗ assigns zero probability to datasets with entries that lead to constraint
violations.

The goal is to learn a representation that captures the distribution of the correct cells (I∗) and
how errors are introduced (R∗). Our approach relies on learning two models:

(1) Representation Model We learn a representation model Q that approximates distribution I∗

on the attribute, record, and dataset level. We require that Q is such that the likelihood of correct
cells given Q will be high, while the likelihood of erroneous cells given Q is low. This property
is necessary for a classifier M to discriminate between correct and erroneous cells when using
representation Q. We rely on representation learning techniques to learn Q jointly with M .

(2) Noisy Channel We learn a generative modelH that approximates distributionR∗. This model
consists of a set of transformations Φ and a policy Π. Each transformation ϕ ∈ Φ corresponds to
a function that takes as input a cell c and transforms its original value vc to a new value v′c, i.e.,
ϕ(vc) = v′c. Policy Π is defined as a conditional distribution P (Φ|vc). As we describe next, we
use this model to generate training data—via data augmentation—for learning Q and M .

We now present the architecture of our framework. The modules described next are used to
learn the noisy channel H , perform data augmentation by using H , and learn the representation
model Q jointly with a classifier M that is used to detect errors in the input dataset.
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2.3.3 Framework Overview

Our framework takes as input a noisy dataset D, a training dataset T , and (optionally) a set of
denial constraints Σ. To learn H , Q, and M from this input we use three core modules:

Module 1: Data Augmentation This module learns the noisy channel H and uses it to generate
additional training examples by transforming some of the labeled examples in T . The output of
this module is a set of additional examples TH . The operations performed by this module are:

(1) Transformation and Policy Learning: The goal here is to learn the set of transformations
Φ and the policy Π that follow the data distribution in D. We introduce a weakly supervised
algorithm to learn Φ and Π. This algorithm is presented in Section 2.5.

(2) Example Generation: Given transformations Φ and policy Π, we generate a set of new train-
ing examples TH that is combined with T to train the error detection model. To ensure high-
quality training data, this part augments only cells that are marked correct in T . Using this
approach, we obtain a balanced training set where examples of errors follow the distribution of
errors in D. This is because transformations are chosen with respect to policy Π which is learned
from D.

Module 2: Representation This module combines different representation models to form
model Q. Representation Q maps a cell values vc to to a fixed-dimension real-valued vector
fc ∈ Rd. To obtain fc we concatenate the output of different representation models, each of
which targets a specific context (i.e., attribute, tuple, or dataset context).

We allow a representation model to be learned during training, and thus, the output of a
representation model can correspond to a vector of variables (see Section 2.4). For example, the
output of a representation model can be an embedding uc obtained by a neural network that is
learned during training or may be fixed to the number of constraint violations value vc participates
in.

Module 3: Model Training and Classification This module is responsible for training a clas-
sifier M that given the representation of a cell value determines if it is correct or erroneous, i.e.,
M : Rd → {“correct” (+1), “error (-1)”}. During training, the classifier is learned by using both
the initial training data T and the augmentation data TA. At prediction time, the classifier M
takes as input the cell value representation for all cells in D \ T and assigns them a label from
{“correct”, “error”} (see Section 2.4).

An overview of how the different modules are connected is shown in Figure 6.3. First, Mod-
ule 1 learns transformations Φ and policy Π. Then, Module 2 grounds the representation model
Q of our error detection model. Subsequently, Q is connected with the classifier model M in
Module 3 and trained jointly. The combined model is used for error detection.
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2.4 Representations of Dirty Data

We describe how to construct the representation model Q (see Section 2.3.2). We also introduce
the classifier model M , and describe how we train Q and M .

2.4.1 Representation Models

To approximate the data generating distribution I∗, the model Q needs to capture statistical
characteristics of cells with respect to attribute-level, tuple-level, and dataset-level contexts. An
overview of model Q is shown in Figure 2.2(A). As shown, Q is formed by concatenating the
outputs of different models. Next, we review the representation models we use for each of
the three contexts. The models introduced next correspond to a bare-bone set that captures all
aforementioned contexts, and is currently implemented in our prototype. More details on our
implementation are provided in Appendix 2.8.1. Our architecture can trivially accommodate
additional models or more complex variants of the current models.

Attribute-level Representation: Models for this context capture the distributions governing the
values and format for an attribute. Separate models are used for each attribute Ai in dataset D.
We consider three types of models: (1) Character and token sequence models that capture the
probability distribution over sequences of characters and tokens in cell values. These models cor-
respond to learnable representation layers. Figure 2.2(B) shows the deep learning architecture we
used for learnable layers. (2) Format models that capture the probability distribution governing
the format of the attribute. In our implementation, we consider an n-gram model that captures the
format sequence over the cell value. Each n-gram is associated with a probability that is learned
directly from dataset D. The probabilities are aggregated to a fixed-dimension representation by
taking the probabilities associated with the least-k probable n-grams. (3) Empirical distribution
models that capture the empirical distribution of the attribute associated with a cell. These can be
learned directly from the input dataset D. The representation here is a scalar that is the empirical
probability of the cell value.

Tuple-level Representation: Models for this context capture the joint distribution of different
attributes. We consider two types of models: (1) Co-occurrence models that capture the empirical
joint distribution over pairs of attributes. (2) A learnable tuple representation, which captures
the joint distribution across attributes given the observed cell value. Here, we first obtain an
embedding of the tuple by following standard techniques based on word-embedding models [18].
These embeddings are passed through a learnable representation layer (i.e., a deep network) that
corresponds to an additional non-linear transform (see Figure 2.2(B)). For co-occurrence, we
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learn a single representation for all attributes. For tuple embeddings, we learn a separate model
per attribute.

Dataset-level Representation: Models for this context capture a distribution that governs the
compatibility of tuples and values in the dataset D. We consider two types of models: (1)
Constraint-based models that leverage the integrity constraints in Σ (if given) to construct a
representation model for this context. Specifically, for each constraint σ ∈ Σ we compute the
number of violations associated with the tuple of the input cell. (2) A neighborhood-based
representation of each cell value that is informed by a dataset-level embedding of D transformed
via a learnable layer. Here, we train a standard word-embedding model where each tuple in D is
considered to be a document. To ensure that the embeddings are not affected by the sequence of
values across attributes we extend the context considered by word-embeddings to be the entire
tuple and treat the tuple as a bag-of-words. These embeddings are given as input to a learnable
representation layer that follows the architecture in Figure 2.2(B).

The outputs of all models are concatenated into a single vector that is given as input to Clas-
sifier M . Learnable layers are trained jointly with M . To achieve high-quality error detection,
features from all contexts need to be combined to form model Q. In Section 4.9, we present an
ablation study which demonstrates that all features from all types of contexts are necessary to
achieve high-quality results.

2.4.2 Error Classification

The classifier M of our framework corresponds to a two-layer fully-connected neural network,
with a ReLU activation layer, and followed by a Softmax layer. The architecture ofM is shown in
Figure 2.2(C). Given the modular design of our architecture, Classifier M can be easily replaced
with other models. Classifier M is jointly trained with the representation model Q by using
the training data in T and the data augmentation output TH . We use ADAM [118] to train our
end-to-end model.

More importantly, we calibrate the confidence of the predictions of M using Platt Scal-
ing [90, 163] on a holdout-set from the training data T (i.e., we keep a subset of T for cali-
bration). Platt Scaling proceeds as follows: Let zi be the score for class i output by M . This
score corresponds to non-probabilistic prediction. To convert it to a calibrated probability, Platt
Scaling learns scalar parameters a, b ∈ R and outputs q̂i = σ(azi + b) as the calibrated proba-
bility for prediction zi. Here, σ denotes the sigmoid function. Parameters a and b are learned by
optimizing the negative log-likelihood loss over the holdout-set. It is important to note that the
parameters of M and Q are fixed at this stage.
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2.5 Data Augmentation Learning

Having established a representation model Q for the data generating distribution I∗, we now
move to modeling the noisy channel distribution R∗. We assume the noisy channel can be speci-
fied by a set of transformation functions Φ and a policy Π (i.e., a conditional distribution over Φ
given a cell value). Our goal is to learn Φ and Π from few example errors and use it to generate
training examples to learn model Q.

2.5.1 Noisy Channel Model

We aim to limit the number of manually labeled data required for error detection. Hence, we
consider a simple noisy channel model that can be learned from few and potentially noisy training
data. Our noisy channel model treats cell values as strings and introduces errors to a clean cell
value v∗ by applying a transformation ϕ to obtain a new value v = ϕ(v∗). We consider that each
function ϕ ∈ Φ belongs to one of the following three templates:

• Add characters: ∅ 7−→ [a− z]+

• Remove characters: [a− z]+ 7−→ ∅

• Exchange characters: [a− z]+ 7−→ [a− z]+ (the left side and right side are different)

Given these templates, we assume that the noisy channel model introduces errors via the
following generative process: Given a clean input value v∗, the channel samples a transformation
ϕ from a conditional distribution Π(v∗) = P (Φ|v∗), i.e., ϕ ∼ Π(v∗) and applies ϕ once to a
substring or position of the input cell value. We refer to Π as a policy. If the transformation ϕ
can be applied to multiple positions or multiple substrings of v∗ one of those positions or strings
is selected uniformly at random.

For example, to transform Zip Code “60612” to “606152”, the noisy channel model we con-
sider can apply the exchange character function T : 60612 7−→ 606152, i.e., exchange the entire
string. Applying the exchange function on the entire cell value can capture misaligned attributes
or errors due to completely erroneous values. However, the same transformed string can also be
obtained by applying either the exchange character function T : 12 7−→ 152 on the ‘12’ sub-
string of “60612” or the add character function T : ∅ 7−→ 5, where the position between ‘1’ and
‘2’ in “60612” was chosen at random. The distribution that corresponds to the aforementioned
generative process dictates the likelihood of each of the above three cases.
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Given Φ and Π, we can use this noisy channel on training examples that correspond to clean
tuples to augment the available training data. However, both Φ and Π have to be learned from
the limited number of training data. This is why we adopt the above simple generative process.
Despite its simplicity, we find our approach to be effective during data augmentation (see Sec-
tion 4.9). Next, we introduce algorithms to learn Φ and Π assuming access to labeled pairs of
correct and erroneous values L = {(v∗, v)} with v 6= v∗. We then discuss how to construct L
either by taking a subset of the input training data T or, in the case of limited training data, via
an unsupervised approach over dataset D. Finally, we describe how to use Φ and Π to perform
data augmentation.

2.5.2 Learning Transformations

We use a pattern matching approach to learn the transformations Φ. We follow a hierarchical
pattern matching approach to identify all different transformations that are valid for each example
in L. For example, for (60612, 6061x2) we want to extract the transformations {60612 7−→
6061x2, 12 7−→ 1x2,∅ 7−→ x}. The approach we follow is similar to the Ratcliff-Obershelp
pattern recognition algorithm [171]. Due to the generative model we described above, we are
agnostic to the position of each transformation.

The procedure is outlined in Algorithm 1. Given an example (v∗, v) from L, it returns a list of
valid transformations Φe extracted from the example. The algorithm first extracts the string level
transformation T : v∗ 7−→ v, and then proceeds recursively to extract additional transformations
from the substrings of v∗ and v. To form the recursion, we identify the longest common substring
of v∗ and v, and use that to split each string into its prefix (denoted by lv∗) and its postfix (denoted
by rv∗). Given the prefix and the postfix substrings, we recurse on the combination of substrings
that have the maximum similarity (i.e., overlap). We compute the overlap of two strings as
2 ∗ C/S, where C is the number of common characters in the two strings, and S is the sum of
their lengths. Finally, we remove all identity (i.e., trivial) transformations from the output Φe. To
construct the set of transformations Φ, we take the set-union of all lists Φe generated by applying
Algorithm 1 to each entry e ∈ L.

2.5.3 Policy Learning

The set of transformations Φ extracted by Algorithm 1 correspond to all possible alterations our
noisy channel model can perform on a clean dataset. Transformations in Φ range from special-
ized transformations for specific entries (e.g., 60612 7−→ 6061x2) to generic transformations,
such as ∅ 7−→ x, that can be applied to any position of any input. Given Φ, the next step is to
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Algorithm 1: Transformation Learning (TL)
Input: Example e = (v∗, v) of a correct string and its corresponding erroneous string
Output: A list of valid transformations Φe for example e

1 if v∗ = ∅ and v = ∅ return ∅ ;
2 Φe ← [v∗ 7−→ v];
3 l← Longest Common Substring(v∗, v);
4 lv∗, rv∗ ← v∗ \ l /* Generate left and right substrings */;
5 lv, rv ← v \ l;
6 if similarity(lv∗, lv) + similarity(rv∗, rv) > similarity(lv∗, rv) + similarity(rv∗, lv) then
7 Add [lv∗ 7−→ lv, rv∗ 7−→ rv] in Φe;
8 Add [TL(lv∗, lv), TL(rv∗, rv)] in Φe;
9 else

10 Add [lv∗ 7−→ rv, rv∗ 7−→ lv] in Φe;
11 Add [TL(lv∗, rv), TL(rv∗, lv)] in Φe;
12 end
13 Remove all identity transformations from Φe;
14 return Φe

learn the transformation policy Π, i.e., the conditional probability distribution Π(v) = P (Φ|v)
for any input value v. We next introduce an algorithm to learn Π.

Algorithm 2: Empirical Transformation Distribution
Input: A set of identified transformation lists {Φe}e∈L
Output: Empirical Distribution Π̂

1 Φ← Set of unique transformations in {Φe}e∈L;
2 c←∑

e (element count of Φe);
3 for ϕ ∈ Φ do
4 cϕ ← number of times ϕ appears in {Φe}e∈L;
5 p(ϕ)← cϕ

c

6 end
7 return {p(ϕ)}ϕ∈Φ

We approximate Π via a two-step process: First, we compute the empirical distribution of
transformations informed by the transformation lists output by Algorithm 1. This process is
described in Algorithm 2. Second, given an input string v, we find all transformations str 7−→
str′ in Φ such that str is a subset of v. Let Φv ⊆ Φ be the set of such transformations. We
obtain a distribution P (Φv|v) by re-normalizing the empirical probabilities from the first step.
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This process is outlined in Algorithm 3. Recall that we choose this simple model for Π as the
number of data points in L can be limited.

Algorithm 3: Approximate Noisy Channel Policy
Input: An empirical transformation Π̂ over transformations Φ; A string v
Output: Conditional Distribution Π̂(v) = P (Φ|v)

1 Π̂(v)← ∅;
2 Φv ← Subset of transformations str 7−→ str′ in Φ such that str is a substring of v;
3 total mass←∑

ϕ∈Φv
Π̂(ϕ);

4 for ϕ ∈ Φv do
5 Π̂(v)[ϕ]← Π̂(ϕ)

total mass ;
6 end
7 return Π̂(v)

2.5.4 Generating Transformation Examples

We describe how to obtain examples (v∗, v) to form the set L, which we use in learning the
transformations Φ (Section 2.5.2) and the policy Π̂ (Section 2.5.3). First, any example in the
training data T that corresponds to an error can be used. However, given the scarcity of errors
in some datasets, examples of errors can be limited. We introduce a methodology based on
weak-supervision to address this challenge.

We propose a simple unsupervised data repairing model MR over dataset D and use its pre-
dictions to obtain transformation examples (v∗, v). We form examples (v∗, v) = (v̂, v) with
v̂ 6= v by taking an original cell value v and the repair v̂ suggested by MR. We only require that
this model has relatively high-precision. High-precision implies that the repairs performed by
MR are accurate, and thus, the predictions correspond to true errors. This approach enables us
to obtain noisy training data that correspond to good samples from the distribution of errors in
D. We do not require this simple prediction model to have high recall, since we are only after
producing example errors, not repairing the whole data set.

We obtain a simple high-precision data repairing model by training a Naı̈ve Bayes model
over Dataset D. Specifically, we iterate over each cell in D, pretend that its value is missing
and leverage the values of other attributes in the tuple to form a Naı̈ve Bays model that we use
to impute the value of the cell. The predicted value corresponds to the suggested repair for this
cell. Effectively, this model takes into account value co-occurrence across attributes. Similar
models have been proposed in the literature to form sets of potential repairs for noisy cells [178].
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To ensure high precision, we only accept only repairs with a likelihood more than 90%. In
Section 4.9, we evaluate our Naı̈ve Bayes-based model and show that it achieves reasonable
precision (i.e., above 70%).

2.5.5 Data Augmentation

To perform data augmentation, we leverage the learned Φ and Π̂ and use the generative model
described in Section 2.5.1. Our approach is outlined in Algorithm 4: First, we sample a correct
example with cell value v from the training data T . Second, we sample a transformation ϕ
from distribution Π̂[v]. If ϕ can be applied in multiple positions or substrings of input v we
choose one uniformly at random, and finally, compute the transformed value v′ = ϕ(v). Value v′

corresponds to an error as we do not consider the identity transformation. Finally, we add (v, v′)
in the set of augmented examples with probability α. Probability α is a hyper-parameter of our
algorithm, which intuitively corresponds to the required balance in the overall training data. We
set α via cross-validation over a holdout-set that corresponds to a subset of T . This is the same
holdout-set used to perform Platt scaling during error classification (see Section 6.3.2).

Algorithm 4: Data Augmentation
Input: Training set T ; Transformations Φ; Approximate Policy Π̂; Probability α

(hyper-parameter)
Output: Set TH of augmented examples

1 TH ← ∅;
2 Tc ← set of correct examples in T ;
3 p← number of correct examples in T ;
4 n← number of erroneous examples in T ;
5 /* we assume that p >> n due to imbalance */ ;
6 while |TH | < p− n do
7 Draw a correct example v ∼ Uniform(Tc);
8 C ← Flip a coin with probability α;
9 if C = True and Π̂(v) 6= ∅ then

10 Draw a transformation ϕ ∼ Π̂(v);
11 v′ ← ϕ(v);
12 TH ← TH ∪ {(v, v′)}
13 end
14 end
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Table 2.1: Datasets used in our experiments.

Dataset Size Attributes Labeled Data Errors (# of cells)
Hospital 1,000 19 1,000 504

Food 170,945 15 3,000 1,208
Soccer 200,000 10 200,000 31,296
Adult 97,684 11 97,684 1,062

Animal 60,575 14 60,575 8,077

2.6 Experiments

We compare our approach against a wide-variety of error detection methods on diverse datasets.
The main points we seek to validate are: (1) is weak supervision the key to high-quality (i.e.,
high-precision and high-recall) error detection models, (2) what is the impact of different repre-
sentation contexts on error detection, (3) is data augmentation the right approach to minimizing
human exhaust. We also perform extensive micro-benchmark experiments to examine the effec-
tiveness and sensitivity of data augmentation.

2.6.1 Experimental Setup

We describe the dataset, metrics, and settings we use.

Datasets: We use five datasets from a diverse array of domains. Table 6.1 provides information
for these datasets. As shown the datasets span different sizes and exhibit various amounts of
errors: (1) The Hospital dataset is a benchmark dataset used in several data cleaning papers [37,
178]. Errors are artificially introduced by injecting typos. This is an easy benchmark dataset;
(2) The Food dataset contains information on food establishments in Chicago. Errors correspond
to conflicting zip codes for the same establishment, conflicting inspection results for the same
establishment on the same day, conflicting facility types for the same establishment and many
more. Ground truth was obtained by manually labeling 3,000 tuples; (3) The Soccer dataset
provides information about soccer players and their teams. The dataset and its ground truth are
provided by Rammerlaere and Geerts [167]; (4) Adult contains census data is a typical dataset
from the UCI repository. Adult is also provided by Rammerlaere and Geerts [167]; (5) Animal
was provided by scientists at UC Berkeley and has been used by Abedjan et al. [2] as a testbed
for error detection. It provides information about the capture of animals, including the time
and location of the capture and other information for each captured animal. The dataset comes
with manually curated ground truth. The datasets used in our experiments exhibit different error
distributions. Hospital contains only typos, Soccer [167] and Adult [167] have errors that were
introduced with BART [7]: Adult has 70% typos and 30% value swaps, and Soccer has 76%
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Table 2.2: Precision, Recall and F1-score of different methods for different datasets. AL results
correspond to k = 100.

Dataset
(T size) M AUG CV HC OD FBI LR SuperL SemiL ActiveL

Hospital
(10%)

P 0.903 0.030 0.947 0.640 0.008 0.0 0.0 0.0 0.960
R 0.989 0.372 0.353 0.667 0.001 0.0 0.0 0.0 0.613
F1 0.944 0.055 0.514 0.653 0.003 0.0 0.0 0.0 0.748

Food
(5%)

P 0.972 0.0 0.0 0.240 0.0 0.0 0.985 0.813 0.990
R 0.939 0.0 0.0 0.99 0.0 0.0 0.95 0.66 0.91
F1 0.955 0.0 0.0 0.387 0.0 0.0 0.948 0.657 0.948

Soccer
(5%)

P 0.922 0.039 0.032 0.999 0.0 0.721 0.802 n/a# 0.843
R 1.0 0.846 0.632 0.051 0.00 0.084 0.450 n/a 0.683
F1 0.959 0.074 0.061 0.097 0.00 0.152 0.577 n/a 0.755

Adult
(5%)

P 0.994 0.497 0.893 0.999 0.990 0.051 0.999 n/a 0.994
R 0.987 0.998 0.392 0.001 0.254 0.072 0.350 n/a 0.982
F1 0.991 0.664 0.545 0.002 0.405 0.059 0.519 n/a 0.988

Animal
(5%)

P 0.832 0.0 0.0 0.85 0.0 0.185 0.919 n/a 0.832
R 0.913 0.0 0.0 6× 10−5 0.0 0.028 0.231 n/a 0.740
F1 0.871 0.0 0.0 1× 10−4 0.0 0.048 0.369 n/a 0.783

# n/a = Semi-supervised learning did not terminate after two days.

typos and 24% swaps. Finally, the two datasets with real-world errors have the following error
distributions: Food has 24% typos and 76% value swaps (based on the sampled ground truth);
Animal has 51% typos and 49% swaps.

Methods: We compare our approach, referred to as AUG, against several competing error detec-
tion methods. First, we consider three baseline error detection models:

• Constraint Violations (CV): This method identifies errors by leveraging violations of
denial constraints. It is a proxy for rule-based errors detection methods [37].

• HoloClean (HC): This method combines CV with HoloClean [178], a state-of-the-art
data repairing engine. This method aims to improve the precision of the CV detector by
considering as errors not all cells in tuples that participate in constraint violations but only
those cells whose value was repaired (i.e., their initial value is changed to a different value).

• Outlier Detection (OD): This method follows a correlation based outlier detection ap-
proach. Given a cell that corresponds to an attributeAi, the method considers all correlated
attributes in A \ Ai with Ai rely on the pair-wise conditional distributions to detect if the
value of a cell corresponds to an outlier.

• Forbidden Item Sets (FBI): This method captures unlikely value co-occurrences in noisy
data [169]. At its core, this method leverages the lift measure from association rule min-
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ing to identify how probably a value co-occurrence is, and uses this measure to identify
erroneous cell values.

• Logistic Regression (LR): This method corresponds to a supervised logistic regression
model that classifies cells are erroneous or correct. The features of this model corre-
spond to pairwise co-occurrence statistics of attribute values and constraint violations. This
model corresponds to a simple supervised ensemble over the previous two models.

We also consider three variants of our model where we use different training paradigms. The
goal is to compare data augmentation against other types of training. For all variations, we use
the representation Q and the classifier M introduced in Section 2.3. We consider the following
variants:

• Supervised Learning (SuperL): We train our model using only the training examples in
T .

• Semi-supervised Learning (SemiL): We train our model using self-training [210]. First
supervised learning used to train the model on the labeled data only. The learned model
is then applied to the entire dataset to generate more labeled examples as input for a sub-
sequent round of supervised learning. Only labels with high confidence are added at each
step.

• Active Learning (ActiveL): We train our model using an active learning method based
on uncertainty sampling [184]. First, supervised learning is used to train the model. At
each subsequent round, we use an uncertainty-based selection scheme to obtain additional
training examples and re-train the model. We use k to denote the number of iterations. In
our implementation, we set the upper limit of labeled examples obtained per iteration to be
50 cells.

Evaluation Setup: To measure accuracy, we use Precision (P) defined as the fraction of error
predictions that are correct; Recall (R) defined as the fraction of true error being predicted as
errors by the different methods; and F1 defined as 2PR/(P + R). For training, we split the
available ground truth into three disjoint sets: (1) a training set T , from which 10% is always
kept as a hold-out set used for hyper parameter tuning; (2) a sampling set, which is used to obtain
additional labels for active learning; and (3) a test set, which is used for evaluation. To evaluate
different dataset splits, we perform 10 runs with different random seeds for each experiment. To
ensure that we maintain the coupling amongst Precision, Recall, and F1, we report the median
performance. The mean performance along with standard error measurements are reported in the
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Figure 2.3: Ablation studies to evaluate the effect of different representation models.

Appendix. Seeds are sampled at the beginning of each experiment, and hence, a different set of
random seeds can be used for different experiments. We use ADAM [118] as the optimization
algorithm for all learning-based model and train all models for 500 epochs with a batch-size of
five examples. We run Platt Scaling for 100 epochs. All experiments were executed on a 12-core
Intel(R) Xeon(R) CPU E5-2603 v3 @ 1.60GHz with 64GB of RAM running Ubuntu 14.04.3
LTS.

2.6.2 End-to-end Performance

We evaluate the performance of our approach and competing approaches on detecting errors in
all five datasets. Table 6.3 summarizes the precision, recall, and F1-score obtained by different
methods. For Food, Soccer, Adult, and Animal we set the amount of training data to be 5% of
the total dataset. For Hospital we set the percentage of training data to be 10% (corresponding
to 100 tuples) since Hospital is small. For Active Learning we set the number of active learning
loops to k = 100 to maximize performance.

As Table 6.3 shows, our method consistently outperforms all methods, and in some cases, like
Hospital and Soccer, we see improvements of 20 F1 points. More importantly, we find that our
method is able to achieve both high recall and high precision in all datasets despite the different
error distribution in each dataset. This is something that has been particularly challenging for
prior error detection methods. We see that for Food and Animal, despite the fact that most errors
do not correspond to constraint violations (as implied by the performance of CV), AUG can
obtain high precision and recall. This is because AUG models the actual data distribution and
not the side-effects of errors. For instance, for Food we see that OD can detect many of the
errors—it has high recall—indicating that most errors correspond to statistical outliers. We see
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that AUG can successfully solve error detection for this dataset. Overall, our method achieves an
average precision of 92% and an average recall of 96% across these diverse datasets. At the same
time, we see that the performance of competing methods varies significantly across datasets.
This validates the findings of prior work [2] that depending on the side effects of errors different
error detection methods are more suitable for different datasets.

We now discuss the performance of individual competing methods. For CV, we see that it
achieves higher recall than precision. This performance is due to the fact that CV marks as
erroneous all cells in a group of cells that participate in a violation. More emphasis should be
put on the recall-related results of CV. As shown its recall varies dramatically from 0.0 for Food
and Animal to 0.998 for Adult. For OD, we see that it achieves relatively high-precision results,
but its recall is low. Similar performance is exhibited by FBI that leverages a different measure
for outlier detection. We see that FBI achieves high precision when the forbidden item sets have
significant support (i.e., occur relatively often). However, FBI cannot detect errors that lead to
outlier values which occur a limited number of times. This is why we find OD to outperform FBI
in several cases.

Using HC as a detection tool is limited to these cells violating integrity constraints. Hence,
using HC leads to improved precision over CV (see Hospital and Adult). This result is expected
as data repairing limits the number of cells detected as erroneous to only those whose values are
altered. Our results also validate the fact that HC depends heavily on the quality of the error
detection used [178]. As shown in Food and Animal, the performance of HC is limited by the
recall of CV, i.e., since CV did not detect errors accurately, HC does not have the necessary
training data to learn how to repair cells. At the same time, Soccer reveals that training HC on
few clean cells—the recall of CV is very high while the precision is very low indicating that most
cells were marked as erroneous—leads to low precision (HC achieves a precision of 0.032 for
Soccer). This validates our approach of solving error detection separately from data repairing.

We also see that LR has consistently poor performance. This result reveals that combining co-
occurrence features and violations features in a linear way (i.e., via a weighted linear combination
such as in LR) is not enough to capture the complex statistics of the dataset. This validates our
choice of using representation learning and not engineered features.

Finally, we see that approaches that rely on representation learning model achieve consis-
tently high precision across all datasets. This validates our hypothesis that modeling the dis-
tribution of both correct and erroneous data allows us to discriminate better. However, we see
that when we rely only on the training dataset T the recall is limited (see the recall for SuperL).
The limited labeled examples in T is not sufficient to capture the heterogeneity of errors. Given
additional training examples either via Active Learning or via Data Augmentation helps improve
the recall. However, Data Augmentation is more effective than Active Learning at capturing the
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Figure 2.4: Data augmentation versus active learning as the number of active learning loops
increases.

heterogeneity of errors in each dataset, and hence, achieves superior recall to Active Learning in
all cases.

Takeaway: The combination of representation learning techniques with data augmentation is
key to obtaining high-quality error detection models.

2.6.3 Representation Ablation Study

We perform an ablation study to evaluate the effect of different representation models on the
quality of our model. Specifically, we compare the performance of AUG when all representation
models are used in Q versus variants of AUG where one model is removed at a time. We report
the F1-score of the different variants as well as the original AUG in Figure 2.3. Representation
models that correspond to different contexts are grouped together.

Removing any feature has an impact on the quality of predictions of our model. We find
that removing a single representation model results in drops of up to 9 F1 points across datasets.
More importantly, we find that different representation models have different impact on different
datasets. For instance, the biggest drop for Hospital and Soccer is achieved when the character-
sequence model is removed while for Adult the highest drop is achieved when the Neighborhood
representation is removed. This validates our design of considering representation models from
different contexts. Takeaway: It is necessary to leverage cell representations that are informed
by different contexts to provide robust and high-quality error detection solutions.

2.6.4 Augmentation versus Active Learning

We validate the hypothesis that data augmentation is more effective than active learning in min-
imizing human effort in training error detection models. In Table 6.3, we showed that data
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Figure 2.5: Data augmentation performance for various amounts of training data.

augmentation outperforms active learning. Furthermore, active learning needs to obtain more
labeled examples to achieve comparable performance to data augmentation. In the next two ex-
periments, we examine the performance of the two approach as we limit their access to training
data.

In the first experiment, we evaluate active learning for different values of loops (k) over
Hospital, Soccer, and Adult. We vary k in {5, 10, 20, 100}. We fix the amount of available
training data to 5%. Each time we measure the F1 score of the two algorithms. We report our
results in Figure 2.4. Reported results correspond to median performance over ten runs.

We see that when a small number of loops is used (k=5), there is a significant gap between the
two algorithms that ranges between 10 and 70 F1 points. Active learning achieves comparable
performance with data augmentation only after 100 loops. This corresponds to an additional
5, 000 (k × 50) labeled examples (labeled cells). This behavior is consistent across all three
datasets. In the second experiment, we seek to push data augmentation to the limits. Specifically,
we seek to answer the question, can data augmentation be effective when the number of labeled
examples in T is extremely small. To this end, we evaluate the performance of our system on
Hospital, Soccer, and Adult as we vary the size of the training data in {0.5%, 1%, 5%, 10%}. The
results are shown in Figure 2.5. As expected the performance of data augmentation is improving
as more training data become available. However, we see that data augmentation can achieve
good performance—F1 score does not drop below 70%—even in cases where labeled examples
T are limited. These results provide positive evidence that data augmentation is a viable approach
for minimizing user exhaust.

Takeaway: Our data augmentation approach is preferable to active learning for minimizing
human exhaust.
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Figure 2.6: The effect of increasing the number of examples that correspond to errors via data
augmentation.

2.6.5 Augmentation and Data Imbalance

We evaluate the effectiveness of data augmentation to counteract imbalance. Table 6.3 shows
that using data augmentation yields high-quality error detection models for datasets with varying
percentages of errors. Hence, data augmentation is robust to different levels of imbalance; each
dataset in Table 6.3 has a different ratio of true errors to correct cells.

In Table 2.3, we compare data augmentation with traditional methods used to solve the im-
balance problem, namely, resampling. In all the datasets, resampling had low precision and recall
confirming our hypothesis discussed before: due to the heterogeneity of the errors, resampling
from the limited number of negative examples was not enough to cover all types of errors. The
best result for resampling was obtained in the Hospital data set (F1 about 47%), since errors are
more homogeneous than other data sets.

We also evaluate the effect of excessive data augmentation: In Algorithm 4 we do not use
hyper-parameter α to control how many artificial examples should be generated via data aug-
mentation. We manually set the ratio between positive and negative examples in the final training
examples and use augmentation to materialize this ratio.

Our results are reported in Figure 2.6. We show that increasing the number of generated
negative examples (errors) results in a lower accuracy as the balance between errors and correct
example goes greater than 50%, as the model suffers from the imbalance problem again, this time
as too few correct examples. We see that peak performance is achieved when the training data
is almost balanced for all datasets. This reveals the robustness of our approach. Nonetheless,
peak performance is not achieved exactly at a 50-50 balance (peak performance for Adult is at
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Table 2.3: A comparison between data augmentation and resampling. We report the F1-score as
we increase the size of the training data T . We also include supervised learning as a baseline.

Dataset Size of T AUG Resampling SuperL

Hospital
1% 0.840 0.041 0.0
5% 0.873 0.278 0.0
10% 0.925 0.476 0.079

Soccer
1% 0.927 0.125 0.577
5% 0.935 0.208 0.654
10% 0.953 0.361 0.675

Adult
1% 0.844 0.063 0.0
5% 0.953 0.068 0.294
10% 0.975 0.132 0.519

60%). This justifies our model for data augmentation presented in Algorithm 4 and the use of
hyper-parameter α.

Takeaway: Data augmentation is an effective way to counteract imbalance in error detection.

2.6.6 Analysis of Augmentation Learning

In this experiment, we validate the importance of learning the augmentation model (the transfor-
mations Φ, and the policy Π̂). We compare three augmentation strategies: (1) Random transfor-
mations Rand. Trans., where we randomly choose from a set of errors (e.g., typos, attribute value
changes, attribute shifts, etc.). Here, we augment the data by using completely random transfor-
mations not inspired by the erroneous examples or the data; and (2) learned transformation Φ,
but without learning the distribution policy(Aug w/o Policy). Given an input, we find all valid
transformations in Φ and pick one uniformly at random. Table 2.4 shows the results for the three
approaches. AUG outperforms the other two strategies. Rand. Trans. fails to capture the errors
that exist in the dataset. For instance, it obtains a recall of 16.6% for Soccer. Even though the
transformations are learned from the data, it is the results show that using these transformations
in a way that conform with the distribution of the data is crucial in learning an accurate classifier.

Takeaway: Learning a noisy channel model from the data, i.e., a set of transformations Φ and a
policy Π is key to obtaining high-quality predictions.
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Table 2.4: A comparison between different data augmentation approaches. We report the F1-
score as we increase the size of the training data T .

Dataset T AUG Rand. Trans. AUG w/o Policy

Hospital
5% 0.911 0.873 0.866
10% 0.943 0.884 0.870

Soccer
5% 0.946 0.212 0.517
10% 0.953 0.166 0.522

Adult
5% 0.977 0.789 0.754
10% 0.984 0.817 0.747

Table 2.5: Runtimes in seconds. Value n/a means that the method did not terminate after running
for two days.

Approach Hospital Soccer Adult
AUG 749.17 7684.72 6332.13
CV 204.62 1610.02 1359.46
OD 212.7 1588.06 1423.69
LR 347.95 3505.60 4408.27

SuperL 648.34 3928.46 3310.71
SemiL 14985.15 n/a n/a

ActiveL 3836.15 56535.19 128132.56

2.6.7 Other Experiments

Finally, we report several benchmarking results: (1) we measure the runtime of different meth-
ods, (2) validate the performance of our unsupervised Naı̈ve Bayes model for generating labeled
example to learn transformations Φ and Π (see Section 6.4), and (3) validate the robustness of
AUG to misspecified denial constraints.

The median runtime of different methods is reported in Table 2.5. These runtimes correspond
to prototype implementations of the different methods in Python. Also recall, that training cor-
responds to 500 epochs with low batch-size as reported in Section 2.6.1. As expected iterative
methods such as SemiL and ActiveL are significantly slower than non-iterative ones. Overall, we
see that AUG exhibits runtimes that are of the same order of magnitude as supervised methods.

The performance of our Naı̈ve Bayes-based weak supervision method on Hospital, Soccer,
and Adult is reported in Table 2.6. Specifically, we seek to validate that the precision of our weak
supervision method is reasonable, and thus, by using it we obtain good examples that correspond
to good examples from the true error distribution. We see that our weak supervision method
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Table 2.6: Performance of our weak supervision method for generating training examples for
AUG.

Dataset Precision Recall
Hospital 0.895 0.636
Soccer 0.999 0.053
Adult 0.714 0.973

achieves a precision of more than 70% in all cases. As expected its recall can be some times low
(e.g., for Soccer it is 5.3%) as emphasis is put on precision.

Finally, we evaluate AUG against missing and noisy constraints. The detailed results are
presented in Appendix 2.8.2 due to space restrictions. In summary, we find AUG to exhibit
a drop of at most 6 F1 points when only 20% of the original constraints are used to missing
constraints and at most 8 F1 points when noisy constraints are used.

2.7 Related Work

Many algorithms and prototypes have been proposed for developing data cleaning tools [56,
68, 107, 166]. Outlier detection and quantitative data cleaning algorithms are after data values
that looks “abnormal” with respect to the data distribution [47, 165, 201]. Entity resolution and
record de-duplication focus on identifying clusters of records that represent the same real-world
entity [66, 149]. Example de-duplication tools include the Data Tamer system [190], which
is commercialized as Tamr. Rule-based detection proposals [1, 37, 70, 121, 198] use integrity
constraints (e.g., denial constraints) to identify violations, and use the overlap among these viola-
tions to detect data errors. Prototypes such as such as Nadeef [46], and BigDansing [115] are
example extensible rule-based cleaning systems. There have been also multiple proposals that
identify data cells that don not follow a data “pattern”. Example tools include OpenRefine,
Data Wrangler [113] and its commercial descendant Trifacta, Katara [41], and
DataXFormer [3]. An overview of these tools and how they can be combined for error detec-
tion is discussed in [2], where the authors show that even when all are used, these tools often
achieve low recall in capturing data errors in real data sets.

Data Augmentation has also been used extensively in machine learning problems. Most
state-of-the-art image classification pipelines use some limited for of data augmentation [162].
This consists of applying crops, flips, or small affine transformations in fixed order or at random.
Other studies have applied heuristic data augmentation to modalities such as audio [147] and
text [142]. To our knowledge, we are the first to apply data augmentation in relational data.
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Recently, several lines of work have explored the use of reinforcement learning or random
search to learn more principled data augmentation policies [45, 174]. Our work here is different
as we do not rely on expensive procedures to learn the augmentation policies. This is because we
limit our policies to applying a single transformation at a time. Finally, recent work has explored
techniques based on Generative Adversarial Networks [85] to learn data generation models used
for data augmentation from unlabeled data [146]. This work focuses mostly on image data.
Exploring this direction for relational data is an exciting future direction.

2.8 Background Detail

We provide additional details for the representation models in our framework and present addi-
tional micro-benchmark experimental results on the robustness of our error detection approach
to noisy denial constraints.

2.8.1 Details on Representation Models

Our model follows the wide and deep architecture of Cheng et al. [33]. Thus the model can be
thought of as a representation stage, where each feature is being operated on in isolation, and
an inference step in which each feature has been concatenated to make a joint representation.
The joint representation is then fed through a two-layer neural network. At training time, we
backpropogate through the entire network jointly, rather than training specific representations.
Figure 2.7 illustrates this model’s topology.

A summary of representation models used in our approach along with their dimensions is
provided in Table 2.7. As shown we use a variety of models that capture all three attribute-level,
tuple-level, and dataset-level contexts. We next discuss the embedding-based models and format
models we use.
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Figure 2.7: The architecture of our representation learning model following a wide and deep
architecture.

Embedding-based Models: We treat different views of the data as expressing different language
models, and so embed each to capture their semantics. The embeddings are taken at a character,
cell and tuple level tokens, and each uses a FastText Embedding in 50 dimensions [18, 112].
Rather than doing inference directly on the embeddings, we employ a two-step process of a non-
linear transformation and dimensionality reduction. At the non-linear transformation stage, we
use a two-layer Highway Network [189] to extract useful representations of the data. Then, a
dense layer is used to reduce the dimensionality to a single dimension. In this way, the embed-
dings do not dominate the joint representation. Figure 2.2(B) shows this module more explicitly.

In addition to using these singular embeddings, we also use a distance metric on the learned
corpus as a signal to be fed into the model (see Neighborhood representation). The intuition
behind this representation is that in the presence of other signals that would imply a cell is
erroneous, there may be some similar cell in the dataset with the correct value; hence, the distance
to it will be low. For this, we simply take the minimum distance to another embedding in our
corpus, and this distance is fed to the joint representation.

Forma Models (3-Grams): We follow a similar approach to that of Huang and He [105]. This
work introduces custom language models to do outlier detection. We follow a simplified varia-
tion of this approach and use two fixed length language models. They correspond to the 3-Gram
models shown in Table 2.7. To build these representation models, we build a distribution of
3-Grams present in each column, this is done using the empirical distribution of the data and
Laplace smoothing. For 3-Gram, the distribution is based on all possible ASCII 3-Grams. The
difference in the symbol based variation of 3-Gram is that the distribution is based off the alpha-
bet {Charcater,Number, Symbol}. The value returned for each model is the least frequency
of all 3-grams present in the cell value.
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2.8.2 Effect of Misspecified Constraints

We conduct a series of micro-benchmark experiments to evaluate the robustness of AUG against
misspecified denial constraints. First, we evaluate AUG’s performance as only a subset of con-
straints is given as input, and second, we evaluate AUG’s performance as constraints become
noisy.

Limiting the number of Constraints

We consider Hospital, Adult, and Soccer with the denial constraints used for our experiments in
Section 4.9 and perform the following experiment: For each dataset, we define a vary the number
of constraints given as input to AUG by taking only a proportion ρ of the initial constraints. We
vary ρ in {0.2, 0.4, 0.6, 0.8, 1.0} where 0.2 indicates that a random subset of 20% of the con-
straints is used while 1.0 indicates that all constraints are used. For each configuration for ρ we
obtain 21 samples of the constraints and evaluate AUG for these random subsets. We report the
median F1, precision, and recall in Table 2.9. As shown, AUGs performance gradually decreases
as the number of denial constraints is reduced and converges to the performance reported in the
study in Section 2.6.3 when no constraints are used in AUG. The results in Table 2.9 also show
that AUG is robust to small variations in the number of constraints provided as input. We see
that when ρ > 0.4 the F1 score of AUG does not reduce more than two points.

Table 2.9: Median performance of AUG over 21 runs as we randomly limit the input constraints
to ρ× |initial constraints|.

Dataset M ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1

Hospital
P
R
F1

0.857
0.848
0.852

0.829
0.877
0.852

0.927
0.857
0.891

0.925
0.896
0.910

0.936
0.901
0.918

Adult
P
R
F1

0.860
0.994
0.922

0.890
0.992
0.938

0.897
0.999
0.945

0.917
0.999
0.956

0.934
0.999
0.965

Soccer
P
R
F1

0.836
0.868
0.852

0.855
0.879
0.867

0.864
0.872
0.868

0.860
0.887
0.873

0.863
0.894
0.878

Noisy Denial Constraints

We now turn our attention to noisy constraints. We use the following definition of noisy con-
straints:
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Figure 2.8: Examples of learned augmentation policies for clean entries in Hospital and Adult.

Definition 2.8.1. The denial constraint dc is α-noisy on the dataset D if it satisfies α percent of
all tuple pairs in D.

We want to see the effect of noisy denial constraints on the performance of AUG. We use
the following strategy to identify noisy denial constraints for each dataset: We use the denial
constraint discovery method of Chu et al. [39] and group the discovered constraints in four
ranges with respect to the noise level α. Constraints with α ∈ (0.55, 0.65], constraints with
α ∈ (0.65, 0.75], constraints with α ∈ (0.75, 0.85], and constraints with α ∈ (0.85, 0.95]. For
each range, we obtain 21 constraint-set samples, such that each sampled constraint set has the
same cardinality as the original clean constraints associated with each of the Hospital, Adult, and
Soccer datasets. We report the median performance of AUG in Table 2.10. As shown, the impact
of noisy denial constraints on AUG’s performance is not significant. The reason is that during
training AUG can identify that the representation associated with denial constraints corresponds
to a noisy feature and thus reduce its weight in the final classifier.

2.8.3 Learned Augmentation Policies

We provide examples of learned policies for clean entries in Hospital, Adult, and Animal. For
Hospital and Adult, we know how errors were introduced, and hence, can evaluate the perfor-
mance of our methods for learning augmentation policies. Errors in Hospital correspond to typos
introduced artificially by swapping a character in the clean cell values with the character ‘x’. On
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Table 2.10: Median performance of AUG over 21 runs with noisy constraints that correspond to
different noise levels α.

Dataset M α ∈ (0.55, 0.65] (0.65, 0.75] (0.75, 0.85] (0.85, 0.95]

Hospital
P
R
F1

0.859
0.822
0.840

0.876
0.869
0.873

0.912
0.899
0.906

0.925
0.914
0.920

Adult
P
R
F1

0.911
0.875
0.893

0.949
0.930
0.939

0.961
0.952
0.956

0.984
0.961
0.972

Soccer
P
R
F1

0.821
0.864
0.842

0.849
0.862
0.855

0.867
0.880
0.873

0.863
0.891
0.877

the other hand, errors in the gender attribute of Adult are introduced either by swapping the two
gender values ‘Female’ and ‘Male’ or by introducing typos via injection of characters. For Ani-
mal, we do not know how errors are introduced. However, we focus on an attribute that can only
take values in {R, O, Empty} to evaluate the performance of our methods.

Figure 2.8 depicts the top-10 entries in the conditional distribution corresponding to entry
‘scip-inf-4’ for Hospital and entry ‘Female’ for Adult. As shown, for Hospital, almost all trans-
formations learned by our method correspond to either swapping a character a character with the
character ‘x’ or injecting ‘x’ in the original string. The performance of our approach is similar for
Adult. We observe that a mix of value swaps, e.g., ‘Female’ 7−→ ‘Male’, and character injection
transformations are learned. Finally, for Animal, we see that most of the mass of the conditional
distribution (almost 86%) is concentrated in the value swap transformations ‘R’ 7−→ ‘Empty’ and
‘R’ 7−→ ‘O’ while all other transformations have negligible probabilities. These results demon-
strate that our methods can effectively learn how errors are introduced and distributed in noisy
relational datasets.
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Chapter 3

Approximate inference in structured
instances with noisy categorical
observations

Statistical inference over structured instances of dependent variables (e.g., labeled sequences,
trees, or general graphs) is a fundamental problem in many areas. Examples include computer
vision [31, 57, 154], natural language processing [103, 104], and computational biology [131].
In many practical setups [96, 179, 182, 186], inference problems involve noisy observations of
discrete labels assigned to the nodes and edges of a given structured instance and the goal is to
infer a labeling of the vertices that achieves low disagreement rate between the correct ground
truth labels Y and the predicted labels Ŷ , i.e., low Hamming error. We refer to this problem as
statistical recovery.

Our motivation to study the problem of statistical recovery stems from our recent work on
data cleaning [96, 179, 182]. This work introduces HoloClean, a state-of-the-art inference en-
gine for data curation that casts data cleaning as a structured prediction problem [182]: Given a
dataset as input, it associates each of its cells with a random variable, and uses logical integrity
constraints over this dataset (e.g., key constraints or functional dependencies) to introduce de-
pendencies over these random variables. The labels that each random variable can take are
determined by the domain of the attribute associated with the corresponding cell. Since we focus
on data cleaning, the input dataset corresponds to a noisy version of the latent, clean dataset.
Our goal is to recover the latter. Hence, the initial value of each cell corresponds to a noisy ob-
servation of our target random variables. HoloClean employs approximate inference methods to
solve this structured prediction problem. While its inference procedure comes with no rigorous
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guarantees, HoloClean achieves state-of-the-art results in practice. Our goal in this work is to
understand this phenomenon.

Recent works have also studied the problem of approximate inference in the presence of
noisy vertex and edge observations. However, they are limited to the case of binary labeled
variables: Globerson et al. focused on two-dimensional grid graphs and show that a polynomial
time algorithm based on MaxCut can achieve optimal Hamming error for planar graphs for which
a weak expansion property holds [83]. More recently, Foster et al. introduced an approximate
inference algorithm based on tree decompositions that achieves low expected Hamming error for
general graphs with bounded tree-width [77]. In this work, we generalize these results to the case
of categorical labels.

Problem and Challenges We study the problem of statistical recovery over categorical data.
We consider structured instances where each variable u takes a ground truth label Yu in the
discrete set {1, 2, . . . , k}. We assume that for all variables u, we observe a noisy version Zu of
its ground truth labeling such that Zu = Yu with probability 1 − q. We also assume that for all
variable pairs (u, v), we observe noisy measurements Xu,v of the indicator Mu,v = 2 · 1(Yu =
Yv) − 1 such that Xu,v = Mu,v with probability 1 − p. Given these noisy measurements, our
goal is to obtain a labeling Ŷ of the variables such that the expected Hamming error between Y
and Ŷ is minimized. We now provide some intuition on the challenges that categorical variables
pose and why current approximate inference methods not applicable:

First, in contrast to the binary case, negative edge measurements do not carry the same
amount of information: Consider a simple uniform noise model. In the case of binary labels,
observing an edge measurement Xu,v = −1 and a binary label Zu allows us to estimate that
Ŷv = −Zu is correct with probability (1− q)(1− p) + qp when p and q are bounded away from
1/2. However, in the categorical setup, Ŷv can take any of the {1, 2, . . . , k} \ {Zu} labels, hence
the probability of estimate Ŷv being correct is up to a factor of 1

k
smaller than the binary case.

Our main insight is that while the binary case leverages edge labels for inference, approximate
inference methods for categorical instances need to rely on the noisy node measurements and the
positive edge measurements.

Second, existing approximate inference methods for statistical recovery [77, 83] rely on a
“Flipping Argument” that is limited to binary variables to obtain low Hamming error: for binary
node and edge observations, if all nodes in a maximal connected subgraph S are labeled incor-
rectly with respect to the ground truth, then at least half of the edge observations on the boundary
of S are incorrect, or else the inference method would have flipped all node labels in S to obtain
a better solution with respect to the total Hamming error. As we discuss later, in the categorical
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case a naive extension implies that one needs to reason about all possible label permutations over
the k labels.

Contributions We present a new approximate inference algorithm for statistical recovery with
categorical variables. Our approach is inspired by that of [77] but generalizes it to categorical
variables.

First, we show that, when a variable u is assigned one of the k − 1 erroneous labels with
uniform probability q/(k − 1), the optimal Hamming error for trees with n nodes is Õ(log(k) ·
p ·n), when q < 1/2. This is obtained by solving a linear program using dynamic programming.
Here, we derive a tight upper bound on the number of erroneous edge measurements, which we
use to restrict the space of solutions explored by the linear program.

Second, we extend our method to general graphs using a tree decomposition of the structured
input. We show how to combine our tree-based algorithm with correlation clustering over a fixed
number of clusters [80] to obtain a non-trivial error rate for graphs with bounded treewidth and a
specified number of k classes. Our method achieves an expected Hamming error of Õ

(
k · log(k) ·

pd
∆(G)

2
e · n

)
where ∆(G) is the maximum degree of graph G. We show that local pairwise label

swaps are enough to obtain a globally consistent labeling with low expected Hamming error.

Finally, we validate our theoretical bounds via experiments on tree graphs and image data.
Our empirical study demonstrates that our approximate inference algorithm achieve low Ham-
ming error in practical scenarios.

3.1 Preliminaries

We introduce the problem of statistical recovery, and describe concepts, definitions, and notation
used in the chapter. We consider a structured instance represented by a graph G = (V,E) with
|V | = n and |E| = m. Each vertex u ∈ V represents a random variable with ground truth label
Yu in the discrete set L = {1, 2, . . . , k}. Edges in E represent dependencies between random
variables and each edge (u, v) ∈ E has a ground truth measurement Mu,v = ϕ(Yu, Yv) where
ϕ(Yu, Yv) = 1 if 1(Yu = Yv) = 1 and ϕ(Yu, Yv) = −1 otherwise.

Uniform Noise Model and Hamming Error We assume access to noisy observations over
the nodes and edges of G. For each variable u ∈ V , we are given a noisy label observation
Zu, and for each edge (u, v) ∈ E we are given a noisy edge observation Xu,v. These noisy
observations are assumed to be generated from G, Y and M by the following process: We are
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given G = (V,E) and two parameters, edge noise p and node noise q < 1/2 with p < q. For
each edge (u, v) ∈ E, the observation Xu,v is independently sampled to be Xu,v = Mu,v with
probability 1 − p (a good edge) and Xu,v = −Mu,v with probability p (a bad edge). For each
node u ∈ V , the node observation Zu is independently sampled to be Zu = Yu with probability
1 − q (a good node) and can take any other label in L \ Yu with a uniform probability q

k−1
. The

uniform noise model is a direct extension of that considered by prior work [77, 83], and a first
natural step towards studying statistical recovery for categorical variables.

Given the noisy measurements X and Z over graph G = (V,E), a labeling algorithm is
a function A: {−1,+1}E × {1, 2, . . . , k}V → {1, 2, . . . , k}V . We follow the setup of [83] to
measure the performance of A. We consider the expectation of the Hamming error (i.e., the
number of mispredicted labels) over the observation distribution induced by Y . We consider
as error the worst-case (over the draw of Y ) expected Hamming error, where the expectation is
taken over the process generating the observations X from Y . Our goal is to find an algorithm
A such that with high probability it yields bounded worst-case expected Hamming error. In the
remainder of the chapter, we will refer to the worst-case expected Hamming error as simply
Hamming error.

Categorical Labels and Edge Measurements When q is close to 0.5, one needs to leverage
the edge measurements to predict the node labels correctly. For binary labels, the structure of the
graph G alone determines if one can obtain algorithms with a small error for low constant edge
noise p [77, 83]. We argue that this is not the case for categorical labels. Beyond the structure
of the graph G, the number of labels k also determines when we can obtain labeling algorithms
with non-trivial error bounds.

We use the next example to provide some intuition on how k affects the amount of informa-
tion in the edge measurements of G: Let nodes take labels in L = {1, 2, . . . , k}. We fix a vertex
v, and for each vertex u in its neighborhood set the estimate label Ŷu to Zu if Mu,v = 1 and to
one of L \ {Zu} uniformly at random if Mu,v = −1. For a correct negative edge measurement
and a correct label assignment to v, we are not guaranteed to obtain the correct label for v as we
would be able in the binary case.

Given the above setup, the probability that node u is labeled correctly is P (Ŷu = Yu) =
(1 − b(1 − 1

k−1
)) · ((1 − p)(1 − q) + pq)) where b is the probability of an edge being negative

in the ground truth labeling of G. Two observations emerge from this expression: (1) As the
number of colors k increases, the probability P (Ŷu = Yu) decreases, hence, for a fixed graph G
as k increases, statistical recovery becomes harder; (2) For a fixed graph G, as k increases the
probability b of obtaining a negative edge in the ground truth labeling ofG increases— this holds
for a fixed graph G and under the assumption that each label should appear at least once in the
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Figure 3.1: A schematic overview of our approach. Given the noise node labeling Z of a graph
with ground truth labeling Y , we leverage the noisy side information to obtain an approximate
labeling Ŷ . Labeling Ŷ is an approximate solution to the information theoretic optimal solution
Y ∗. The goal of our analysis is to find a theoretical bound on the Hamming error between Ŷ and
Y .

ground truth—and the term (1− b(1− 1
k−1

)) approaches zero. This implies that for P (Ŷu = Yu)
to be meaningful the term ((1− p)(1− q) + pq) should be maximized for fixed q, and hence, the
edge noise p should approach zero as a function of (1− b(1− 1

k−1
)). In other words, p should be

upper bounded by a function ϕ(k) such that as k increases ϕ(k) goes to zero. We leverage these
two observations to specify when statistical recovery is possible.

Statistical Recovery Statistical recovery is possible for the family G of structured instances
with k categories, if there exists a function f(p, k) : [0, 1]→ [0, 1] with limp→0 f(p, k) = 0 such
that for every p that is upper bounded by a function ϕ(k) with limk→V ϕ(k) = 0, the Hamming
error of a labeling algorithm on graph G ∈ G with V = n vertices is at most f(p, k) · n.

3.2 Overview

We consider a graphG = (V,E) with node labels in L = {1, 2, . . . , k}. The space of all possible
labelings of V defines a hypothesis space F ′. In this space, we denote Y the latent, ground truth
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labeling of G. In the absence of any information the size of this space is |F ′| = kn. Access to
any side information allows us to identify a subspace of F ′ that is close to Y .

First, we consider access only to noisy node labels of G and denote Z the point in F ′ for this
labeling. If we have no side information on the edges of G, the information theoretic optimal
solution to statistical recovery is Z (because we assume q < 1/2). Second, we assume access
only to edge measurements for G. We denote X the observed edge measurements. If the edge
measurements are accurate (i.e., p = 0) the size of F ′ reduces to k!. We assume that k is such
that one can obtain a labeling for G that is edge-compatible with X by traversing G. Under this
assumption, the number of edge-compatible labelings is equal to all possible label permutations,
i.e., |F ′| = k!. Finally, in the presence of both node and edge observations the information
theoretic optimal solution to statistical recovery corresponds to a point Y ∗ that is obtained by
running exact marginal inference [83]. However, exact inference can be intractable, and even
when it is efficient, it is not clear what is the optimal Hamming error that Y ∗ yields with respect
to Y .

To address these issues, we propose an approximate inference scheme and obtain a bound on
the worst-case expected Hamming error that it obtains. We start with the noisy edge observations
X and use them to find a subspace F ⊂ F ′ that contains node labelings which induce edge
labelings that are close to X (in terms of Hamming distance). We formalize this in the next two
sections. Intuitively, we have that noisy edge measurements partition the space F in a collection
of edge classes.

Definition 3.2.1. The edge class of a point Y ∈ F is a set I ∈ 2{1,2,...,k}
|V |

such that for all
Yi ∈ I, Yi induces the same edge measurements as Y . All points in I can be derived via a label
permutation of Y . In general, for any labeling Y ′, set IY ′ is the set of all labelings that can be
generated by a label permutation of Y ′.

The restricted subspace F contains those edge classes that are close to the noisy edge obser-
vations X .

Figure 3.2 shows an example subspace F and the edge class-based partitions it contains.

Given the restricted subspace F , we design an algorithm to find a point Ŷ ∈ F such that the
Hamming error between Ŷ and Y ∗ is minimized. We define the Hamming error with respect to
an edge class I as:

Definition 3.2.2. The Hamming error of a vector Q ∈ {1, 2, . . . , k}|V | to the edge class IY ′ ∈
2{1,2,...,k}

|V |
is Hd(Q, IY ′) = minY∈IY ′ Hd(Y ,Q).

Point Y ∗ might not be in F and the distance between Ŷ and Y ∗ is the approximation error we
have due to approximate inference. Finally, we prove that the expected Hamming error between
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Figure 3.2: F(X) is a hypothesis space that is partitioned in different edge classes. We leverage
the noisy edge measurements X to identify the edge class partitions that are close to X . Each
partition contains k! elements.

Ŷ and Z is bounded. A schematic diagram of our approximate inference method is shown in
Figure 6.3. In the following sections, we study statistical recovery for trees (in Section 3.3) and
general graphs (in Section 3.4).

3.3 Recovery In Trees

We focus on trees and introduce a linear program for statistical recovery over k-categorical
random variables. We prove that under a uniform noise model the optimal Hamming error is
Õ(log(k) · p · n).

3.3.1 A Linear Program for Statistical Recovery

We follow the steps described in Section 3.2. First, we use the noisy edge observations to restrict
the search for Ŷ to a subspace F . We describe F via a constraint on the number of edge dis-
agreements between the edge labeling implied by Ŷ and the noisy edge observations X . Second,
we form an optimization problem to find a point Ŷ with minimum Hamming distance from Z
that satisfies the aforementioned constraint.

The ground truth edge labeling M (corresponding to the ground truth node labeling Y ) has
bounded Hamming distance from the observed noisy labeling X . Hence, we can restrict the
space of considered solutions to node labelings that induce an edge labeling with a bounded
Hamming distance from the observed noisy labeling X . We have: Under the uniform noise
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model, edge measurements are flipped independently. Thus, the total number of bad edges is a
sum over independent and identically distributed (iid) random variables. The expected number
of flipped edges is p · |E| = p(n− 1). Using the Bernstein inequality, we have:

Lemma 3.3.1. Let G be a graph with noisy edge observations with noise parameter p. With
probability at least 1− δ over the draw of X:

∑

(u,v)∈E

1{ϕ(Yu, Yv) 6= Xu,v} ≤ t where

t = (n− 1)p+
2

3
ln(

2

δ
)(1− p) +

√
2(n− 1)p(1− p) ln(

2

δ
)

Proof. InG = (V,E), for each edge (u, v) ∈ E, we have a random variableLu,v = 1(ϕ(Zu, Zv) 6=
Xu,v) with distribution:

Lu,v =

{
1, p

0, 1− p
To apply the Bernstein inequality, we must consider Lu,v − p. We have E[Lu,v − p] = 0 and
σ2(Lu,v−p) = p(1−p). We must also have that the random variables are constrained. We know
that |Lu,v−p| ≤ max{1−p, p} and p < 1/2 so |Lu,v−p| ≤ 1−p. Now, we apply the Bernstein
inequality:

P


 ∑

(u,v)∈E

Lu,v − p ≤ t


 ≥ 1− exp

(
− t2

2|E|σ2 + 2
3
(1− p)t

)

Let u , − t2

2|E|σ2+ 2
3
t(1−p) . Solving for t we obtain:

t =
1

3
u(1− p) +

√
(1− p)2u2

9
+ 2|E|σ2u

Now we have that:

P

(∑
Lu,v − p ≤

1

3
u(1− p) +

√
(1− p)2u2

9
+ 2|E|σ2u

)
≥ 1− e−u
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We choose u = ln
(

2
δ

)
, and substituting |E| = n − 1 for trees and σ2 = p(1 − p), we have

that with probability 1− δ:

∑

(u,v)∈E

1(ϕ(u, v) 6= Xu,v) ≤

1

3
ln(

2

δ
)(1− p) +

√
(1− p)2 ln(2

δ
)2

9
+ 2(n− 1)p(1− p) ln(

2

δ
) + (n− 1)p

Simplifying by noting that
√
a+ b ≤ √a+

√
b, we have proven the lemma.

This lemma states that under the uniform noise model the ground truth edge labeling M
for Graph G is in the neighborhood of X with high probability. Given this bound, we use the
following linear program to find Ŷ :

minimize
Ŷ ∈ [k]|V |

∑

v∈V

1{Ŷv 6= Zv}

subject to
∑

(u,v)∈E

1{ϕ(Ŷu, Ŷv) 6= Xu,v} ≤ t

(3.1)

where t is defined as in Lemma 3.3.1. This problem can be solved via a dynamic program-
ming algorithm with cost O(k · n3 · p). We describe this algorithm in Section 3.3.2.

Discussion Our approach is similar to that of [77] for binary random variables. However, we
use the Bernstein inequality to obtain a tighter concentration bound on the number of flipped
edge measurements. In the case of categorical random variables, it is critical to obtain a tight
description of the spaceF of the possible labeling solutions as we have a larger hypothesis space.

Let S(n, k) be the size of hypothesis space with k labels and n nodes. If we increase n
by one, the rate of change for the hypothesis space is rk,n = ∆S/∆n = kn(k − 1), which is
multiplicative with respect to k. Similarly, as we increase k to k + 1 the size of the hypothesis
space changes by sk,n = ∆S/∆k =

∑
i+j=n−1(k + 1)ikj ≥ kn−1, which is exponential in the

size of our input. We need a tight bound to obtain an efficient dynamic programming algorithm
with respect to n and k.
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3.3.2 Solving the Optimization Problem on Trees with Dynamic Program-
ming

Because G is assumed to be a tree, we can compute optimal solutions to subproblems. Specifi-
cally, we can turn any undirected tree into a controlled one by a breadth-first search.

Then we can define a table OPT (u,B|`) which stores optimal values to the subtree rooted
at u, constrained to budget B and with the parent of u constrained to class `. Given the values
of OPT for all descendants of a node u, it is not difficult to find values for the table at u. We
formalize this in the following theorem.

Theorem 3.3.1. The optimization problem 1 can be solved in time O(kn3p).

Proof. Given a tree T = (V,E), a budget t, observations X = {Xu,v}(u,v)∈E and Z = {Zv}v∈V ,
we would like to compute a solution to

∑

(u,v)∈E

1(ϕ(Zu, Zv) 6= Xu,v) ≤
2

3
ln(2/δ)(1− p) +

√
2(n− 1)p(1− p) ln(2/δ) + (n− 1)p

First, we turn T into a tree rooted at some node r by running a breadth-first search from r

and directing nodes according to their time of discovery. Call this directed tree rooted at r
−→
T r.

We specify a table OPT which will collect values of optimal subproblems.

Specifically, denote
−→
T u as the subtree of

−→
T r rooted at a node u. Then OPT will be a matrix

parameterized by OPT (u,B|`) where u ∈ V , 0 ≤ B ≤ |−→T u| (no tree can violate the observa-
tions more times than the number of nodes in the tree) and ` ∈ [k]. Let Pa(u) be the singular
parent of the node u. Then OPT values represent the optimal value of the subtree rooted at u
with a budget B and Pa(u) restricted to the value `. Our recursive equation for OPT is then

OPT (u,B|i) = min
`∈[k]

min∑
v∈N(u)

Bv

=B−1{Xu,v 6=ϕ(i,`)}

∑

v∈N(u)

OPT (v,Bv|`) + 1{` 6= Zu} (3.2)

If we have the value of OPT (u,B|`) for all nodes u 6= r, values ` and valid budgets B ≤ t,
we can calculate the optimum value of the tree by the following: We attach a node r′ to r by an
edge r′ → r and set the information on the node to Xr′,r = 1 then solve OPT (r, t|1), then repeat
the process but with Xr′,r = −1, return the smaller of these two values.
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For a leaf node w, the value of OPT (w,B′|`) is simply mini 1{i 6= Zw} for B′ = 1. If
B′ = 0 then we must choose i such that it does not violate the side information, i.e. we must
have ϕ(i, `) = Xw,Pa(w)

Finally we show how to compute the summation in (3.2) efficiently. For each value ` ∈ [k]
we must optimize the summation

min∑
v∈N(u)

Bv

=B−1{Xu,v 6=ϕ(i,`)}


 ∑

v∈N(u)

OPT (v,Bv|`) + 1{` 6= Zu}




Because each node’s optimal value is independent, we can rewrite this sum by submitting an
optional order on N(u) of 1, 2, . . . ,m = |N(u)| and reforming this sum to

min
B1∈[0,K−1{ϕ(`,s)6=Xu,Pa(u)}]

OPT (1, B1|`) + min∑
j∈[2,m] Bj=B−B1−1{ϕ(`,s)6=Xu,Pa(u)}

∑

j∈2,m

OPT (j, Bj|`)

The minimization for the first two vertices whose number of constraints violated are at most
B can be solved in O(B2) time. The calculation for the first three vertices can then be done
in O(B2) time by reusing the information from the first two. We can repeat this until we have
considered all children of u. Hence because we must calculate this value for all k possible
classes, we get an algorithm which takes time k

∑
v∈V |N(v)|B2 = O(nkB2). The statistical

analysis below shows that B is poly(n, p).

3.3.3 Upper Bound on the Hamming Error for Trees

The Hamming error of Ŷ obtained by Linear Program 3.1 is bounded by Õ(log(k) · p · n) with
high probability. For our analysis, we draw connections to statistical learning.

We define a hypothesis class F that contains all points that satisfy the bound in Lemma 3.3.1:

F = {Y ′ ∈ [k]|V | :
∑

(u,v)∈E

1{ϕ(Y ′u, Y
′
v) 6= Xu,v} ≤ t}

From Lemma 3.3.1, we have that the edge class that corresponds to the ground truth labeling
Y is contained in F with high probability over the draw of X . Moreover, since the node noise
q is bounded away from 1/2, we can use the noisy node measurements Z to find a labeling
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Ŷ that is in the same edge class as Y and close to Y . Such a labeling is obtained by solving
Linear Program 3.1. From a statistical learning perspective, Ŷ corresponds to the empirical risk
minimizer (ERM) over F given Z. Thus, the Hamming error between Ŷ and Y is associated
with the excess risk over Z for Class F . We have:

Lemma 3.3.2. [77] Let Ŷ be the empirical risk minimizer over F given Z and let Y ∗ =
arg minY ′∈F

∑
v∈V

P(Y ′v 6= Yv) and c > 0 a constant number, then with probability 1 − δ over

the draw of Z,
∑

v∈V

P
(
Ŷv 6= Zv

)
− min

Y ′∈F

∑

v∈V

P
(
Y ′v 6= Zv

)
≤

(
2

3
+
c

2

)
log

( |F|
δ

)
+

1

c

∑

v∈V

1
{
Ŷv 6= Y ∗v

}

We now analyze how the Hamming error relates to excess risk for categorical random vari-
ables. We have:

Lemma 3.3.3. The Hamming error is proportional to the excess risk: For fixed Ŷ , Y ∼ F ′ and
Z distributed according to the uniform noise model we have that:

1{Ŷv 6= Yv} =
1

c

[
PZ(Ŷv 6= Zv)− PZ(Yv 6= Zv)

]

where c = 1− k/(k − 1)q

Proof. For Ŷv = Yv, we have that PZ(Yv 6= Zv)− PZ(Yv 6= Zv) = 0 and so we are done. When
Ŷv 6= Yv, we have that PZ(Yv 6= Zv) = q and get the following for the first term:

PZ(Ŷv 6= Zv) = PZ(Ŷv 6= Zv ∧ Zv = Yv) + PZ(Ŷv 6= Zv ∧ Zv 6= Yv)

= PZ(Ŷv 6= Zv ∧ Zv = Yv) +
∑

i∈[k]∧i 6=Ŷv∧i 6=Yv

PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i)

We know that PZ(Ŷv 6= Zv ∧ Zv = Yv) = 1 − q. For each i we have PZ(Ŷv 6= Zv ∧ Zv 6=
Yv ∧ Zv = i) = q

k−1
. So we have:

∑

i∈[k]∧i 6=Ŷv∧i 6=Yv

PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i) =
q

k − 1

∑

i∈[k]∧i 6=Ŷv∧i 6=Yv

1 =
q(k − 2)

k − 1
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Given this we have:

PZ(Ŷv 6= Zv) = PZ(Ŷv 6= Zv ∧ Zv = Yv) +
∑

i∈[k]∧i 6=Ŷv∧i 6=Yv

PZ(Ŷv 6= Zv ∧ Zv 6= Yv ∧ Zv = i)

= (1− q) +
q(k − 2)

k − 1
= 1− q

k − 1

Finally, consolidating these, we get:

P (Ŷv 6= Zv)− P (Yv 6= Zv) = 1− q

k − 1
− q = 1− k

k − 1
q

This is exactly c, and so the hamming error and excess risk are proportional. Furthermore, we
can set c to 1− k

k−1
q.

With k = 2 we have that c = 1 − 2q, which recovers the result of [77] for binary random
variables.

Using Lemma 3.3.2, we can bound the excess risk in terms of the size of the hypothesis class.
We have:

Corollary 3.3.1. When Y ∈ F and Ŷ = arg minY∈F
∑

v∈V 1{Yv 6= Zv}, we have that with
probability at least 1− δ over the draw of Z:

∑

v∈V

P (Ŷv 6= Zv)− min
Y ′∈F

∑

v∈V

P (Y ′v 6= Zv) ≤
(

4

3
+

2
1
4

+
(

1
4
− ε
)(

1− k
k−1

)
)

log

( |F|
δ

)

We now combine these results with the complexity of class F to obtain a bound for the
Hamming error:

Theorem 3.3.2. Let Ŷ be the solution to Problem 3.1. Then with probability at least 1− δ over
the draw of X and Z

∑

v∈V

1{Ŷv 6= Yv} ≤
[t log(2k)− log(δ)](

1− k
k−1

q
)

(
4

3
+

2
1
4

+
(

1
4
− ε
)(

1− k
k−1

)
)

=Õ(log(k)np)

Proof. By Lemma 1, we have with probability at least 1− δ
2

∑

(u,v)∈E

1(ϕ(u, v) 6= Xu,v) ≤ t
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which we will use it to define a hypothesis class F as

F =



Ŷ :

∑

(u,v)∈E

1(ϕ(Ŷu, Ŷv) 6= Xu,v) ≤ t





with

t = (n− 1)p+
2

3
ln(

2

δ
)(1− p) +

√
2(n− 1)p(1− p) ln(

2

δ
)

Which suggests that Y ∈ F with high probability. By Corollary 1, we have that Ŷ being the
ERM over F implies that

∑

v∈V

P (Ŷv 6= Zv)−min
Y ∈F

∑

v∈V

P (Yv 6= Zv) ≤
(

4

3
+

2
1
4

+
(

1
4
− ε
)(

1− k
k−1

)
)

log

( |F|
δ

)

Combining this with Lemma 3, we conclude that
∑

v∈V 1{Ŷv 6= Yv} is bounded form above
by

1

1− k
k−1

q

(
4

3
+

2
1
4

+
(

1
4
− ε
)(

1− k
k−1

)
)

log

( |F|
δ

)

Now, we approximate the size of the class F . We can do so by upper-bounding the number
of ways to violate the observed measurements. Pessimistically, of the possible l = 0, 1, . . . t
violations, there are at most l nodes which are involved in this violation. Furthermore, there are
at most k − 1 ways for each of these nodes to be involved in such a violation. Therefore, we
have,setting t = 2

3
ln(2/δ)(1− p) +

√
2(n− 1)p(1− p) ln(2/δ) + (n− 1)p

|F| ≤
t∑

l=0

(
n

l

)
kl ≤ kt

t∑

l=0

(
n

l

)
≤ kt2t

Using this bound for |F|, and assuming that the noise and sampling distribution is constant,
we obtain that the hamming error is bounded by Õ(log(k)np)

Here, t is the same as in Lemma 3.3.1. We see that k has a lower impact on the Hamming
error than n and p. Also, when k = 2 we recover the result of [77]. Due to the tools we use to
prove this result, this is a tight bound. We validate this bound empirically in Section 3.6.
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3.4 Recovery In General Graphs

We now show how our tree-based algorithm can be combined with correlation clustering to obtain
a non-trivial error rate for graphs with bounded treewidth and k-categorical random variables. We
first describe our approximate inference algorithm and then show that our algorithm achieves an
expected Hamming error of Õ

(
k · log(k) · pd∆(G)

2
e · n

)
where ∆(G) is the maximum degree of

the structured instance G.

3.4.1 Approximate Statistical Recovery

We build upon the concept of tree decompositions [55]. Let G be a graph, T be a tree, and
W = (Vt)t∈T be a family of vertex sets Vt ⊆ V (G) indexed by the nodes t of T . We denote a
tree-decomposition with (T,W). The width of (T,W) is defined as max{|Vt| − 1 : t ∈ T} and
the treewidth tw(G) of G is the minimum width among all possible decompositions of G. We
also denote with F the |W| − 1 edges connecting the bags inW in (T,W) and represent T as
T = (W , F ).

Given a graph G, a tree decomposition of T defines a series of local subproblems whose
solutions can be combined via dynamic programming to obtain a global solution for the original
problem on G. For graphs of bounded treewidth, this approach allows us to obtain efficient
algorithms [17]. Our solution proceeds as follows: Let (T,W) be a tree decomposition of G.
We first find a local labeling Ỹ W for each W ∈ W . Then, we design a dynamic programming
algorithm that combines all local labelings to obtain a global labeling Ŷ .

Finding Local Labelings

We recover the labeling of the nodes in a bag W as follows: (1) Given W , we consider a superset
of W , defined as W ∗ = EXT (W ) = W ∪

(⋃
v∈GN(v)

)
where N(v) is the one-hop neighbor-

hood of node v; (2) Given W ∗, we use the edge observations in the edge subset E ′ ⊆ E induced
by W ∗ to find a restricted hypothesis space FW ∗ . We then find a labeling Ỹ W ∗ ∈ FW ∗ that has
the minimum Hamming error with respect to Z for the nodes in W ∗. Let ZW ∗ denote this subset
of Z; (3) For W , we assign Ỹ W to be the restriction of Ỹ W ∗ on W .

We consider two cases for Step 2 from above: (1) If |W ∗| = O(log(n)), we can enumerate
all kO(log(n)) labelings for W ∗ and choose the one with minimum Hamming distance from Z.
The complexity of this brute-force algorithm is kO(log(n)) = poly(n); (2) If |W ∗| = Ω(log(n)),
we use the MAXAGREE[k] algorithm of [80] over the noisy edge measurements X to restring
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the subspace F in the neighborhood of X . MAXAGREE[k] is a polynomial-time approximation
scheme (PTAS) for solving the Max-Agreement version of correlation clustering for a fixed num-
ber of k labels. In the worst case, MAXAGREE[k] obtains an approximation of 0.7666OPT[k].
In our analysis, we account for the approximation factor 0.7666 by changing the probability p to
p′ = 0.7666p+ 0.2334. Given the output of MAXAGREE[k], let FCC be the restricted subspace
of solutions for W ∗. We pick an arbitrary labeling Ȳ W ∗ ∈ FCC and use Algorithm 12 to get a
permutation that transforms Ȳ W ∗ to point Ỹ W ∗ that has minimum Hamming distance to ZW ∗ .

Algorithm 5: Local Label Permutation
Input: A labeling Ȳ W ∗ in the subspace FCC identified by MAXAGREE[k] on W ∗;

Node observations ZW ∗

1 Ȳ W ∗
1 , Ȳ W ∗

2 , . . . Ȳ W ∗

k ← Group Ȳ W ∗ By Label
2 ZW ∗

1 , ZW ∗
2 , . . . ZW ∗

k ← Group ZW ∗ By Label
3 for i, j ∈ [k]× [k] do
4 Ii,j ← |Ȳ W ∗

i ∪ ZW ∗
j |

5 end
6 Q← A queue that sorts I = {Ii,j}(i,j)∈[k]×[k] in decreasing order with respect to values

Ii,j
7 while Q 6= ∅ do
8 Ii,j ← Pop(Q)
9 π(i)← j

10 Remove all It,j and Ii,t for all t ∈ [k] from Q

11 end
12 Return: π

Algorithm 12 greedily permutes the labels in Ȳ w to obtain a labeling with minimum Ham-
ming distance to ZW . The complexity of this algorithm is O(n+ k log k).

Lemma 3.4.1. Algorithm 12 finds a permutation π such that:

Ỹ W = π(Ȳ W ) = min
π∈Γk

∑

v∈W

1{π(Ȳ W ) 6= ZW}

where Γk is the set of all permutations of the k labels.

Proof. We mix two partitions into one notation and each data point in D shows as vi = (Ȳi, Zi)
, for each i ∈ D, and Ȳi ∈ Ȳ and Zi ∈ Z. We define ∀l ∈ [k]

Xl = {vi|Ȳi = l}
Tl = {vi|Zi = l}

57



and the error is E =
∑
vi∈D

1{Zi 6= Ȳi}. The only thing that we allowed to change is the label

of Xls. We can represent the partition X and T as,

X = {X1, X2, . . . , Xk}
T = {T1, T2, . . . , Tk}

We claim that with Algorithm 2, we can find the permutation π on X, such that E minimize.
Let π∗ be the permutation that makes minimum E. We prove this theorem with reductio ad
absurdum. Therefore

Eπ∗ ≤ Eπ (3.3)

Let N be the set of all vi ∈ D such that π(Ȳi) 6= π∗(Ȳi),

N = {vi ∈ D|π(Ȳi) 6= π∗(Ȳi)}
We can write E for π,

Eπ =
∑

vi∈D

1{π(Ȳi) 6= Zi}

=
∑

vi∈N

1{π(Ȳi) 6= Zi}+
∑

vi 6∈N

1{π(Ȳi) 6= Zi}

Similarly we can define Eπ∗ ,

Eπ∗ =
∑

vi∈D

1{π∗(Ȳi) 6= Zi}

=
∑

vi∈N

1{π∗(Ȳi) 6= Zi}+
∑

vi 6∈N

1{π∗(Ȳi) 6= Zi}

Second term inEπ∗ andEπ are equal, using Inequality 3.3, and we defineEπ(N) =
∑
vi∈N

1{π(Ȳi) 6=
Zi} and similarly Eπ∗(N) for π∗, so we have,

Eπ∗(N) ≤ Eπ(N) (3.4)
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We know N ⊆ D, so the partition X on D present a sub-partition X̂ on N . X̂ defines like
X , so X̂ = {X̂1, X̂2, . . . , X̂k}. This sub-partition notion can be defined for both permutations π
and π∗,

X̂π = {X̂π(1), X̂π(2), . . . , X̂π(k)}
X̂π∗ = {X̂π∗(1), X̂π∗(2), . . . , X̂π∗(k)}

In the greedy algorithm, we sort the intersections of Xis and Tis and select the biggest one
each time, because X̂ is sub-partition of X , so we have,

∀vi, vj ∈ X̂ π(Ȳi) = π(Ȳj)←→ π∗(Ȳi) = π∗(Ȳj) (3.5)

Based on Equation 3.5, we can define a isomorphism on N ,

∀vi ∈ N ϕ : π∗(Ȳi)→ π(Ȳi)

we define ˙max() as selecting the set with maximum size among all feasible sets, then we have,

X̂π(Ȳi) =

{
vj ∈ D|π(Ȳi) = π(Ȳj), π(Ȳj) 6= Zj, ˙max|XȲj ∩ Tπ(Ȳj)|

}

and also we can obtain,

Eπ∗(N) =
∑

vi∈N

1{π∗(Ȳi) 6= Zi}

=
∑

X̂i∈X̂π∗

∑

v=(Ȳ ,Z)∈X̂i

1{π∗(Ȳ ) 6= Z}

=
∑

X̂i∈X̂π∗

∑

v=(Ȳ ,Z)∈X̂i

1{ϕ−1(π(Ȳ )) 6= Z} (3.6)

Also from Equation 3.6, we know

˙max|XȲj ∩ Tπ(Ȳi)| = X̂π(Ȳi) ∪Xπ(Ȳi)

because Tπ(Ȳi) might already given to bigger intersection so we used ˙max, and Xπ(Ȳi)
define as,

Xπ(Ȳi)
=

{
vj ∈ D|π(Ȳi) = π(Ȳj), π(Ȳj) = Zj, ˙max|XȲj ∩ Tπ(Ȳj)|

}
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Based on greedyXπ(Ȳi)
is maximized on other hands from Equation 3.6, we know thatEπ∗ ≤ Eπ,

so there exist equivalence C partition based on the ϕ, we have such that using Inequality 3.4,
∑

v∈C

1{ϕ−1(π(Ȳ )) 6= Z} ≤
∑

v∈C

1{π(Ȳ ) 6= Z} (3.7)

moreover, this should be true for all z ∈ C. But if π∗(Ȳ ) is not π(Ȳ ) then,
∣∣∣∣
{
vi ∈ D;1{π∗(Ȳi) = yi}

}∣∣∣∣ < Xπ(Ȳi)

so this contradicting with Inequality 3.7 so for equivalence class C, we have
∑

v∈C

1{π∗(Ȳ ) 6= Z} =
∑

v∈C

1{π(Ȳ ) 6= Z}

and because X̂π and X̂π∗ is finite, this mean ϕ is identity function ϕ(x) = x so π = π∗. That
mean greedy algorithm finds the best permutation transformations that satisfies Z.

We combine all steps in Algorithm 10. The output of this algorithm is a collection of labelings
Ỹ for the local problems. Lemma 3.4.1 states that Ỹ W ∗ minimizes the Hamming distance to Z.
We also show that Ỹ W ∗ remains a minimizer with respect to miny

∑
(u,v) 1(ϕ(yu, yv) 6= Xuv)

after the swaps due to π.

Definition 3.4.1. Given a graph G = (V,E), the swap(V, c1, c2) function changes all node
labels c1 to c2, and all node labels c2 to c1.

The swap operation enables us to switch between elements within an edge class. We show
that a swap(V, c1, c2) does not affect the disagreements between the node labeling and edge
labeling of a graph.

Lemma 3.4.2. Let L be a set of labels L = {1, 2, . . . , k}. Consider a graph G = (V,E) for
which we are given a node labeling Y and an edge labeling X . For any pair (c, c′) ∈ L × L,
let Y ′ = swap(V, c, c′) be the node labeling of G after swapping label c with c′. We have that:∑

(u,v)∈E 1{ϕ(Yu, Yv) 6= Xu,v} =
∑

(u,v)∈E 1{ϕ(Y ′u, Y
′
v) 6= Xu,v}.

Proof. Let G = (V,E), and set Y is the node labels from L assigned to V . Let C ⊆ L be the set
of all labels that used in Y . The easy case is when we want to change a color c ∈ Y to c′ /∈ Y ,
this is like renaming. To proof this lemma, we use induction. For showing an edge, we use i+ j
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Algorithm 6: Find Local Labelings
Input: A tree decomposition T = (W , F ) of G; Noisy node observations Z; Noisy edge

measurements X
1 Ỹ → ∅
2 for W ∈ W do
3 W ∗ = EXT (W )
4 \∗ The next optimization problem can be solved either via enumeration or

correlation clustering. E(W ∗) denotes the set of edges in W ∗.∗\
5 Ȳ W ∗ = arg min

y

∑
(u,v)∈E(W ∗)

1{ϕ(yu, yv) 6= Xuv}

6 Ỹ W ∗ ← Local Label Permutation (Ȳ W ∗ , ZW ∗)

7 Let Ỹ W be the restriction of Ỹ W ∗ to W
8 Ỹ → Ỹ ∪ {Ỹ W}
9 end

10 Return: Ỹ

means that two end point of nodes have label i and j and the edge label is +1. Let C = {c, c′},
we have multiple scenarios that generate violation V i = {c′ + c, c + c′, c− c, c′ − c′, } and also
the set of non-violation scenarios is nV i = {c′ − c, c− c′, c+ c, c′ + c′} as you can see nV i and
V i closed under swap operation.

We assume the theorem is true for |C| = k − 1, let Y used for k colors to color them. We
know k − 1 colors can swap, only color k is matter now, consider swap i ∈ [k − 1] and k. All
edges involve in this swap is {i+k, i−k, k+ i, k− i, i+ i, i− i, k−k, k+k} and errors involved
with these two labels are {i + k, k + i, i − i, k − k}, and this set size does not change after the
swap.

Based on the statement at the beginning of the proof, we are sure about k appear to [k − 1]
colors, because it is like renaming, the only thing is changing k to i. Let j be a label such that
e = (vi, vj) ∈ E : label(vl) = j

∧
label(vm) = k, the number of error are {j+k, k+j} and after

swap we have same number of edge in this set. So Y and its version after swap, Y ′ have same
number of edge violations on the label set L, In other word, for any L, we have the following
statement.

∑
(u,v)∈E 1{ϕ(Yu, Yv) 6= Xu,v} =∑

(u,v)∈E 1{ϕ(Y ′u, Y
′
v) 6= Xu,v}

This lemma implies that Ỹ W ∗ is a minimizer of miny
∑

(u,v) 1{ϕ(yu, yv) 6= Xuv} since Ȳ W ∗

minimizes this quantity, and Ỹ W ∗ is a permutation of Ȳ W ∗ .
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From Local Labelings to a Global Labeling

We now describe how to combine labelings {Ỹ W}W∈W into a global labeling Ŷ . For binary
random variables, the following procedure plays a central role in enforcing agreement across
local labelings [77]: Given a bagW1 and a neighborW2 with conflicting node labels with respect
toW1, we can maximize the agreement betweenW1 andW2 by flipping labeling Ỹ W1 to its mirror
labeling. This operation leads to consistent solutions since for binary random variables there is
only one mirror labeling. However, for categorical random variables we have k! possible mirror
labelings for Ỹ W1 . We show that it suffices to consider only one label swap per bag instead of k!
labelings.

We consider the swap operation (see Section 3.4.1) and two bags W1 and W2 with labelings
Ỹ W1 and Ỹ W2 . We resolve conflicts in W1 ∩ W2 as follows: Let Πk ⊂ Γk be the set of all
permutations restricted to one pairwise color swap. Given a bag W ∈ W with labeling Y W , we
define a swap π = swap(W, ci, cj) to be valid if color ci is present in YW . Given a valid swap π
for W , we define π(Y W ) to be the label assignment for all nodes in W after applying π to Y W .
Also, let π(Y W

v ) be the labeling for a node v ∈ W after π. Finally, we define Πk(Y
W ) as the set

of all labelings for W that can be obtained if we apply any valid pairwise label swap on Y W . To
resolve inconsistencies between Ỹ W1 and Ỹ W2 , we consider pairs in Πk(Y

W1)× Πk(Y
W2) such

that the labeling in the intersection of W1 and W2 is consistent and the number of nodes whose
label is swapped is minimum.

The procedure we use is shown in Algorithm 19. The algorithm takes as input a tree de-
composition T = (W , F ) of G and the local labelings Ỹ . For each W with labeling Ỹ W , we
compute the cost of swapping label ci with label cj for each (i, j) ∈ [k] × [k]. Then, we iterate
over edges in F to identify incompatibilities between local node labelings. Finally, we use all the
computed costs to find the single swap πW to be applied locally to each bag W ∈ W such that
global agreement is maximized. To this end, we solve a linear program similar to program 3.1.
This program is shown in Algorithm 8.

In Algorithm 8, function ψ(·) is defined as:

ψ(πW , πW ′) =

{
1, if πW (Ỹ W

v ) = πW ′(Ỹ
W ′
v ) : ∀v ∈ W ∩W ′

−1, if πW (Ỹ W
v ) 6= πW ′(Ỹ

W ′
v ) : ∃v ∈ W ∩W ′

Constant Ln is used to restrict the space of solutions considered. A discussion on Ln is deferred
to Section 3.4.2.
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Algorithm 7: From Local Labelings to a Global Labeling
Input: A tree decomposition T = (W , F ) of G; Noisy node observations Z; Noisy edge

measurements X; Local labelings {Ỹ W}W∈W
1 Ŷ → ∅
2 for W ∈ W do
3 ΠW

k ← the set of valid pairwise color swaps for W
4 for π ∈ ΠW

k do
5 \∗ π is associated with a label swap (ci, cj) ∗\
6 CostW [π] =

∑
v∈W

1(π(Ỹ W ) 6= ZW )

7 end
8 end
9 for (W1,W2) ∈ F do

10 Select one node v from W1 ∩W2 randomly
11 S(W1,W2) = 2 · 1{Ỹ W1

v = Ỹ W2
v } − 1

12 end
13 Compute constant Ln; \∗ See Section 3.4.2 ∗\
14 {πW}W∈W = Cat. Tree Decoder(T,Cost, S, Ln)
15 for v ∈ V do
16 Choose arbitrary W s.t. v ∈ W randomly
17 Ŷv = πW (Ỹ W

v )

18 end
19 Return: Ŷ
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Algorithm 8: Categorical Tree Decoder
Input: A tree T = (W , F ); Matrices {CostW}W∈W , {S(W,W ′)}(W,W ′)∈F , Ln ∈ N
Output: Optimal swaps {πW}W∈W for each W ∈ W

1 Solve the linear program:
2 Π̂ = arg min

{πW }W∈W∈Π
|W|
k

∑
W∈W

CostW [πW ]

3 s.t.
∑

(W,W ′)∈F
1{ψ(πW , πW ′} 6= S(W,W ′) ≤ Ln

4 Return: Π̂

Discussion on Correlation Clustering

We use correlation clustering in our algorithm for practical reasons. If the cardinality of the bags
T = (W , F ) is bounded byO(log(n)), we can find a local labeling for eachW that has minimum
Hamming distance to Z efficiently. Obtaining such a decomposition T is an NP-complete prob-
lem. This challenge is also highlighted by [77]. To address this issue they assume a sampling
procedure for removing edges from G to obtain a subgraph for which a low-width tree decom-
position is easy to find. This procedure is a graph-specific exercise and not easily generalizable
to arbitrary graphs. We follow a different approach. Instead of using specialized procedures, we
rely on heuristics to obtain a low-width decompositions [49, 52] and use correlation clustering
for large bags. This scheme allows us to use our algorithm with arbitrary graphs.

3.4.2 A Bound for Low Treewidth Graphs

We state our main theorem for statistical recovery over general graphs. We also provide a proof
sketch.

Theorem 3.4.1. (Main Theorem) Consider graph G with T = (W , F ), noisy node observa-
tions Y , and noisy edge observations X . Let Ŷ be the statistical recovery solution obtained by
combining Algorithms 10 and 19. With high probability over the draw of Z and X:

∑

v∈V

1
{
Ŷv 6= Yv

}
≤ Õ

(
k · log k · pd mincut

∗(G)
2

e · n
)

≤ Õ
(
k · log k · pd∆

2
e · n

)

where mincut∗(G) is the min. mincut over all extended bags inW and ∆(G) is the max. degree
in G.
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We see that the Hamming error obtained by our approach goes to zero as p → 0. Theo-
rem 3.4.1 allows us to understand when statistical recovery over a graph with categorical random
variables is possible (i.e., when we can rely on edge observations to solve statistical recovery
more accurately than the trivial solution of keeping the initially assigned node labels). Theo-
rem 3.4.1 connects the level of edge-noise with the degree ∆ of the input graph, the number
of labels k, and the noise q on node labels. We have that for the edge noise p it should be
p ≤ d∆

2 e
√

q
k log k

, where q is the node noise parameter, for the side information in X to be useful
for statistical recovery. Otherwise, one should just use the initially observed node labels.

Proof Sketch Let S denote a maximal connected subgraph of G. Let δ(S) be the boundary of
S, i.e., the set of edges with exactly one endpoint in S. Let Ỹ S be the local labeling for nodes in
S. We say that S is incorrectly labeled if for all v ∈ S we have Ỹ S

v 6= Yv. We have:

Lemma 3.4.3. (Swapping lemma) Let S be a maximal connected subgraph of G with every node
incorrectly labelled by Ỹ . Then at least half the edges of δ(S) are bad.

Proof. Let δ(S)+ and δ(S)− show the positive and negative edges in δ(S). We define the external
boundary nodes as follow,

V S = {v ∈ G : (v, e) ∈ δ(S) ∧ v 6∈ S}

and internal boundary nodes as

VS = {v ∈ G : (v, e) ∈ δ(S) ∧ v ∈ S}

It is simple to verify that for each v ∈ V S there exist u ∈ VS such that (u, v) ∈ δ(S) and vice
versa. We know that Ỹ W

v = Yv for v ∈ V S . If δ(S)− = ∅ and all edges in δ(S) be correct, we can
follow the labels node in V S , so for each v ∈ V S we select the edges (v, u) in δ(S) and we define
swap(S, v, u) so we have set of mapping Φ+(S) = {swap(S, v, u) : v ∈ V S ∧u ∈ VS ∧ (u, v) ∈
δ(S)}, from Lemma 5, we know the that the number of violations in S is same, so we resolved
some violations in δ(S) which has contradiction with Ỹ W ∈ Imin, so when δ(S)− = ∅, at least
half of nodes are incorrect and we actually can derive the labeling.

Let Γk(S) be all label permutation in S such that each permutation can be represented with
a sequence of swaps. We can easily show that any sequence of swap is also does not change the
edge violation, so we know for all π ∈ Γk(S) the number of edge violations in S is constant.
Because V S is correct labeled so at least d δ(S)

2
e of edges in δ(S) are incorrect, otherwise there

exist a labeling permutation that contradict with minimization of edge violation because the
edges inside S does not add violation but we resolve more than half of δ(S), In this case we
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know the existential of such a this permutation but in binary and δ(S)− = ∅ cases, we can
actually build the better permutation.

For a bag W , let set S be the largest connected component in W such that for all nodes v in
it Ỹ W

v 6= Yv. It must be the case that at least half of the δ(S) edges are incorrect or else there
exists a different labeling that agrees with X better than Ỹ W . This contradicts the fact that Ỹ W

is a minimizer of min
y

∑
(u,v) 1{ϕ(yu, yv) 6= Xuv}. This result extends the Flipping Lemma of

[83] from the binary to the categorical case.

We use this result to bound the probability that a local labeling Ỹ W (see Lemma 3.4.1) will
fail to recover the ground truth node label for W . The probability of local labelings having large
Hamming error is upper bounded:

Lemma 3.4.4. Let Γk be the all label permutations on the set L = {1, 2, . . . , k}. We have for
W :

P
(

min
π∈Γk

1{π(Ȳ W ) 6= Y W} > 0

)
≤ 2|W

∗|pd
mincut∗(W )

2
e

with mincut∗(W ) = min
S⊂W ∗,S∩W 6=∅,S̄∩W 6=∅

|δG(W )(S)|.

Proof. From Lemma 6, we know at least half of δ(S) for any S ⊂ W ∗ are incorrect, so we used
this to find an upper bound for this probability, so the best permutation of labels also should
satisfy Lemma 6 so we have

P
(

min
π∈Γk(W ∗)

1{π(Ȳ W ∗) 6= Y W} > 0

)
≤

∑

S⊂W ∗,S∩W 6=∅,S̄∩W 6=∅

pd
δ(S)

2
e

≤
∑

S⊆W ∗
pd

mincut∗(W )
2

e(because |δ(S)| ≤ mincut∗(W ) for all S ⊆ W ∗)

≤ 2|W
∗|pd

mincut∗(W )
2

e (there are 2|W
∗| subsets)

where mincut∗(W ) = minS⊂W ∗,S∩W 6=∅,S̄∩W ∗ 6=∅|δG(W )(S)|

We now build upon Lemma 3.4.4 and leverage the result introduced by [19] to obtain an upper
bound on the total number of mislabeled nodes across all bags inW for any labeling permutation
π ∈ Γk over the local labeling Ỹ W :
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Lemma 3.4.5. Let Γk be the all label permutations on the set L = {1, 2, . . . , k}. For all δ > 0,
with probability at least 1− δ

2
over the draw of X we have that:

min
π∈Γk

∑

W∈W

1{π(Ỹ W ) 6= Y W} ≤ 2|W |+1pd
mincut(W )

2
e + 6 max

e∈E
|W(e)| max

W∈W
|E(W )| log(

2

δ
)

whereW(e) denotes the set of bags inW that contain edge e and E(W ) denotes the set of edges
in bag W .

We have following theorem from [19]

Theorem 3.4.2. If there exists a constant c > 0 such that V+ ≤ cS then

P{S ≥ E[S] + t} ≤ exp

( −t2
4cE[S] + 2ct

)

Subsequently, with probability at least 1− δ,

S ≤ E(S) + max

{
4c log(

1

δ
), 2

√
2cE(S) log(

1

δ
)

}

≤ 2E(S) + 6c log(
1

δ
).

Now we can prove Lemma 3.4.5,

Proof. We define a random variable that shows the number of the component that has an error
concerning the real labels of each component. This random variable is a function of given edges
X .

S(X) =
∑

W∈W

min
π∈Γk(W )

1{π(Ỹ W (X)) 6= Y W} (3.8)

We know S(X) = 0 means perfect matching with a given X and in maximum S(X) = |W|,
and also Ỹ W (X) is the component-wise estimator with given edge labels observation X . We
know that S : [k]|E| → R so we can use Theorem 3.4.2 if we can prove that S(X) satisfies the
assumption.
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S(X)− S(X(e)) =
∑

W∈W

(
min

π∈Γk(W )
1

[
π(Ỹ W (X)) 6= Y W

]
− min

π∈Γk(W )
1

[
π(Ỹ W (X(e))) 6= Y W

])

The right-hand side of the equation is zero for hypernodes that e is not in them so we can
reduce the equation to the hypernodes that have e, so we show it withW(e). FormallyW(e) =
{W ∈ W|e ∈ E(W )}

S(X)− S(X(e)) =
∑

W∈W(e)

(
min

π∈Γk(W )
1

[
π(Ỹ W (X)) 6= Y W

]
− min

π∈Γk(W )
1

[
π(Ỹ W (X(e))) 6= Y W

])

For evaluate Theorem 3.4.2, in next proposition we showed V+ is bounded.

Proposition 3.4.1. The variation of V+ of S(X) in Equation 3.8 is bounded, V+ ≤ cS(X).

Proof.

(S(X)− S(X(e)))2.1

(
S(X) > S(X)(e)

)
=

1

(
S(X) > S(X)(e)

)
×

∑

W∈W(e)

(
min

π∈Γk(W )
1

[
π(Ỹ W (X)) 6= Y W

]
− min

π∈Γk(W )
1

[
π(Ỹ W (X(e))) 6= Y W

])2

≤
∑

W∈W(e)

(
min

π∈Γk(W )
1

[
π(Ỹ W (X)) 6= Y W

])2

//second part removed and square of minus part added

≤ |W(e)|
∑

W∈W(e)

min
π∈Γk(W )

1

[
π(Ỹ W (X)) 6= Y W

]

Now we can use this for calculating the expectation.
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We directly start with V+ to find its bound.

V+ =
∑

e∈E

E
[
(S(X)− S(X(e)))2 · 1

(
S(X) > S(X)(e)

)∣∣∣∣X1, X2, . . . , Xn

]

=
∑

e∈E

(S(X)− S(X(e)))2 · 1
(
S(X) > S(X)(e)

)
×

P
[
(S(X)− S(X(e)))2 · 1

(
S(X) > S(X)(e)

)∣∣∣∣X1, X2, . . . , Xn

]

(we assume all probabilities are 1)

≤
∑

e∈E

(S(X)− S(X(e)))2.1

(
S(X) > S(X)(e)

)

//from last result

≤
∑

e∈E

|W(e)|
∑

W∈W(e)

min
π∈Γk(W )

1

[
π(Ỹ W (X)) 6= Y W

]

≤ max
e∈E
|W(e)|

∑

e∈E

∑

W∈W(e)

min
π∈Γk(W )

1

[
π(Ỹ W (X)) 6= Y W

]

= max
e∈E
|W(e)|

∑

W∈W(e)

∑

e∈E

min
π∈Γk(W )

1

[
π(Ỹ W (X)) 6= Y W

]

≤ max
e∈E
|W(e)| max

W∈W
|E(W )|

∑

W∈W(e)

min
π∈Γk(W )

1

[
π(Ỹ W (X)) 6= Y W

]

= max
e∈E
|W(e)| max

W∈W
|E(W )|S(X)

Therefore, there is c = max
e∈E
|W(e)| max

W∈W
|E(W )| such that V+ ≤ cS(X).

So with c = max
e∈E
|W(e)| max

W∈W
|E(W )|, the Theorem 3.4.2 with probability at least 1 − δ

2
is

valid,

S ≤ 2E(S) + 6 max
e∈E
|W(e)| max

W∈W
|E(W )| log(

2

δ
)

69



We only need to derive E(S) using Lemma 3.4.4, because Ỹ ∈ IȲ , so Lemma 3.4.4 is also
valid for Ỹ ,

E(S) =
∑

W∈W

P
(

min
π∈Γk(W )

1

{
π(Ỹ W (X)) 6= Y W

})
× min

π∈Γk(W )
1

{
π(Ỹ W (X)) 6= Y W

}

=
∑

W∈W

P
(

min
π∈Γk(W )

1

{
π(Ỹ W (X)) 6= Y W

}
= 1

)

=
∑

W∈W

P
(

min
π∈Γk(W )

1

{
π(Ỹ W (X)) 6= Y W

}
> 0

)

≤
∑

W∈W

2|W |pd
mincut(W )

2
e // from Lemma 3.4.4

so finally we have,

min
π∈[Γk]W

∑

W∈W

1{π(Ỹ W ) 6= Y W} ≤
∑

W∈W

2|W |+1pd
mincut(W )

2
e + 6 max

e∈E
|W(e)| max

W∈W
|E(W )| log(

2

δ
)

This lemma can be extended toW ∗ as well. This lemma combined with Lemma 3.4.3 implies
that the labeling disagreement across bags in the tree decomposition are bounded. The analysis
continues in a way similar to that for trees (see Section 3.3). Given the local bag labelings, we
seek to find the labeling swaps across bags such that the global labeling has minimum Hamming
error with respect to Y . We use the inequality from Lemma 3.4.5 to restrict the space ([k]× [k])W

of all possible pairwise label swaps over the local bag labelings. Let s∗ be the optimal point in
([k]× [k])W such that the global labeling has minimum Hamming error with respect to Y . Given
the tree decomposition T = (W , F ) of G. We define the hypothesis space:

F , ([k]× [k])W

s.t.
∑

(W,W ′)∈F

1{ψ(πW , πW ′) 6= S(W,W ′)} ≤ Ln
}

with

Ln = deg(T )
[
2wid

∗(W )+2
∑

W∈W

pd
mincut∗(W )

2
e + 6deg∗E(T ) max

W∈W
|E(W ∗)| log(

2

δ
)
]
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,
deg∗E(T ) = max

e∈E
|W(e)|

and πW and S(W,W ′) denote the pairwise swaps and labeling disagreements between bags from
Algorithm 19. We show that the optimal permutation Π∗ is a member of F with high probability
and also have that |F(X)| ≤

(
e·n·k!
Ln

)Ln . Combining this with Lemma 3.3.2, we take Π̂ is most
correlated with Z, i.e., it is a minimizer for

∑
W∈W

∑
v∈W 1

{
πW (Ỹ W

v ) 6= Zv
}

. Directly from
statistical learning theory we have that the Hamming error of this estimator Ŷ is Õ(log(F)) =

Õ
(
k · log k · pd∆

2
e · n

)
which establishes our main theorem.

3.4.3 Proof of Theorem 3.4.1

From Lemma 3.4.5, we can directly proof same result for extend of tree components.

Corollary 3.4.2. There is straightforward deduction to derive the result for W ∗ = EXT (W ) on
T = (W , F ) with probability 1− δ

2
,

min
π∈[Γk]W

∑

W∈W

1{π(Ȳ W ∗) 6= Y W ∗} ≤

∑

W∈W

2|W
∗|+1pd

mincut∗(W )
2

e + 6 max
e∈E
|W∗(e)| max

W∈W
|E(W ∗)| log(

2

δ
)

we define the maximum size of a hyper-graph as its degree deg∗E(T ) = max
e∈E
|W∗(e)| which

W∗(e) = {W ∈ W|e ∈ E(W ∗)} and E(W ∗) is the set of all edged in E that are in W ∗, so we
have

min
π∈[Γk]W

∑

W∈W

1{π(Ȳ W ∗) 6= Y W ∗} ≤

2wid
∗(W )+2

∑

W∈W

pd
mincut∗(W )

2
e + 6deg∗E(T ) max

W∈W
|E(W ∗)| log(

2

δ
)

Where wid∗(W ) , maxW∈W |W ∗| − 1.

Now we can start to Theorem 3.4.1,
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Proof. To prove this theorem, we need to define a hypothesis class and find information bound
for the optimal solution in there, next, we can find a bound for the distance of the real answer of
the problem and best answer in the hypothesis class.

Consider the following permutation finding of the components in T:

Π? = arg min
Π∈Γ

|W|
k

∑

W∈W

1
{

Π(Ỹ W ) 6= Y W
}

from Corollary 3.4.2, we know that

min
π∈[Γk]W

∑

W∈W

1{π(Ỹ W ) 6= Y W} ≤ Kn

Because Ỹ W ∗ and Ȳ W ∗ both are in IȲW∗ and also Ỹ W is Ỹ W ∗ restricted to W and Kn is

Kn ,2wid
∗(W )+2

∑

W∈W

pd
mincut∗(W )

2
e+

6deg∗E(T ) max
W∈W

|E(W ∗)| log(
2

δ
)

So if we have Π?, we can produce a vertex prediction with at most Kn mistakes with prob-
ability 1 − δ. However, computing Π? is impossible because we do not have access to Y , so
we need to see using Z as a noisy version of Y , how much approximation error will add to the
theoretical bound of prediction.

We define the following hypothesis class, which is defined with Kn so we make even bigger
to include an even better possible solution.

F , ([k]× [k])W

s.t.
∑

(W,W ′)∈F

1{ψ(πW , πW ′) 6= S(W,W ′)} ≤ Ln
}

In this context, each element of ([k] × [k])W is a vector of sizeW element which each sown as
π. Our goal is to show that best permutation is in F with high probability.
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Such that Ln = deg(T ).Kn which enrich the hypothesis class with make it bigger than using
Kn. We know that if min

π∈[Γk(W )]
1{π(Ỹ W ) 6= Y W} = 0 for a component W then we can find a

π̄W ∈ Γk such that we can effect on Y W to get Ỹ W so π̄W (Y W ) = Ỹ W .

We also have

∑

(W,W ′)∈F

1{ψ(πW , πW ′) 6= S(W,W ′)} =
∑

(W,W ′)∈F

1{ψ(πW , πW ′) 6= [2.1(Ỹ W
v , Ỹ W ′

v )− 1]}

and we know v ∈ W ∩W ′, so if for each W ∈ W we have π̄W , if the range of πW and πW ′
be same they get 1 and their range is Y , the right hand side also is 1 because the range of two
permutations are Y W and v ∈ W ∩W ′, so 1{ψ(πW , πW ′) 6= [2.1(Ỹ W

v , Ỹ W ′
v ) − 1]} = 0 when

ever W and W ′ have no errors. Therefore Π? ∈ F with probability 1 − δ. The complexity of
hypothesis class can parametrized with the size of F(X) so we have

|F(X)| =
Ln∑

m=0

(|W|
m

)
k!m

≤
Ln∑

m=0

(|W|
m

)
k!Ln = k!Ln

Ln∑

m=0

(|W|
m

)

≤ k!Ln
(
e|W|
Ln

)Ln
≤
(
e.n.k!

Ln

)Ln

We consider non-redundant decomposed trees which means for (Wi,Wj) ∈ F we haveWi\(Wi∩
Wj) 6= ∅. In Algorithm 3, we use Z instead of Y . So we have

π̂ = min
π∈F(X)

∑

W∈W

∑

v∈W

1
{
π(Ỹ W

v ) 6= Zv
}
.

We have following lemma to continue the proof

Lemma 3.4.14. For
∑
v∈W

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}

we have following approximation,
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∑

v∈W

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}

=
1

c

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

=

+
1

c′

∑

v∈W∧π?(ỸWv ) 6=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

6=

such that c = −
(
1− k

k−1
q
)

and c′ = 1− k
k−1

q.

Proof. We prove this equation step by step
∑

v∈W

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}

=

∑

v∈W∧π?(ỸWv )=Yv

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}

=
+

∑

v∈W∧π?(ỸWv )6=Yv

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}
6=

=
1

c

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

=

+
1

c′

∑

v∈W∧π?(ỸWv )6=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

6=

We have to derive each part of the relation separately, for both sigma if π̂(Ỹ W
v ) = π?(Ỹ W

v )
the above is true for any c and c′.

We need to calculate c and c′, for c which is π?(Ỹ W
v ) = Yv, we have

PZ
{
π̂(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) = Yv

}
=
k − 2

k − 1
q

and PZ
{
π∗W (Ỹ W

v ) 6= Zv
∣∣π?(Ỹ W

v ) = Yv
}

= 1− q so we can calculate c.

PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}

=
k − 2

k − 1
q − (1− q) = −

(
1− k

k − 1
q
)
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so c = −
(
1− k

k−1
q
)
. Next, we calculate c′ which is π?(Ỹ W

v ) 6= Yv, therefore we have

PZ
{
π̂(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) 6= Yv

}
=

PZ
{
π̂(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) 6= Yv ∧ Yv = Zv

}
+ PZ

{
π̂(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) 6= Yv ∧ Yv 6= Zv

}
=

k − 2

k − 1
q + 1− 1

k − 1
q = 1− q

and for second part we have,

PZ
{
π?(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) 6= Yv

}
=

PZ
{
π?(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) 6= Yv ∧ Yv = Zv

}
+ PZ

{
π?(Ỹ W

v ) 6= Zv ∧ π?(Ỹ W
v ) 6= Yv ∧ Yv 6= Zv

}

= q +
k − 2

k − 1
q

so we can calculate c′

PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}

== (1− q)−
[
q +

k − 2

k − 1
q
]

= 1− k

k − 1
q

therefore that c′ = 1− k
k−1

q.

Fix π̂ ∈ F(X) for each component W ∈ W we have
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∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

≤
∑

v∈W

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}

+
∑

v∈W

1
{
π?(Ỹ W

v ) 6= Yv
}

//Triangle inequality

≤
∑

v∈W

1
{
π̂(Ỹ W

v ) 6= π?(Ỹ W
v )
}

+ |W |1
{
π?(Ỹ W ∗

v ) 6= Yv
}

//Maximize component error

= − 1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )6=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

+

|W |1
{
π?(Ỹ W

v ) 6= Yv
}

//From Lemma 3.4.14

For the first part, we can the following approximation:

− 1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

≤ 2
∑

v∈W

1
{
π?(Ỹ W

v ) 6= Yv
}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

≤ 2|W |1
{
π?(Ỹ W

v ) 6= Yv
}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

We conclude that:
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∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}
≤ 3|W |1

{
π?(Ỹ W

v ) 6= Yv
}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )6=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

≤ 3|W |1
{
π?(Ỹ W

v ) 6= Yv
}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )6=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

+

1

1− k
k−1

q

∑

v∈W∧π?(ỸWv )=Yv

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

≤ 3|W |1
{
π?(Ỹ W

v ) 6= Yv
}

+
1

1− k
k−1

q

∑

v∈W

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

We apply this formula for all components W ∈ W we have

∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

≤ 3

(
max
W∈W

|W |
) ∑

W∈W

1
{
π?(Ỹ W

v ) 6= Yv
}

+

1

1− k
k−1

q

∑

W∈W

∑

v∈W

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

≤ 3

(
max
W∈W

|W |
)
Kn +

1

1− k
k−1

q

∑

W∈W

∑

v∈W

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

using Lemma 3.3.2 for right hand side of the equation, we have excess risk bound with
probability 1− δ

2
,
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∑

W∈W

∑

v∈W

{
PZ
{
π̂(Ỹ W

v ) 6= Zv
}
− PZ

{
π∗W (Ỹ W

v ) 6= Zv
}}

≤
(

2

3
+
c

2

)
log(

2|F(X)|
δ

) +
1

c

∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

so we can mix these inequalities,

∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

≤ 3

(
max
W∈W

|W |
)
Kn +

1

1− k
k−1

q

(
2

3
+
c

2

)
log(

2|F(X)|
δ

) +
1

c

∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

so we have

∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}
≤ 1

1− 1
c

[(
3 max
W∈W

|W |
)
Kn +

1

1− k
k−1

q

(
2

3
+
c

2

)
log(

2|F(X)|
δ

)

]

We put c = 1
1−ε and rearrange then with probability 1− δ we have

∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

≤ 1

1− 1
1

1−ε

[(
3 max
W∈W

|W |
)
Kn +

1

1− k
k−1

q

(
2

3
+

1
1−ε

2

)
log(

2|F(X)|
δ

)

]

=
1

ε

[(
3 max
W∈W

|W |
)
Kn +

1

1− k
k−1

q

(
2

3
+

1

2(1− ε)

)
log(

2|F(X)|
δ

)

]

From before, we have |F(X)| ≤
(
en.k!
Ln

)Ln , wid(T ) = max
W∈W

|W |, Kn, and Lemma 3.3.2 so

we can conclude
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∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

=

=
1

ε

(
3 max
W∈W

|W |
)
Kn +

1

ε.
(
1− k

k−1
q
)
(

2

3
+

1

2(1− ε)

)
log(

2|F(X)|
δ

)

=
3

ε
.wid(T ).Kn +

1

ε.
(
1− k

k−1
q
)
(

2

3
+

1

2(1− ε)

)
×
(

log(
2

δ
) + Ln. log(

en.k!

Ln

)
)
)

≤ 3

ε
.wid(T ).Kn +

1

ε.
(
1− k

k−1
q
)
(

2

3
+

1

2(1− ε)

)
×
[

log(
2

δ
) +Kn.deg(T ).k. log(n.k)

]

=
1

ε
.Kn ×

[
3.wid(T ) + deg(T ).k. log(n.k).

1

1− k
k−1

q
.(

2

3
+

1

2(1− ε))
]
+

1

ε.
(
1− k

k−1
q
)
(

2

3
+

1

2(1− ε)

)
log(

2

δ
)

≤ 1

ε
.Kn ×

[
3.wid(T ) + deg(T ).k. log(n.k).

1

1− k
k−1

q
.(

2

3
+

1

2(1− ε))
]
+

1

ε.
(
1− k

k−1
q
)
(

2

3
+

1

2(1− ε)

)
log(

2

δ
)

≤ 1

ε
.

[
2wid

∗(W )+2
∑

W∈W

pd
mincut∗(W )

2
e + 6deg∗E(T ) max

W∈W
|E(W ∗)| log(

2

δ
)

]

×
[
3.wid(T ) + deg(T ).k. log(n.k).

1

1− k
k−1

q
.(

2

3
+

1

2(1− ε))
]
+

1

ε.
(
1− k

k−1
q
)
(

2

3
+

1

2(1− ε)

)
log(

2

δ
)
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so we have
∑

W∈W

∑

v∈W

1
{
π̂W (Ỹ W

v ) 6= Yv
}

≤ O

(
1

ε2
.

[
2wid

∗(W )+2
∑

W∈W

pd
mincut∗(W )

2
e + 6deg∗E(T ) max

W∈W
|E(W ∗)| log(

2

δ
)

]
×

[
3.wid(T ) + deg(T ).k. log(n.k)

])

because mincut ≥ maximum degree

≤ Õ
(
k. log k.pd

∆
2
e.n
)

As π̂W (Ỹv) = Ŷv, so the algorithm ensures Hamming error has driven upper bound.

3.4.4 Classical Result on Correlation Clustering Approximation

On correlation clustering approximation, we have following Theorem,

Theorem 3.4.3. [80] There is a polynomial time factor 0.878 approximation algorithm for
MAXAGREE[2] on general graphs. For every k ≥ 3, there is a polynomial time factor 0.7666
approximation algorithm for MAXAGREE[K] on general graphs.

With this assumption in the worse case, we have labeling with 0.7666OPT[K]. If OPT =
|E|− b which b is the number of bad edges that the optimal does not cover. We know the original
graph is a k cluster with no bad-cycle (a cycle with one negative edge), so whatever bad edges
that we see are the result of the noise process on the edges, so b ≤ |E|p because part of them do
not generate bad-cycles. We can consider the approximate process as an extra source to generate
more bad edges so we have |E| − b′ ≥ APPROX[k] = 0.7666OPT[k]. Also, by our assumption
we have p ≤ p′ so b ≤ b′

|E|−b′ ≥ APPROX[k] = 0.7666OPT[k] = 0.7666
(
|E| − b

)
→ b′ ≤ 0.2334|E|+ 0.7666b

So we have

b ≤ b′ ≤ 0.2334|E|+ 0.7666b
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We have upper bound for the error introduced by our approximation and we assume all that
noise come from edge noise process and the correlation clustering could not correct it, we can
assume a noise process with p′ such that b′ = |E|p′ so :

|E|p′ = b′ ≤ 0.2334|E|+ 0.7666b ≤ 0.2334|E|+ 0.7666|E|p→ p′ ≤ 0.2334 + 0.7666p

So we consider exact correlation clustering result in our analyses and if we interested to
see the effect of approximation algorithm on the result and get an error bound, we update p to
0.2334 + 0.7666p as worst case analysis which means we directly inject the approximation noise
error to the results. This assumption is weak because part of b′ can be captured by the local and
global optimizer which we neglect it.

3.5 Mixture of Edges and Nodes Information

In all previous works [77, 83, 155], the algorithms consider the information of edge and node
labels in different stages. For instance in [83], first solves the problem based on the edge because
p < q, then it uses the nodes information. The information value of positive and negative edges
in binary cases are same, but this courtesy breaks under categorical labels, on the other hand, we
can use some properties in the graph to trust more on some information. We can calculate the
probability of correctness of graph nodes and edges label using p and q. In categorical labeling,
the space of noise has some variations from the binary case, so we have the following facts in the
categorical case:

• Flipping an edge makes an error.

• Switching the label of a node might not make an error.

Using Bayes rule and the property of nodes, we have Pr(v = i|v′ = j) = Pr(v′ = j|v = i)),
the prim for a vertex shows the vertex after effecting noise.

We have following theorem,

Theorem 3.5.1. The likelihood of correctness of an edge e = (vi, vj) ∈ E with label with L are
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as follow,

Pr(L is untouched |e, L) =

cL ×





2(1− q)q + ( q
k−1

)2. k−2
k.(k−1)

L = 1, vio

(1− q)2 + ( q
k−1

)2. 1
k.(k−1)

L = 1, nvio

2(1− q). q
k−1

+ ( q
k−1

)2. k−2
k(k−1)

L = −1, vio

(1− q)2 + ( q
k−1

)2.k−2
k

L = −1, nvio

which cL = (1−p)|E|
#L in graph , vio means ϕ(Xi, Xj) 6= Xij , and nvio means ϕ(Xi, Xj) = Xij .

Proof. In all cases, two head nodes of a given edge are vi and vj , and L shows the label of the
edge. We first calculate the probability Pr(vi, vj, L|L is untouched) the using Bayes theorem,
we derive the likelihood.

• The first case is e generates a violation ϕ(Zi, Zj) 6= Xij , and the edge label L = 1, in this
case, the probability of the event is only one of the node labels are changed or both node
labels have been changed but to the different labels.

Pr(only one of the node labels are changed) =

2Pr(vi is changed) =

2(1− q).
∑

vi.label=j∧j 6=Xi

Pr(vi.label = j|vi.label = i)

= 2(1− q).
∑

vi.label=j∧j 6=Xi

q

k − 1
= 2.(1− q)q

and also we have, (v′i and v′j are the label of given nodes after noise effect)

Pr(v′i 6= v′j ∧ vi = vj ∧ v′j 6= vj ∧ v′i 6= vi)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi = vj)× Pr(v′i 6= v′j|vi = vj ∧ v′j 6= vj ∧ v′i 6= vi)

=
q

k − 1
.
q

k − 1
.
1

k
.
(k − 1)(k − 2)

(k − 1).(k − 1)

= (
q

k − 1
)2.

k − 2

k.(k − 1)

Because Pr(vi 6= v′i), Pr(vj 6= v′j), and Pr(vi = vj) are independent, so the whole
probability would be 2.(1− q)q + ( q

k−1
)2. k−2

k.(k−1)
.
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• The second case is e does not generate any violation, ϕ(Zi, Zj) = Xij , and the edge label
L = 1, in this case, either both node labels are untouched or they changed but to the same
label.

Pr(both node labels are untouched) =

Pr(vi = v′i).P r(vj = v′j) = (1− q)(1− q) = (1− q)2

and also we have,

Pr(v′i = v′j ∧ vi 6= v′i ∧ vj 6= v′j ∧ vi = vj)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi = vj)× Pr(v′i = v′j|vi 6= v′i ∧ vj 6= v′j ∧ vi = vj)

=
q

k − 1
.
q

k − 1
.
1

k
.

(k − 1)(1)

(k − 1).(k − 1)

= (
q

k − 1
)2.

1

k.(k − 1)

so the whole probability would be (1− q)2 + ( q
k−1

)2. 1
k.(k−1)

.

• The third case is e generates a violation ϕ(Zi, Zj) 6= Xij , and the edge label L = −1, in
this case, the probability of the event is either one label change to the same label of other
head or both change to the same label

Pr(a label change to the same of other head)

= 2Pr(vi is changed to Xj) = 2(1− q). q

k − 1

and also we have,

Pr(v′i = v′j ∧ vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi 6= vj)× Pr(v′i = v′j|vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

=
q

k − 1
.
q

k − 1
.
k − 1

k
.

(k − 2)(1)

(k − 1).(k − 1)

= (
q

k − 1
)2.

k − 2

k(k − 1)

so the whole probability would be 2(1− q). q
k−1

+ ( q
k−1

)2. k−2
k(k−1)

.

• The fourth case is e does not generate any violation, ϕ(Zi, Zj) = Xij , and the edge label
L = −1, in this case, either both node labels are untouched or they changed but to different
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labels.

Pr(both node labels are untouched)

= Pr(vi = v′i).P r(vj = v′j)

= (1− q)(1− q) = (1− q)2

and also we have,

Pr(v′i 6= v′j ∧ vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

= Pr(vi 6= v′i).P r(vj 6= v′j).P r(vi 6= vj)× Pr(v′i 6= v′j|vi 6= v′i ∧ vj 6= v′j ∧ vi 6= vj)

=
q

k − 1
.
q

k − 1
.
k − 1

k
.
(k − 1)(k − 2)

(k − 1).(k − 1)

= (
q

k − 1
)2.
k − 2

k

so the whole probability would be (1− q)2 + ( q
k−1

)2.k−2
k

.

Based on the Bayes theorem we have,

Pr(L is untouched|vi, vj, L) =
Pr(vi, vj, L|L is untouched).P r(L is untouched)

Pr(vi, vj, L)

We have Pr(vi, vj, L) = #L in graph
|E| , and Pr(L is untouched) = 1 − p, so we can derive the

result.

As it can be seen with k = 2, the trust score for positive and negative are only depend to their
frequencies, and if their frequencies are equal we can trust them equally.

Example 3.5.1. (Uniform Frequencies) Let #{L = +1} ' #{L = −1} and k ≥ 3, then the
second part of is negligible because of ( q

k−1
)2 parameter, then if 2(1 − q)q ≤ (1 − q)2 and

2(1 − q). q
k−1
≤ (1 − q)2 which is q < min{1

3
, k−1
k+1
} = 1

3
then the non-violating edges are more

reliable.

The following example is more related to the grid graphs that considered in [83].

Example 3.5.2. (Image Segmentation) The case k ≥ 3 and #{L = +1} ≥ #{L = −1}, which
we usually see in the images, because the negative edges are on the boundary of regions. If
q < 1/3, We have can trust more on the non-violating negative edges than non-violating positive
edges.

To the best of our knowledge, no algorithm considers the mixture of edges and nodes in-
formation on the categorical data. Therefore, Theorem 3.5.1 can be a guide to design such an
algorithm.
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3.6 Experiments

Experimental Setup We evaluate our approach on trees and grid graphs. For trees, we use
Erdős–Rényi random trees to obtain ground truth instances. For grids, we use real images to
obtain the ground truth. We create noisy observations via a uniform noise model. We compare
our approach with two approximate inference baselines: (1) a Majority Vote algorithm, where
we leverage the neighborhood of a node to predict its label, and (2) (Loopy) Belief Propagation.
To evaluate performance we use the normalized Hamming distance

∑
v∈V 1(Yv 6= Ŷv)/|V |.

Hamming Error of Random Trees Our analysis suggests that Linear Program 3.1 yields a
solution with Hamming error Õ(log(k)np). We evaluate experimentally that the Hamming error
increases at a logarithmic rate with respect to k. Figure 3.3 shows the Hamming error for a fixed
tree generative model with p = 0.1 and q = 0.2 as we increase the number of labels k. We fix q
away from 0.5 and generate 10, 000 trees for each k. We report the average error. As shown, we
observe the expected logarithmic behavior that we proved theoretically. The graph size is chosen
randomly n ∈ [103, 1.5× 103].

Trees Generation Process: We generate random trees, and we apply the noise to the generated
graph. We need to have at least one example of each k labels, so the generation process starts
by creating k nodes, one example for each category. Then, it generates k random numbers
n1, . . . , nk such that

∑k
i=1 ni = n − k. Next, it creates tree edges for the set of nodes V . Let S

and E be empty sets. We select two nodes v and u randomly from V and add (u, v) to E such
that the label of the edge satisfies the label of u and v and set S = S∪{u, v}, and V = V \{u, v}.
Now, we select one node v ∈ S and one node u ∈ V randomly and add (u, v) to E such that
the edge label satisfies the endpoints and remove u from V and add it to S. We repeat until
V is empty. This process follows the Brooks theorem [21]. Finally, we apply uniform noise
model with probabilities of p and q. We select this simple generative process because it covers
an extensive range of random trees.

Grids Graph Generation: We use gray scale images as the source of grid graphs. The range
of pixel values in gray scale images is r = [0, 255], so we have that 0 ≤ k ≤ 255. We divide r
to k equal ranges {r1, r2, . . . , rk}. We map all pixels whose values are in ri to median(ri). For
edges, we only consider horizontal and vertical pixels and assign the ground truth edge labels
based on the end points. We generate noisy node and edge observations using the uniform noise
model. We use [89] dataset to select gray-scale images.

85



Baseline Method: A Majority Vote Algorithm: For each node v ∈ G assign fv = [s1, s2, . . . , sk]
with si = 0 : ∀i ∈ [k]. Let label(.) shows the label of the passed node. Then, for nodes in neigh-
bourhood of v, u ∈ N(v), we update fv with slabel(u) = slabel(u) +Xuv. At the end, for each node
v, Ŷv = arg maxi∈[k](fv) if |max(fv)| = 1 otherwise if Zv ∈ arg max(fv), then Ŷv = Zv else
Ŷv = random(arg max(fv)). This is a simple baseline. We use it as we want to validate that our
methods considerably outperform simple baselines.

Evaluation Metric: We use the normalized Hamming distance
∑

v∈V 1(Yv 6= Ŷv)/|V |. be-
tween an estimated labeling Ŷ and the ground truth labeling Y .
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Figure 3.3: Experimental validation that Hamming error for trees increases with a logarithmic
rate w.r.t. k.

Hamming Error of Grids We have two experiments on grids. In the first experiment, we
select 1, 000 grayscale images and compute the Hamming error obtained by our algorithm. We
consider a uniform noise model with p = 0.05 and q = 0.1. Figure 3.4 shows the Hamming
error as k increases. As expected we see that the Hamming error increases. This is because as k
increases negative edges carry lower information, and with non-zero edge error (p), the positive
edges also provide low information observations (i.e., a wrong measurement).

In the second experiment, we evaluate the effect of edge noise p on the quality of solution
obtained by our methods for a fixed number of labels k and fixed node noise q. In Figure 3.5,
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Figure 3.4: The Hamming error for different methods on grids. We show mean the mean error
of 1, 000 repetitions.

we show the effect of p on the average of Hamming error when other parameters are fixed (n =
6 × 104, k = 128, q = 0.1). We vary p from zero to 0.5. We repeat each experiment 100 times.
We find that our approximate inference algorithm is robust to small amounts of noise.

This experiment also validates Theorem 3.4.1 which states when the side information from
edges X helps with statistical recovery. For the setups we consider in this experiment, we have
k = 128 and vary q in 0.1, 0.15, 0.2. If we keep the initial node labels the expected normalized
Hamming error will be 0.1, 0.15, and 0.2 respectively. Theorem 3.4.1 states that to obtain a better
Hamming error than the above one, the edge noise p has to be less than

√
0.1/(128 log 128) ∼

0.04,
√

0.15/(128 log 128) ∼ 0.05,
√

0.2/(128 log 128) ∼ 0.06 respectively. Figure 3.5 shows
that the normalized Hamming error obtained by our algorithm reaches the Hamming error of
the trivial algorithm (and plateaus around it) at the expected edge-noise levels of 0.04, 0.05, and
0.06.

Our approximate inference algorithm is robust to small amounts of noise. As expected, when
the noise increases the Hamming error increases.

3.6.1 Experiments on Grids

Figure 3.6 presents a qualitative view of the results obtained by our method (and the majority
vote baseline) as k increases on the grey scale images. We see that using only the edge infor-
mation (edge-based prediction) becomes more chaotic for larger values of k. This is because
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Figure 3.5: The effect of varying p on the average of normalized Hamming error(Hd) with fixed
q.

the information that edges carry decreases. However, we see that combining the information
provided by both node and edge observations allows us to recover the noisy image. As expected,
the simple Majority vote baseline yields worse results than our method.
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K=4 K=8 K=16 K=64K=32 K=128

Ground Truth

Noisy Ground Truth

Edge-based Prediction

Decomposition Inferred Image

Error 0.008 0.018 0.036 0.055 0.069 0.079

Error 0.098 0.147 0.223 0.271 0.278 0.266

Majority Inferred Image 
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Figure 3.6: At each column, different stages of the inference process on the image that generates
median error can be seen. It starts with generating k value image, adding noise following the
model, generates best edge based prediction, and minimize it with noisy ground truth; we also
report its corresponding error, you can also see the result and its error from majority algorithm.
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Chapter 4

Mining Approximate Denial Constraints

4.1 Introduction

Integrity constraints are used for stating semantic conditions that the data in the database must
comply with. Enforcing the constraints helps to make the database a more accurate model of
the real world. Integrity constraints may be obtained by domain experts; however, this is often
an expensive task that requires expertise not only in the domain but also in the constraint lan-
guage. In the past two decades, extensive effort has been invested in exploring the challenge
of automatically discovering constraints from the data itself, for different types of constraints,
including the classic Functional Dependencies (FDs) [73, 96, 106, 135, 140, 152, 158, 203], the
more general Conditional FDs (CFDs) [34, 69, 168], and the more general Denial Constraints
(DCs) [15, 40, 160, 161].

In practice, databases nowadays are often inconsistent and violate the integrity constraints
that are supposed to hold. In most large enterprises, information is obtained from imprecise and
sometimes contradicting sources (e.g., social networks, news feeds, and user behavior data) via
imprecise procedures (e.g., natural-language processing and image processing) In such cases,
mining constraints that are satisfied by the entire database will be inadequate, as they rely on
the assumption that all data values are correct. Hence, in this work, we consider the problem
of mining approximate constraints, that is, constraints that are “almost” satisfied. Approximate
constraints are useful even for accurate datasets, since they avoid overfitting to the current ob-
servations, and allow us to detect more general and less contrived rules, as well as rules that are
generally correct but may have a few exceptions (which is useful, for example, for the task of
detecting outliers).
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Example 4.1.1. Consider the database of Table 4.1 storing information about the yearly income
and tax payments of people from different states in the US. We assume that as a general rule, for
a given state, it holds that a higher yearly income implies higher tax payments. However, the
database does not satisfy this constraint (e.g., tuples t6 and t7 jointly violate the constraint, and
the same holds for tuples t14 and t15). If we consider constraints that are satisfied by the entire
database, these violations require us to add additional conditions to the constraint, such as “the
constraint holds only for two people who have the same name” or “the constraint holds only if
none of the people is called Julia and none of them lives in Illinois”, which results in very specific
and complicated rules. However, we will be able to find the correct constraint if we allow for
exceptions, and consider approximate constraints.

Most of the work to date on approximate constraint discovery has focused on approximate
FDs [44,106,133] or CFDs [34,69,168]. Chu et al. [40] and later Pena et al. [160,161] considered
approximate DCs. As the expressive power of (C)FDs is rather restricted, in this work, we
consider the problem of mining approximate DCs (ADCs for short) from data. This problem
has not received much attention and the currently existing algorithms are AFASTDC [40] and its
improved versions BFASTDC [161] and DCFinder [160], that we will discuss in more details in
the next section.

A common shortcoming of many works on approximate constraints (including the existing
works on ADCs) is that the algorithms proposed for this task are often an after-thought of de-
tecting valid exact constraints, and are usually obtained by relaxing some of the parameters of
the original algorithm. Hence, existing algorithms miss opportunities to use techniques that are
designed specifically for mining approximate constraints. These existing algorithms are often
inefficient, since they need to examine “all” combinations of records necessary to validate the
discovered DCs. Another drawback of existing algorithms is the fact that the approximation
function is hard-wired into the algorithm. However, there are many possible definitions of ap-
proximate constraints, and different works indeed consider different definitions that produce very
different results. The most common definition of approximate (C)FDs, for example, is based on
the minimal number of tuples that should be removed for the (C)FD to hold [34, 44, 106, 133],
while the definition used for approximate DCs is based on the number of tuple pairs violating the
DC [40, 160, 161]. It is not clear whether one of the definitions is the “best” one, and it may be
the case that different definitions produce better results in different cases.

Example 4.1.2. Consider again the database of Table 4.1 and the DC of Example 4.1.1 (i.e.,
ϕ1 = ∀t, t′¬(t[State] = t′[State] ∧ t[Income] > t′[Income] ∧ t[Tax] ≤ t′[Tax])). Two out of
two hundred and ten pairs of tuples (i.e., 0.95%) violate this DC (note that 〈t, t′〉 and 〈t′, t〉 are
considered separately). The minimal number of tuples that should be removed from the database
for the DC to hold is two (one of t6, t7 and one of t14, t15); that is, 13.3%. Therefore, if we allow,
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Name State Zip Income Tax
t1 Alice NY 11803 28K 2.4K
t2 Mark NY 10102 42K 4.7K
t3 Bob NY 13914 93K 11.8K
t4 Mary NY 10437 58K 6.7K
t5 Alice NY 10437 26K 2.1K
t6 Julia WA 98112 27K 1.4K
t7 Jimmy WA 98112 24K 1.6K
t8 Sam WA 98112 49K 6.8K
t9 Jeff WA 98112 56K 7.8K
t10 Gary WA 98112 50K 7.2K
t11 Ron WA 98112 58K 8K
t12 Jennifer WA 98112 61K 8.5K
t13 Adam WA 98112 20K 1K
t14 Tim IL 62078 39K 5K
t15 Sarah IL 98112 54K 5K

Table 4.1: Running example.

for example, an exception rate of 5%, then ϕ will be an approximate DC according to the first
definition, but it will not be an approximate DC according to the second one.

Now, consider the DC ϕ2 = ∀t, t′¬(t[Zip] = t′[Zip] ∧ t[State] 6= t′[State]) (i.e., it cannot be
the case that the same zip code appears for two different states). Sixteen out of two hundred and
ten pairs of tuples (i.e., 7.62%) violate the DC (every pair of tuples that includes t15 and one of
t6, . . . , t13). The only tuple that needs to be removed from the database for the DC to be satisfied
is t15; thus, it is possible to remove at most 6.67% of the tuples. In this case, if the allowed
exception rate is 7%, then ϕ2 is an approximate DC according to the second definition, but it is
not an approximate DC according to the first one. Note that while the difference in the exception
rate for these two definitions is very small here, this difference can be very significant in larger
datasets.

The main objective of this work is to gain a deeper understanding of ADCs and introduce a
general framework for mining ADCs that takes the semantics (i.e., the approximation function)
as an input. We introduce the algorithm ADCMiner for mining ADCs from data. The algorithm
consists of four main components – a predicate space generator, an evidence set constructor, an
enumeration algorithm and a sampler. In summary, our main contributions in this work are as
follows:

• We formally define the problem of approximate DC mining (Section 4.4), and we give
a formal definition of a valid approximation function (Section 4.6) that is used to define
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ADCs. To the best of our knowledge, we are the first to consider approximate constraint
discovery that is not tied to a specific approximation function, but rather to a general family
of approximation functions, that captures, but is not limited to, commonly used approxi-
mation functions.

• We introduce an algorithm for enumerating ADCs that takes the approximation function
as input (Section 4.7). Our algorithm is a general algorithm for enumerating minimal
approximate hitting sets that can even be used outside the scope of constraint discovery.

• For efficiency, we propose a sampling scheme (Section 4.8), and we address two funda-
mental problems: (1) how to estimate the number of violations of ϕ in D from a sample;
and (2) how to use this estimate to deduce the right threshold (or approximation function)
to be used when enumerating the ADCs from the sample. Sampling, while cannot be used
to mine exact DCs, allows us to efficiently return highly accurate results (w.r.t. the approx-
imation metric) by leveraging the nature of ADCs and avoiding the space explosion, which
algorithms designed for exact valid DCs suffer from.

We experimentally evaluate our proposal (Section 4.9) and show that although it subsumes
previously proposed approximation frameworks, we manage to achieve better efficiency. Our
experiments also show that we can achieve high precision and recall from a relatively small
sample, while reducing the time by as much as 90%.

4.2 Related Work

We now discuss the relationship between our work and past work on mining DCs from data. Chu
et al. [40] have introduced the first algorithms for mining DCs and ADCs from data ( FASTDC
and AFASTDC, respectively). Their definition of an ADC is based on the fraction of tuple pairs
violating the DC. The algorithm AFASTDC is obtained from FASTDC by modifying the base
case of the algorithm; that is, they return a constraint if the fraction of tuple pairs violating it is
smaller than some predefined threshold ε, rather than when it is zero. Their solution consists of
two main parts. First, they generate a certain data structure, namely the evidence set, that we will
formally define later on, and then they use the evidence set to generate all the (A)DCs. The first
part has a very high computational cost, as it requires going over all tuple pairs in the database;
hence, this algorithm may run for days on a database that consists of one million tuples [40].

Pena et al. [160, 161] significantly improved the running times of this part using bit-level
operations, and Position List Indexes (PLIs) that minimize the number of required tuple compar-
isons. Their focus was on improving the efficiency of the evidence set construction, and they did
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Notation Meaning
Sϕ The set of predicates in the DC ϕ

PR The predicate space over the relation R
Sat(t, t′) The set of predicates satisfied by 〈t, t′〉
Evi(D) The evidence set of the database D

Table 4.2: Notation table.

not modify the second part of the solution (that generates the ADCs) and adopted the definition
of ADCs used by Chu et al. [40]. Our work is complementary to that of Pena et al. [160, 161] as
we focus on other aspects of ADC discovery. In particular, we do not propose a new method to
construct the evidence set, but rather use the algorithm of Pena et al. [160] for this purpose.

Another related work is that of Bleifuß et al. [15], who introduced Hydra—an algorithm that
significantly improves the running times of DC discovery by incorporating sampling to invalidate
candidates. However, their algorithm only works for valid exact DCs, and, as stated by the
authors, it is not clear whether and how their approach can be generalized to ADCs.

4.3 Preliminaries

We first present some basic terminology and notation that we use throughout the chapter.

ByR(A1, . . . , Ak) we denote a relation symbolR with the attributes A1, . . . , Ak. A database
D over a relation R(A1, . . . , Ak) is a finite set of tuples (c1, . . . , ck) where each ci is a constant.
We denote by t[Ai] the value of tuple t in attribute Ai.

A denial constraint (DC for short) is an expression of the form ∀x¬(ω(x) ∧ ψ(x)), where x
is a sequence of variables, ω(x) is a conjunction of atomic formulas and ψ(x) is a conjunction
of comparisons between two variables in x. Following previous works on the problem of mining
DCs [15, 40, 160, 161], we limit ourselves to DCs where ω(x) is a conjunction of precisely two
atomic formulas over the same relation and the comparison operators are B = {=, 6=, >,<,≥,≤
}.

Let R be a relation and let D be database over R. The predicate space PR from which DCs
can be formed consists of predicates of the form t[A] ρ t′[B], where A and B are attributes of
R, and ρ is a comparison operator from B. Throughout the chapter, we will use the following
notation for DCs: ∀t, t′¬(P1, . . . , Pm), where each Pi is a predicate from PR. The complement
of a predicate t[A] ρ t′[B] is the predicate P̂ = t[A] ρ̂ t′[B], where ρ̂ is the complement operator
of ρ (e.g., the complement operator of > is ≤). The complement of a set S = {P1, . . . , Pm} of
predicates is the set of predicates {P̂1, . . . , P̂m}. We denote this set by Ŝ.
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For a pair 〈t, t′〉 of tuples in a database D over R, we denote by Sat(t, t′) the set of all
predicates in PR satisfied by 〈t, t′〉. We denote by Evi(D) the set {Sat(t, t′) | t, t′ ∈ D}, which
we refer to as the evidence set [40]. Throughout the chapter we assume the bag semantics for
Evi(D), as the number of occurrences of each set in Evi(D) is important. In practice, we store
every set in Evi(D) once, along with its number of occurrences. We identify a DC ϕ with the
set Sϕ of its predicates. A DC states that its predicates cannot be satisfied all at the same time.
That is, a DC ϕ is satisfied by a tuple pair 〈t, t′〉 if at least one of the predicates P ∈ Sϕ does not
hold for 〈t, t′〉, or, equivalently, P̂ ∈ Sat(t, t′). A DC ϕ is satisfied by a database D (denoted by
D |= ϕ) if it is satisfied by all pairs of tuples , and violated otherwise. If a DC ϕ is satisfied by a
database D, we say that it is a valid DC w.r.t. D.

Example 4.3.1. Table 4.3 contains a subset of the predicate space PR over the relation of our
running example. We use the operations in {<,≤, >,≥} only for numeric attributes, and we
only allow comparisons among attributes of the same type (i.e., two numeric or string attributes).
For example, the predicate t[Name] = t[Income] will not appear in PR. Among the predicates
of Table 4.3, the predicate set Sat(t2, t5) of the tuples t2 and t5 of our running example will
contain the predicates t[Name] 6= t′[Name], t[Income] > t′[Income], t[Income] ≥ t′[Income], and
t[Income] > t′[Tax]. The set Sat(t5, t2) will also contain the first two predicates, but it will not
contain the other two predicates; instead, t[Income] < t′[Income] and t[Income] ≤ t′[Income]
will appear in the set.

In principle, our solution could be extended to more general DCs. For example, we could
relax the limitation on the number of atomic formulas, which will affect mainly the size of
Evi(D) (i.e., if we allow for k atomic formulas, then Evi(D) will contain a set Sat(t1, . . . , tk)
for each sequence t1, . . . , tk of tuples in D, and each such set will consist of more predicates, as
t1[A] = t2[A] is different than t2[A] = t3[A]). We could also consider other types of predicates,
such as t[A] ρ (k × t′[B]), which will increase the size of the predicate space. However, such
extensions will have a significant impact on the running times, and the trade-off between more
general constraints and lower running times has to be taken into account. When we focus on
the DCs considered in this work, we are already able to discover many constraints that cannot
be discovered using FD discovery methods. In our experiments, about 70% of the discovered
constraints cannot be expressed as FDs.

4.4 Problem Definition

We start by defining a valid approximation function. Let D be a database, and let ϕ be a DC. Let
f be a function f : (D,Sϕ)→ [0, 1]. We now define two properties of such a function f , namely,
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t[Name] = t′[Name] t[Name] 6= t′[Name]
t[Income] = t′[Income] t[Income] 6= t′[Income]
t[Income] > t′[Income] t[Income] ≥ t′[Income]
t[Income] < t′[Income] t[Income] ≤ t′[Income]
t[Income] > t′[Tax] t[Income] ≥ t′[Tax]
t[Income] < t′[Tax] t[Income] ≤ t′[Tax]

Table 4.3: A sample of the predicate space of our example.

Monotonicity and Indifference to Redundancy.

Definition 4.4.1 (Monotonicity). A function f : (D,Sϕ) → [0, 1] is monotonic if it holds that
f(D,Sϕ) ≤ f(D,Sϕ′) whenever Sϕ ⊂ Sϕ′ .

Intuitively, monotonicity ensures that the more predicates a DC contains, the higher its score
is, as the number of tuple pairs that satisfy the DC can only increase. Monotonicity allows us
to consider only minimal ADCs (i.e., ADCs that do not strictly contain any ADC), as it assures
that whenever ϕ is an ADC, every ϕ′ such that Sϕ ⊂ Sϕ′ is also an ADC. Hence, when returning
only minimal ADCs ϕ, we also implicitly provide the user with information on any ϕ′ that can
be obtained from ϕ by adding more predicates. For non-monotonic functions, on the other hand,
it may be the case, for example, that for ϕ, ϕ′ and ϕ′′ such that Sϕ ⊂ S ′ϕ ⊂ S ′′ϕ, the DCs ϕ and ϕ′′

are ADCs, while ϕ′ is not. Thus, returning only ϕ will result is the loss of valuable information
(that is, the fact that ϕ′ is not an ADC), and it will be necessary to go over the entire space of
possible ADCs to make sure that we return all of them.

Definition 4.4.2 (Indifference to Redundancy). A function f : (D,Sϕ) → [0, 1] is indifferent
to redundancy if we have that f(D,Sϕ) = f(D,S ′ϕ) whenever Sϕ ⊂ Sϕ′ and {〈t, t′〉 | t, t′ ∈
D, {t, t′} |= ϕ} = {〈t, t′〉 | t, t′ ∈ D, {t, t′} |= ϕ′}.

A function f is indifferent to redundancy if adding more predicates to a DC ϕ without af-
fecting the coverage, does not affect the score; that is, if two DCs ϕ and ϕ′ such that Sϕ ⊂ Sϕ′
are satisfied by the exact same tuple pairs, then f gives them the same score. While our algo-
rithm for enumerating minimal ADCs could work for functions that do not satisfy indifference
to redundancy, having this property allows us to significantly increase the algorithm efficiency
by pruning the search tree early, as we explain in Section 4.7.

We now define valid approximation functions.

Definition 4.4.3 (Valid Approximation Function). A function f : (D,Sϕ) → [0, 1] is a valid
approximation function if it satisfies monotonicity and indifference to redundancy.
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In the next section, we will show that this definition is quite general and captures commonly
used approximation functions. Next, we give the formal definition of a minimal ADC.

Definition 4.4.4 (Approximate Denial Constraint). Let D be a database, let f be a valid approx-
imation function, and let ε ≥ 0. Then, a DC ϕ is a minimal ADC if:

1. 1− f(D,Sϕ) ≤ ε, and
2. no DC ϕ′ s.t. Sϕ′ ⊂ Sϕ satisfies 1− f(D,Sϕ′) ≤ ε.

The intuition behind using valid approximation functions (i.e., combining the two properties)
when considering ADCs is illustrated in the following example.

Example 4.4.1. Consider the following DCs:

ϕ =∀t, t′¬(t[A] < t′[A] ∧ t[A] ≤ t′[A])

ϕ′ =∀t, t′¬(t[A] < t′[A])

The DC ϕ′ is satisfied by the exact same pairs of tuples from D as ϕ, since whenever a tuple
pair satisfies the predicate t[A] < t′[A] it also satisfies t[A] ≤ t′[A]. Intuitively, the DC ϕ′ is
minimal, while ϕ is not minimal, as there is no benefit in adding the predicate t[A] ≤ t′[A] to
the DC. For a monotonic function f , it will hold that f(D,Sϕ′) ≤ f(D,Sϕ); however, it may
be the case that 1 − f(D,Sϕ) ≤ ε, while 1 − f(D,S ′ϕ) > ε, in which case we will return ϕ
and not ϕ′. The existence of the second property (i.e., indifference to redundancy) resolves this
problem since, as aforementioned, the same pairs of tuples satisfy both DCs; thus, we have that
f(D,Sϕ) = f(D,Sϕ′) and we will either return ϕ′ (if 1− f(D,Sϕ′) ≤ ε) or none of the DCs.

Finally, we define the problem that we study in this work.

Problem 4.4.1 (ADC Mining Problem). For a database D, an approximation function f , and a
threshold ε ≥ 0, generate all the nontrivial minimal ADCs for D w.r.t. f and ε.

Since generating ADCs from the entire database may be very time consuming for large
databases, we also consider the problem of discovering ADCs from a sample.

4.5 Overview

Alg. 4 depicted Our algorithm, ADCMiner. The input to the algorithm consists of a database D
over a relation R, a valid approximation function f , and an approximation threshold ε ≥ 0. The
following are the four main components of the algorithm.
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1. A predicate space generator, which builds the predicate space PR for the given relation
R. We use the algorithm of Chu et al. [40] for this task. The predicates in PR may
compare the same attribute in two different tuples (i.e., t[A]ρt′[A]), two different attributes
in the same tuple (i.e., t[A] ρ t[B]), or two different attributes in two tuples (i.e., t[A] ρ
t′[B]). We allow comparing two attributes only if they have at least 30% common values
as in [40,160]. In principle, it is possible to compare attributes with less than 30% common
values; however, relaxing this requirement may also significantly increase the number of
unuseful predicates (like t1[Age] 6= t2[Zip]). The experiments conducted by Chu et al. [40]
have shown that requiring at least 30% common values allows us to identify many of the
comparable attributes, while avoiding a significant increase in the number of meaningless
predicates.

2. A sampler, which draws a random sample J of tuples from D. We provide a theoretical
analysis of mining ADCs from a sample in Section 4.8 and experimentally evaluate the
accuracy of the results obtained from a sample in Section 4.9.

3. An evidence set generator, which builds the evidence set from the sample J . In this work,
we use an existing algorithm for constructing the evidence set [160].

4. An enumeration algorithm, which takes as input the sample J , the evidence set Evi(J),
the approximation function f and the approximation threshold ε and enumerates all the
minimal ADCs of J w.r.t. f and ε (cf. Section 4.7).

Note that ADCs allow exceptions by definition, and can be seen as DCs obtained from a sample,
where the sample consists of the subset of tuples that jointly satisfy the DC. Hence, we are able
to obtain good results from a sample, instead of using the whole database D. Our experimental
evaluation shows that using a sample of 30%− 40% of the tuples, we consistently obtain results
with a high F1 score (compared to mining the whole database), while reducing the running time
by as much as 90%.

Algorithm 9: An algorithm for discovering ADCs. ADCMiner(R,D, f, ε)

1 PR = GeneratePSpace(R)
2 J = Sample(D)
3 Evi(J) = ConstructEvidence(J)
4 ADCEnum(J,Evi(J),PR, f, ε)
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4.6 Approximation Functions

In this section, we discuss three specific valid approximation functions. Kivinen et al. [120]
introduced three definitions of approximate FDs, based on three different measures, which can
be easily generalized to DCs. We start by discussing each one of these measures and the corre-
sponding approximation functions.

Let D be a database and let ϕ be a DC. The first measure proposed by Kivinen et al. [120]
(denoted by g1) is based on the proportion of tuple pairs violating the constraint. Formally, we
define the following approximation function based on this measure:

f1(D,Sϕ) = |{〈t, t′〉 | t, t′ ∈ D, {t, t′} |= ϕ}| /|D|2

Note that in our definition we count the pairs satisfying the constraint; hence, we have that
g1(D,ϕ) = 1 − f(D,Sϕ). Intuitively, f1(D,Sϕ) is the probability to select a satisfying tuple
pair among all pairs, assuming a uniform distribution of the violations. This measure has been
used in [40] and [160, 161] to define ADCs.

The second measure in [120], denoted by g2, is based on the proportion of “problematic”
tuples (i.e., tuples that are involved in a violation of the constraint). Here, we define the following
approximation function:

f2(D,Sϕ) = |{t | t ∈ D, 6 ∃t′ ∈ D, {t, t′} 6|= ϕ}| /|D|

Again, we have that g2(D,ϕ) = 1 − f2(D,Sϕ). If we consider an inconsistent database D,
it may be the case that only one tuple contains errors, but every pair of tuples that includes this
tuple violates the DC ϕ. In this case, it holds that f2(D,Sϕ) = 0, as all the tuples appear in one
violating pair. However, if we just remove this one tuple, the DC will hold. Thus, this measure
may be too sensitive, and the last measure (g3) proposed by Kivinen et al. [120], that is based on
the minimal number of tuples to remove from the database for the constraint to hold,

seems to be a better fit in this case. Hence, we introduce the following approximation func-
tion.

f3(D,Sϕ) = max
D′
{|D′| | D′ ⊆ D,D′ |= ϕ}/|D|

That is, the value f3(D,Sϕ) (or, equivalently, 1−g3(D,ϕ)) is the size of a cardinality repair [139]
of D (i.e., the largest subinstance of D among all those satisfying the DC). The subinstance D′

considered in this function can also be seen as a Most Probable Database [88] in the framework
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of tuple independent probabilistic databases. This approximation function has been used in many
works on approximate (C)FDs [34, 44, 106, 133].

We now prove that the functions f1, f2 and f3 satisfy both monotonicity and indifference to
redundancy.

Proposition 4.6.1. The functions f1, f2, and f3 are monotonic.

Proof. The denominator does not depend on ϕ in any of the three functions; hence, monotonicity
only depends on the numerator. Clearly, the function f1 is monotonic, as adding more predicates
to ϕ can only increase the number of tuple pairs that satisfy the DC. For that same reason, the
number of tuples t ∈ D for which we have that for every t′ ∈ D both 〈t, t′〉 and 〈t′, t〉 satisfy ϕ
can only increase, and the function f2 is also monotonic. Finally, we prove that f3 is monotonic.
Let D′ be a subinstance of D such that D′ |= ϕ and there is no other subinstance D′′ of D that
also satisfies this property such that |D′′| > |D′|. Clearly, for each ϕ′ such that Sϕ ⊆ Sϕ′ it
holds that D′ |= ϕ′ as well. Thus, D′ also satisfies the condition in the numerator of f3 for ϕ′

(although D′ is not necessarily maximal in this case), and the value f3(D,Sϕ′) cannot be lower
than f3(D,Sϕ).

Proposition 4.6.2. The functions f1, f2, and f3 are indifferent to redundancy.

Proof. The fact that this property is satisfied by f1 and f2 is rather straightforward. If the same
tuple pairs satisfy both ϕ and ϕ′, then clearly the function f1 that counts such pairs assigns the
same value to both DCs. This also implies that the tuples involved in violations of both DCs are
exactly the same, which means that f2(D,Sϕ) = f2(D,Sϕ′) as well. To prove indifference to
redundancy for f3, we will show that every subinstance D′ of D satisfies ϕ if and only it satisfies
ϕ′. This holds since every subinstance D′ satisfying one of these DCs does not contain any pair
of tuples from D that jointly violate the DC, and since the exact same pairs of tuples from D
violate both DCs, it means that it does not contain any tuple pair violating the other DC.

We also prove the following result regarding the relationships between the functions f2, f3

and the function f1. As will be seen in the next section, throughout the algorithm we always keep
track of the sets in Evi(D) that have an empty intersection with Ŝϕ; hence, we can compute the
function f1 faster than computing f2 or f3. The next proposition allows us to reduce the number
of times we are required to compute f2 or f3 using the function f1.

Proposition 4.6.3. Let D be a database, ϕ a DC, and ε ≥ 0. For i ∈ {2, 3}, if 1− fi(D,Sϕ) ≤ ε
then 1− f1(D,Sϕ) ≤ 2ε.
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Proof. The evidence set Evi(D) contains 2(|D| − 1) sets for every tuple t ∈ D (two sets,
Sat(t, t′) and Sat(t′, t), for every tuple t′ ∈ D). If 1− f2(D,Sϕ) ≤ ε, then at most ε|D| tuples
appear in a violating pair. Thus, the number of violating pairs is at most 2ε|D|(|D|−1), which is
exactly 2ε of the tuple pairs. We conclude that 1− f1(D,Sϕ) ≤ 2ε. As for the function f3, when
we remove a tuple from D, we remove 2(|D| − 1) sets from Evi(D). If 1− f3(D,Sϕ) ≤ ε, then
there is a subinstance D′ of D that is obtained by removing at most ε|D| tuples from D such that
D′ |= ϕ. This observation implies that Evi(D′) contains every set in Evi(D) except for at most
2ε|D|(|D| − 1) sets. Since D′ satisfies ϕ, at most 2ε|D|(|D| − 1) pairs violate ϕ, which is at
most 2ε of the tuple pairs, and again we have that 1− f1(D,Sϕ) ≤ 2ε.

Finally, we discuss the computational complexity of the three functions. Unlike the functions
f1 and f2 that can be computed in polynomial time for both FDs and DCs, the function f3 can be
computed in polynomial time for FDs [138], but not for DCs. Livshits et al. [137] have shown
that this problem is NP-hard even when considering simple DCs over a single relation symbol
(e.g., the DC ∀t, t′¬(t[A] 6= t′[B])). Hence, we cannot efficiently compute f3. However, there is
a simple reduction from the problem of computing 1 − f3(D,Sϕ) to the minimum vertex cover
problem (where the goal is to find a minimal set of vertices that intersects with all the edges),
based on the concept of a conflict graph, in which vertices represent tuples and edges represent
violations. Since vertex cover is 2-approximable in polynomial time [9], this is also the case for
our problem. Thus, to generate ADCs w.r.t. f3 we could use the 2-approximation algorithm with
the threshold 2ε. Note that we will return all ADCs, but we may also return some DCs for which
it holds that 1− f3(D,Sϕ) ≤ 2ε but 1− f3(D,Sϕ) > ε.

Algorithm 10: A greedy algorithm replacing f3 D,Sϕ,vios, ε

1 (T, v) = SortTuples(D, Sϕ,vios)
2 u = |S ∈ Evi(D) | S ∩ Sϕ = ∅|
3 c = 0, R = ∅
4 while c < u do
5 let t be the first tuple in T
6 c = c+ v(t)
7 remove t from T and add it to R
8 end
9 return (|R|/|D| ≤ ε)

In practice, the 2-approximation algorithms for minimum vertex cover assume an explicit
representation of the graph. In our case, this requires storing, for every set S in Evi(D), all pairs
〈t, t′〉 of tuples such that Sat(t, t′) = S. As the number of tuple pairs is quadratic in the size

101



Algorithm 11: SortTuples(D,Sϕ,vios)
1 v(t) = 0 for all t ∈ D
2 for S ∈ Evi(D) such that S ∩ Sϕ = ∅ do
3 for t ∈ vios[S] do
4 v(t) = v(t) + vios[S][t]
5 end
6 end
7 return (tuples of D in descending order of v(t), v(t))

of the database, storing this information with reasonable memory usage is infeasible for large
databases. Hence, in our experimental evaluation, we implement a greedy algorithm (Alg. 10)
instead. This greedy algorithm is inspired by the greedy O(log n)-approximation algorithm for
minimum vertex cover, that, in each iteration, selects a vertex that is adjacent to the maximal
number of uncovered edges, and then marks each one of these edges as covered. However, our
algorithm does not require an explicit representation of the graph; hence, we do not know which
edges are covered. While we do not provide any theoretical guarantees on the result of this
algorithm, our experimental evaluation shows that using this algorithm we often obtain more
accurate results than the ones obtained using the function f2.

In the algorithm, we sort the tuples in descending order according to the number of violations
they participate in. For that, we use the data structure vios that stores, for every set S ∈ Evi(D)
and tuple t ∈ D, the number of violations of type S that t is involved in (that is, the number of
tuple pairs 〈t1, t2〉 such that Sat(t1, t2) = S and either t1 = t or t2 = t). Then, we start selecting
these tuples, one by one, while recording the change to the number of violations covered by
the selected tuples. That is, with every tuple that we select, we add the number of violations it
participates in to the number of covered violations c. We stop this process when the number of
covered violations c is at least the number of total violations u. The number of covered violations
can be higher than the number of total violations, as if two tuples t, t′ jointly violate the DC and
are both added to the result, we count this violation twice. Finally, we return the DC if the
ratio between the number of tuples in the result and the total number of tuples is lower than the
threshold.

The most time consuming process is Alg. 11; hence, the time complexity is O(|D| ·n) where
n is the number of distinct sets in Evi(D) (recall that we treat Evi(D) as a bag), and the space
complexity, which depends on the size of vios, is the same. In all of our experiments, the number
of distinct sets in Evi(D) is orders of magnitude smaller than the number of tuple pairs; hence,
storing this data structure requires significantly less space than storing data for every pair of
tuples.
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4.7 Enumeration Algorithm

In this section, we introduce an algorithm for enumerating minimal ADCs. Following Chu et
al. [40], we reduce our problem to that of enumerating minimal approximate hitting sets. The
hitting set problem is the following: given a finite set K and a family M of subsets of K, find
all subsets of K that intersect every one of the subsets in M . A subset F is a minimal hitting
set if no proper subset of F is a hitting set. As mentioned in the preliminaries, a pair 〈t, t′〉 of
tuples satisfies a DC ϕ if P̂ ∈ Sat(t, t′) for some P ∈ Sϕ. Hence, it is rather straightforward
that ϕ is a valid DC if Ŝϕ is a hitting set of Evi(D). Note that the other direction does not
necessarily hold, as a hitting set may not correspond to a nontrivial DC. For example, the set
{t[A] = t′[A], t[A] 6= t′[A]} is clearly a hitting set of Evi(D), but the corresponding DC is
trivial. Hence, the reduction is essentially to the hitting set problem with restrictions rather than
the general hitting set problem.

Although the complexity of enumerating minimal hitting sets or, equivalently, hypergraph
transversals is still an open problem (after decades of research), many algorithms have been
proposed for this task (see [78] for a survey). Yet, to the best of our knowledge, the problem of
enumerating minimal approximate hitting sets has not received much attention. Here, we refer
to a set F ⊆ K that satisfies 1 − f(M,F ) ≤ ε for a given valid approximation function f and
a threshold ε as an approximate hitting set. Researches typically refer to one of two problems
as computing approximate hitting sets: (1) enumerating hitting sets, but not necessarily all of
them (and not necessarily minimal) [4, 26, 151], and (2) computing an approximate hitting set
of minimum cardinality [25, 28, 196]. However, we focus on the problem of generating minimal
approximate hitting sets for a given approximation function. Hence, we devise an algorithm
for enumerating minimal approximate hitting sets, building upon an algorithm for enumerating
minimal hitting sets by Murakami and Uno [148]. In Section 4.9, we compare the performance
of our algorithm to the discovery algorithm used in [40,160,161], and show that even though our
algorithm is more general, we are able to significantly reduce the running time.

4.7.1 Enumerating Minimal Hitting Sets

We now introduce the algorithm of Murakami and Uno [148] for enumeraing minimal hitting
sets. In the next subsection, we will explain how we adapt the algorithm to the approximation
problem.

The algorithm is depicted in Figure 12. The input consists of a set K of elements and a set
M of subsets of K. Those are used to initialize three data structures, namely uncov, cand and
crit, maintained by the algorithm. The algorithm is a recursive algorithm that builds the hitting
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Algorithm 12: An algorithm for enumerating minimal hitting sets
MMCS(S, crit,uncov, cand) [148]
1 if uncov = ∅ then
2 output S
3 return
4 end
5 choose a set F from uncov
6 C = cand ∩ F
7 cand = cand \ C
8 for e ∈ C do
9 UpdateCritUncov(e, S, crit,uncov)[Alg. 13]

10 if crit[u] 6= ∅ for each u ∈ S then
11 MMCS(S ∪ {e}, crit,uncov, cand)
12 cand = cand ∪ {e}
13 end
14 recover the changes to crit and uncov done in 8

15 end
16 recover the change to cand done in 6

Algorithm 13: UpdateCritUncov(e, S, crit,uncov)

1 for F ∈ uncov do
2 if e ∈ F then
3 crit[e] = crit[e] ∪ {F}
4 uncov = uncov \ {F}
5 end
6 end
7 for u ∈ S do
8 for F ∈ crit[u] do
9 if e ∈ F then

10 crit[u] = crit[u] \ {F}
11 end
12 end
13 end
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sets incrementally. It starts with an empty set S, and adds elements to S until it has a nonempty
intersection with each one of the subsets in M ; that is, until S is a hitting set. The data structure
uncov stores the subsets in M that are not yet covered, that is, have an empty intersection with
the intermediate S. Since we start with an empty S, initially, uncov contains all the subsets in
M . The second data structure, cand, stores the elements of K that can be added to S in the next
iterations of the algorithm. Initially, cand contains every element of K. Finally, crit stores,
for each element e in the intermediate S, all the subsets in M for which e is critical (i.e., all the
subsets that contain e, but do not contain any other element of S). The importance of each one
of these data structures will become clear soon.

At each iteration, the algorithm selects a subset F from uncov. The goal is then to add at
least one element of F to S, so that the two sets have a nonempty intersection. In line 5 of the
algorithm, we store the intersection of F and cand in C. The set C thus contains all the elements
of F that we are allowed to add to S. Then, every element of F is removed from cand. Some of
these elements will be added back to cand later on, while some are permanently removed from
this list. The idea is the following. Let {e1, . . . , en} be the set of elements in C. First, we add
e1 to S, and the other elements of C still do not belong to cand; hence, we are able to generate
minimal hitting sets that contain e1, but do not contain any other element of C. Then, we add
e2 to S and we add e1 to cand (if some condition holds, as we will explain later). Thus, we are
now able to generate minimal hitting sets that contain only e2, or contain both e2 and e1, but do
not contain any other element of C. Then, we add e3 to S and both e1 and e2 appear in the list of
candidates, and so on. This allows us to avoid generating the same hitting set twice, but it also
allows us to prune branches in the search tree early on, as we now explain.

Observe that a set S is a minimal hitting set only if every element of S is critical to at least
one subset. Thus, after adding an element e of F to S, the UpdateCritUncov subroutine is called.
This subroutine updates the data structures in the following way: (a) every subset in uncov that
contains e is removed from uncov, as it no longer has an empty intersection with S, (b) every
subset that has been removed from uncov is added to the list of subsets for which e is critical,
as it does not contain any other element of S, and (c) for every element u in S, and for every
subset F that belongs to the list of subsets for which u is critical, F is removed from this list if it
contains e (as it now contains other elements of S).

The purpose of calling UpdateCritUncov is twofold. First, it updates the data structures after
adding a new element to S. Second, it is used to prune branches in the search tree early on.
In line 9 of the algorithm, after the call to the subroutine, the algorithm tests whether for every
element of S, the list of subsets for which it is critical is nonempty. Otherwise, as explained
above, this branch will never result in a minimal hitting set. Hence, if the test of line 9 fails, we
recover all changes to crit and uncov, and move on to the next element of C in the iteration in
line 7. Observe that in this case, the element e is not added back to cand due to the observation
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that if an element is not critical for any subset w.r.t. S, then it cannot be critical for any subset
w.r.t. a set S ′ such that S ⊆ S ′. If, on the other hand, the test of line 9 succeeds, then we add
e back to cand; thus, it could be added to S later on. Murakami and Uno [148] proved the
following about the algorithm MMCS: (a) it returns only minimal hitting sets, (b) it returns all
the minimal hitting sets, and (c) it returns each minimal hitting set once. Moreover, they have
shown that the time complexity of the algorithm is O(‖M‖) per iteration, where ‖M‖ is the sum
of sizes of sets in M . The same holds for the space complexity.

4.7.2 Enumerating Approximate Hitting Sets

One may suggest to adapt the algorithm of Alg. 12 to generate minimal approximate hitting
sets by modifying the base case. Instead of stopping when all the subsets have a nonempty
intersection with S, we will stop when our condition for minimal approximate hitting sets holds
(i.e., when 1 − f(D,S) ≤ ε for the function f and threshold ε). It is straightforward that this
will return only minimal approximate hitting sets w.r.t. f and ε, but will it return all of them?
The answer to this question is negative. The problem with this approach, which also applies to
many other algorithms for enumerating minimal hitting sets [78], is that when we select a new
subset at each iteration and try to “hit” it, we define a certain order over the subsets. An easy
observation is that we will never return a set that has an empty intersection with the first chosen
subset, even if it has a nonempty intersection with any other subset.

Our algorithm ADCEnum for enumerating minimal ADCs is depicted in Alg. 14. We modify
the algorithm MMCS in the following way. First, we change the base case, as aforementioned;
that is, we print S only if 1 − f(D,S) ≤ ε. However, we also have to explicitly check for
minimality before printing S. This is due to the fact that while a set S of elements where each
e ∈ S is critical for at least one subset of M is guaranteed to be minimal when considering
hitting sets, this is not the case when considering approximate hitting sets, as our S is allowed
to have an empty intersection with some subsets of M . Due to the indifference to redundancy
property, this condition is still necessary when considering approximate hitting sets, since we
can remove elements that are not critical for any subset without affecting the set of tuple pairs
that have a non-empty intersection with S, and, consequently, without affecting the value of the
approximation function. However, this condition is no longer sufficient. Therefore, we check
whether S is minimal with IsMinimal subroutine depicted in Alg. 15. There, we go over all sets
S ′ of elements obtained from S by removing a single element, and for each S ′ we check whether
1 − f(D,S ′) ≤ ε. Recall that the approximation functions that we consider are monotonic;
hence, if for a subset S ′ of S it holds that 1− f(D,S ′) > ε, then we have that 1− f(D,S ′′) > ε
for any S ′′ ⊂ S ′, and we do not need to go over the subsets of S obtained by removing more than
one element.
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Algorithm 14: Enumerating minimal ADCs: ADCEnum(S, crit,uncov, cand, canHit, f, ε)

1 if 1− f(D,S) ≤ ε and IsMinimal(S, f, ε)[Alg. 15] then
2 output DC from S
3 return
4 end
5 choose a set F ∈ uncov s.t. canHit[F ] = true
6 if such a set F does not exist then
7 return
8 end
9 cand = cand \ F

10 UpdateCanCover(uncov, cand, canHit)
11 if WillCover(S, cand, f, ε)[Alg. 17] then
12 ADCEnum(S, crit,uncov, cand, canHit)
13 end
14 recover the change to cand done in 7
15 recover the change to canHit done in 8
16 C = cand ∩ F
17 cand = cand \ C
18 for e ∈ C do
19 UpdateCritUncov(e, S, crit,uncov)[Alg. 13]
20 if crit[u] 6= ∅ for each u ∈ S then
21 RemoveRedundantPreds(e, cand)
22 ADCEnum(S ∪ {e}, crit,uncov, cand, canHit) [Alg. 16]
23 cand = cand ∪ {e}
24 end
25 recover the changes to crit and uncov done in 16

26 end
27 recover the change to cand done in 14
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Algorithm 15: IsMinimal(S, f, ε)

1 for e ∈ S do
2 if 1− f(D,S \ {e}) ≤ ε then
3 return false
4 end
5 end
6 return true

Algorithm 16: UpdateCanCover(uncov, cand, canHit)

1 for F ∈ uncov do
2 for e ∈ cand do
3 if e ∈ F then
4 continue outer loop
5 end
6 end
7 canHit[F ] = false
8 end

Algorithm 17: WillCover(S, cand, f, ε)

1 S ′ = S ∪ cand if 1− f(D,S ′) ≤ ε then
2 return true
3 end
4 return false
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Next, we choose a subset F ∈ uncov and make two recursive calls – one that “hits” the
chosen F (i.e., adds an element of F to S) and one that does not. We start with the second
one. Observe that our algorithm contains an additional data structure, namely canHit. It is used
for the additional recursive call and it contains a single value, true or false, for every subset of
M . Initially, the value is true for all subsets. The idea is the following. Whenever we choose
not to hit F , this set remains in uncov. To avoid choosing it again in a future iteration of
the algorithm (which may result in an infinite recursion), we update canHit[F ] = false in
the UpdateCanCover depicted in Alg. 16. However, F may not be the only subset in uncov
that has an empty intersection with cand after removing all the elements of F from cand in
line 7. Hence, in this subroutine, we mark every subset of M that is still in uncov and does not
contain any element of cand. This way, we avoid selecting these subsets in future iterations,
which significantly reduces the number of unnecessary recursive calls. We make the recursive
call after checking whether it can result in an approximate hitting set. We check that in Alg.
17, WillCover subroutine adds all the elements of cand to S and checks whether the result S ′

satisfies 1 − f(D,S ′) ≤ ε. If this is not the case, the monotonicity property ensures that this
branch will never result in an approximate hitting set (since we cannot increase the value of the
approximation function by adding less predicates), and we do not make the recursive call.

The second recursive call (where we hit the selected F ) is identical to the recursive call of the
original algorithm and we do not explain it again here. Note that if we did not assume indifference
to redundancy, we could not prune branches based on the crit data structure (line 17) as done in
the original algorithm, since it could be the case that adding predicates that are not critical for
any subset actually increases the value of the approximation function (while having no impact
on the set of tuple pairs satisfying the DC).

While the Alg. 14 can be used as a general algorithm for enumerating minimal approximate
hitting sets, there are two aspects that are specific to our setting. First, we do not return the hitting
set S itself, but the DC obtained from S; Second, before making the recursive call of line 19, and
after adding an element u to S,

we remove from cand all the predicates that differ from u only by the operator. This way,
we avoid developing branches that will result in trivial DCs, such as ∀t, t′¬(t[A] < t′[A] ∧
t[A] ≥ t′[A]), and avoid developing some branches that will fail the minimality condition, such as
∀t, t′¬(t[A] < t′[A]∧ t[A] ≤ t′[A]) (this is again based on the assumption that the approximation
function is indifferent to redundancy, and the addition of the predicate t[A] ≤ t′[A] cannot affect
the value of the approximation function on a set that already contains the predicate t[A] < t′[A]).

Finally, to improve the running time of the algorithm, we do not select a random set F in
line 4. Murakami and Uno [148] suggested to select the set that has the minimum size intersection
with the candidate list. Doing so, we minimize the number of iterations in the loop of line 15,
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and decrease the number of recursive calls. The problem with this approach is that when we
select such a set, we remove less predicates from the candidate list in line 7; thus, the chances of
the condition of line 9 to be satisfied increase. Hence, while we decrease the number of recursive
calls in line 20, we increase the number of recursive calls in line 10. In our implementation, we
select the set that maximizes the intersection with the candidates list. Our experiments show that
this choice decreases the running times, as the total number of recursive call decreases compared
to the approach in [148].

4.7.3 Proof of Correctness

The correctness of ADCEnum is stated in the following theorem.

Theorem 4.7.1. Let D be a database. Let f be a valid approximation function and let ε ≥ 0.
Then, the following hold for ADCEnum w.r.t. f and ε: (a) it returns only minimal ADCs of D,
(b) it returns all the minimal ADCs of D, and (c) it returns every minimal ADC of D once.

Proof. The first claim is rather straightforward, as we return a set S only if 1 − f(D,S) ≤ ε
and S is minimal. For the last claim, observe that the two recursive calls in each iteration cannot
result in the same S (since in the first one S will always have an empty intersection with the
selected F , while in the second one S will have a nonempty intersection with F ). Moreover, the
first recursive call does not modify S, while the second one is identical to the recursive call of
the algorithm MMSC. We conclude that since MMSC returns every minimal hitting set once, our
algorithm returns every minimal ADC once.

We prove by induction on n, the depth of the recursion, that
ADCEnum(S, crit,uncov, cand, canHit) returns every minimal ADC ϕ that satisfies:

• S ⊆ Sϕ and Sϕ ⊆ (S ∪ cand),
• Sϕ has an empty intersection with all the sets F ∈ Evi(D) for which canHit[F ] = false.

Note that the sets for which canHit[F ] = true can either have an empty or a nonempty inter-
section with Sϕ. Since at the beginning, cand contains all the predicates of PR and we have that
canHit[F ] = true for each F ∈ Evi(D), we will conclude that
ADCEnum(∅, crit,uncov, cand, canHit) returns every ADC ϕ such that ∅ ⊆ Sϕ and Sϕ ⊆
cand; that is, all the ADCs.

For the basis of the induction, n = 0, one possible case is that the condition of line 1 holds.
Then, the constraint corresponding to S itself is a minimal ADC; thus, the only Sϕ that contains
S such that ϕ is a minimal ADC is S itself, and we indeed return S. Note that the sets F for
which it holds that canHit[F ] = false have an empty intersection with S, as we update the
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value canHit[F ] for a set F to false only when cand no longer contains any predicate of F .
If the condition of line 1 does not hold, then the only other option is that the condition of line 5
holds. In this case, no Sϕ that contains S is such that ϕ is an ADC, as it does not holds that
1 − f(D,S) ≤ ε and the remaining candidate predicates do not appear in any of the remaining
sets in uncov.

For the inductive step, we prove that if the claim holds for all n ∈ {1, . . . , k − 1}, it also
holds for n = k. Let us consider an iteration from which the depth of the recursion is k. In
line 4, we choose a set F for which canHit[F ] = true. Each Sϕ that contains S either has a
nonempty intersection with F or an empty one. In the first case, let Sϕ be a minimal ADC that
has a nonempty intersection with F and satisfies the two conditions. In line 14, we go over all
the predicates of F and try to add each one of them to S. Clearly, Sϕ contains at least one of
these predicates. Let {p1, . . . , pk} = Sϕ ∩ F and assume that p1, . . . , pk is the order by which
they are selected in line 14. We claim that Sϕ is generated in the recursive call made when pk is
selected in line 14.

Each predicate of {p1, . . . , pk} is in cand at this point, since we assume that Sϕ ⊆ (S∪cand)
and none of these predicates can violate the minimality condition of line 17, as this will imply
that Sϕ contains an element that is not critical for any subset, which is a contradiction to the fact
that Sϕ is minimal (due to indifference to redundancy). Hence, every predicate in {p1, . . . , pk} is
added back to cand in line 20, and since pk is the last predicate selected in the loop of line 15,
in that iteration all the other predicates already belong to cand. From the inductive assumption,
we know that ADCEnum generates every minimal ADC that contains S ∪ {pk}, is contained in
S ∪ {pk} ∪ cand, and has an empty intersection with every F ′ for which canHit[F ′] = false,
when given the set S ∪ {pk} as input; among them is Sϕ (observe that we do not change the data
structure canHit for the recursive call of line 19).

For the second case, let Sϕ be a minimal ADC that has an empty intersection with F and
satisfies the two conditions. We claim that Sϕ is generated in the recursive call of line 10. Here,
we make a recursive call with the same S after removing all the predicates of F from cand,
and updating canHit[F ′] to false for each F ′ that no longer contains any predicates from cand.
From the inductive assumption, we know that this recursive call generates every minimal ADC
that contains S and has an empty intersection with F (as no predicate of F appears in cand);
among them is Sϕ. That concludes our proof of correctness for the algorithm.

Finally, we discuss the complexity of ADCEnum. There are two components of the algorithm
that affect the time complexity compared to the complexity of MMCS—the additional recursive
call in line 10, and the computation of the function f that affects the complexity per iteration.
Recall that the complexity of MMCS per iteration is O(‖M‖). In our case, we have that ‖M‖ is
bounded by |P| · n, where n is the number of distinct sets in Evi(D). We compute the function
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f in the algorithm |S| + 2 times, and since |S| is bounded by |P|, we conclude that the time
complexity per iteration is O (|P| · n+ |P| · f(|P|, |Evi(D)|)), where f(|P|, |Evi(D)|) is the
time required to compute f . The space complexity is not affected compared to MMCS and
remains O(|P| · n).

4.8 Mining ADCs From a Sample

The input to our algorithm is the evidence set and the complexity of building it is quadratic in
the size of the database (as we have to go over all pairs of tuples), which can be prohibitively
expensive for large databases. In this section, we show how to use a sample from the database
to produce ADCs with probabilistic guarantees, while avoiding the cost of building the evidence
set for the entire database [94]. For simplicity, we limit our discussion to a simple approximation
function, namely, the function f1 introduced in Section 4.6. Recall that the function f1 is based
on the number of tuple pairs violating the DC in the database.

Let J be a sample uniformly drawn from a database D and let ε ≥ 0. Let ϕ be a DC. We
address the following problems: (1) how to estimate the number of violations of ϕ in D from J ;
and (2) how to use this estimate to decide on the right threshold (or approximation function) to
use when enumerating ADCs from J .

4.8.1 Estimating the Number of Violations

Since we consider the function f1 that is based on the number of violations of the DC in the
database, we now show how to estimate this number from a sample J uniformly drawn from D.
We represent the violations of an ADC ϕ as a conflict graph G(V,E) [36], where V is the set of
vertices corresponding to the tuples inD, and E is the set of edges corresponding to violations of
the DC, where an edge (t1, t2) exists if the pair 〈t1, t2〉 violates the DC. Note that this is a directed
graph since a pair 〈t1, t2〉 may violate a DC that is satisfied by 〈t2, t1〉. Hence, the problem that
we consider here is that of estimating the density of a graph from a given sample.

To the best of our knowledge, most works on the density of random graphs focus on the
generation of samples with density requirements [6, 20, 75, 101, 141, 183], which seems to be a
harder problem. Hence, the methods proposed in these works are too robust for our problem,
which reflects in the high computational complexity of the proposed solutions. In our case, the
graph that we obtain is different for every DC, and we need to estimate the density for a different
graph in every iteration of the algorithm; hence, using solutions with a high computational cost
is infeasible. There is also a line of work that focuses on the related problem of estimating the
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average degree of a graph, given the degree of some of the vertices [71, 84]; however, a basic
requirement in the proposed solutions is to be able to query the actual degree of at leastO(

√
|V |)

vertices. To obtain this information, we will need to go overO(|V | ·
√
|V |) pairs of tuples in each

iteration of the algorithm, which is again too expensive. Hence, we propose a simple method for
estimating the graph density from a sample, that has no significant impact on the computational
cost of our algorithm.

Let p = |E|
2·(|V |2 )

(that is, p = 1 − f1(D,Sϕ)). Let GJ(VJ , EJ) be the conflict graph of J . To

estimate p from J , we use the value p̂ = |EJ |
2·(|VJ |2 )

. We define the random variable xi for each pair

of nodes in VJ , where xi = 1 with probability p and xi = 0 with probability 1−p. It can be easily
shown that E(p̂) = p, so it is an unbiased estimator of p. Note that we do not make assumptions
about the structure of the conflict graph or about the dependencies between the edges.

We further derive error bounds on our estimator to help us derive our guarantees. To compute
error bounds, various methods can be used, including Chebyshev’s inequality and the normal
distribution assumption. Most of them require estimating the variance of our estimator. Here, we
use Chebyshev’s inequality:

Pr(|p̂− E(p̂)| > a) ≤ 1

a2
· var(p̂)

We know that p = E(p̂); hence, we now compute an upper bound on var(p̂).

var(p̂) = var

(
|EJ |(|VJ |

2

)
)

=
1

(|VJ |
2

)2

[
E(E2

J)− E(EJ)2
]

=
1

(|VJ |
2

)2

[
E(E2

J)−
(|VJ |

2

)2

· p2

]

We now expand the term E(E2
J) using the random variables x1, . . . , x(|VJ |2 ) as follows.

E(E2
J) = E







(|VJ |2 )∑

i=1

xi




2
 =

(|VJ |2 )∑

i=1

E(x2
i ) +

∑

i 6=j∈{1,...,(|VJ |2 )}

E(xi · xj)

Since we do not assume anything about the dependencies between the variables xi, we cannot
calculate the exact value of E(xi · xj); however, we can derive an upper bound for this value.
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We know that xi · xj = 1 if and only if xi = xj = 1, and the value of E(xi · xj) depends of the
number of these events. Hence, if we can find an upper bound for the probability of xi · xj = 1,
this will be an upper bound for E(xi · xj). We have the following.

E(xi · xj) = Pr(xi = 1, xj = 1) =

= Pr(xi = 1|xj = 1) · Pr(xj = 1) ≤ Pr(xj = 1) = p

Clearly, for i = j it holds that Pr(xi = 1, xj = 1) = p. Hence, we obtain the following upper
bound on E(E2

J).

E(E2
J) =

(|VJ |2 )∑

i=1

E(x2
i ) +

∑

i 6=j∈{1,...,(|VJ |2 )}

E(xi · xj) =

≤
(|VJ |

2

)
· p+

((|VJ |
2

)

2

)
· p

Next, we use the upper bound on E(E2
J) to obtain an upper bound for var(p̂).

var(p̂) ≤ p ·



(|VJ |

2

)
+
((|VJ |2 )

2

)
(|VJ |

2

)2 − p




Using Chebyshev’s inequality we obtain the following:

Pr(|p̂− p| > a) ≤ p

a2
·



(|S|

2

)
+
((|S|2 )

2

)
(|S|

2

)2 − p




The obtained bounds are loose since we did not assume anything about the structure of the
conflict graph and the dependencies among the violations. We show that better bounds can be
obtained under the assumption that violations (or, equivalently, edges) are introduced randomly
and independently.

We first introduce the rationale behind random violations as follows. Assume a random pol-
luter which is a probability distribution over graphs on n labeled vertices, where each directed
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edge appears independently with probability p. Each violation (edge) independently occurs be-
tween two tuples without following any specific pattern. Under this assumption, the number of
edges in a sample J produces a binomial distribution.

Pr[EJ = i] =

(
2 ·
(|VJ |

2

)

i

)
· pi · (1− p)2·(|VJ |2 )−i

For simplicity, we assume that the sample size is not too small and p is not too close to 0
or 1; hence, we can approximate the binomial B(n, p) under the mentioned conditions using the
normal distribution N(np, np(1− p)), and we can define a confidence interval parameterized by
a confidence level 1 − 2α, and n = 2 ·

(|VJ |
2

)
. The confidence interval of normal distribution is

given by the following equation.

Pr

[
|p− p̂| ≤ z1−2α ·

√
p̂(1− p̂)

n

]
≥ 1− 2α (4.1)

In the next subsection, we elaborate on how to use this idea to decide which threshold εJ
should be used on the sample, assuming that the desired threshold for the database is ε.

4.8.2 Computing the Sample Threshold

We now focus on the following problem. Given a sample J , a threshold ε and an error bound
α, find the thresholds that should be used on the sample to obtain accurate ADCs with high
probability. Note that the threshold may depend on the DC itself, since different DCs are violated
by different tuple pairs, and, consequently, the conflict graphs of different DCs are different. That
is, if ϕ is an ADC on the sample J w.r.t. εϕJ , then we require that with probability at least 1− α,
it holds that ϕ is an ADC on the entire database w.r.t. ε. We use Inequality 4.1 for this task.

Using the symmetry of the normal distribution we obtain the following.

Pr

[
p− p̂ ≤ z1−2α ·

√
p̂(1− p̂)

n

]
≥ 1− α

Next, we add 1 and subtract 1 from the expression p− p̂ and multiply both sides of the inner
inequality by −1. Clearly, none of these operations affects the outer inequality and we have that:

Pr

[
(1− p)− (1− p̂) ≥ −z1−2α ·

√
p̂(1− p̂)

n

]
≥ 1− α
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Finally, we move the term (1 − p̂) to the other side of the inner inequality to obtain the
following result.

Pr

[
(1− p) ≥ (1− p̂)− z1−2α ·

√
p̂(1− p̂)

n

]
≥ 1− α

Recall that our goal is to find an εϕJ such that if 1− p̂ ≥ 1−εϕJ then Pr(1−p ≥ 1−ε) > 1−α.
Thus, all we need to do now is to set:

(1− p̂)− z1−2α ·
√
p̂(1− p̂)

n
≥ 1− ε

Or, equivalently:

(1− p̂) ≥ z1−2α ·
√
p̂(1− p̂)

n
+ (1− ε) (4.2)

Consequently, if we define εϕJ = 1 − z1−2α ·
√

p̂(1−p̂)
n

+ (1 − ε), and accept the DC ϕ if
1 − p̂ ≥ 1 − εϕJ , then with probability at least 1 − α, this DC is an ADC on the entire database
w.r.t. the threshold ε. We conclude that we can use inequality 4.2 as criteria for accepting or
rejecting an ADC on the sample.

Note that we can also look at Inequality 4.2 from a different point of view. Rather than defin-
ing a different threshold εϕJ for every DC, we can define the following approximation function:

f ′1 = (1− p̂)− z1−2α ·
√
p̂(1− p̂)

n

Then, Inequality 4.2 implies that the DC ϕ is an ADC on the entire database w.r.t. the threshold
ε if it is an ADC on the sample w.r.t. the approximation function f ′1 and the same ε. Note that as
the size of the sample increases, the value n increases as well, and the difference between f1 and
f ′1 becomes very small, as expected.

4.9 Experimental Evaluation

In this section, we provide an experimental evaluation of our ADC discovery algorithm.
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Dataset #Tuples #Attributes #Golden DCs
Tax 1M 15 9

Stock 123K 7 6

Hospital 115K 19 7

Food 200K 17 10

Airport 55K 12 9

Adult 32K 15 3

Flight 582K 20 13

Voter 950K 25 12

Table 4.4: Datasets.

4.9.1 Experimental Setup

We implemented our enumeration algorithm, including the functions f1 and f2 in Java. As
explained in Section 4.6, the function f3 is hard to compute for DCs; hence, we implemented
the algorithm in Alg. 10, and we refer to this algorithm when mentioning the function f3. We
also used the Java implementation of the algorithm AFASTDC by Chu et al. [40] and the Java
implementation of the algorithm DCFinder provided by the authors of [160].

All experiments were executed on a machine with an Intel Xeon CPU E5-2603 v3 (1.60GHz,
12 cores) with 64GB of RAM running Ubuntu 14.04.3 LTS. All the experiments were repeated
ten times and the average values are reported.

Following previous works on the problem of discovering DCs [15, 40, 160], we evaluate our
algorithm on seven real-world datasets (SP Stock, Hospital, Food Inspection, Airport, Adult,
Flight, and NCVoter), and one synthetic dataset (Tax). Table 4.4 depicts the number of tuples,
attributes, and golden DCs (i.e., DCs obtained by human experts) for each one of the datasets.

4.9.2 Running Time

We evaluate the running time of our algorithm on the aforementioned datasets and compare them
to the running times of the algorithm AFASTDC [40]. As we do not propose a new technique for
constructing the evidence set, we only compare the running times of the DC enumeration algo-
rithms (that is, we compare our algorithm ADCEnum with the algorithm SearchMinimalCovers
used in [40, 160, 161], that we denote here by SearchMC). We discuss the running time of the
evidence set construction later.

In the experiments, we used the approximation function f1 (which is the function SearchMC
is designed for) with the threshold ε = 0.1. Figure 4.1 depicts the running times of both algo-

117



rithms. Note that the y axis is in log scale. The results show that our algorithm is two to three
times faster than SearchMC on most of the datasets. As an example, it took SearchMC 5750
seconds (96 minutes) to generate all ADCs on the entire Tax dataset, while ADCEnum finished
after 2373 seconds (39 minutes); that is, about 2.5 times faster.

We have also conducted a running time comparison between ADCEnum and SearchMC
on different sample sizes. The results are depicted in Figure 4.4. Note that in some cases,
the running times for higher sample sizes are slightly higher than the running times for smaller
sample sizes (e.g., the running time on a sample that consists of 60% of the tuples in the Hospital
dataset is higher than the running time on a sample that consists of 80% of the tuples). This is due
to the fact that while increasing the number of tuples in the database significantly increases the
number of tuple pairs, which, in turn, significantly increases the total running time, the number
of distinct sets in the evidence set becomes relatively stable at some point, and does not change
much when more tuples are added to the database. Since the running time of ADCEnum depends
on the number of distinct sets in the evidence set, the running times for different sample sizes are
usually very close. Therefore, we do not reason about these small differences.
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Figure 4.1: Running times of ADCEnum ( ) and SearchMC ( ).
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Figure 4.2: Running times of ADCMiner ( ), DCFinder ( ), and AFASTDC ( ).
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Figure 4.3: Running times of ADCMiner for f1 ( ), f2 ( ), and f3 ( ). Top: total running time,
middle: running time of ADCEnum, bottom: running time of evidence set construction.
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In Figure 4.2, we compare the total running times of ADCMiner, AFASTDC [40], and
DCFinder [160]. Note that we do not report on the running times of DCFinder on the Tax
and Voter datasets since we were unable to generate the evidence set with their algorithm (using
the parameters recommended by the authors) even when dedicating almost the entire memory
of our machine to the Java heap. While our algorithm is faster than the other two algorithms,
the running time is mainly affected by the evidence set construction, which has a high compu-
tational cost in all three algorithms; hence, there is no drastic difference in the running times
between our algorithm and DCFinder. Sampling allows us to significantly reduce the running
times compared to the other solutions, and we show that in the next subsection.

In Figure 4.3, we present the running times of ADCMiner on all datasets for all three ap-
proximation functions. The top, middle, and bottom diagrams depict the total running time, the
running time of ADCEnum, and the running time of the evidence set construction, respectively.
Note that the running times of ADCEnum (which is the only part that depends on the choice
of the approximation function) are very close for all three functions, and the total running time
mostly depends on the evidence set construction. To construct the evidence set, we used the
algorithm introduced by Pena et al. [160], which is the fastest algorithm for that task. However,
since, as aforementioned, their algorithm was not able to process the Tax and NCVoter datasets,
for these datasets, we used the algorithm of Chu et al. [40] to construct the evidence set. While
for the Adult dataset, building the entire evidence set takes seven minutes, the evidence set con-
struction requires almost an hour and a half on the SP Stock dataset, and more than twenty hours
on the Flight dataset. This highlights the importance of incorporating sampling in our algo-
rithm, as we are able to reduce the running times by as much as 90%, as we explain in the next
subsection.

Finally, as discussed in Section 4.7, we do not select a random set from uncov in each
iteration of ADCEnum, but rather the set that has the maximal intersection with the candidate
list, as this choice decreases the running times, compared to the approach of Murakami and
Uno [148] who select the set that minimizes this intersection. In Figure 4.5, we report the running
times of ADCEnum on 60k tuples from the Tax, SP Stock, and Hospital datasets, for both
approaches. We see that the running times are indeed lower when we choose the set with the
maximal intersection, for all three approximation functions.
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4.9.3 Sampling

We now report on the quality of the ADCs obtained from a sample. In all of our experiments,

the sample size is big enough so that the term z1−2α ·
√

p̂(1−p̂)
n

in the approximation function f ′1
defined in Section 4.8 has practically no impact on the function. Therefore, we use the same
approximation function and threshold on both the sample and the entire dataset. In the exper-
iments reported in Figure 4.6, we use a standard measure of quality, namely the F1 score (i.e.,

2 · precision×recall
precision+recall ). We compare the ADCs obtained from the sample with the ADCs obtained

from the entire dataset.

We first fix a threshold and consider different sample sizes. The first three charts on the top
of Figure 4.6 show the F1 score for a fixed threshold ε = 0.01 for varying sample sizes, ranging
from 1% to 40% of the tuples in the dataset, for all three approximation functions. The last three
charts show the F1 score for a fixed threshold ε = 0.1 for varying sample sizes. Clearly, the larger
the sample is, the more accurate the results we obtain. Generally, we see that in order to obtain
an F1 score of about 0.7 or above we need to see about 40% of the tuples in the dataset. Note that
we obtain a higher F1-score on larger datasets (for which sampling is particularly important),
as for such datasets a relatively small sample allows us to see enough tuples to obtain accurate
results. For example, on the Tax and NCVoter datasets we consistently obtain an F1-score of at
least 0.7 or 0.8 when seeing 30% or 40% of the tuples, respectively.

The first three charts on the bottom of Figure 4.6 depict the F1 score for a fixed sample size
of 30% and varying thresholds, ranging from 0.01 to 0.2, for all three approximation functions.
The last three charts depict the F1 score for a fixed sample size of 40% and varying thresholds.
Here, we can see that we obtain more accurate results when considering a higher threshold. This
is due to the fact that a higher ε allows for more exceptions, and the DCs obtained using a higher
threshold can be seen as obtained using a smaller sample of the database (as a smaller part of the
database satisfies them). Hence, we are able to obtain result with high accuracy when considering
a relatively small random sample. We conclude that the choice of the right threshold and sample
size should be based on the size of the original dataset and the approximation function (as we
discuss in the next subsection).

Next, we show the improvement in running times obtained when considering a sample. Fig-
ure 4.7 depicts the running times of ADCMiner for varying sample sizes on all datasets for the
function f1 (as shown in the previous subsection, the running times for all three functions are
very close; hence, all three functions follow a similar trend). On the SP Stock dataset, we are
able to reduce the total running time from eighty five to thirty two minutes when considering a
sample that consists of 40% of the tuples—a reduction of more than 60%. For the Flight dataset,
the running time goes down from almost twenty one hours to seventy minutes—a reduction of
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almost 95%. For the Tax dataset, we are not able to use the same algorithm for constructing the
evidence set on 100% and 40% of the tuples in the database. Using the original algorithm for
constructing the evidence set by Chu et al. [40] we obtain a reduction of more than 94%—from
7.5 days to 10.5 hours. Using the algorithm BFASTDC to construct the evidence set we can
obtain a similar reduction (of almost 90%) in the running time [161].

Finally, we validate the theoretical analysis of Section 4.8 as follows. For each dataset, we
run our algorithm with the approximation function f1 on varying sample sizes ranging from 5%
to 80% of the tuples in the dataset. For each such sample, we compute the average value of ε− p̂
over the discovered ADCs (recall that p̂ is the proportion of violating tuple pairs). Figure 4.8
depicts the values obtained in this experiment. Note that the actual numbers are very small;
hence, the reported numbers are scaled up for each dataset (i.e., multiplied by a constant 10x,
where x depends on the dataset). We see that as the sample size increases, the value ε − p̂
decreases. Moreover, for each dataset, we have that (ε− p̂) ∼ 1√

n
(where ∼ denotes asymptotic

equivalence and n is defined as in Section 4.8), which supports our main result of Section 4.8
(i.e., Inequality 4.2).

4.9.4 Qualitative Analysis

We compare the three approximation functions discussed in Section 4.6 in the following way. For
each one of the datasets, we have a set of “golden” DCs; i.e., DCs obtained by domain experts.
We take a sample of 10K tuples from each one of the datasets and add noise to the resulting
dataset, such that each value has a probability of 0.001 to be modified, and if it is modified, then
it has 50% chance of being changed to a new value from the active domain of the corresponding
column and 50% chance to being changed to a typo. We also generate another dirty dataset in
a similar way, but in this case, we only allow changing values in 0.001 of the tuples. Hence, in
the first dataset, the errors are distributed among the tuples (and the number of modified tuples is
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Figure 4.7: Running times of ADCMiner for varying sample sizes—20% ( ), 40% ( ), 60%
( ), 80% ( ), and 100% ( ).
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usually very close to the number of modified values), while in the second dataset, the errors are
concentrated in a small subset of the tuples.

Then, we run our algorithm on the two dirty datasets obtained from each one of the original
datasets, with varying approximation thresholds ε (ranging from 10−6 to 10−1). For each ε, we
compute the G-recall, that is, the number of golden DC returned divided by the total number of
golden DCs. We report the results in Figure 4.9. We also report the G-recall for ε = 0 (i.e.,
when considering valid DCs) above each diagram (in parentheses). We observe the following
phenomena. First, the G-recall for valid DCs is consistently zero, or very close to zero, which
highlights the importance of considering approximate DCs. Second, the function f1 produces
results with a higher G-recall on smaller thresholds (i.e., 10−5 − 10−3), while the other two
functions have a higher G-recall on the larger thresholds (i.e., 10−2 − 10−1). This is due to the
fact that the functions f2 and f3 are more sensitive in the sense that a single tuple adds 1

n
to the

value of the functions f2 and f3 (where n is the number of tuples), while a pair of tuples adds 1
n2

to the value of the function f1.

Another interesting phenomenon is that for we consistently obtain a higher G-recall on the
error-concentrated datasets (especially for the functions f2 and f3). This is expected, especially
for the function f3, as when the errors are concentrated in a small subset of the tuples, these
tuples will participate in every violation of the DC, and we only need to remove them from
the database to satisfy the DC. The function f3 (or, more accurately, our greedy approximation
algorithm for this function) usually behaves better than the function f2, especially on the error-
concentrated datasets, and we are able to obtain a higher G-recall for a larger range of thresholds.
As explained in Section 4.6, this is due to the fact that one erroneous tuple may result in a set of
problematic tuples that contains every tuple in the database, while if we just remove this tuple,
the DC will be satisfied. For this same reason, while with the function f2 we constantly obtain
the best accuracy using ε = 10−1, with the function f3, we sometimes obtain better results with

Tax Stock Hospital Food Airport Adult Flight Voter
0

0.2

0.4

ε
−
p̂

Figure 4.8: The average difference between ε and p̂ over the ADCs obtained from varying sample
sizes—5% ( ), 10% ( ), 20% ( ), 40% ( ), 60% ( ), and , 80% ( ).
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the smaller threshold ε = 10−2.

Observe that in the experiments reported in Figure 4.6, we have used six specific thresholds,
with which we are not always able to obtain the highest possible G-recall. If we conduct a more
refined analysis, we find that using the threshold 5× 10−5 for the function f1 on the Tax dataset,
for example, we are able to obtain a G-recall of 1. When we increase the threshold, we are able
to obtain more general DCs (i.e., DCs consisting of less predicates) that we cannot obtain using
smaller thresholds; however, some DCs become “too general”, and we also lose some of the good
DCs that we obtained using the smaller threshold. Hence, we need to find the threshold that will
generate the best results with high probability. Using the above insights, we can choose a certain
threshold (that depends on the approximation function), that will generate good results with high
probability. Based on Figure 4.9, the best thresholds in that sense are 10−4, 10−2, and 10−1 for
the functions f1, f2, and f3, respectively. Using these thresholds we obtained an average G-recall
of 0.71, 0.72, and 0.97, respectively.

Finally, Table 4.5 presents some of the golden DCs that we were able to obtain with the three
approximation functions using the best threshold according to Figure 4.9, as well as an example
of a corresponding valid DC from the same dirty dataset, obtained with the threshold ε = 0. The
DCs were obtained from the Tax, SP Stock, Hospital, Food, Flight, and NCVoter datasets. Many
valid DCs are obtained from a single approximate DC by adding more predicates to cover for the
errors in the database, which results in longer and less general DCs. Therefore, we often obtain
less DCs and shorter DCs when considering ADCs. However, this is not always the case, as in
some cases we also discover constraints that are approximate DCs, but cannot be extended to any
minimal valid DC.

For example, the DC stating that the same zip code cannot correspond to two states (obtained
from the Food dataset) becomes the DC stating that the same zip code cannot correspond to two
states if the name and the type of the facility are the same. Clearly, we do not expect to obtain
such complicated constraints, which strengthens our motivation for considering ADCs rather
than valid DCs. In fact, while this DC generally holds, there are a few multi-state US zip codes
(e.g., the zip code 84536 belongs to Utah and Arizona). If our original database contained two
tuples with the same zip code and different states we would not be able to discover this DC unless
considering ADCs. This example shows that ADCs are meaningful even when the database is
clean, as they allow us to discover rules that are generally correct, but may have a few exceptions
(about 0.03% of zip codes in the US cross states).
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Chapter 5

Sampling from Data with Duplicated
Records

In various domains, people rely on data to make critical decisions. For example, businesses
use data analyses to decide about operations, sales, and marketing; Hospitals maintain patient
records to track their treatments; Governments keep a census of their population to determine
various aspects of public policy. Due to the complexity of the acquisition system and various
human errors, this data is often noisy. These errors also affect the statistical properties of the
dataset, which compromises its utility in various analytics.

Presence of multiple records that correspond to the same real-world entity is a common type
of error in databases. Entity duplication often caused by collecting data from multiple sources or
curated by different experts [94].

Duplication in records causes various problems for the downstream analytical tasks. For
example, consider the problem of estimating the mean and variance of some columns of a table.
The presence of duplicates can lead to inaccurate estimates or the presence of duplicates can
lead to errors in k-means clustering where the presence of duplicates can perturb the computed
centers and drastically change the clustering output [136]. Similarly, in the supervised learning,
data duplication changes the optimization function leading to undesired behaviour. Thus, to
ensure the correctness of downstream analytical results, it is important to repair such errors from
our database. This process of de-duplicating the data is also referred to as record linkage [200],
reference matching [144], and copy detection [187].

One common approach for removing the duplicates from a given dataset is compute a simi-
larity (or distance) score for each pair of records, then clustering techniques are usually used to
generate groups of records (a cluster represents duplicate records). Generating all record-pairs
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has a time complexity of O(|X|2) where X denotes the dataset. To reduce the quadratic depen-
dence on the dataset-size, blocking techniques are used in the database community [5,14,96,99].
Locality-sensitive hashing are a class of methods, which partition a dataset into blocks such that
similar points share a block and dis-similar points are partitioned across different blocks with
very high probability. The problem of detecting duplicates across the entire dataset now reduces
to the problem of detecting duplicates across the blocks. Hence, the time complexity of these
methods is O(|X|2/B) where B is the number of blocks into which the data is partitioned.

The complexity of these methods can still be prohibitive or unnecessary in many scenarios.
Consider the following thought experiment, where we are given an unclean dataset X . Let E be
the set containing the distinct unique entities in X . For estimating the mean of E, one approach
is detecting the duplicates in X using the previous known methods, and remove them from X to
construct E and compute the mean. However, for the purpose of estimation, full construction of
E is unnecessary. If we had a procedure A, which generates a uniform sample from E (without
constructing the full data set), we can use the sampled set S to estimate the mean. Note that
the above discussion is equally applicable to machine learning tasks such as classification and
duplications negatively impacts the model performance. Finding such a sampling algorithm A,
is the goal of this work. We lay down the theoretical foundations for this framework. Formally,

Given an unclean dataset X with duplicate entities, find a method A which can sample
uniformly from E, the clean version of the dataset (or the set of unique distinct entities of X).

In previous approaches, Sample-and-Clean [197] uses sampling approaches for data dedupli-
cation; if the frequency for all the entities e ∈ E are known, the authors proposed a method to
sample uniformly from the set E. However, the assumption that the frequencies are known is
extremely restrictive. In almost all practical situations, we do not expect to have access to such
information. Sample debiasing [156] proposed an iterative algorithm based on resampling from
the dataset for estimating the frequencies of entities. In extreme cases (when one entity has high
frequency and other entities are unique), this method fails, and generally, it can be proved that
the frequency estimator is an unbiased estimator iff resample the whole dataset or infinity big
sample. Moreover, the analysis of the amount of bias is missing.

In General, to solve this problem, the following two-stage approach is required. In the first
stage, the frequency of all the entities from a small sample are estimated. In the second stage,
these estimations are used to obtain a set sampled uniformly at random from E. However, it
is well-established that estimating frequencies (the first stage) is a non-trivial task [53, 170]. A
simple application of the fundamental theorem of learning shows that no suchA (which is based
on estimating frequencies) can exist in general for arbitrary datasets. Observation 5.0.1 asserts
that to get a reliable estimate of the frequency for an entity with low frequency, we need a linear
number of samples.
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Observation 5.0.1 (First impossibility result for sampling). Let X = {
f1 times︷ ︸︸ ︷

e1, . . . , e1,

f2 times︷ ︸︸ ︷
e2, . . . , e2}

be a dataset with two entities with frequencies f1 and f2 respectively such that f1 ≤
√
n. Let A

be any algorithm which receives a sample S of size m and tries to estimate the frequency of the
entities e1 and e2. Let f̂1, f̂2 be the estimated frequencies. If |f̂1 − f1| ≤ f1ε then we have that

m > C
n

ε2

Proof. The proof follows from the fundamental theorem of learning (Thm. 6.7 in [185]).

In this chapter, we investigate certain properties of the data under which it is possible to
construct efficient (both statistical and computational) procedures that can sample uniformly
at random form the set of entities E. We consider three categories of datasets/methods: (1) in
Section 5.2, we consider datasets that are ‘balanced’ (Defn. 5.1.2) and show how that can help us
estimate the frequencies of all the entities from a ‘small’ sample; (2) in Section 5.3, we consider
datasets that can be successfully partitioned into hashing blocks, and we show how access to such
blocks can help us estimate the frequencies and then sample uniformly from the set of entities
E; and (3) in section 5.4, we consider the case when the dataset is generated by a mixture of
k-spherical Gaussian distributions. For all the three cases, we provide mathematical bounds to
prove correctness of our approach. Finally, in Section 5.5, we provide extensive experimental
evaluation of our approach on both synthetic and real-world datasets. Considering each method
assumptions, we inject duplicate data into the real datasets and then we evaluate our methods by
comparing the average of the output sample with the original data average.

In Table 5, we give an overview of all methods that we cover in this chapter. The Gaussian
prior method assumes a property of whole space and the generative process which is stronger
than the LSH-based method. The LSH-based method assumes the boundary of each cluster is
known. The balanced dataset method needs the lower-bound on the smallest cluster size, which
is a weaker assumption than LSH-based method.

5.1 Preliminaries and solution overview

We denote by X , the original unclean dataset. Let E be the set of entities in X . That is, E is
the set of distinct elements(unique entities) in X . The frequency of an entity e ∈ E is defined as
freq(e) = |x ∈ X : x = e| and the probability of an entity is defined as prob(e) = freq(e)

|X| . We
denote by TX , the uniform distribution over the entities of X . In this work, our goal is to sample
(approximately) according to TX . Thus, we need a metric of distance between two distributions
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Method Goal Assumptions Sample Complexity References

Goodman Unbiased estimator for |E| |E| � n Ω
(
|E|
)

[87]

Valiant Distribution support size Large |E| Ω
(
|E|

log |E|

)
[192]

Sample-and-Clean Unbiased avg estimator f1, . . . , f|E| are given NA [197]

Sample debiasing Uniform Sample Linear Space NA [156]

Balanced Datasets Uniform Sample η-balance O
(

1
ε2η2

(
log |E| log log |E|

εη
+ log 1

δ

))
Thm 5.2.1&5.2.2

LSH-based Uniform Sample δ-isotropic set O
(
q
[

log s+ log(2q
δ

)
])

Thm 5.3.3

Gaussian prior Uniform Sample Well-Separated GMM O
(
d3(log k2+log log ε−1+log δ−1)

ηminε2

)
Thm 5.4.3

Table 5.1: Bounds on the sample complexities of learning rejection process of generating uniform
distribution. These results promise error of ε with probability δ. |E| determine the number of
entities. s is the maximum distance of lower and upper boundaries. q is the number of blocks. d
is the dimension of Gaussians and k determine the number of them. ηmin is the smallest weight
parameter.

to quantify how far we are from our goal. For this, we use the total variation distance which is
defined as dTV (P ,Q) = supA⊆X |P(A)−Q(A)|

Definition 5.1.1 (Cleanable). Given set X and parameters ε, δ ∈ (0, 1). Let E be the set of
entities of X . We say that X is cleanable if there exists an algorithm A and function f such that
we have the following. IfA receives a sample S of size m ≥ f(ε, δ) then with probability atleast
1− δ (over the choice of S), A outputs a distribution P such that dTV (P , TX) ≤ ε

If such an algorithm A exists for a dataset, we say that A cleans X . Furthermore, X is
cleanable with sample complexity given by f . Our general two-stage approach for constructing
A is described below. Note that instead of outputting a distribution P , we output a set P of size
p, sampled according to P .

The second stage is a rejection sampling step, where we accept a point with probability
inversely proportional to its (estimated) frequency. Thus, if the estimates are accurate, each
point has an (approximately) equal probability of getting selected. The key component of our
approach is the procedure F used during the first stage. Since, it is not possible to have an
F in the general case, depending upon different properties of the dataset X , we use different
procedures, as described above.
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Algorithm 18: Uniform sampling from the clean data
Input: Dataset X = {x1, . . . , xn}, sample size p
Output: Sample P

1 First stage
2 Use a procedure F , to estimate the probabilities (or frequencies) for all e ∈ E.
3 Let p̂(e) be the estimated probabilities and let m = min p̂(e)

4 Second stage
5 while |P | 6= p do
6 Sample v ∈ X uniformly at random and let a be a uniform random number in [0, 1]
7 if a < m

p̂(v) then
8 Add v to P
9 end

10 end
11 return P

Case 1: Balanced datasets The data balance property asserts that the probability of each entity
is atleast η. In Section 5.2, we describe a cleaning procedure for when the data has this property.

Definition 5.1.2 (η-balance). Given a set X and the corresponding set of entities E. We say that
X is η-balanced w.r.t E if mine∈E prob(e) ≥ η.

Case 2: Blocked datasets Next, let us consider the opposite spectrum for de-duplication ap-
plications; a common scenario described below where each entity has a small (atmost a constant)
number of duplicates. To uniformly sample in the such scenarios, we turn our attention towards
Locality Sensitive Hashing or LSH-based methods. LSH is a popular technique that aims to par-
tition a given dataset (and an associated similarity or distance metric) into blocks such that two
points whose similarity is above a certain threshold lie in the same block. 1 A generic definition
of LSH and related methods is given in Section 5.3.1. In Section 5.3, we assume that the dataset
has been partitioned into blocks by a suitable LSH-based method. We cluster each block using
the framework of regularized k-means algorithm [128].

Definition 5.1.3 (Regularized k-means objective). Given a clustering instance (X, d) and the
number of clusters k. Partition X into k + 1 subsets C = {C1, . . . , Ck, Ck+1} so as to minimize∑k

i=1

∑
x∈Ci d

2(x, µi) + λ|Ck+1|. Here µi represents the center of Ci where the cluster centres

1The actual definition says that two points lie in the same block with probability proportional to their similarity.
But a non-probabilistic treatment suffices for this section.

132



µ1, . . . , µk. In this framework, the algorithm is allowed to ‘discard’ points into a garbage cluster
Ck+1.

We then combine the clustering of each of these blocks into a clustering of the whole dataset.
In Section 5.3, we further prove that if the dataset has the δ-isotropic property (defined next),
then our LSH and clustering based method cleans X .

Definition 5.1.4 (δ-isotropic set). Let D be an isotropic distribution on the unit ball centred at
the origin. Let E = {e1, . . . , en} be points such that ‖ei − ej‖ > δ > 2. Let Di be the measure
D translated w.r.t ei. Let Xi be a set of size ni generated according to the distribution Di. We
say that X = ∪Xi is a δ-isotropic set and E is the set of entities of X .

Some common example of isotropic distributions include standard Gaussian distribution,
Bernoulli distribution, spherical distributions, uniform distribution and many more [195].

Case 3: Gaussian prior Finally, in Section 5.4, we look at the same problem from a genera-
tive process perspective. That is when the probability of each entity is well-approximated by a
mixture of k Gaussians (Defn. 5.1.6).

Definition 5.1.5 (Well-Separated Gaussian mixture models). For i ∈ {1, . . . , k}, let µi,Σi be
the parameters of k different Gaussian distributions. Also, let the mixing weights ηi ∈ [0, 1] be
such that

∑
i ηi = 1. A mixture of k Gaussians is well-separated if for all i 6= j, we have that

‖µi − µj‖ ≥ C max(σi, σj)
√

log(ρσ/ηmin) = O(
√

log k)

We say that a database X has ξ-gmm property if it can be ‘well-approximated’ by a mixture
of k Gaussian distributions. We describe this intuition formally below.

Definition 5.1.6 (ξ-GMM property). Given a finite datasetX . Let ηi, µi and σi be the parameters
of a well-separated mixture of k spherical Gaussians with density function N . We say that X
has ξ-GMM property if for all x ∈ X , we have that |prob(x)−N (x)| ≤ N (x)ξ

5.2 Sampling for balanced datasets

In this section, we consider datasets that satisfy the η-balanced property (Defn. 5.1.2). The
cleaning algorithm is as described in Alg. 18. Procedure F (which estimates the frequencies)
works as follows. We first sample a set T of size m uniformly at random from X . We compute
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Algorithm 19: Probability estimates of all the entities for balanced datasets
1 Input: Dataset X = {x1, . . . , xn}
2 Output: Probability estimates p̂1, . . . , p̂E for all the entities in X .

3 Let W = {v1, v2, . . . , vm} be a set of size m sampled uniformly at random from X .
4 For all vi ∈W , let p̂(vi) := |{w∈W :x=vi}|

m .
5 For all vi ∈ X \W , let p̂(vi) = minw∈W p̂(w)
6 return p̂

the count of all entities in our sample T and use the counts (divided bym) as probability estimates
for these sampled points (Alg. 19).

Theorem 5.2.1 establishes rigorous bounds on the approximation guarantees of our sampling
procedure. It shows that the sampling distribution approximates the uniform distribution (where
the distance between two distributions is measured by total variation distance). Thm. 5.2.2
analyses the time complexity of our approach and shows that the time taken to sample one point
is constant in expectation.

Theorem 5.2.1. Given a finite datasetX = {x1, . . . , xn} which satisfies η-balance property w.r.t
its set of entities E. Let A be as described in Alg. 18 with procedure F as described in Alg. 19.
If F receives a sample of size m ≥ f(ε, δ) := a

ε2η2

(
log |E| log log |E|

εη
+ log 1

δ

)
then A cleans X

with sample-complexity given by the function f .

Proof. Letm,W andA be as defined in the description of Alg. 19. Let hx = {xi ∈ X : xi = x}.
And let H = {hx : x ∈ X} be a set of subsets of X . Now, |H| = |E| = r. Hence, we get that
the vcdim(H) ≤ log r. Now, using the classical result from learning theory (Thm. 5.3.4), we get
that if

m ≥ a

ε2

(
d log

d

ε
+ log

1

δ

)
=: M

where d = log r is an upper-bound on the vcdim(H), then with probability atleast 1 − δ, we
have that for all hx ∈ H ,

∣∣∣ |hx∩W ||W | − p(hx)
∣∣∣ ≤ ε. Now, denote by q(x) := |hx∩W |

|W | . Then, we

get that for m ≥ M , with probability 1 − δ, for all x ∈ X,
∣∣q(x) − p(x)

∣∣ ≤ ε. Now, for all
x 6∈ W , we have that p(x) ≤ ε which contradicts the fact that p(x) > η. Thus, we see that the
sampling procedure samples a point with probability q(x) ∝ p(x)

p̂(x)
where 1− ε

η−ε ≤
p(x)
p̂(x)
≤ 1+ ε

η−ε
Choosing ε = ε

(1+ε)
η gives us the result of the theorem.

Theorem 5.2.2. Let the framework be as in Thm. 5.2.1. And define η1 = maxe∈E prob(e)
and η2 = mine∈E prob(e). Then the preprocessing time of algorithm A is O(log2 |E|) and the
expected time taken to sample one point is O(η1

η2
).
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Proof. Note that the preprocessing time depends linearly on m. Using the bound on m from
Thm. 5.2.1 the result on pre-processing time follows. Similarly, the expected time taken to
sample a point is upper bounded by η1+ε

η−ε where ε is as defined in the proof of Thm. 5.2.1.
Substituting the values of ε = ε

(1+ε)
η, we get that the expectation is upper bounded by ε + (1 +

ε)η1

η2
.

5.3 LSH-based sampling

In Section 5.2, we saw a method that samples approximately according to the uniform distribu-
tion (over the entities) if the given dataset has η-niceness. The number of samples required to
construct this distribution is O( 1

η
). In situations when η = O( 1

n
), the bounds from the previous

section are vacuous. In this section, we assume that the data has been partitioned into hash-
blocks such that all the duplicates are within the same block. That is for all x ∈ X , all y which
correspond to the same entity as x, share the same hash-block. Hence, we can treat each block
as a separate instance of the cleaning (or the de-duplication) problem.

Our goal is to estimate the frequency (or probability) of each entity in E. To achieve this
goal, we cluster the set X and then estimate the frequency of an entity e as the number points
that belong to the same cluster as e. Since each block can be treated independently, we focus
on clustering a hash-block rather than the whole set. Clustering a hash block, although easier
than clustering the entire dataset, still has some issues: the number of clusters is still unknown
and hence standard clustering formulations are inapplicable for our setting. In Section 5.3.2,
we describe our regularized clustering algorithm which can cluster each hash block given k, the
number of non-singleton clusters.

The exact knowledge of the number of non-singleton clusters for each hash block can still be
restrictive in many applications. A weaker assumption is the knowledge of an upper and lower
bound on the number of non-singleton clusters within each hash-block. That is for each block,
we know that k ∈ [k1, k2] where k is the number of non-singleton clusters and k1 and k2 are
known. In Section 5.3.3, we describe a principled approach to select the right value of k based
on the framework of SSC (semi-supervised clustering) introduced in [126,127] and describe our
complete sampling approach.

5.3.1 Locality Sensitive Hashing

Definition 5.3.1 (Hash function). Given a set X . A hash function h : X → {1, . . . , k} partitions
the set X into k blocks.
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Definition 5.3.2 (LSH). Given a set X and a similarity measure s : X ×X → [0, 1]. Let H be
a set of functions over X . An LSH for the similarity measure s is a probability distribution over
H such that for all x1, x2 ∈ X

P
h∈H

[h(x1) = h(x2)] = s(x1, x2)

Note that the above definition is terms of similarity function s. For our purposes, it will be
more comfortable to talk in terms of the distance metric d, rather than a similarity function. Note
that a given distance metric implies a similarity function and vice-versa. Hence, given (X, d), if
there exists a such a probability distribution, then we say that the given metric d is LSH-able.

We are now ready to describe a generic hashing scheme based on a LSH-able metric. Sample
hash functions h1, . . . , hk and group them into r groupsH1, . . . , Hr of size s each, that is, rs = k.
Now, two points x1, x2 end in the same block if they have same hash value on either one of the r
groups. The approach is described below.

Algorithm 20: A generic LSH based hashing algorithm [29, 109]
Input: (X, d), a class of hash functionsH and integers r, s.
Output: Partition Q of the set X .

1 Let D be a distribution over H which satisfies Defn. 5.3.2 and let k = rs.
2 Sample hash functions h1, . . . , hk iid using D.
3 Group the hash functions into s bands. Each band contains r hash functions.
4 For all x and 0 ≤ i ≤ s− 1, let gi(x) = (his+1(x), . . . , his+r(x)). That is, gi(x)

represents the ith signature of x.
5 Let Q be the partition induced by gi’s. That is, if there exists 0 ≤ i < s such that

gi(x1) = gi(x2) then x1 and x2 belong to the same group in Q.
6 Output Q.

Theorem 5.3.1. Given a set X , a distance function d : X×X → [0, 1], a class of hash functions
H , threshold parameter λ and a parameter δ. LetA be a generic LSH based algorithm (Alg. 20)

Choose r, s such that 1
2λ
< r < 1

− ln(1−λ)
and s = d2.2 ln(1

δ
)e. Define δ′ := s ln(1 + δ). Then for

x1, x2 ∈ X

• If d(x1, x2) ≤ λ then Ph∈H [ q(x1, x2) = 1] > 1− δ

where q(x, y) = 1 iff x, y belong to the same group in Q.
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Proof. Observe that

P[b(x, y) = 0] = P [∩s
i=1
gi(x) 6= gi(y)] =

∏

i

(
1−

r∏

j=1

P[h(i−1)r+j(x) = h(i−1)r+j(y)]
)

=
s∏

i=1

(1−
r∏

j=1

f(x, y)) = (1− f(x, y)r)s

Consider the case when d(x, y) ≤ λ. From the choice of s, we know that s ≥ 2.2 ln(1/δ) =⇒
s ≥ ln(1/δ)

1−ln(e−1)
⇐⇒ 1 − 1

e
≤ δ1/s. From the choice of r, we know that r < 1

− ln(1−λ)
⇐⇒

r ln( 1
1−λ) < 1 ⇐⇒ (1 − λ)r > 1

e
. Hence, then we have that P[b(x, y) = 0] = (1 − (1 −

d(x, y))r)s ≤ (1− (1− λ)r)s < δ.

For the simplicity of analysis, for the rest of the subsections, we will assume that if x1, x2 ∈ X
are duplicates of one another then q(x1, x2) = 1. In the probabilistic case our results hold true
with the corresponding probability.

5.3.2 Regularized k-means clustering

To solve the optimization problem in Defn. 5.1.3, we use the following strategy. We first decide
which points go into the set Ck+1 (that is which points belong to singleton clusters). We remove
those points from the set and k-cluster the remaining points using an SDP based algorithm (same
as in [128]). Our approach is described in Alg. 21.

Next, Thm. 5.3.2 shows that under δ-isotropic assumption and if the number of non-singleton
clusters k is known, then Alg. 21 finds the desired clustering solution.

Theorem 5.3.2. Given a clustering instance (X, d) where xi ∈ X has dimension p. Let X be a
δ-isotropic set and let E = {e1, . . . , en} be the set of entities of X . Let e1, . . . , ek be the set of
non-singleton entities of X . In addition, let ei ∈ X . Denote by Bi all the records in X which
correspond to the entity ei and Ck+1 = {ek+1, . . . , en}. If δ > 2 + O(

√
k/p) then there exists a

constant c > 0 such that with probability at least 1 − 2p exp( −cNθ
p log2N

) Alg. 21 finds the intended
cluster solution C∗ = {B1, . . . , Bk, Ck+1} when given X, k and µ = 1 as input.

Proof. We know that X satisfies δ-isotropic condition. Hence, for all the entities e ∈ U :=
{ek+1, . . . , en}, we have that |Se| = 1. Also, for e ∈ U we have that e 6∈ Se′ (cause of δ-
isotropy). Thus, we have that e 6∈ X ′ and e ∈ Ck+1. Hence, we get that U ⊆ Ck+1.
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Algorithm 21: Regularized k-means clustering
Input: Clustering instance (X, d), the number of non-singleton clusters k and constant µ
Output: Partition into k + 1 clusters.

1 For all x, compute Sx = {y : d(x, y) ≤ µ}. If |Sx| > 1 then X ′ = X ′ ∪ Sx.
2 Ck+1 = X \X ′ and X = X ′.
3 If |X| ≤ constant, execute a brute force search for all possible k partitions.
4 For all xi ∈ X , compute the matrix Dij = ‖xi − xj‖2

2.
5 Set λ =∞ and y = 0 and solve Eqn. 5.1 using any standard SDP solver and obtain

matrix Z.

SDP





minZ,y Tr(DZ) + λ〈1, y〉
s.t. Tr(Z) = k(

Z+ZT

2

)
· 1 + y = 1

Z ≥ 0, y ≥ 0, Z � 0

(5.1)

6 k-cluster the columns of XTZ to obtain clusters C1, . . . , Ck.
7 Output C ′ = {C1, . . . , Ck, Ck+1}.

Now, we will show that all x ∈ X \U , doesn’t belong to Ck+1. For the sake of contradiction,
assume that there exists x ∈ X \ U such that x ∈ Ck+1. WLOG, let x ∈ ei where 1 ≤ i ≤ k.
This implies that for all x′ ∈ X , x 6∈ S ′x. This is a contradiction as x ∈ Sei . Thus, we get that
U = Ck+1. Now, using Thm. 5.7 from [125] completes the proof of the theorem.

5.3.3 Semi-supervised clustering

In the previous section, we discussed an algorithm, which finds the target clustering when the
number of non-singleton clusters k is known. In this section, we extend it to the case when it is
given that k ∈ [k1, k2]. We use the framework of semi-supervised clustering selection (SSC).

Definition 5.3.3 (Clustering loss). Given a clustering C of a set X and an unknown target clus-
tering C∗. Denote by P+ the uniform distribution over {(x, y) ∈ X2 : C∗(x, y) = 1} and P− the
uniform distribution over {(x, y) ∈ X2 : C∗(x, y) = 0}. The loss of clustering C is defined as

LC∗(C) = µ P
(x,y)∼P+

[
C(x, y) = 0] + (1− µ) P

(x,y)∼P−

[
C(x, y) = 1]

where C(x, y) = 1 iff x, y belong to the same cluster according to C.
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Definition 5.3.4 (Semi-Supervised Clustering (SSC) [127]). Given a clustering instance (X, d).
Let C∗ be an unknown target clustering of X . Find Ĉ ∈ G := {C1, . . . , Cp} such that Ĉ =
arg minC∈G LC∗(C) where LC∗(C) measures the (weighted) average of the fraction of pairs of
points which belong to the same cluster according to C∗ but belong to different clusters in C plus
the fraction of pairs which belong to the different clusters in C∗ but belong to same cluster in C.

For each value of k from k1, . . . , k2, we use Alg. 21, to generate clusterings G = {Ck1 , . . . , Ck2}.
Note the each Cki is a clustering of the given dataset. We then use the SSC framework (Alg. 22)
to select the best clustering from G. We describe our “clustering and hashing” based sampling
algorithm and then prove the main result from this section.

Algorithm 22: Empirical Risk Minimization for SSC
Input: (X, d), a set of clusterings F , a C∗-oracle and size m.
Output: C ∈ F

1 Sample a pair (x, y) uniformly at random from X2. If C∗(x, y) = 1 then
S+ = S+ ∪ (x, y) else S− = S− ∪ (x, y).

2 Repeat till at least one of |S+| and |S−| is less than m.
3 Define p̂l(C) = |{(x,y)∈S+:C(x,y)=0}|

|S+| and n̂l(C) = |{(x,y)∈S−:C(x,y)=0}|
|S−|

4 Define L̂(C) = µp̂l(C) + (1− µ)n̂l(C).
5 Output arg minC∈F L̂(C)

Theorem 5.3.3. Given a finite dataset X = {x1, . . . , xn} which has the δ-isotropic property
w.r.t its set of entities E. Let xi have dimension g. Let X be partitioned into blocks X1, . . . , Xq

such that all records corresponding to the same entity lie within the same hash block. For each
of the blocks Xi let ki be the number of entities with number of corresponding records greater
than 1 (or non-singleton clusters). Let C∗i be the corresponding clustering of the non-singleton
entities of Xi be such that any other clustering C of Xi has loss LC∗i (C) > o(α). Let A be as
described in Alg. 18 with procedure F as described in Alg. 23. If F receives a sample of size
m ≥ aq

log s+log( 2q
δ

)

α2 where a is a universal constant and s = maxi(ki2− ki1) where ki2, ki1 are as
defined in Alg. 23. Then with probability atleast 1− δ− 2gq exp( −cNθ

g log2N
)2, A samples a set P of

size p such that
dTV (P , TX) = 0.

Proof. Before start to proof this theorem, we need the following lemmas,
2c is a global constant and N = minBi where Bi is the total number of points in non-single clusters for

1 ≤ i ≤ q. The minimum is over all Bi greater than a large global constant.
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Algorithm 23: Probability estimates for all entities under LSH
Input: Dataset X which has been partitioned in to blocks X1, . . . , Xq and sample size m
Output: p̂.

1 Gi∈[1...q] = ∅
2 while 1 ≤ i ≤ q do
3 let the number of non-singleton clusters ∈ [ki1, ki2].
4 for k ∈ [ki1, ki2] do
5 Use Alg. 21 with input Xi, d, k to obtain clustering C.
6 Let Gi = Gi ∪ C.
7 end
8 Use the SSC framework (Alg. 22) on Gi with sample m

q
to obtain Ĉi of Xi.

9 end
10 Combine the clusterings to obtain a clustering Ĉ of the whole set X .
11 Define p̂(e) = 1

|Ĉ(e)| where C(e) denotes the number of points which belong to the same
cluster as e.

Lemma 5.3.1 (Sample Complexity). Given metric space (X, d), a class of clusterings F of size
s and a threshold parameter λ. Given ε, δ ∈ (0, 1) and a C∗-oracle. Let A be the ERM-based
approach as described in Alg. 22 and C̄ be the output of A. Let C∗ ∈ F . If

m ≥ a
log s+ log(2

δ
)

ε2
(5.2)

where a is a global constant then with probability at least 1 − δ (over the randomness in the
sampling procedure), we have that

LC∗(C̄) ≤ ε

Proof. The proof of the theorem involves a straightforward application of the fundamental the-
orem of learning. If m > a

vcdim(F)+log( 1
δ

)

ε2
, then with probability at least 1 − δ, we have that

|n̂l(C) − nl(C)| < ε. Similarly, we have that with probability at least 1 − δ, we have that
|p̂l(C)−pl(C)| < ε. Combining these two equations, we get that with probability at least 1−2δ,
|l̂(C)− l(C)| < ε. Now, l(C̄) ≤ l̂(C̄) + ε ≤ l̂(C∗) + ε ≤ l(C∗) + 2ε. Substituting, δ = δ/2 and
ε = ε/2 completes the result of the theorem.

Next we prove an upper bound on the number of queries to the oracle to sample m+ positive and
m− negative pairs.
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Lemma 5.3.2 (Query Complexity). Let the framework be as in Lemma 5.3.1. In addition, let
γ = P[C∗(x, y) = 0]. With probability at least 1 − exp

(
− ν2m−

4
) − exp

(
− ν2m+

4

)
over the

randomness in the sampling procedure, the number of same-cluster queries q made by A is

q ≤ (1 + ν)

(
m−
γ

+
m+

1− γ

)

Proof. Let q− denote the number queries to sample the set S−. Now, E[q−] = 1
γ

. Thus, using

Thm. 5.3.5, we get that q− ≤ (1+ν)m−
β(1−ε) with probability at least 1− exp(−ν

2m−
4

).

Now, can continue our proof by putting all these result together. Let m be as in the statement of
the theorem. Then, Lemma 5.3.1 implies that with probability at least 1− δ, we have that for all
i, LC∗i (Ĉi) ≤ ε. However, we know that for all clusterings Ĉi of Xi, we have that LC∗i (Ĉi) > ε.
Hence, Ĉi = C∗i . Hence, we get that Ĉ = C∗. In other words, Alg. 23 recovers the target cluster-
ing. Once the target clustering is known, the rest of the algorithm samples a point uniformly at
random and accepts it with probability proportional to 1

|C(x)| where C(x) denotes the cluster to
which x belongs. Hence, for any entity e, we have that

P[e] ∝ |C
∗(e)|
|C(e)| = 1.

The extra 2gq exp( −cNθ
g log2 N

) term is due to the success probability of the regularized SDP algo-
rithm.

5.3.4 Classical theorems and results

Theorem 5.3.4 (Vapnik and Chervonenkis [193]). Let X be a domain set and D a probability
distribution over X . Let H be a class of subsets of X of finite VC-dimension d. Let ε, δ ∈ (0, 1).
Let S ⊆ X be picked i.i.d according to D of size m. If m > c

ε2
(d log d

ε
+ log 1

δ
), then with

probability 1− δ over the choice of S, we have that ∀h ∈ H
∣∣∣∣
|h ∩ S|
|S| − P (h)

∣∣∣∣ < ε

Theorem 5.3.5 (Concentration inequality for sum of geometric random variables [22]). LetX =
X1 + . . .+Xn be n geometrically distributed random variables such that E[Xi] = µ. Then

P[X > (1 + ν)nµ] ≤ exp

( −ν2µn

2(1 + ν)

)
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5.4 Sampling Under a Gaussian Prior

In this section, we consider datasets X , which have the ξ-GMM property (Definition 5.1.6). ξ-
GMM property informally means the dataset a mixture of k distributions that each component is
quasi-normal has at most ξ total variation (TV) error from a normal distribution.

The GMM is the probabilities of all the entities can be well approximated by a mixture of
k-Gaussian distributions. We use the EM algorithm to estimate the parameters of the mixture
model. Next, we prove that if the generative model is a mixture of k well-separated spheri-
cal Gaussians then the sampling approach described in Section 5.1 takes a point approximately
according to the uniform distribution.

Here is the algorithm,

Algorithm 24: Probability estimates for all entities under GMM prior
Input: Dataset X ⊆ Rd, the number of mixtures k, sample size m and number of steps T
Output: Sample S

1 Run the EM algorithm for T steps with X as input and obtain parameters θi = (η̂i, µ̂i, σ̂i).
2 Define N̂ (x) =

∑
i η̂iN (x; µ̂i, σ̂i) where N (x;µ, σ) is the Gaussian with mean µ and variance

σ2.
3 Draw m data point with rejection probability N̂ (x).

The Alg. 24 initialized with point provided by the following theorem.

Theorem 5.4.1 (Thm 3.6 in [129]). Given a well-separated mixture of k-spherical Gaussians.
There exists initializations for µ(0)

1 , . . . , µ
(0)
k for the means and η(0)

1 , . . . , η
(0)
k for the mixing weights

such that if the EM algorithm is initialized with these parameters, and if each step of the EM al-
gorithm receives a sample of size m > C ′

d(log(k2T )+log( 1
δ

))

ηminε2
then in T = O(log(1/ε)) iterations,

converges to parameters η̂i, µ̂i and σ̂i such that for all i,

‖µ̂i − µi‖ ≤ σiε and |η̂i − ηi| ≤ ηiε and |σ̂2
i − σ2

i | ≤ σ2
i ε/
√
d

with probability at least 1− δ − T
k30nC−2 .

5.4.1 Maximum Likelihood Estimation

The EM algorithm in second stage of Alg. 24 is composed of two steps, the E-step that constructs
the expectation of the log-likelihood on the current estimators, and the M-step that maximizes this
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Algorithm 25: EM estimation
1 Input: Dataset X = {xxx1, . . . ,xxxN}, Sample TTT = (xxx1, ...,xxxm), Allocation eee = {e1, . . . , em},

Number of distinct value K, Threshold ε
2 Output: GMM estimation

3 Repeat until the total parameters change is less than ε:
4 Weak labeling of each observation xxxi, for i = 1, ...,m, for each k ∈ [K]:

E step lk =
ηke

−‖xxxi−µµµk‖
2

2σ2
k

− d
2

log(σ2
k)

∑K
j=1 ηje

−‖xxxi−µµµj‖2

2σ2
j

− d
2

log(σ2
j )

M-step η+
k = ETTT [lk],µµµ

+
k =

ETTT [lkxxxi]

ETTT [lk]
, σ+2

k =
ETTT [lk‖xxxi −µµµ+

k ‖2]

dETTT [lk]

5 return N̂ (xxx|ηk,µµµk, σ2
k) =

∑K
k=1 ηkN (xxx;µµµk, σ

2
kIIIr)

expectation. For D, we have the following algorithm. Algorithm 25 runs until MM parameters
converge with error ε.

In the above notation, we use ETTT [.] to denote the expectation over the entire sample of mixture
distribution. In the E-step, lk represents the probability of the sample xxxi being generated from
the kth component as computed using the current estimates of parameters, and (.)+ denotes the
corresponding updated estimators.

5.4.2 Uniform Distribution Using Rejection Sampling

N̂ (xxx|ηk,µµµk, σ2
k) obtained from Algorithm 25 is used to specify rejection probabilities and make

a uniform sample from G. In Theorem 5.4.2, we prove that the rejection sampling in stage three
of Alg. 24 is almost uniform.

Theorem 5.4.2. The sample S returned in Algorithm 24 is uniform over distinct values (E) of
given dataset.

Proof. We know that if v is a random variable whose support is a subset of [0, 1], and a is a
standard uniform random variable independent of v, then

∫ 1

0
Pr(a ≤ v) = E[v]. Let ννν be the
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distribution parameters. The probability of acceptance of v is,

Pr(v is accepted) =

∫ 1

0

Pr
(
a ≤ minxxx∈E f(xxx|ννν)

f(v|ννν)

)
=

E
[minxxx∈E f(xxx|ννν)

f(v|ννν)

]
= min

xxx∈E
f(xxx|ννν)

∫ +∞

−∞

1

f(x|ννν)
f(x|ννν)dx = K.γ

The sampling procedure described produces draws from E with density uniform. We must show
that the conditional distribution of v given that a ≤ γ

p(v|ννν)
,is indeed uniform in E;

Pr(x ≤ v|v is accepted) =
Pr(v is accepted|x ≤ v).P r(x ≤ v)

Pr(v is accepted
=

Pr(v is accepted|x ≤ v).
F (v)

K.γ
=
F (v)

K.γ
.
Pr(v is accepted, x ≤ v)

F (v)
=

1

K.γ

∫ v

−∞

∫ 1

0

Pr(a ≤ γ

f(v|ννν)
, w ≤ v)f(w|ννν)da dw

1

K.γ

∫ 1

0

∫ v

0

γ

f(w|ννν)
f(w|ννν)dw da =

v

K
= Unif(0, k)(v)

The discrete case is analogous to the continuous case and we follow the same proof sketch.

5.4.3 Correctness and Error Bound of Using Estimated Mixture

Theorem 5.4.3. Given a finite dataset X which has the ξ-GMM property w.r.t an unknown den-
sity function N with parameters ηi, µi, σi for i ∈ [1, . . . , k] and γ = minN . Let E be the set
of entities of X .Let A be as described in Alg. 18 with procedure F as described in Alg. 24. If
F receives a sample of size m > C ′

d3(log(k2T )+log( 1
δ

))

ηminε2
and T = O(log(1/ε)) as input, then A

samples a set P according to a distribution P such that

dTV (P(e), TX) ≤ O(ε/γ) + ξ

with probability atleast 1 − δ − T
k30nC−2 where C is the separation parameter for the spherical

Gaussians. For EM algorithm initialization, the parameters provided in Thm. 5.4.1 are used.

In [129], it has been proved that if for each pair of Gaussians N (µµµ, σIII) and N (µµµ′, σ′III), we
know their means have distance Ω(max(σ, σ′)

√
log(ρσ/ηmin)) where ρσ =

maxi∈[K]σi
mini∈[K]σi

then with
a good parameters initialization, EM algorithm with sample complexity

O(rη−1
min log2(K2T/δ)/ε2)
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can converge to optimal parameters with probability 1−δ−T/nc−2K30 where T = O(log(1/ε))
which means

∀k ∈ [K] ‖ η̂(T )
k − η∗k ‖2≤ η∗kε, ‖ µ̂µµ(T )

k − µµµ∗k ‖2≤ σ∗kε, ‖ (σ̂
(T )
k )2 − σ∗2k ‖2≤ σ∗2k ε/

√
r. (5.3)

Now, we approximate the error of the approximation.

Theorem 5.4.4. Suppose a mixture of k d-dimensional Gaussian’s f has parameters such that
the separation of the means are Ω(cαmax(σ, σ′)

√
log(ρσ/ηmin)) with some given constant c > 2

and α = 2.297. Suppose we use

m ≥ O

(
d
(

log(K2T/δ)[2d+ ε+ αβ]
)2

ηminα2ε2

)

samples where β = 0.0084. Then, with a proper initialization, EM algorithm in T = O(log(2d+ε+αβ
αε

))

iterations approximation f̂ ,
TV (f, f̂) ≤ ε

with probability at least 1− δ − T/nc−2K30.

Proof. For this goal, we know that the area between two normal distribution does not have close
form, so we approximate it each normal distribution with Triangular distribution. We use L2

norm for error so we have to solve. Since we have spherical assumption, we can decompose
dimensions and solve the optimal point for each dimension independently.

d

dx

[
1

2π

∫

|x|≥α
e−x

2

dx+

∫ α

−α

(
1− |x/α|

α
− e−x

2/2

√
2π

)]
= 0 (5.4)

so we have α = 2.2975 with maximum error of 0.042. Therefore, the best Triangular ap-
proximation for the normal distribution ηN (µ, σ) is between [µ − β, µ + β] with β = ασ/η,
So we have to compute the maximum possible error which is the area between two Triangular
distributions [µ− ασ

η
, µ+ ασ

η
] and [µ+ εσ− α(1−ε)σ

η(1+ε)
, µ+ εσ+ α(1−ε)σ

η(1+ε)
]. Since the components can

be considered independently so triangles separation follows the same well-separation property of
the Gaussians. we choose approximation parameters in 5.3 (see Fig. 5.1) such that the triangular
distribution makes the minimum overlap with respect to the triangle of the correct of the normal
distribution.
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Figure 5.1: Triangular distribution and its worst-case approximation.

The total variation of i-th component is the area that true distribution and its approximation
are not overlapped. Therefore, we need to compute the filled area( Fig. 5.1), Ai, then the error
upper-bound is,

errori ≤ 2ηi + ηiε− 2Ai

First we should know that the mean of normal distribution and correspondingly the triangular
distribution does not change the error, so we consider µ = 0. To obtain the point x, we need
intersect two lines that we can obtain by the given properties of distribution, so we obtain

y1 =
η(1 + ε)

(
ασ(1− ε)

)2x−
εση(1 + ε)
(
ασ(1− ε)

)2 +
η(1 + ε)

ασ(1− ε)

y2 = − η

(ασ)2
x+

η

ασ

The intersection is,

x = ασ

(
1 + ε(1+ε)

α(1−ε)2 − 1+ε
1−ε

1+ε
(1−ε)2 + 1

)

Now, we can compute h, the height of overlapped area.

h =
η

ασ

[
2 +

(
1− 1

α

)
ε−

(
1 + 1

α

)
ε2

2− ε+ ε2

]
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The base of the triangle is,

b =
(
(2− ε)α− ε

)
σ

Therefore, the area is,

A =
1

2
bh =

1

2
σ
(
(2− ε)α− ε

)
.
η

ασ

[
2 +

(
1− 1

α

)
ε−

(
1 + 1

α

)
ε2

2− ε+ ε2

]

=
1

2
η
(
2− ε− ε

α

)[2 +
(
1− 1

α

)
ε−

(
1 + 1

α

)
ε2

2− ε+ ε2

]

We assume ε2 ≈ 0, so we have,

A =
1

2
η
(
2− ε− ε

α

)[2 +
(
1− 1

α

)
ε

2− ε

]
=

1

2
η

[
2 +

(
1− 1

α

)
ε− 2ε

α(2− ε)

]

Therefore, the overlapped area of component i-th isAi = 1
2
ηi
[
2+
(
1− 1

α

)
ε− 2ε

α(2−ε)

]
. Since we

are given a proper separation between components, the total error is the sum of each component
error. Therefore, we have,

TV (f, f̂) =
∑

i

errori ≤
∑

i

2ηi + ηiε− 2Ai = 2 + ε− 2
∑

i

Ai

= 2 + ε−
∑

i

ηi
[
2 +

(
1− 1

α

)
ε− 2ε

α(2− ε)
]

= 2 + ε−
[
2 +

(
1− 1

α

)
ε− 2ε

α(2− ε)
]

= ε
[ 2

α(2− ε) +
1

α

]

=
4ε

α(2− ε) = O(ε).

When ε is small the triangle is an lower bound of the actual overlap between two normal so
the error we get is an upper bound. For dimension d, because our model is spherical, the joint
distribution is the product of distribution of each dimension. Therefore, the error of the tale of
Gaussian decreasing by increasing the dimension when the dimension is large the data concen-
trates around the mean. For the right and left tale, if we have ε movement to right, using Taylor
expansion, we have 0.0084ε+ 0.0039ε2 for the area between normal and its approximation, so

TV (f, f̂) ≤ d

(
4ε

α(2− ε)

)
+ βε

where β = 0.0084. We determine ε′ = d
(

4ε
α(2−ε)

)
+ βε so ε = αε′

2d+ε′+αβ
. We replace this into

the sample complexity of parameters, O(dη−1
min log2(K2T/δ)/ε2) from [129], the we achieve the

result.
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Corollary 5.4.1. The expected number of draws in rejection sampling (Alg. 24) is less than m
K.γ

Proof. We know that minxxx∈E f(xxx|ννν) ≤ 1
K

.From the proof of the Theorem 5.4.2, Pr(v is accepted) =
K.γ, so if we consider each success as independent geometry distribution then the average num-
ber is less than m-times of largest geometry distribution success, so it is m

K.γ
.

5.5 Experimental Results

In this section, experiments have been divided into two parts, the experiments that show be-
haviours of our framework and experiments compare our estimator to Sample-and-Clean [197]
on some real datasets. For evaluating the performance of different methods over our datasets, we
define Error = |RealAvg − EstimatedAvg|/RealAvg. We repeated each experiment until,
we see convergence in the average of the errors. We use five real datasets which they are publicly
available.

TPC-H Dataset3 It contains 1.5GB TPC-H benchmark3 dataset (8,609,880 Records in lineitem
table). The line item table schema simulates industrial purchase order records. We used this
dataset to model errors where the purchase orders were digitized using optical character recogni-
tion (OCR). We similar to Sample-and-Clean [197] randomly duplicated 20% of tuples with the
following distribution: 80% one duplicate, 15% two duplicates, 5% three duplicates.

Sensor Dataset4 We also applied our approach to a dataset of indoor temperature, humidity, and
light sensor readings in the Intel Berkeley Research Lab. The dataset is publicly available for
data cleaning and sensor network research from MIT CSAIL5.

Publications Dataset This dataset is a real-world bibliographical information of scientific pub-
lications [64]. The dataset has 1,879 publication records with duplicates. The ground truth of
duplicates is available. To perform clustering on this dataset we first tokenized each publication
record and extracted 3-grams from them. Then, on 3-grams we used Jaccard distance to define
distance between two records.

E-commerce products I5 This dataset contains 1, 363 products from Amazon, and 3, 226 prod-
ucts from Google, and the ground truth has 1, 300 matching products.

E-commerce products II6 This dataset contains 1,082 products from Abt, and 1,093 products
from Buy, and the ground truth has 1,098 matching products.

3http://www.tpc.org/tpch
4http://db.csail.mit.edu/labdata/labdata.html
5https://dbs.uni-leipzig.de/en
6https://dbs.uni-leipzig.de/en/research/projects/object matching/fever/benchmark datasets for entity resolution
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Restaurants Dataset7 The fifth dataset is a list of 864 restaurants from the Fodor’s and Zagat’s
restaurant guides that contains 112 duplicates.

5.5.1 Effect of Sampling Size and Dataset Balance

We evaluate our sampling method for balance dataset under different sample sizes and perform
this evaluation for different duplication ratios. For this experience, we use TPC-H dataset and we
inject duplicated values manually. Table 5.2 shows that for different duplication rates, the method
has a similar behaviour and the error decreases as the sample size increases, the error is strictly
smaller than the theoretical upper bound. In Table 5.3, we generate an arbitrary distribution for
entities frequencies. From Table 5.2 and Table 5.3, as Thm 5.2.1 suggests, we confirm that the
imbalance dataset weaken the uniform sample generation.

dup 0.01 0.02 0.04 0.06 0.08 0.1

0.1 2.12# 1.64 1.41 1.23 1.11 1.16

0.15 3.12 2.03 1.84 1.92 1.76 1.69

0.2 3.14 2.24 1.97 1.84 1.80 1.74

0.25 4.26 4.02 3.65 2.93 2.61 2.17

0.3 5.21 4.94 4.57 3.84 3.33 2.89

# Values ×10−3.

Table 5.2: The precision changes in dif-
ferent sample sizes under generative pro-
cess for duplication with uniform distribu-
tion. By increasing the duplication ratio,
the error of our framework increases. dup
presents duplication rate.

dup 0.01 0.02 0.04 0.06 0.08 0.1

0.1 2.58# 2.03 1.69 1.38 1.26 1.19

0.15 3.66 3.17 2.50 2.03 1.89 1.79

0.2 4.62 4.14 3.61 3.08 2.59 2.42

0.25 5.32 4.88 4.37 3.84 3.29 2.73

0.3 5.94 5.45 4.99 4.73 4.03 3.79

# Values ×10−3.

Table 5.3: Our estimator is indepen-
dent from duplication distribution of enti-
ties. The datasets that considered has non-
uniform duplication over their entities.

7http://www.cs.utexas.edu/users/ml/riddle/data.html
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5.5.2 Our Methods Over Real Datasets

We conducted a set of experiments on real datasets to evaluate our method and evaluate our
theoretical bounds. We set δ = 0.9 and obtain all information each method needs directly from
data. For each sample size, we repeat for 100 times and calculate the average of the errors. Fig
5.2 shows the result of the Alg. 18 for four real datasets, and the dashed line is linear regression
of the upper-bound suggested by Thm. 5.2.1. Figure 5.3 shows the result of Alg. 23 and the
dashed lines show the upper bound given by Thm. 5.3.3. In Fig 5.4, we used the Alg 24, and
computed the upper bound by using Thm. 5.4.3. As we know the assumption of Gaussian prior
is stronger than LSH and LSH is stronger that balanced dataset. Gaussian method on a random
dataset has weaker performance, which can approved by comparing Fig 5.4 with Fig 5.3 and Fig
5.2.

5.5.3 Comparison to Other Methods Over Real Data

In this section, we compare out methods to RawSC and NormalizedSC in Sample-and-Clean
[197] on real and synthetic datasets.

• RawSC Estimation: Propose a correction function for count, sum, and average estimator
and then return the average of corrected element of the sample with a confidence interval.

• NormalizedSC Estimation: Similar to RawSC but uses the difference between correct
value and unclean version in the sample to justify the average of the measure on the unclean
dataset.
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We use samples with size 30% of the dataset, and measure accuracy = 1 − error. We use
the optimal blocking function for RawSC and NormalizedSC.
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Figure 5.5: accuracy of proposed methods and methods in [197]. In Sensor and TPC-H, dupli-
cated records are added manually.

As you can see in Figure 5.5, accuracy of our methods outperforms the the-state-of-art sam-
ple cleaning framework. In each method, we computed the assumed information as the method
input. For each experiment, we computed the average of 100 experiments.

5.6 Conclusion and Open Problems

Obtaining correct information from data with repetitive records is an important problem. Dedu-
plicating the entire dataset is computationally expensive. We solve the problem by approximating
the uniform distribution over the clean data. Generating uniform sample from such a data is not
always possible. Knowing additional data properties can make the problem feasible and solv-
able. We consider three approaches that work under different circumstances. These methods
return samples that can be used for any downstream analytical purpose, because it has the same
properties as a uniform sample from the cleaned version of the data. There are some open-ended
questions in our research. One direction of research can explore other weaker and/or natural
assumptions under which the problem is still solvable. Another direction of research involves
providing tighter bounds and/or lower bounds for the methods presented in this work. Another
important question, is if it possible to verify that a given dataset satisfies any of the niceness con-
ditions. For example, is it possible to estimate the value of η for a balanced dataset (Section 5.2).
Moreover, We have introduced a method which provides a lower bound estimate for the balance
parameter η. However, the number of samples needed (upper and lower bound) to obtain this
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estimate is an open question. Similar questions can be posed for the other niceness conditions
introduced in this work.
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Chapter 6

Record Fusion via Inference and Data
Augmentation

In a variety of domains, people rely on multiple sources to fulfill their information requirements.
However, diverse information sources often provide contradictory data, some being out-of-date,
inexact, or incorrect. The increasing demand to ingest and acquire a large number of heteroge-
neous data sources via inexpensive connectors has been the driving force behind many studies in
the field of entity consolidation and data integration [23,60–62,94,132,134,204]. An integrated
dataset can have a considerable positive impact on the quality of downstream analytics [27]. For
the rest of the chapter, we will refer to aggregating multiple records into a unified representation
by “Record Fusion”.

A good example of record fusion is the golden record problem; after deduplicating [38,51,65]
a dataset, a set of record clusters is created, which needs to be consolidated to produce one
representation. Another example is data fusion, which sometimes referred to as “Single-Choice
Tasks” in crowdsource community [208], where the task is to aggregate multiple sources that
contain information about the same set of entities, with possibly conflicting attribute values [60,
62, 134, 204].

Example 6.0.1. In Table 6.1, the data have been gathered from 4 different databases. Each
database can be viewed as a source that makes a claim about the actual value of real-word
entities. In this example, there are three clusters, where each tuple is generated from a unique
source in the cluster. The correct values of each cluster/attribute are shown in Bold. However,
pieces of information that are gathered from different sources can be conflicting. For instance,
the first source of cluster c3 claims that the Amazon headquarters is located in the state ”WA”,
while, the last source claims that the state of the entity is ”New York”. In the record fusion
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problem, we want to resolve such conflicts and obtain the correct values for the attributes of
each real-world entity.

 

 

 
 

Cluster Id Company ZIP City State Webpage 
𝒄𝟏 Google 94043 Mountain View CA google.ca 
𝒄𝟏 Google Inc. 940 43 Mountains View California Google.com 
𝒄𝟐 Microsoft 98052 Redmond WA MS.com 
𝒄𝟐 MICROSOFT 98052 Seattle Washington msn.com 
𝒄𝟐 Microsoft Corp. 56419 Redmond WA microsoft.com 
𝒄𝟑 Amazon <Null> Seattle WA amazon.co 
𝒄𝟑 Amazon Inc. 98109 Seattle <Null> amazon.ca 
𝒄𝟑 AMZN INC 98109 Seattle Washington amazon.com 
𝒄𝟑 Amazon 98052 <Null> New York amazon.com 

Figure 6.1: An example of clusters with conflicting values for each cluster-attribute.

Many probabilistic fusion methods depend on the availability of the records source informa-
tion (or source information in short) as part of the schema, and often build models to estimate the
“trustworthiness” of sources [8, 48, 50, 60, 63, 116, 175, 194, 199, 202, 204, 205, 209]. However,
calculating the trustworthiness of a source is not trivial and can significantly vary in different
parts of the data. For example, in some instances, limited ground truth is used for calculating an
initial estimation of the sources “trust score” [59, 79]. In other scenarios, all sources might be
equally good/bad and these source-dependant methods are reduced to simple majority voting and
fail to take other effective signals into account. Furthermore, in many real-world scenarios, we
may not have any explicit source information altogether, e.g., in deduplicating a single-source
dataset as we show in the following example.

Example 6.0.2. Figure 6.2 shows a tabular data containing tuple id’s, person names, occupa-
tion, and address and illustrates the task of a typical deduplication approach. A deduplication
technique produces a table with the clustering of those records, where each cluster refers to the
same real-world entities. The process of finding the true records for entities is called the “golden
record problem”. In this setting, there is no information about sources, as all records might have
come from the same source.

In the golden record problem, the concept of “source” might not be even applicable since
the data from one source can have duplicates. Current approaches either use techniques such
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Deduplication 
Process

 

ID Name Occupation Zip 
𝑡1 Bob Adams Student N2L 3G1 
𝑡2 L. Sims Manager 38241 
𝑡3 Bob Adams Intern 10011 
𝑡4 Alice J. Student 94309 
𝑡5 Lisa Sims Manager 38 241 
𝑡6 Alice J. Professor 53706 
𝑡7 B. Adams Intern 10-011 

Input 

 

ID Name Occupation Zip 
𝑡1 Bob Adams Student N2L 3G1 
𝑡3 Bob Adams Intern 10011 
𝑡7 B. Adams Intern 10-011 
𝑡2 L. Sims Manager 38241 
𝑡5 Lisa Sims Manager 38 241 
𝑡4 Alice J. Student 94309 
𝑡6 Alice J. Professor 53706 

⇢
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Output 

Figure 6.2: A typical deduplication task.

as heuristic aggregation rules, majority vote or involve humans annotators to resolve conflicts
via learned transformations [51]. In this case, We show experimentally that naı̈ve methods like
choosing the value provided by the majority vote of sources often lead to inaccurate and un-
reliable results (see Section 6.6.2). Human-in-the-loop approaches have multiple challenges,
including (1) they can be prohibitively expensive and time-consuming depending on the number
of clusters, and difficult to resolve conflicts; (2) they often assume users do not make mistakes,
or they need to involve multiple voters introducing new types of conflicts that need additional
resolution mechanisms; and (3) a global process to aggregate human decision in a consistent
way may still be needed. For example, when the human votes are conflicting, the challenge to
conform their suggestions and selecting the correct vote still remains. In summary, the common
challenge between “data fusion” and “golden record” is fusing multiple records into a smaller
set of true records, which we call it “record fusion”.

Recently, multiple principled machine learning (ML) approaches have been proposed for
the data cleaning problems [42, 96, 177]. In this chapter, we show that an ML inference model
that takes into account all available signals (statistical properties and integrity constraints) can
solve the record fusion problem. The problem shares some technical challenges with these ML-
cleaning approaches. These include: (1) designing a rich representation to capture the structure
of the data and all the signals needed to impute the fused values; and (2) learning from noisy and
partial information. While we show how to solve these challenges in the clustered data settings,
an additional new challenge that we also address in this work is generating enough “cluster”
training data (via data augmentation) to train the rich representation model.

6.1 Approach and Technical Challenges

We propose a learning framework for record fusion based on weak supervision approach [173];
our framework automatically fuses records in the clusters by leveraging all related information,
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i.e., integrity constraints and data rules, quantitative statistics, and source information if available.
Our ML-approach addresses multiple technical challenges:

I [Model] To infer the correct values, an expressive model is required to capture all data char-
acteristics. Specifically, the representations models should cover all data context features that
describe the distribution governing the generation of the dataset.

II [Training Data] An expressive model needs enough training data to achieve an acceptable
level of confidence. However, gathering enough labeled examples is a costly, error-prone, and
sometimes impossible process. In addition, each training example is a cluster of records, which
needs different labeling mechanism. Hence, we need a way to automatically generate additional
training data from the limited ground truth available.

III [Partial Information] For designing a reliable ML-approach, we need to have complete
information to generate appropriate features. Labeled data gives us limited observations of the
whole truth. The model need to learn from partial and noisy estimates of the correct values and
an appropriate mechanism to improve prediction iteratively.

We address the aforementioned challenges and propose an ML-based framework for record
fusion. The framework iterates over multiple modules to learn the representation of the input
data, generate enough training data to learn the model parameters, and produce a probabilistic
representation of the final fused record (Section 6.2.2). We highlight the following concrete
contributions:

(1) We introduce representation models that capture various characteristics of the data, with or
without source information, providing a rich input to the inference model for predicting the val-
ues of the fused record (Section 6.3). (2) We introduce a novel generative data augmentation
process, which generates additional artificial training data clusters for learning the model pa-
rameters. This process resolves the problem of limited training data (Section 6.4). (3) To address
the partial information challenge, we introduce an iterative mechanism that works as a Hard-
Assignment Expectation Maximization approximation scheme to estimate model parameters and
provide robust estimates (Section 6.5).

Finally, we evaluate our framework on multiple real-world datasets, where we demonstrate
its ability to determine the correct values for real-world entities, and we show that probabilistic
inferences with sufficient training data are a valid modeling tool for the record fusion problem
(Section 6.6). We highlight relevant previous works in Section 6.7.
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GT

Figure 6.3: Overview of Record Fusion system. The system can learn from heterogeneous for-
mats of correct data. For example, the correct Date is shown in different formats and the inference
model still can approximate the correct record representations.

6.2 Problem Definition and Solution Overview

We define “Record Fusion” as the process that takes a collection of clusters as input, where
each cluster contains a set of tuples and outputs a record representation for each cluster. The
record representation follows a probabilistic semantics that we formally describe in the following
section.

6.2.1 Problem Definition

The input is a relational dataset D, with a clustering C that defines partitions over tuples in D.
D has a schema S = R ∪ {cid}, where R = {r1, r2, . . . , rN} denotes attributes of D, and cid
identifies the cluster of each tuple. Let Cluster ci ∈ D denotes the set of tuples in D with the
same cid = i, and ci(rj) denotes the set of unique values of Attribute rj ∈ R in Cluster ci ∈ D.

Let G be a data set with the same schema as D that provides a probabilistic representation
of the clusters in D. For each Tuple gi ∈ G that corresponds to Cluster ci ∈ D and Attribute
rj ∈ R, gi.rj is a probability distribution V ∗ci,rj over the values ci(rj). Finally, besides D, we are
also provided with a training dataset GT ⊂ G. V ∗ci,rj is given for each Attribute rj ∈ R and every
Tuple ti ∈ GT . Optionally, a set of data rules expressed as denial constraints Σ are provided. We
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define GU = G\GT as the set of unknown true record representations. The problem definition is
stated as follows:

Definition 6.2.1 (Record Fusion). For each Cluster ci ∈ D, Record Fusion produces a unified
representation tuple gi = (fi,1, fi,2, . . . , fi,N), where fi,j is a probability distribution over values
ci(rj). Specifically, fi,j is an estimator for the ground truth V ∗ci,rj that minimizes a given distance
function ∆(fi,j, V

∗
ci,rj

) conditioned on the observed input data D, the partial ground truth GT ,
and the set of data rules Σ (if given).

Since the record fusion provides a probability distribution over possible values in each attribute of
each cluster, there are multiple ways to consume it. One way is to provide the most likely value(s)
of each attribute in each cluster as our best approximation for the golden record problem.

Definition 6.2.2 (Marginal MAP Record (MMR)). Given the output of Record Fusion (Defini-
tion 6.2.1) for a cluster ci ∈ D and a record representation gi = (fi,1, fi,2, . . . , fi,N); ĝi =
(v̂i,1, v̂i,2, . . . , v̂i,N) can be produced, where v̂i,j is the maximum likelihood values from the dis-
tribution fi,j .

Note that if the partial ground truth GT ⊂ G was provided as a set of correct values for each
attribute and tuple in GT , we can induce a uniform distribution over these values. Note also that
one of the attributes ri ∈ R can correspond to the source of records in D.

6.2.2 Solution Overview

We now present the architecture of our framework. Theses modules are used (i) to learn a gener-
ative process to produce more training data by adding artificial clusters; and (ii) use an iterative
approach to learn a representation model of signals jointly with a classifier that is used to find
record representations of the input dataset. Our framework takes as input a noisy dataset D, a
training data GT , (optionally) a set of denial constraints Σ, and (optionally) source information.
The four core modules are described in follow:

Module 1: Representation Learning This module combines different properties and signals
to capture the distribution of true record representation, which maps each cell in D to a fixed-
dimension real-valued vector. To obtain this vector, we concentrate on the output of different
representation models, each of which targets a specific context (i.e., attribute, tuple, or dataset
context) (see Section 6.3.1).

Module 2: Model Training and Classification This module is responsible for training a multi-
class classifier, which given the representation of cells of a cluster, generates a distribution with
the size of the distinct values of each attribute of clusters (see Section 6.3.2).
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Module 3: Cluster Augmentation Due to the need for training data, this module learns a gen-
erative process to generate additional training data by sampling and transforming the correct
representation records, GT . The output of this module is a set of additional clusters GA that are
legitimate to be used for training fusion models parameters. This module generally can be used
for any fusion algorithm that uses statistical properties of data. (see Section 6.4).

Module 4: Feedback Due to learning with noisy and partial information (correct predictions
of other attributes of cluster), we perform multiple iterations of a Hard-Assignment Expectation
Maximization process [122] (see Section 6.5).

An overview of how the different modules are connected is shown in Figure 6.3. First, Mod-
ule 1 augments training data with additional artificial clusters. Then, Module 2 grounds the
representation model of our record fusion model. Subsequently, the representation model is
connected with the multi-class classifier model in Module 3. After generating a record represen-
tation, the model gets feedback from Module 4, and so it can modify the representation and the
predictions.

6.3 Representation of Data Cells

From Definition 6.2.1, givenD and the training dataGT ⊂ G, we want to estimate the probability
distribution V ∗ci,rj for each cell gi,j ∈ G\GT . To estimate V ∗ci,rj , we learn a representation modelQ
that approximates data distribution properties on the attribute, tuple, and cluster level, and couple
them with a prediction model M that maps a value representation based on Q to a probability
distribution. The modelQ builds upon a variety of features computed either based on the initially
observed values (static features) or based on intermediate inferences of the true cluster values
(dynamic features). We require Q to be such that the likelihood of true record representations in
GT given Q to be maximum, while the likelihood of other record representations be low. This
property is necessary for a model M to assign high-probability to correct cluster values and low-
probability to incorrect cluster values. We rely on representation learning techniques to learn Q
jointly with model M .

6.3.1 Representation Models

The representation model Q needs to capture the statistical characteristics of cells inside each
clusters in attribute-level, tuple-level, and cluster-level contexts. Q is formed by concatenating
the outputs of different models and signals, and maps each cell Dti,rj of tuple ti and attribute
rj to a fixed-dimension real-valued vector ht,r ∈ IRd with dimension d. Next, we review the
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representation models used in each of these three contexts. It should be noted that the introduced
models correspond to a bare-bone set that captures all settings and is currently implemented
in our prototype. Our architecture can trivially accommodate additional models (e.g. auto-
encoders) or more expressive variants of the current representation models.

Attribute-level Representation Models for this context capture the distributions governing the
values and format for an attribute. For example, the value “New Yorx” in attribute City has a
low frequency and with respect to language models, also obtains low scores. Separate models
are used for each attribute ri ∈ R in dataset D. We consider three types of models: (1) Format
model, which captures the probability distribution governing the format of the values. In our im-
plementation, we consider an n-gram model for each attribute that captures the format sequence
over the cell value (empirically, we set n = 2). Each n-gram is associated with a probability
learned directly from the dataset by using a reduced model (for example we replace all the let-
ters with A, all the numbers with N , special characters represent themselves, etc.). For each
value ci(rj), we calculate a probability by taking the product of the likelihood of each n-gram
constructing from the reduced model string value. (2) Running cluster-value feature , as our
model uses an iterative algorithm, this signal captures the compatibility of the attribute value in
a record with the running cluster value in ci(rj) (after inference). For each value in ci(rj), we
have a flag that indicates if it was the predicted value in an earlier iteration. In the first itera-
tion, the current Running cluster-value feature is set to zero for each value in ci(rj) to prevent
any bias to the learning parameters. (3) Character and token sequence is a distance metric on
the character-based representation of each value in D with the average representation of all the
values for each entity. We train a word-embedding model for each attribute, where each column
in the dataset D is considered to be a corpus and each possible value a sentence. We decompose
each possible value into its respective characters, and we learn an embedding vector for each
value. Furthermore, after the model is trained for each attribute of an cluster, we compute the
average embedding vectors of Attribute rp in Cluster cq, avgcq(rp) =

∑
j∈cq(rp) embeddingj

|cq(rp)| . Finally,
we calculate the distance of the embedding vector of each value from the average embedding
vector using the following equation, hi = −2× cos(embeddingi, avgcq(rp)) + 1 and if hi > 0 we
set hi = hi/3 to normalize the feature value.

Tuple-level Representation: Models for this context capture the joint distribution of different
attributes. These representations perform weak predictions for the possible values of each cell.
For example, if the value “New York” in attribute City appeared more often with “United States”
of attribute Country, the Tuple-level signals reveal this effect. We consider two types of models:
(1) Co-occurrence model that captures the empirical joint distribution over pairs of attributes.
As we have multiple initial values for each attribute, we use the values that are predicted in a
previous iteration for each attribute in our calculations. This model is updated in every iteration.
In the first iteration, we select the majority vote value as the initial value. Finally, it should be
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noted that we use one co-occurrence feature per pair of attributes. (2) Vote model that captures
the empirical distribution of the values ci(rj) of Attribute rj associated with Cluster ci. These
can be learned directly from the input dataset D. This representation is a scalar, which is the
empirical probability of the values in each cluster.

Dataset-level Representation: Models for this context capture a distribution that governs the
compatibility of tuples and values in the dataset D. Specifically, any functional dependency
that is valid on our correct records, Dataset-level signals capture this data integrity rule. We
consider three types of models: (1) Neighborhood-based representation that is a distance metric
on the neighborhood-based representation of each value in D with the average representation
of all the values for each entity. We train a word-embedding model, where the input dataset
D is considered to be a document, and each tuple in D is a sentence. As we mentioned in
character and token sequence signal, after the model is trained for each attribute of a cluster, we
calculate the average embedding vector of all the values for this specific attribute-cluster pair.
Finally, we can calculate the distance of the embedding vector of each value from the average
embedding vector by using the equation that we described in character and token sequence
signal. In our dataset, if the source information is given we can follow the same procedure. The
semantic of the source information signal is the level of irregularity of the given information
of a source. (2) Source model captures the source from which each value in ci(rj) came from.
Specifically, for each value, we have an indicator that specifies the source that it came from. This
signal is available if the source information is provided. (3) Constraint-based models capture the
number of violations of every possible value with the predicted values that compose the current
cluster values table. For each denial constraint in Σ (if given), we create the equivalent relaxed
denial constraints [136, 177], and for each random variable (pair of cluster-attribute) and values
in ci(rj), we have one feature per denial constraint that captures the number of violations. As
we have multiple initial values, we use the values that are predicted in a previous iteration for
each random variable in our calculations. This model is updated in every iteration, and for the
first iteration, we consider the most frequent value as the initial value. The outputs of all signals
and representations are concatenated into a single vector that is given as input to classifier M .
To achieve a high-quality record fusion model, features from all contexts need to be combined to
form model Q.

6.3.2 Record Representation Distributions

The classifierM uses a dense layer followed by Softmax to find record representations for random
variables in the dataset D. In this setting, for each attribute rj ∈ R and cluster ci ∈ D, we
consider a random variable vci,rj which takes values from ci(rj). Let Z denotes random variables
for attributes in R and clusters in D ∪ DA where DA is an additional artificial clusters which
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is generated by augmentation module (Section 6.4). The training process sets the dense layer
parameters θ to values that maximize the likelihood, L(θ) = logP (GT ∪ GA|Z; θ), where GA

is the set of augmented clusters (see Section 6.4). The model uses random variables that are
observed in the training data GT and augmented training data GA as labeled examples to learn
the parameters θ. After obtaining the record representations, probabilistic inference is used to
estimate the true values of tuples in GU . To this end, we rely on an Expectation-Maximization
(EM) algorithm to learn the distribution (given the unobserved random variables). To perform
EM we set the unobserved cluster values to their maximum a posteriori (MAP) values.

More importantly, we calibrate the confidence of the predictions of M using Platt Scaling
[91,164] in order to remove the false prior effect of the artificial training clusters that we used as
training data. Specifically, an additional linear layer is added after Softmax with size equal to the
maximum random variables domain, max

ci∈D,rj∈R
|ci(rj)|. The parameter of this layer are learned by

using data from the original distribution, GT after θ have been learned and fixed. In prediction,
we use all layers as an end-to-end entity.

6.4 Data Augmentation

We propose a data augmentation approach to leverage the amount of training data available in
the training phase of our model by learning a generative process. The augmentation process in-
troduces new clusters in the dataset, by transforming an existing cluster to another cluster format
of values. The statistical properties of Attribute r in Cluster c reflect signals like frequency, co-
occurrence, and column-based language models. Thus, assuming that the generative process has
fixed parameters during the cluster generation, we can observe an empirical distribution Îci,rj for
Cluster ci and Attribute rj in the original data. Using Îci,rj , we can generate a different cluster
c′i that gives us a new format for the incorrect values in ci, and c′i keeps all the statistical prop-
erties of ci. This approach helps us discriminate between the actual distribution of records and
other possible distributions of the cluster in more general forms. A format translation process
which generates these new values is important for the performance as biases the system to iden-
tify syntactic variations and does not focus only on instance level variations. Hence, it promotes
generalization. Our goal is to find a generative process that produces valid values based on a
given Cluster ci. Since changing the source authority introduces bias with format translation,
we suggested a separate setup for generating source information attribute (see Section 6.4.4) and
this approach applies on attributes other than source information.

We present our augmentation policy Π in Section 6.4.1. In Section 6.4.2, we discussed how
to design a format translator function. Generating a cluster with a new format is described in
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Algorithm 26: Overview of Data Augmentation
Input: Original cluster ci with gi ∈ GT , policy Π
Output: Augmented cluster c′i

1 Sample from D\ci with policy Π to get candidate format;
2 Learn format translation process Φ;
3 Apply Φ on ci to produce c′i;
4 [OPTIONAL] Add source information to the generated cluster

Section 6.4.3. Finally, we describe how to add the source information attribute to augmented
clusters in Section 6.4.4.

6.4.1 Augmentation Policy

We pick a cluster following a sampling policy over the initial clusters and generate a new cluster
of values with a new representation format. We have a set of policies Π = {Πc,Πct , Πa,Πv},
which supports the training process by selecting the clusters that in prediction have lowest con-
fidence. The policy selects two clusters, an original cluster c and a target cluster ct, using the
sampling policy Πc and Πct respectively. Πc selects the first cluster which is used to generate
a new artificial cluster c′ from its values and Πct selects the cluster that the algorithm wants
to capture its format for cluster c. As we said, we use the output of the running model M to
select the clusters with lowest confidence in predictions. We select cluster ci with probability
1−minrj∈R minv′∈ci(rj)\ arg maxci(rj) M(v) |M(v′) −maxv∈ci(rj) M(v)| which is the gap between
the two most probable values, and it has direct relationship to the model confidence. In the first
iteration (Section 6.5), the model is not trained, so we select the original cluster(c) randomly. For
each value in c, a new ct is selected randomly, because we assume no prior information. Πa is
the selecting policy of an attribute among the attributes of c. In this work, to prevent generating
inconvenient formats, we use the same attribute of the value currently is selected to change in c.
Πv is the policy of choosing a value among distinct values in the selected attribute of ct.

6.4.2 Format Transformation

To produce a translation function of string formats, we need to generalize string values to a more
format-informative string and then learn a function that takes as input the original format and
produces a string in the target format. We also need to determine a policy which will apply this
translation to a corresponding string.
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Automaton Representation

Each v ∈ ci(rj) in cluster ci and attribute rj is considered as a string. It should be noted that
many regular expressions (RE) can generate v.

Example 6.4.1. All the following regular expressions parse the string ’aab’. A1 : a∗ − b, A2 :
a−a∗− b, A3 : a∗−a∗− b, A4 : a−a− b, A5 : a∗−a− b. Also, we can replace b with b∗, b− b∗
and b∗ − b. In this model, we only considered two alphabets, and “+” operation was not used.

Therefore, learning formats from strings is not a well-defined task. To solve this problem,
we need an unambiguous grammar which for every valid string has a unique leftmost derivation
or parse tree. We use a similar approach presented in [72], where we combine the elements that
cannot be parsed, known as the Glushkov automaton [23]. For a language L over alphabet Λ,
we define: (1) first(L) = {b ∈ Λ|∃w ∈ Λ∗ : bw ∈ L}( where ∗ determines kleene star).
(2) last(L) = {b ∈ Λ|∃w ∈ Λ∗ : wb ∈ L}. (3) follow(L, a) = {b ∈ Λ|∃v, w ∈ Λ∗ :
vabw ∈ L}. Let QE be a finite set of states, Λ be a finite set of alphabet symbols, δE be
a transition function, ql ∈ QE determines the start state, and FE ⊆ QE be a set of accept
states. The Glushkov automaton GE = (QE,Λ, δE, ql, FE) has the following properties: (I)
QE = µ(Λ) ∪ {ql}, where ql 6∈ µ(Λ) is the initial state. µ(.) puts marking index on element
of a set e.g. µ((a|b)∗.a.(b+.a)∗) = (a1|b1)∗.a2.(b

+
2 .a3)∗. (II) For a ∈ Λ, δE(ql, a) = {χ ∈

first(µ(E))|σ(χ) = a}. σ(.) is the dropping of subscripts reverse of µ(.). (III) For a ∈ Λ,
χ ∈ µ(χ), δE(χ, a) = {y ∈ follow(µ(E), χ)|σ(y) = a}. (IV) FE = last(µ(E)) is the set
of final states; add ql to FE iff λ ∈ L(E). We also know that the regular expression L is
unambiguous iff GE is deterministic. For all the types of finite automatons considered in this
work, we use notions like initial or final state as introduced for the Glushkov automatons.

Learning Automaton

Since we have a unique automaton for each string under the assumption of unambiguous reg-
ular expressions, we can learn formats from strings. The learning goal is to obtain a regular
expression that represents string’s format. Let α = {a,A, . . . , z, Z}, β = {0, 1, . . . , 8, 9}, and
Cs = {?, !,#, $,%, ; , :, space, . . . } be the set of special characters. We define the following
sets A = {w ∈ α+||w| = 1}, B = {w ∈ α+||w| > 1}, N = {w ∈ β+||w| = 1}, and
M = {w ∈ β+||w| > 1}. We assume Λ = {A,B,N ,M, } ∪ Cs and QE = µ(Λ) ∪ {ql}. We
assume all examples generated from the Glushkov automaton with Λ and QE .

Prepossessing of training data The example of the introduced model should conform with
alphabet Λ, so when we get value v in a cluster, we consider it as string and we apply the process
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τ :
[
[a− z]∗.[A−Z]∗.[0− 9]∗.Cs

]+ → Λ+ to translate the v to a v̂ = τ(v) ∈ Λ∗. This process is
outlined in Algorithm 27. We keep the previous character ls and a Kleene star flag fKleene, and
based on seeing more characters, numbers, or special characters, we determine the states. This
process is called blocking training examples. For example string s = ”New Y ork −#401H3”
blocks to τ(s) =

[
[New][ ][Y ork][−][#][401][H][3]

]
= BspaceB −#MAN .

Algorithm 27: String To States (τ )
Input: String v = s0s1s2 . . . sn, Automaton Alphabet Λ, The Set of alphabet α, The set

of numbers β
Output: String v̂ ∈ Λ∗,Function τv : String → Λ∗

1 ls ← s0, fKleene ← False, and v̂ ← ∅;
2 for s ∈ [s1, s2, . . . , sn, ∅] do
3 if ls 6= s then
4 if ls ∈ α ∧ fKleene then
5 v̂ ← v̂.B
6 else if ls ∈ α ∧ ¬fKleene then
7 v̂ ← v̂.A
8 else if ls ∈ β ∧ fKleene then
9 v̂ ← v̂.M

10 else if ls ∈ β ∧ ¬fKleene then
11 v̂ ← v̂.N
12 else
13 v̂ ← v̂.Cs
14 end
15 fKleene ← False;
16 else
17 fKleene ← True;
18 end
19 ls ← s;
20 end
21 return v̂, τv

String matching After translating the input string to state strings, we have only one halt state,
so the generated regular expressions are linear. Using the linear property, we can consider the
representation of the states of the automaton as strings. We generate a state string for each
value. Informally, the similarity between state strings indicates that they have similar formats.
Algorithm 28 performs a transition between the two state strings. From Algorithm 28, we have a
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translation from automaton A to the second automaton A′. We use this translation as a protocol
to transform the corresponding strings that are generated from these automatons to each other.

Transformation Policy

Applying translations between machines might lose some string information because some parts
of the original automaton string are not compatible with the target automaton format. On the
other hand, we do not inject any information to the original automaton string, because we do not
want to alter the original value distribution (adding symbols make bias in the target distribution
especially in the language models). Therefore, we normalize the transformations, by ignoring
the transformations that inject information. This is equivalent to r 7−→ r′ where r 6= ∅ at the
index pos, so the set of these transformations make a surjective function.

After we apply a transformation to automaton A, we apply the same transformation to the
corresponding original string. The new string is a translation of the original string parsed with
the target automaton (new format). If the string new format is the same as before we reject that
and repeat the process with another value. Note that the source of the new formats can be given
as input by domain expert, in that case Πct , Πa and Πv are useless, and we select new formats
from external information provided.

Formally, let string s be the original string with corresponding learned automaton (RE) As.
Applying Algorithm 28 gives us Φ(As,At) a set of transformations from As to a target automaton
At. We normalize the transformations and obtain Φnorm

(As,At)
. If A′s = Φnorm

(As,At)
(As) be the automa-

ton after translation, since we already have τs, the function that translates string to state, so we
can calculate s′ = τ−1

s (A′s), which is a new format of the string.

Example 6.4.2. We have the string s = ”2016 − 04 − 12”, so As = τs(2016 − 04 − 12) =
M−M−M and our target automaton is At :M/M/M then we obtain two transformations
ΦAs→At = {[− → /, [5, 6)], [− → /, [8, 9)]}. The normal version of Φ(As,At) is the same, so
s′ = τ−1

s (Φnorm
(As,At)

(As)) = ”2016/04/12”. As another example, Let s = ”2016 May 12” and
the same At, so we have, As = τs(2016 May 12) = MspaceBspaceM and ΦAs→At = {[space →
/, [5, 6)], [space→ /, [9, 10)]}, so s′ = τ−1

s (Φnorm
(As,At)

(As)) =
”2016 04 12”.

In summary, using transformations creates the surjective function Φnorm
(As,At)

(.).
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Algorithm 28: Transformation Learning (TL)
Input: Automaton pair e = (A,A′), Alphabet Λ, The set of special characters Cs
Output: A list of valid transformations Φe

1 if A = ∅ ∧ A′ = ∅ return ∅ ;
2 l← Longest Common Substring(A,A′);
3 if l = ∅ then
4 if (Length(A) ≥ 2 ∧ {∃a ∈ A ∧ a 6∈ Cs}) ∨

(Length(A′) ≥ 2 ∧ {∃a ∈ A′ ∧ a 6∈ Cs}) then
5 Ac ← replaceA(a, ”C”) : ∀a ∈ A ∧ a 6∈ Cs;
6 A′c ← replaceA′(a, ”C”) : ∀a ∈ A ∧ a 6∈ Cs;
7 norm(Ac)← replaceAc(C

+, ”C”) and norm(A′c)← replaceA′c(C
+, ”C”);

8 TL(norm(Ac), norm(A′c))];
9 else

10 Add [(A 7−→ A′, pos)] in Φe /*pos shows the position of applying the
transformation */;

11 end
12 else
13 lA, rA ← A \ l /* Generate left and right substrings */;
14 lA′ , rA′ ← A′ \ l;
15 if similarity(lA, lA′) + similarity(rA, rA′) > similarity(lA, rA′) + similarity(lA′ , rA)

then
16 TL(lA, lA′) and TL(rA, rA′);
17 else
18 TL(lA, rA′) and TL(rA, lA′);
19 end
20 end
21 Remove all identity transformations from Φe;
22 return Φe
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Figure 6.4: The architecture of source classifier

6.4.3 Cluster Augmentation Algorithm

Let ci[rj] denote all records in attribute rj in cluster ci. For each attribute rj ∈ R, we compute the
number of occurrences of each v ∈ ci(rj) in ci[rj], as with n(ci,rj)(v). The automaton translation
applies to all values v ∈ ci(rj) except the correct value of ci(rj). Afterwards, we reconstruct
the statistical representation of each augmented value v′ = τ−1

v (Φnorm
(Av ,AΠ(GT \{ci}))

(Av)) with in-
formation of n(ci,rj)(v), v ∈ ci(rj) which

∑
v∈ci(rj) n(ci,rj)(v) = |ci[rj]| = |ci|. This process is

outlined in Algorithm 29.

In Algorithm 29, gt(c, r) provides the correct value of Attribute r in Cluster c. The statistical
property of the augmented cluster is the same with the original cluster which gives us robustness
for the calculation of the statistical signals. If we have some information I, we can apply a
conditional distribution Π ∼ D(GT |I) for our selection policies.

6.4.4 Source Information Augmentation

The augmentation algorithm generates artificial clusters. As you can imagine, the generative
process cannot be used for the source information attribute. Therefore, After the augmentation
algorithm generates all attributes but the source information, we can use language models to
extract the format of generated rows and then use the sources’ signature to find the most probable
source for them. We use format and Character and token models over state strings of the original
clusters, and use these representations to train a 2-layers neural network with a Softmax that
generates a probability distribution over all sources of the dataset (see Figure 6.4). For model
optimization, we use logistic loss.

In the prediction, we generate the representation model for the augmented cluster’s row using
the representation models, and by passing them through the learned model, we obtain a distri-
bution over all sources. We use MAP to assign a source to the input row. We do this prediction
for every row in the new cluster to fill its source attribute. The augmented data with source in-
formation attribute could also be used for previous approaches. Specifically, approaches that use
statistical property of input dataset for data fusion.
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Algorithm 29: Cluster Augmentation (CA)
Input: Dataset D, Training Dataset GT , Automaton Transformation Φ, String to State

Function τ , Cluster Selection Policy Π
Output: Augmented cluster c′

1 Empty cluster c′ with Schema S;
2 ci, ct ∼ Π(GT |ci 6= ct);
3 for rj ∈ R do
4 Dictionary Cor ← ∅;
5 trci ← gt(ci, rj), trct ← gt(ct, rj);
6 for v ∈ ci(rj) do
7 if v 6= trci then
8 Select rk ∈ R, then vt ∈ ct(rk)\trct with policy Π;
9 Av ← τ(v), At ← τ(vt);

10 old← True;
11 while old do
12 v′ ← τ−1

v (Φnorm
(Av ,At)

(Av));
13 if v′ 6∈ D then
14 c′(rj)← c′(rj) ∪ v′;
15 Append Cor[v]← v′;
16 old← False;
17 end
18 end
19 else
20 c′(rj)← c′(rj) ∪ v;
21 Append Cor[v]← v;
22 end
23 end
24 for v ∈ ci[rj] do
25 Append Cor[v] to c′[rj];
26 end
27 end
28 return c′
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6.5 Iterative Learning

In our framework, we use an iterative process to improve the learning performance; the key idea
here is to use Hard-Assignment Expectation Maximization [122]. The framework, at the end of
each learning phase, evaluates its output using Hard EM, to maximize the probability of expected
values.

6.5.1 Hard Expectation Maximization

In the case of complete data, we have enough statistical sufficiency to obtain a conditional prob-
ability distribution, but this might not be the case when we have missing values. When some
observations are missing, one approach is to randomly choose a value from the random variables
domain or use default values. However, such approach introduces a bias, and the estimation is
skewed toward the applied policy for filling in missing values. Moreover, in the random assign-
ment, we will not learn any dependencies between hidden variables because they are indepen-
dently generated.

An alternative algorithm for optimizing a likelihood function is Expectation Maximization.
This approach is useful when we have a hidden random variable or incomplete data. The Ex-
pectation Maximization algorithm starts with an arbitrary point, either parameters θ or hidden
variables uo ∈ U , where U is the set of cells in G that are missing observations. The algorithm
then repeats two steps: first, it uses the current parameters to complete the data, using a proba-
bilistic completion of the different data instances to estimate the expected value of the sufficient
statistics (Expectation step or E-step), then it treats the completed data as if it were observed and
learn a new set of parameters for the next iteration (Maximization step or M-step).

In our framework, we assume the true value of a record to be a random variable, and the
classes (for the prediction task of modelM ) to correspond to the different values from the domain
of the record (the values ci(rj)). Each class c ∈ ci(rj) is associated with a probability distribution
over the features of the instances in the class, P (x|c). This approach views the data as the result
of a mixture distribution of classes and attempts to use the hidden variable to separate the mix-
ture into its components. In this setup, the E-step involves computing the probability of different
values of the class variables for each instance, but since we only need one value from the esti-
mation of true record representation for the next iteration, we should avoid a soft classification.
Therefore, we consider “hard clustering”, where each instance contributes all of its weight to the
cluster to which it is most likely belongs to and if we have more than one we select one randomly.
Given parameters θt, the cluster of instance m is cm = random(arg maxc P (c|h(m), θt)), where
h(.) is the featurization model described in Section 6.3.1, andm is an attribute ofR in a cluster of

170



C. By filling the unobserved values (which are clusters) with no true record representation (uo)
and add them to the set of observed true record representation, GC\T , to have (D+)t, which is
the completed set of the data at step t. In M-step, we calculate θt+1 using (D+)t by maximizing
likelihood estimation (MLE), θt+1 = arg maxθ L(θ : (D+)t).

6.5.2 Recurrent Process

As we mentioned above, our model is built using a variety of static and dynamic features, which
use current cluster values, as they change in each iteration (see Section 6.3.1). In fact, in every
iteration, we will get more accurate predictions, so we will be able to recalculate all the dynamic
features more accurately and proceed to the inference of classification variables once again. This
approach is inspired by Neville et al. [150], which uses upon the framework’s prediction.

In EM, one can start by initializing parameters or use an auxiliary method to complete the
data. The first method can make trouble if the initial point does not converge into the global
optima. Therefore, we use Majority Vote to complete the data with the most probable answers.
Notice that Majority Vote is not a perfect algorithm, but it can deal with the problem of the
parameters initialization that are far from feasible space. Given the input source observationsGT ,
augmented training data GA and U , the framework firstly using Majority Vote (MV) estimates
true record representation for unobserved random variables, GU = MV (DU), and the completed
data initialized as (D+)0 = GT ∪ GA ∪ MV (U). Then, the model M parameters θ can be
obtained by MLE, LM(θ) = logP (θ|(D+)0). Afterward, the probabilistic inference is used to
predict true record representations from the domain of objects uo ∈ U . We need all true record
representations to calculate dynamic representation models, but for some random variables, the
true record representation is unknown. Algorithm 30 shows how we calculate the expectation
of our model M t at iteration t to predict its true record representations and how we use this
prediction to maximizes its likelihood. In all iterations, we fix the true record representation of
the observed random variables.

6.6 Experiments

We evaluate our record fusion framework using real datasets with various rules. We answer the
following questions: (1) how well does the record fusion framework work as a data fusion system
compared to the state-of-the-art data fusion systems when the source information of the entries
is known. (2) how well does it perform when the source of entries are not available compared
to [51] and Majority Vote. (3) what is the impact of different representation contexts on data
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Algorithm 30: Iterative Learning (IL)
Input: Set of observed random variables GT , Set of augmented random variables GA,

Set of unknown random variable U , Domain of Random Variables P , Number of
Iterations I , Featurizer Function h, Classifier M

Output: Empirical estimation Ŷ
1 Initialize (D+)0 ← GT ∪GA ∪MV (U);
2 for t = 1 to I do
3 X(t−1) ← h((D+)(t−1), P ) (calculate the representation vectors);
4 Obtaining MLE of LM(θ) = logP (θ : X(t−1));
5 (D+)t ←M(X(t−1), P ; θ) (new predictions using model M );
6 (D+)t ← (D+)0[GT ∪GA] (replace original values of observed random variables);
7 end
8 Ŷ ← (D+)I ;
9 return Ŷ

Table 6.1: Datasets used in our experiments.

Dataset Size Clusters Attributes # Sources has constraints?

Flight 57,222 2,313 6 37 No

Stock 1 113,379 2,066 10 55 No

Stock 2 107,260 1,954 8 55 No

Weather 43,003 13,689 6 11 Yes

Address 3,287 494 6 N/A* Yes

S Rel 28,291 4,460 2 523 No

S Adult 10,537 1,517 2 603 No

* N/A = Address dataset basically has been generated without sources.
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fusion. (4) is cluster augmentation a valid approach to solve the lack of training data for record
fusion problems. (5) how well our iterative algorithm can solve the problem of learning from
noisy and incomplete data.
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Figure 6.5: Ablation studies to evaluate the effect of different representation models.

6.6.1 Experimental Setup

We describe the datasets, metrics, and settings that we use in our experiments.1 We use seven
datasets with different domain properties and usage described in Table 6.1.

Flight [134] is a benchmark dataset that contains flights information from the flight domain.
The dataset focused on 2, 313 flights departing from or arriving at the hub airports of the three
airlines. The ground truth is created by domain experts. Stock 1 and 2 [134] contain data from
popular financial aggregators such as Yahoo! Finance, Google Finance, and MSN Money, official
stock-market websites such as NASDAQ, and financial-news websites such as Bloomberg and
MarketWatch. the ground truth of Stock 1 is created by assuming that NASDAQ always provides
the correct value. the ground truth of Stock 2 is created by taking the majority value provided by
five stock data providers. Weather is collected for 30 major USA cities from 11 websites about
every 45 minutes. We consider (city, time) as the (cluster) key. There are in total 32 collections
in a day. The attributes are manually mapped, and there are 6 distinct attributes. The ground
truth is provided by domain experts. Address reflects applications for discretionary funding to
be allocated by the New York City Council. For each record, the attributes that represent legal
information, address, and geographical properties of location are selected. The minimum size
of each cluster is two and the ground truth has been extracted from the ISBNsearch organization
website. An interesting feature of the Address dataset is that it does not contain any source
information (S Rel) [24]. Each cluster contains a topic and a document, and sources are asked
to choose the relevance of the topic w.r.t. the document by selecting one out of four choices:
‘highly relevant’, ‘relevant’, ‘non-relevant’, and ‘broken link’. S Adult [102]. Each task contains
a website, and workers are asked to identify the adult level of the website by selecting one out
of four choices: ‘G’ (General Audience), ‘PG’ (Parental Guidance), ‘R’ (Restricted), and ‘X’
(Porn). For the last two datasets, we only select clusters that we have their ground truth.

1The implementation and datasets are publicly available on Github. It is removed for double-blind policy and
will appear in the final version.
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Methods We compare our approach, referred to as RFS when we have source information,
RFW when source information is not available and there is no data augmentation, and RF+

W

when source information is not available and we use data augmentation, against several data
fusion methods. First, we consider 13 baseline data fusion and crowdsourcing models that need
source information (i.e. which source generated each row in the cluster). NB: This corresponds
to Naive Bayes. Source accuracies are estimated as the fraction of times a source provides
the correct value for an object in the ground truth. ACCU [59] is the Bayesian data fusion
method without source information copying. CATD [132] extends source reliability scores with
confidence intervals to account for sparsity in source observations. SSTF [205] leverages semi-
supervised graph learning to exploit the presence of ground truth data. SlimFast[SF] [180] is
a data fusion based on statistical learning over discriminative probabilistic models. DS [48]
maximizes the likelihood of the observed labels given sources using the EM algorithm. ZC [50]
uses PGMs without considering priors and estimates the correctness of sources. GLAD [199]
extends the ZC idea with a model that gives difficulty coefficient to each cluster. MM [209] gives
a different score to each source and uses Minimax algorithm to learn a probability for each source.
BCC [116] maximizes the posterior joint probability distribution to find the correct labels. CBCC
[194] extends BCC by considering community of sources and calculating a membership score for
each cluster into these communities. LCF [175] extends DS to incorporate prior distribution on
source score modeling. PM [8] gives a score [0,+∞) to each source and iteratively determines
the score to maximize the likelihood of the observation.

We also compared our method with two approaches that require no source information. Ma-
jority Vote (MV) considers the maximum frequency value as the true record representation in
each cluster-attribute. UM [51] is an entity consolidation method which uses human-in-the-loop
to request the user to verify the equivalence of records, Majority Vote can also be used to obtain
correct records. To see the rest of the methods refer to [208].

Evaluation Setup: To measure precision, we use Precision (P) defined as the fraction of true
record representation predictions that are correct. For training, we split the available ground
truth into three disjoint sets: (1) a training set T , used to find model parameters; (2) a validation
set, which is used for hyperparameter tuning; and (3) a test set, which is used for evaluation.
To evaluate different dataset splits, we perform 50 runs with different random seeds for each
experiment to ensure that we gain robust results for Precision, we report the median performance.
The mean performance along with standard error measurements is also reported. Seeds are
sampled at the beginning of each experiment, and hence, a different set of random seeds can
be used for different experiments. We use ADAM [119] as the optimization algorithm for all
learning-based models and train all models for 500 epochs with a batch size of ten examples. We
run Platt Scaling for 50 epochs. All experiments were executed on a 12-core Intel(R) Xeon(R)
CPU E5-2603 v3 @ 1.60GHz with 64GB of RAM running Ubuntu 14.04.3 LTS.
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6.6.2 End-to-End Performance

We evaluate the performance of our approach and competing approaches on data fusion in all five
datasets. Table 6.3 summarizes the precision’s Median, Average, and Variance of each method.
For Flight,Stock 1, Stock 2, and Weather, we set the amount of training data to be 5% of the
total dataset. For Address, we set the percentage of training data to be 10% (corresponding to 40
clusters) since it is fairly small. The number of iterations is 15, and in the case of using the data
augmentation, the amount is 5% of clusters.

As Table 6.3 shows, our method consistently outperforms all other methods. In the no sources
information case, we see improvements of ∼ 65/55 points for Flight with/without data augmen-
tation. More importantly, we find that our method is able to achieve low standard error in all
datasets despite the different clusters and true record representation distributions in each dataset.
This is something that seems challenging for prior data fusion methods and reduce the con-
sistency and reliability of their results. Despite the fact that source information is an important
factor for other algorithms, RF can obtain high precision. This is because RF model estimates the
actual data distribution by extracting source signatures using attribute correlation from datasets.
For instance, for Address, we see that MV can find many true record representations—it has
high precision—indicating that most true record representations correspond to the statistical fre-
quency. Overall, our method achieves an average precision of 93/87% without sources informa-
tion with/without data augmentation, and an average precision of 99% when sources information
is available across these diverse datasets, while the performance of competing methods varies
significantly.

Table 6.3 shows the result of the data augmentation with source information, as you can see
the data augmentation on average improve precision of methods by 6 percents. The method that
more rely on the statistical sufficiency of the data or their model are more complicated get more
increase.

For CATD, we see that it achieves relatively high-precision results in Flight and Stock 1, but
it is not consistent on all datasets. Similar performance is exhibited by Count. We see that Count
achieves high precision when the correct answers have significant Bayesian support (i.e., occur
relatively often), due to the fact that this dataset has a strong Co-occurrence signal (see Figure
6.5). Finally, the results of SlimFast and SSTF varies drastically from 0.220 for Flight to 0.779
for Stock 2, and under no settings they give the best performance.
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6.6.3 Representation Ablation Study

We perform an ablation study to evaluate the effect of different representation models on the
quality of our system. Specifically, we compare the performance of RF when all representation
models are used versus variants of RF, where one or a set of representation models is removed
at a time.

Single Representation Effect

In Figure 6.5, we report the precision of the different variants as well as the original RF. It is
shown that removing any feature has an impact on the quality of the predictions of our model.
More importantly, we find that different representation models have a different impact on various
datasets. For instance, the most significant drop for Stock1 and Weather is achieved when the co-
occurrence model is removed, while for Flight and Address, the highest drop is achieved when
the voting model is removed. Therefore, the representation models that we considered have a
positive impact on the performance of our system. As it can be observed in Figure 6.5, for
example, in the dataset Fight, removing Running-cluster value representation from the model
has a minimum impact on its performance, and the parameters of this representation after the
model is trained, have values that have a minimum impact.

Group Contexts Effect

Figure 6.6 shows the effect of a group of representation models corresponding to different con-
texts. It can be observed that removing any contexts group has an impact on the quality of

179



predictions of our model. Furthermore, for datasets that have various properties, different con-
text groups have the most prominent effect on the performance of RF. For Flight, Stock 1, and
Weather, the largest drop is achieved when the tuple contexts group models are removed, while
for Address, the highest drop is achieved when the dataset contexts group models are removed.
This validates our design of considering representation models from different contexts.

Takeaway: It is necessary to leverage cluster representations that are informed by different
contexts to provide robust and high-quality data fusion solutions.

6.6.4 Effects of Augmentation on Performance

We evaluate the effectiveness of data augmentation to counteract the lack of training data. Figure
6.7 shows that using data augmentation yields high-quality record fusion models for datasets with
varying sizes and properties (as they were described in section 6.6.1). Hence, data augmentation
is robust to different domains of properties. We ignore Address dataset because it is small to make
an adequate augmentation model. We also evaluate the effect of excessive data augmentation:
We manually set the ratio between the initial clusters and the lately generated cluster in the final
training examples and use augmentation to materialize this ratio. Our results are reported in
Figure 6.7. We see that peak performance is achieved when the ratio between the two types of
clusters is about 10% to 30% for all datasets.

Takeaway: Data augmentation is an effective and robust way to counteract the lack of enough
training data.

6.6.5 Effects of Iterations on Performance

In this experiment, we validate the importance of the iterative process to improve learning per-
formance. Figure 6.8 shows the results of RF for a various number of iterations. The results
validate that as the number of iterations increases, we were able to get more accurate predictions.
This observation has significant meaning for the performance of RF as getting more accurate pre-
dictions in each iteration results in recalculating the dynamic features more accurately in each
round. For instance, in Weather, RF was able to achieve precision less than 0.7 with only one
iteration; however, after 15 iterations, the precision was improved over 10 points.

Takeaway: The recurrent process is an effective approach for calculating accurately dynamic
features.
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6.7 Related Work

Several pieces of research have been done on combining data from multiple sources. Bleiholder
et al. [16] surveyed existing strategies for resolving inconsistencies in structured data. Specifi-
cally, the data fusion methods can be categorized into four main regimes:

I Naı̈ve method: In this method, all sources have a vote, and the correct value for each
object is decided by choosing the value that has maximum votes among all the conflicting
values. In these models, there is no worker(source) modeling, so there is no need of source
information to discriminate records.

II Source-based main goal is to calculate how accurate is each source(worker). More specif-
ically, in this framework, the votes of the sources(workers) do not have the same “weight”
or “quality”, so it assigns a weight qw to worker w and estimates the quality of the worker
based onD. The importance of each vote depends on the quality of the source. In the crowd-
sourcing community, this is called worker modeling [110,208]. The necessity of using these
methods is to have a minimal source information that the model can discriminate records.

III Relation-based methods use the main idea of Source-based methods. They also consider
the correlation between the sources(worker) (e.g., if a pair of sources copy from each other).

IV Transformation-based methods reduce cluster size by transforming values to each other
and use human-in-the-loop to fuse the remained set.

V Signature-based methods use representation models to find the latent signature of the truth
pattern. Some of these methods (like our model) can learn from data without any source
information and extract the truth pattern from a proportion of data annotated by humans and
given as training data.

In the field of discovering dependencies between data sources, a lot of work has been done as
well. In [48,59,116,194], an Bayesian analysis is applied to decide on the dependencies between
sources. In some researches [50,58,199], they consider various types of copying on different data
records. Moreover, [60] explores the idea of integrating data and determining the way the sources
are interacting with each other by examining the updated history of the sources. There has been a
lot of research in the field of evaluating the trustworthiness of the sources resulting in algorithms
such as PageRank which assigns trust based on link analysis [209] and TrustFinder [204] which
decides about the importance of a source based on its behavior in a P2P network. Moreover,
in [62], Dong et al. examine the problem of selecting a subset of sources before integration. The
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authors claim that by choosing only the sources that can be beneficial for their algorithm, they
can achieve higher performance than by using all the available sources and data.

Furthermore, in [159], Pasternack and Roth solve the data fusion problem by creating an
iterative model. The main idea of their fact-finding algorithm was to incorporate prior knowledge
from the users into their process, to integrate data from conflicting claims. The SLiMFast [180]
proposes a framework to solve the data fusion problem as a learning and inference problem
over discriminative probabilistic graphical models. SliMFast was also the first that came with
guarantees on its error rate for the estimation of the source accuracy.

In [51,124] human-in-the-loop is used to solve entity consolidation; instead of using sources,
the system simulates source information for entity resolution by asking information from an
oracle.
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Chapter 7

Conclusion and Future Work

In this chapter, we conclude the dissertation and discuss some promising future works.

7.1 Conclusion

There are two aspects for considering the structure of the data. First is the case that we have
structure information that can help to retrieve the clean version of data. The second type is when
we have a structure on the noises, and then our data cleaning model should consider the effect of
this structured noise on the cleaning process.

We made five contributions in structured prediction in this dissertation following these two
aspects. First, we proposed an error detection framework based on ML modeling, which used
structured features like data rules in the format of denial constraints. This modeling allowed us
to improve the performance of detecting erroneous cells and enabled us to augment training data
using few erroneous examples. Second, we explored the correctness of inference on the graphical
models, and we obtained promising theoretical results for using graphical models on categorical
data. Third, we studied the problem of sampling from structured information. Specifically, when
we have data rules, they define a graph over data points. If we want to detect approximately
correct data rules by sampling from these graphs, we need to have analytical guarantees for rules
that we detected by sampling from these structures. Next, we presented a method for sampling
from data with duplicated records. Data duplications imply a structure on the data where each
pair that refer to the same real-world entity are connected. Sampling from this structure assigns
a higher probability to larger connected components. We have provided three methods that,
under some assumptions, provide uniform samples over entities. Subsequently, when we merge
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multiple datasets, we might face conflicting information that requires a process to solve these
conflicts. We presented an ML framework that uses arithmetic- and structure-based features for
merging conflicting data. We also provided a process to augment data for learning purposes. For
all these contributions, we provided experimental studies to show how they work in real-world
scenarios.

7.2 Future work

Many aspects of structured prediction require profound studies and more researches. In this
dissertation, we considered only some aspects of structured prediction. We plan to investigate
some new ideas and improve upon some of our existing contributions in the future. In particular,
we consider the following tasks to be promising directions for future work.

First, building a data cleaning framework based on structured prediction on graphs or data
representations other than relational data. Graph data have some properties that can help the
structured prediction be applied more conveniently.

Second, In this dissertation hypothesis (Section 1.5), we assumed that the input data does not
have any noises, which means the domain experts have perfect knowledge. This assumption can
be relaxed, and These contributions can employ machine learning (ML) under agnostic learning
properties.

Third, current data cleaning frameworks do not take into account the effect of data evaluation.
Many datasets can change over time, and the distribution of the data is not the same. Improving
the data cleaning systems so they can recognize the data is unclean, or the model is expired.
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[23] Anne Brüggemann-Klein and Derick Wood. One-unambiguous regular languages. Infor-
mation and computation, 142(2):182–206, 1998.

[24] Chris Buckley, Matthew Lease, Mark D Smucker, Hyun Joon Jung, Catherine Grady,
Chris Buckley, Matthew Lease, Mark D Smucker, Catherine Grady, Matthew Lease, et al.
Overview of the trec 2010 relevance feedback track (notebook). In The nineteenth text
retrieval conference (TREC) notebook, 2010.

[25] Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and efficient algorithms for
the geometric hitting set problem. Discrete Applied Mathematics, 240:25–32, 2018.

[26] Nuno Cardoso and Rui Abreu. MHS2: A map-reduce heuristic-driven minimal hitting set
search algorithm. In MUSEPAT, pages 25–36, 2013.

[27] Chengliang Chai, Ju Fan, Guoliang Li, Jiannan Wang, and Yudian Zheng. Crowdsourcing
database systems: Overview and challenges. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 2052–2055. IEEE, 2019.

[28] Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno-Centeno, and Santosh
Vempala. Algorithms for implicit hitting set problems. In SODA, pages 614–629, 2011.

[29] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–
388, 2002.

[30] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Special issue on learning
from imbalanced data sets. ACM Sigkdd Explorations Newsletter, 6(1):1–6, 2004.

[31] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2018.

[32] Yuxin Chen and Andrea J Goldsmith. Information recovery from pairwise measurements.
In 2014 IEEE International Symposium on Information Theory, pages 2012–2016. IEEE,
2014.

187



[33] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi
Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria
Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning
for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, DLRS 2016, pages 7–10, 2016.

[34] Fei Chiang and Renée J. Miller. Discovering data quality rules. PVLDB, 1(1):1166–1177,
2008.

[35] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tu-
ple deletions. Inf. Comput., 197(1-2):90–121, February 2005.

[36] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tu-
ple deletions. Inf. Comput., 197(1-2):90–121, 2005.

[37] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context.
In ICDE, pages 458–469, April 2013.

[38] Xu Chu, Ihab F Ilyas, and Paraschos Koutris. Distributed data deduplication. Proceedings
of the VLDB Endowment, 9(11):864–875, 2016.

[39] Xu Chu, Ihab F Ilyas, and Paolo Papotti. Discovering denial constraints. Proceedings of
the VLDB Endowment, 6(13):1498–1509, 2013.

[40] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. PVLDB,
6(13):1498–1509, 2013.

[41] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang, and Yin
Ye. Katara: A data cleaning system powered by knowledge bases and crowdsourcing.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1247–1261. ACM, 2015.

[42] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang, and Yin
Ye. Katara: A data cleaning system powered by knowledge bases and crowdsourcing. In
Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pages 1247–1261, 2015.

[43] Samuel Clemens. 7 facts about data quality. 2018.

[44] Carlo Combi, Matteo Mantovani, Alberto Sabaini, Pietro Sala, Francesco Amaddeo, Ugo
Moretti, and Giuseppe Pozzi. Mining approximate temporal functional dependencies with
pure temporal grouping in clinical databases. Comp. in Bio. and Med., 62:306–324, 2015.

188



[45] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Au-
toaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501,
2018.

[46] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F Ilyas,
Mourad Ouzzani, and Nan Tang. Nadeef: a commodity data cleaning system. In Pro-
ceedings of the 2013 ACM SIGMOD International Conference on Management of Data,
pages 541–552, 2013.

[47] Tamraparni Dasu and Ji Meng Loh. Statistical distortion: Consequences of data cleaning.
PVLDB, 5(11):1674–1683, 2012.

[48] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 28(1):20–28, 1979.

[49] Simon de Givry, Thomas Schiex, and Gerard Verfaillie. Exploiting tree decomposition and
soft local consistency in weighted csp. In Proceedings of the 21st National Conference on
Artificial Intelligence - Volume 1, AAAI’06, pages 22–27. AAAI Press, 2006.

[50] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zencrowd:
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[140] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of functional
dependencies and armstrong relations. In EDBT, pages 350–364, 2000.

[141] Francois Lorrain and Harrison C White. Structural equivalence of individuals in social
networks. The Journal of mathematical sociology, 1(1):49–80, 1971.

196



[142] Xinghua Lu, Bin Zheng, Atulya Velivelli, and ChengXiang Zhai. Enhancing text catego-
rization with semantic-enriched representation and training data augmentation. Journal of
the American Medical Informatics Association, 13(5):526–535, 2006.

[143] Jonas Lukasczyk, Eric Kinner, James Ahrens, Heike Leitte, and Christoph Garth. Voidga:
A view-approximation oriented image database generation approach. In 2018 IEEE 8th
Symposium on Large Data Analysis and Visualization (LDAV), pages 12–22. IEEE, 2018.

[144] Andrew McCallum, Kamal Nigam, and Lyle H Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In Proceedings of the sixth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
169–178. Citeseer, 2000.

[145] Tomas Mikolov, Ilya Sutskever, Kai Chen, et al. Distributed representations of words and
phrases and their compositionality. NIPS, 2013.

[146] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR,
abs/1411.1784, 2014.

[147] Stefan Uhlich; Marcello Porcu; Franck Giron; Michael Enenkl; Thomas Kemp; Naoya
Takahashi; Yuki Mitsufuji. Improving music source separation based on dnns through
data augmentation and network blending. 2017.

[148] Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualizing large-scale hyper-
graphs. Discrete Applied Mathematics, 170:83–94, 2014.

[149] Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detection. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2010.

[150] Jennifer Neville and David Jensen. Iterative classification in relational data. In Proc.
AAAI-2000 Workshop on Learning Statistical Models from Relational Data, pages 13–20,
2000.

[151] Lhouari Nourine, Alain Quilliot, and Hélène Toussaint. Partial enumeration of minimal
transversals of a hypergraph. In CLA, pages 123–134, 2015.

[152] Noel Novelli and Rosine Cicchetti. FUN: an efficient algorithm for mining functional and
embedded dependencies. In Database Theory - ICDT 2001, 8th International Conference,
London, UK, January 4-6, 2001, Proceedings., pages 189–203, 2001.

[153] Sebastian Nowozin, Peter V Gehler, Jeremy Jancsary, and Christoph H Lampert. Ad-
vanced Structured Prediction. MIT Press, 2014.

197



[154] Sebastian Nowozin, Christoph H Lampert, et al. Structured learning and prediction in
computer vision. Foundations and Trends® in Computer Graphics and Vision, 6(3–
4):185–365, 2011.

[155] Adrian Weller Ofer Meshi, Mehrdad Mahdavi and David Sontag. Train and test tight-
ness of lp relaxations in structured prediction. In Proceedings of The 33rd International
Conference on Machine Learning, pages 1776–1785, 2016.

[156] Laurel Orr, Magdalena Balazinska, and Dan Suciu. Sample debiasing in the themis open
world database system. In Proceedings of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, pages 257–268, 2020.

[157] Jason W Osborne. Best practices in data cleaning: A complete guide to everything you
need to do before and after collecting your data. Sage, 2013.

[158] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,
Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional dependency discovery:
An experimental evaluation of seven algorithms. PVLDB, 8(10):1082–1093, 2015.

[159] Jeff Pasternack and Dan Roth. Knowing what to believe (when you already know some-
thing). In Proceedings of the 23rd International Conference on Computational Linguistics,
pages 877–885. Association for Computational Linguistics, 2010.

[160] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. Discovery of approx-
imate (and exact) denial constraints. PVLDB, 13(3), 2019.

[161] Eduardo H. M. Pena and Eduardo Cunha de Almeida. BFASTDC: A bitwise algorithm
for mining denial constraints. In DEXA, pages 53–68, 2018.

[162] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification
using deep learning. CoRR, abs/1712.04621, 2017.

[163] J. Platt. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In Advances in Large Margin Classifiers, 2000.

[164] John Platt et al. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

[165] Nataliya Prokoshyna, Jaroslaw Szlichta, Fei Chiang, Renée J Miller, and Divesh Srivas-
tava. Combining quantitative and logical data cleaning. PVLDB, 9(4):300–311, 2015.

198



[166] Erhard Rahm and Hong-Hai Do. Data cleaning: Problems and current approaches. DE,
23(4):3–13, 2000.

[167] Joeri Rammelaere and Floris Geerts. Explaining repaired data with cfds. Proc. VLDB
Endow., 11(11):1387–1399, July 2018.

[168] Joeri Rammelaere and Floris Geerts. Revisiting conditional functional dependency dis-
covery: Splitting the ”c” from the ”fd”. In ECML/PKDD (2), volume 11052 of Lecture
Notes in Computer Science, pages 552–568. Springer, 2018.

[169] Joeri Rammelaere, Floris Geerts, and Bart Goethals. Cleaning data with forbidden item-
sets. In Data Engineering (ICDE), 2017 IEEE 33rd International Conference on, pages
897–908. IEEE, 2017.

[170] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds
for approximating distribution support size and the distinct elements problem. SIAM Jour-
nal on Computing, 39(3):813–842, 2009.

[171] John W. Ratcliff and David E. Metzener. Pattern matching: The gestalt approach. Dr.
Dobb’s Journal of Software Tools, 13(7):46, 47, 59–51, 68–72, July 1988.

[172] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christo-
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