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Abstract 

Stroke has been a significant healthcare issue worldwide, leading to motor impairment and 

complicated rehabilitation procedures, which often last for years after lesion. In recent years, 

brain-computer interface (BCI) research shed some light on new approaches for motor ability 

recovery and potential neural plasticity inducement for stroke patients. Electroencephalogram 

(EEG) is widely used in BCI to measure brain activity. In this thesis study, nine healthy 

participants were recruited to perform four movements in a self-initiated manner, including 

left wrist extension (WE_L), right wrist extension (WE_R), left index finger extension (IE_L), 

and right index finger extension (IE_R). A hierarchical structure was proposed first to detect 

movement intentions from the rest state and then classify different movement types. 

Movement-related cortical potential (MRCP) and sensorimotor rhythm (SMR) were believed 

to associate with movement intention generation in human EEG. Thus, three frequency bands 

of EEG (0.05-5Hz, 5-40Hz, 0.05-40Hz) containing MRCP or SMR were investigated to 

provide features for detection and classification algorithms. In detection, a majority voting-

based ensemble learning method was proposed to integrate the strongness of three algorithms, 

including support vector machine (SVM), EEGNET, and Riemannian feature-based SVM. The 

proposed method achieved an average true positive rate (TPR) of 79.6% ± 8.8%, false positives 

per minute (FPs/min) as 3.1 ± 1.2 within a latency of 91.4 ± 111.9ms. For classification, an 

adaptive boosting-based ensemble learning algorithm was proposed to classify movement pairs 

and four movements in pseudo-online and time-locked analyses. As a result, It proved the 

feasibility of classifying movements in different arms with higher than significant chance level 

accuracy. In summary, the proposed system offered a novel solution to decode upper-limb 

movements for rehabilitation-aimed BCI.  
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Chapter 1 

Introduction 

Stroke rehabilitation is a global healthcare challenge that requires efforts and resources from 

all societies, including organized inpatient care and therapy-based rehabilitation at home [1]. 

Brain-computer interface (BCI) provides a potential solution for motor training after stroke by 

measuring movement intentions from brain through electroencephalogram (EEG) and 

translates them to control commands for assistive devices. Two types of EEG modalities have 

been related to movement planning, execution, and imagination: movement-related cortical 

potential (MRCP) and sensorimotor rhythm (SMR), reflecting different frequency band 

features of EEG [2][3]. The respective state-of-the-art decoding algorithms of these two types 

of EEG modalities were investigated to design a robust BCI system capable of detecting 

movement intention from rest state and distinguishing multiple types of movements. In the 

current research, I targeted on decoding of four distal simple movements, including left wrist 

extension (WE_L), right wrist extension (WE_R), left index finger extension (IE_L), and right 

index finger extension (IE_L), which were regarded as more challenging than proximal 

compound movements in BCI field [4][5]. To the author’s best knowledge, these four 

movements were never systematically compared in the literature despite their popularity in 

stroke rehabilitation therapy [1].  In order to validate the feasibility of real-time BCI targeted 

for rehabilitation applications, this research conducted analysis in pseudo-online and time-

locked fashion with data acquired from healthy participants. There are two primary objectives: 

1. Detect intentions of the four movements from rest state in a pseudo-online manner and 

investigate the optimal way of combining algorithms and frequency band features 

(MRCP and SMR) to achieve a high detection rate with low latency. 

2. Evaluate the possibility of classifying the four movements against each other following 

the detection in a pseudo-online manner and understand the contribution of MRCP and 

SMR during classification. 

This research provided a novel EEG-based BCI solution for distal simple movements 

decoding by investigating the ensemble of both algorithms and frequency bands in pseudo-

online fashion.   
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2.1 Stroke, Neural Plasticity, and Rehabilitation 

Stroke is a neurological deficit led to an acute focal injury of the central nervous system caused 

by vascular problems such as cerebral infarction and intracerebral hemorrhage[1]. The elderly 

population with hypertension, diabetes mellitus, cardiovascular diseases have more risk of this 

disease [7]. It is recognized as one of the most serious global health issues, ranked the second 

most common cause of death worldwide, with a mortality rate of around 5.5 million deaths per 

year [7]. Apart from the high mortality rate, it is also the first cause of adult-onset disability in 

developed countries, which leads to 50% of survivors being disabled [7][8]. After half a year, 

only 60% of those patients who received the inpatient rehabilitation can achieve simple 

activities of daily living (ADL) such as toileting and walking short distances, and only half of 

the stroke survivors could resume their professional careers [9][10][11].  

It is proved that the mechanism for the acquisition, retention, and retrieval of information in 

the stroke patients’ brain is basically the same as that in a healthy brain apart from partially 

damaged neural pathways in stroke survivors [12]. Some studies showed that it is possible to 

rebuild neuropathways by taking advantage of the residual functioning part of the injured brain 

through training [12][13][14]. The rebuilding of neuropathway is based on neural plasticity, 

which is defined as “the ability of the nervous system to respond to intrinsic or extrinsic stimuli 

by reorganizing its structure, connections, and function.” [15]. Different types of plasticity, 

including Hebbian plasticity and homeostatic plasticity, help the brain quickly adapt to changes 

in a stabilized process. Hebbian plasticity influences the synaptic strength and efficacy by 

varying the number of dendritic spines and synapses in fast response to a stimulus at a seconds 

Chapter 2 

Background 



 

 3 

or minutes level. On the contrary, homeostatic plasticity stabilizes and balances the changes 

during the Hebbian plasticity process at a slower pace (hours to days) to provide more 

robustness [16].  

It was believed that a plateau of functional gains would be reached after the first 3- 6 months 

post-lesion, as shown in Figure 1, which means gaining functional recovery after this plateau 

is significantly difficult, if not impossible [1][12]. However, some studies argued that Hebbian 

plasticity could be induced any time after stroke with properly designed therapy [12]. The 

method proposed in this thesis research also falls into this category to provide continuous 

recovery after the plateau. 

With the aim to induce Hebbian plasticity, various stroke rehabilitation interventions were 

designed for motor treatment. Task-specific and context-specific training are two common 

 

Figure 1. Stroke rehabilitation with time. [1] This figure illustrates the recovery of body functions and 

activities in terms of time elapsed from the stroke onset. The vertical dashed line at 0 stands for the 

stroke onset. The red curve represents the recovery extent. The x-axis shows the timeline associated 

with strode onset, with primary focus on 0 to 6 months. After 6 months, the recovery extent may vary 

according to the maintenance of physical conditions and monitoring quality of life, shown as dashed 

red curves. 
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standards in rehabilitation training, which indicates the training should suit the patients’ needs 

in their preferred environment [1]. For arm recovery, constraint-induced movement therapy 

(CIMT) and robot-assisted training were found to be beneficial. For leg recovery, several 

methods were suggested, such as electromechanical-assisted gait training, task-oriented 

physical fitness training for walking, high-intensity therapy, and speed-dependent treadmill 

training [1].  

However, methods such as CIMT require residual functionality of upper limbs, which 

limited its target population since around 20% to 30% of stroke patients cannot meet the 

standard of residual movement. Motor imagery, mirror therapy, and brain-computer interface 

provide an alternative solution for these patients [17]. 
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2.2 EEG-based Brain-Computer Interface  

Electroencephalography (EEG) is an electrophysiological signal measuring the electrical 

activity on the scalp, elicited by the neural activities inside the brain. Brain-computer interface 

(BCI) is a system extracting intentions and thoughts from the brain and translating them into 

command signals for external devices. EEG was widely applied as an input signal to BCI and 

has been applied in various areas, including communication, health care, entertainment, and 

marketing. For example, multiple industrial products have been available to provide mental 

health monitoring, sleep stage recognition, and focus level detection in the health care sector. 

Recent research further demonstrates the potential of BCI by decoding speech, handwriting, 

and movement intentions simultaneously from the human brain [18][19]. BCI applications 

usually require two phases: 1) an offline training process to calibrate the decoding models and 

algorithms and 2) an online phase to analyze real-time signals and translate them into output 

commands [20]. A typical BCI system consists of several components: signal acquisition, 

feature extraction, feature selection, and classification. 

2.2.1 Signal Acquisition  

Based on the types of signals BCI extracts, it can be roughly divided into invasive and non-

invasive kinds [21]. Invasive BCI plants electrodes directly inside the brain, either on the 

surface of the cortex like Electrocorticography (ECoG) or even deeper inside the cortex in the 

form of intra-cortical electrodes, such as the Utah array [22][23]. Non-invasive methods 

include electroencephalography (EEG), magnetoencephalography (MEG), positron emission 

tomography (PET), functional magnetic resonance imaging (fMRI), and near-infrared 

spectroscopy (fNIRS). EEG and MEG measure surface electric and magnetic fields caused by 

neurons' electrical discharges (e.g., the firing of neurons) inside the brain, respectively. 

Medical imaging techniques such as PET, fNIRS, and fMRI measure brain activity through 

blood flow and oxygenation changes. Compared to non-invasive methods, invasive BCIs have 

a natural advantage of better signal bandwidth (i.e., information content) and quality (i.e., 

robustness against external artifacts). However, intrinsic limitations such as risky surgical 

procedures and high cost of maintenance limit its popularity in severe-conditioned patients. 
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Among non-invasive approaches, each solution has its pros and cons regarding temporal 

resolution, spatial resolution, and cost [21]. For example, fMRI and fNIRS give proper spatial 

resolution while poor temporal resolution. EEG and MEG both provide excellent temporal 

resolution and relatively good spatial information. However, MEG is not portable, much more 

complex in instrumentation, and significantly more expensive than EEG in operating and 

maintenance, making EEG a popular choice in the non-invasive BCI field, and this thesis study 

focuses exclusively on EEG.  

2.2.2 Feature Extraction 

There are mainly two types of features in EEG-based BCI: spatial feature and temporal feature. 

This kind of BCI usually uses multiple electrodes to capture scalp-level electrical activities 

caused by groups of cortical neurons firing together. Different BCI paradigms would elicit 

different patterns of EEG spatially. For example, motor imagery tasks would elicit oscillatory 

activities in the motor and premotor cortex, which can be measured as event-related 

desynchronization/synchronization (ERD/ERS) on frontal and central channels according to 

10-20 international system [24][25]. Due to the homunculus structure of the primary motor 

and sensory cortex, such patterns usually have a contra-lateral activation, meaning the left arm 

movement leads to activation in the right hemisphere and vice versa [3]. In another scenario, 

watching flickering objects in a certain frequency would elicit steady-state visual evoked 

potential (SSVEP) in the occipital area, manifesting in occipital channels on the surface [26]. 

Hence, each BCI paradigm has its unique spatial features shown as different locations of 

elicited EEG. The electrical activities elicited by exogenous stimulus or endogenous intentions 

usually occur at a specific time to stimulus, called the temporal feature of EEG. For instance, 

an event-related potential (ERP) named P300 appears 300ms after the subject is exposed to a 

surprising stimulus [27]. Movement-related cortical potential (MRCP), another ERP, is also 

time-locked to the movement event or movement cue in movement execution or imagery tasks 

[28]. Therefore, both spatial and temporal features are important for EEG decoding. Spatial 

filters are used to enhance signal-to-noise ratios (SNR) of certain channels, which can be 

achieved by either data-driven or data-independent approaches [20]. Data independent spatial 



 

 7 

filters include the Laplacian filter, which improves the central channel SNR by subtracting its 

surroundings [29]. Data-driven methods such as common spatial filter (CSP), xDAWN proved 

their efficacy in motor imagery and ERP paradigms [30][31]. 

Temporal features are usually demonstrated in two forms: time point feature and band power 

feature [20]. The time point feature is continuous EEG voltage values in certain periods. This 

feature usually requires bandpass or low pass filtering to get representable time points of a 

certain EEG pattern. ERP classification usually relies on this feature since they are mostly low-

frequency signals with specific shapes or trends, time-locking to events. Band power feature 

stands for the energy of EEG in selected channels and time intervals. Classification information 

of EEG for various paradigms is contained in different bands. For instance, alpha band (8-

12Hz) and beta band (13-32Hz) are specifically useful for motor imagery as the ERD and ERS 

are prominent in these frequency bands [24]. Delta band (0-4Hz) is also proved to be useful 

for deep sleep stage detection and movement intention detection [28][32]. Gamma band (above 

33Hz) is responsible for the conscious state of mind and maybe a valid biomarker for 

Parkinson's disease [33]. In order to extract the band power feature, a bandpass filter is required 

to localize the interested bands, and then some statistics of power can be computed. Other 

features have also been investigated other than time point and band power feature. For example, 

connectivity features such as phase-locking value and coherence measure the correlation 

between channels and frequency bands [20]. The covariance matrix was also constructed as a 

feature to embed relevant classification information for certain algorithms like the Riemannian 

geometry method.  

2.2.3 Feature Selection 

EEG provides time-series features in multiple channels, which naturally lead to high-

dimensional data. However, machine learning classifiers normally cannot perform well in high 

dimensional features, especially if the training samples are inadequate, called curse-of-

dimensionality [20]. Feature selection is necessary to prevent such circumstances by selecting 

the most valuable features and discarding redundant features. Principle component analysis 

(PCA) is a dimensionality reduction method to project data to its several largest variance 
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dimensions, successfully applied in the BCI field [34]. Local preserving projection (LPP) is 

another feature selection method by keeping the data structure of neighboring trials from high 

dimensions and projecting it to lower dimensions [35]. Channel selection methods like 

canonical correlation analysis (CCA) and frequency band selection like maximal mutual 

information can also be classified to feature selection approach [36][37]. 

2.2.4 Classification Algorithms 

In the early days of BCI development, classification algorithms were mainly derived from 

general machine learning methods such as linear classifiers, neural networks, nonlinear 

Bayesian classifiers, nearest-neighbor classifiers, and a combination of classifiers [20]. Among 

these algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) were 

the most popular models thanks to their good generalization properties and low computational 

cost. Various general neural networks were also applied to decode EEG, including multilayer 

perceptron (MLP), Bayesian logistic regression neural network (BLRNN), adaptive logic 

network (ALN). However, these attempts were not successful enough to outperform simple 

linear classifiers at that time. The best algorithms were usually obtained by combining multiple 

models in ways of boosting, voting, or stacking, by which the individual classifiers 

complemented together to achieve better performance [38]. 

These algorithms in early days encountered the same challenges in the BCI field: 1) low 

SNR of EEG signals, 2) non-stationarity of EEG between users and sessions, and 3) limited 

training data. More recent algorithms aimed to overcome one or more of these challenges by 

various approaches such as adaptive classifiers, matrix and tensor classifiers, deep learning, 

and transfer learning [20]. 

Adaptive classifiers dynamically learn the parameters based on incoming data to overcome 

the non-stationarity of EEG. They proved their superiority in both offline and online studies. 

For example, adaptive SVM, adaptive LDA, and adaptive Bayesian classifiers gave a good 

performance for both asynchronous and passive P300 spellers in an offline study [39]. Online 

adaptive LDA and quadratic discriminant analysis (QDA) were applied successfully in motor 

imagery [40]. Adaptive algorithms take the learning process of humans in the loop to enhance 
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the overall system performance over time. However, the adaptation rate is hard to control as 

too slow or too fast changes in algorithms' responses might confuse humans and decrease 

classification results [20]. 

Matrix and tensor classifiers refer to algorithms directly learning from the high-dimensional 

EEG array, which is normally 3d matrix in the shape of trial, channel, and time. The 

Riemannian geometry approach calculates the covariance matrix of EEG and projects the 

matrix to a high-dimensional space called the Riemannian manifold. Each trial can be 

recognized as one point on the manifold, and they should cluster together if useful features are 

embedded inside the covariance matrix [41]. Thanks to the properties of Riemannian geometry, 

mean and distance could be calculated between points on the manifold, which could then form 

a minimum distance to mean (MDM) classifier. Otherwise, the high-dimensional points could 

be projected to a tangent space to utilize standard classifiers such as SVM or logistic regression. 

This family of methods has achieved state-of-the-art performances in multiple paradigms, 

including motor imagery and ERP. Another way to work with high-dimensional data is to 

redesign classical algorithms like LDA or SVM to generalize their decision rules for tensors, 

from which tensor support machine (TSM) and tensor fisher discriminant analysis (TFDA) 

were proposed [42][43]. This method usually requires fewer parameters to tune, like the 

Riemannian geometry approach is parameter-free and friendly to a smaller training dataset. 

However, they can also be restrained by expensive computational costs due to high 

dimensional matrix calculation. 

Deep learning algorithms were applied successfully in the BCI field in various architectures. 

Convolutional neural network (CNN), deep belief network (DBN), and recurrent neural 

network (RNN) are the most popular ones, which constitute 43%, 18%, and 10% of all deep 

learning algorithms used in this area, respectively [44]. Recent deep learning algorithms were 

explicitly designed to focus on spatial and temporal features inside the data. For example, a 

CNN called EEGNET emulates the filter bank common spatial filter (FBCSP) to decode 

temporal features in the first convolutional layer and learns weights for channels in the second 

convolutional layer, which achieved outstanding performance in motor imagery and ERP 
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classification [45]. Deep neural networks can train on raw EEG data, which integrates feature 

extraction, selection, and classification to minimize the burdens of tunning parameters.  

Transfer learning stands for applying the knowledge learned from a different but related area 

to a new field, which is especially useful in real-time BCI design. Since EEG is non-stationary 

over time and subjects, sometimes the algorithm trained on one subject or one run of the same 

subject cannot achieve similar performance in another subject or another run of the same 

subject. Several successful attempts were made to transfer session-to-session information in 

motor imagery BCI and P300 speller [49][50]. 

2.3 Movement-related BCI Features 

Aimed for stroke motor recovery, the extraction of movement intention would be the first step 

to designing a BCI system. MRCP and SMR are two major categories of EEG modalities that 

are believed to be reflective of cortical activations for movement preparation, planning, 

execution, and imagination [2][3]. MRCP is a low-frequency (0.05 - 5Hz) low-amplitude (5 – 

30V) EEG generated around 1.5s to 2s before movement onset and has the negative peak 

 

Figure 2. MRCP and various sub-components for real and imaginary movement. X-axis ranges from -

3s to 2s with 0s as the movement onset. Y-axis ranges from -20V to 5V. Different parts of MRCP are 

illustrated in the figure as BP1, BP2, MP and MMP chronically. The grey line represents imaginary 

movement, and the black line stands for real movement. [2] 
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aligned with the onset timing as shown in Figure 2. MRCP is a broad term for both 

Bereitschaftspotential (BP) and contingent negative variation (CNV). BP is generated by 

volitional movement, while CNV is elicited in response to external cues. MRCP consists of 4 

sub-components: BP1, BP2, motor potential (MP), and movement-monitoring potential 

(MMP). BP1 is a slow negative cortical potential starting 1.5s to 2s before the movement onset. 

BP2 decreases sharply following BP1 from approximately 400ms – 500ms before movement 

and is considered the most prominent feature of MRCP. MP is the short period around 

movement onset, while MMP is typically a rebound after movement with around 1s length [2]. 

The generating sources of MRCP have been investigated extensively, and several implications 

were made. One study inferred the BP might originate from subcortical structures such as basal 

ganglia and thalamus since they are involved in the motor control loop inside the brain called 

basal ganglia-thalamocortical circuits [51]. Others suggested the early BP might be recorded 

by both sensorimotor areas, which was also proved by another work reporting that potentials 

were generated in line with BP1 from both the ipsilateral and contralateral supplementary 

motor areas (SMAs) [52][53]. 

SMR is a brain oscillation recorded during movement execution and imagination above the 

sensorimotor cortex, shown as power decrease (ERD) or increase (ERS) on alpha and beta 

band [3]. Spatial information is the most distinguishable feature when classifying different 

movements using SMR [54]. The physiological source of SMR was found to be coincident 

with bold-oxygen-level-dependent (BOLD) fMRI at the primary visual cortex and the thalamus 

during rest [3]. According to Homunculus, the active SMR is generated in a somatotopic way, 

which maps the movement of body parts with the corresponding brain regions.Both MRCP 

and SMR are applied to either detecting movement intentions from idle periods or classifying 

different movements. The experimental protocol to elicit these two modalities are not the same. 

MRCP is always elicited by ballistic movement, which is a sudden contraction of muscle or a 

one-time imagination of movement, while SMR is mainly induced by repetitively movement 

executions or imaginations. Furthermore, MRCP can predict movements due to its prominent 

BP component before onset, while ERD/ERS always manifest during or after movement onset. 

In conclusion, MRCP and SMR both contain critical classification information for movement 
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and can be used in multiple applications. A combination of these two sometimes could provide 

a performance boost in specific scenarios [4][55].   
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3.1 Expriment and preprocessing 

This research collected EEG and electromyography (EMG) data from nine participants to 

investigate the brain response to four movements: WE_L, WE_R, IE_L, IE_R. The details of 

the experiment requirements and the preprocessing techniques are illustrated in the following 

parts.  

3.1.1 Participants 

This study recruited nine healthy right-handed participants aged between 18 and 45, 

including two females and seven males. No gender preference was considered. All participants 

reported that they did not have any known neuromuscular disease, brain-related conditions, 

cardiac conditions (e.g., pacemakers, arrhythmias, and cardiac conduction disturbances), 

peripheral neuropathy, history of seizure, or memory disorder. Waterloo ethics committee 

approved this study under application 43069. All participants were informed of the procedure 

and potential risk of the experiment and signed a consent form prior to participation of the 

experiment. 

Chapter 3 

Methodology 
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3.1.2 Instrumentation 

EEG and EMG were recorded using Enobio 32 (NeuroElectric) system with common ground 

and reference on the earlobe. According to the international 10-20 system, 27 channels of EEG 

were recorded (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, C1, Cz, C2, C4, 

T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8) with 500Hz sampling frequency as shown in left 

of Figure 3. Four EMG electrodes were placed on the extensor digitorum and extensor carpi 

ulnaris muscles (red locations on right of Figure 3) to measure the index finger extension and 

wrist extension activities, respectively.  

 

Figure 3. EEG and EMG electrodes position [56] The left graph shows an international 10-20 EEG 

electrode setup. The colored channels are used in this research. The right graph represents the different 

muscles of an arm in different colors. The yellow part is the extensor digitorum muscle and the purple 

part is the extensor carpi ulnaris muscle. The red circles indicate the EMG sensor position during the 

experiments.  

 

EMG electrodes



 

 15 

3.1.3 Experiment Protocol 

The participants were seated comfortably in a chair and placed both their forearms on a table 

in front of them. A computer monitor was in front of participants at around half a meter distance. 

They were asked to perform WE_L, WE_R, IE_L, or IE_R according to the instructions. The 

instruction includes a computer voice saying the name of the task and a corresponding task 

image. Inside each trial, six cues were displayed on the monitor below the task image in the 

following order: idle, focus, prepare, two, one, task. Participants can relax and blink their eyes 

during the idle period, but talking and movement were not allowed. Instead, participants were 

kept vigilant during preparation periods (focus, prepare, two, and one) with minimal eye 

movement. Once the task cue showed up on the screen, participants were required to wait for 

around 1s to perform the required task, as shown in Figure 3. This 1s waiting period was set to 

 

Figure 4. Experiment protocol  

 

:Break

RUN2 RUN3 RUN4 RUN5 RUN6RUN1

1 trial
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ensure the participants’ intention induced the movement rather than a subconscious response 

to the cue. The trial duration varied from 13 to 19 seconds by randomly assigning 3 to 9 seconds 

for the idle period. This was set to prevent participants from predicting the cue time. For each 

movement type, 45 trials were recorded in a random order to generate 180 trials in total. The 

trials were separated into six runs evenly, with 30 trials in each run. Every run took around 10 

minutes, and short breaks were given after each run. In total, the whole session took 

approximately 1.5 hours. 

3.1.4 Preprocessing 

This study preprocessed EEG and EMG to prepare the data for further feature extraction and 

classifier training. For EMG preprocessing, a 6th order Butterworth bandpass filter with a cutoff 

frequency of 70Hz and 200Hz was applied to 4 channels of EMG on six runs. After the filtering, 

most electrocardiogram (ECG) related artifacts were removed. Then, the Teager-Kaiser energy 

operator (TKEO) was applied to enhance the detection accuracy of EMG burst boundaries. 

Next, the enhanced EMG was smoothed by the moving average technique. Finally, a threshold 

was chosen for every EMG onset by an expert.  

 

Figure 5. EEG and EMG preprocessing 
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For EEG preprocessing, three frequency bands were extracted for further analysis: 0.05Hz 

to 5Hz as low band (i.e., MRCP band), 5Hz to 40Hz as high band, and 0.05Hz to 40Hz as full 

band. They were filtered by a 4th order Butterworth bandpass filter. First, bad portions of data 

caused by head movements and unstable connections of electrodes were examined and 

removed based on the morphology of EEG by an expert. Next, independent component 

analysis (ICA) algorithm was used to compute sources of EEG, from which an expert removed 

independent components responsible for eye movements. Then the cleaned components were 

projected back to the sensor space to reconstruct the EEG signal. The eye-blink removed data 

was down sampled to 100Hz to save computational power for later processing. Then, 

movement epochs were extracted as -1.6s to 0.6s segments, and non-movement epochs were 

extracted as -8s to -2s and 2s to 8s segments with EMG labeled onsets as 0s. Longer non-

movement period was chosen because the rest state is longer than the movement state. Finally, 

noise-contaminated epochs were identified and removed by an expert. 

In order to investigate SMR, alpha and beta power were computed by Morlet wavelets with 

five cycles. ERD/ERS were computed on these two bands by subtracting the baseline power (-

3s to -2s) with power from -2s to 4s and then divided by the baseline power.  
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3.2 Algorithms 

3.2.1 EEGNET  

EEGNET is a compact deep learning architecture designed specifically for EEG signal analysis. 

It has been successfully applied in the BCI field in a number of studies [45]-[48]. Two layers 

of convolutions were designed to emulate temporal and spatial filters as FBCSP. In the first 

layer, the kernel size was set to be (1, 50) by following the suggestion in the original paper, in 

which the kernel was set to be half of the sampling frequency. F1, the number of convolutional 

kernels in this layer was set to be 8. In the second layer, a depth-wise convolutional layer with 

kernel size (𝑛_𝑐ℎ, 1) decodes the spatial information from band-passed frequency features 

produced in the first layer. D, the number of spatial filters of each output in the first layer, was 

chosen to be 6. After obtaining the features containing both temporal and spatial information, 

a separable convolution layer consisting of depth and pointwise convolution layers was applied 

to integrate and optimize features learned in the previous layers. The number of pointwise 

convolutional filters F2 was selected to be 48 as a multiplication result of F1 and D to pass all 

learned features into the dense layer. Dropout regularization with a 0.5 drop rate was applied 

after spatial filtering and separable convolution. Finally, the SoftMax algorithm performed 

classification based on output features from the dense layer. All hyperparameters, including 

 

Figure 6. EEGNET architecture [45] 
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F1, F2, D, and dropout rate, were selected by grid search, in which multiple combinations of 

values were tested. 

EEGNET used Adam as the optimizer and categorical cross-entropy as the loss function. 

The model was trained for 300 iterations and was evaluated on the validation set. The best 

model with the highest accuracy was reserved for the testing set. 

3.2.2 Support Vector Machine 

Support vector machine (SVM) is a well-known machine learning algorithm, which has been 

applied in various fields. In Figure 7, red and blue samples represent positive and negative 

classes, respectively. The dashed black line is the decision boundary. Two gray parallel lines 

are margins beside the boundary. SVM finds the largest margin between two classes and solves 

an optimization problem based on two vectors 𝑋𝑖 ⃗⃗ ⃗⃗   and  𝑋𝑗 ⃗⃗ ⃗⃗  ⃗, shown as yellow vectors in Figure 

7. Quadratic programming could solve this problem as it is proved to be a convex function 

[57]. The solvers are beyond the scope of this thesis. Since the optimization just depends on 

samples, it gives great convenience to utilize different kernels to transform non-linearly 

separatable samples to other spaces, such as fisher kernel, polynomial kernel, radial basis 

function (RBF) kernel [58]. In this study, we used RBF kernel to get optimal performance.  

 

Figure 7. SVM illustration 
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3.2.3 Adaptive Boosted Logistic Regression 

Adaptive boosting (AdaBoost) is an ensemble learning method to sequentially train classifiers 

on continuously re-weighted datasets and usually could achieve better results than a single 

classifier. Weak learners (i.e., classifiers with slightly above chance level accuracy) such as 

logistic regression and decision tree are commonly used to construct the AdaBoost algorithm. 

As Figure 8 demonstrates, the EEG data firstly goes into first weak learner ℎ1 with a unity 

weight 𝑤𝑖 on all trials. Once ℎ1 is trained, the trials are re-weighted such that misclassified 

trials gain more weights while correctly classified trials reduce their weights. In this way, the 

misclassified trial by ℎ1 will obtain more attention in the next classifier. In addition, ℎ1 is also 

given a weight (i.e., 𝛼1)based on its performance, the decision function of ℎ1is saved for later 

combination. Then next classifier takes the outputs of the previous one and repeats the 

procedure. Finally, a certain number of weak learners are trained and are integrated by a 

summation function ℎ(𝑥) to generate the final prediction, as shown in Figure 8. In this study, 

AdaBoost used logistic regression as the weak leaner and trained 10 of them to convert it into 

a strong learner. Logistic regression was chosen due to its fast-computing speed and robust 

performance in Riemannian geometry methods in EEG fields [61]  

 

Figure 8. AdaBoost diagram [60] 

 

Data
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3.2.4 Riemannian Geometry 

On the Riemannian manifold, each point, illustrated as green and red points in Figure 9, is a 

symmetric positive definite (SPD) matrix. We need to transfer EEG data into this form to 

utilize the properties of Riemannian geometry. A unique covariance matrix was constructed 

for this purpose to capture both temporal and spatial information. Each class 𝐶𝑘  for 𝑘 ∈

{1,… , 𝐾} contains all trials of one task, which is in size of (𝑛𝑡𝑟𝑖𝑎𝑙 , 𝑛𝑐ℎ , 𝑛𝑡). K is the class 

number; 𝑛𝑡𝑟𝑖𝑎𝑙  is the number of trials; 𝑛𝑐ℎstands for the number of channels; 𝑛𝑡 is the number 

of time samples. As shown in Figure 9, blue and red points belong to 𝐶1  and 𝐶2  classes, 

respectively. We first calculated the grand averages over 𝑛𝑡𝑟𝑖𝑎𝑙  for each class 𝐶𝑘̅̅ ̅ to get K 

matrices with a dimension of (𝑛𝑐ℎ , 𝑛𝑡). Then, for each trial 𝑋𝑖, which has the same dimension 

as 𝐶𝑘̅̅ ̅, we constructed a super trial by: 

 𝑋𝑖
𝑠𝑢𝑝𝑒𝑟 = 

(

 
 
 
 𝐶1̅̅ ̅.
.
.
𝐶𝐾̅̅̅̅

𝑋𝑖)

 
 
 
 

 (1) 

        

 

Figure 9. Riemannian manifold and tangent space [61] 

 



 

 22 

𝑋𝑖
𝑠𝑢𝑝𝑒𝑟

is the newly constructed super trial with the shape of ((𝐾 + 1) × 𝑛𝑐ℎ, 𝑛𝑡). The SPD 

matrix was built up in this form as a covariance matrix: 

 

𝐶𝑜𝑣𝑖 = 
1

𝑛𝑡 − 1
 × 𝑋𝑖

𝑠𝑢𝑝𝑒𝑟 × (𝑋𝑖
𝑠𝑢𝑝𝑒𝑟)

𝑇
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(2) 

 

𝐶𝑜𝑣𝑖 is the sample covariance matrix of the super trial in the shape of ((𝐾 + 1) × 𝑛𝑐ℎ) by 

((𝐾 + 1) × 𝑛𝑐ℎ). 𝐶𝑜𝑣𝑖 mainly contains three parts,  

1. The covariance matrices among class grand averages, shown in red;  

2. The covariance matrix of the current trial, shown in blue;  

3. The covariance matrix between class grand averages and the current trial, shown in green. 

The red part will always be the same for each trial since it does not include any current trial 

information, which is not helpful for classification.  However, the blue and green parts hold 

the classification-related information. The spatial information of the current trial is encoded 

inside the sample covariance matrix (blue part) since its off-diagonal elements are the 

covariance between pairs of electrodes. It is a classical form of covariance matrix which has 

been used for motor imagery study [59]. Besides, the temporal information of the current trial 

is embedded inside the cross-covariances between the current trial and class grand averages 

(green parts) because the cross covariances could only be large if the grand average of one 

class matches the current trial. For example, if the morphology of 𝑋𝑖 is similar to 𝐶1̅̅ ̅, then only 

𝐶1̅̅ ̅ ∗  𝑋𝑖
𝑇 and 𝑋𝑖 ∗  𝐶1̅̅ ̅

𝑇
would be large.  

Next, the covariance matrices of all trials were computed, representing points on the 

Riemannian manifold. Then, a tangent space was constructed at the geometric mean, the 

average of all trials, shown as point G in Figure 9. Finally, points on the Riemannian manifold 

were projected to the tangent space by logarithmic mapping. Since the tangent space is a 

Euclidean space, we could use standard classifiers for further processing. This study 
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constructed two classifiers based on Riemannian features: Riemannian-based support vector 

machine (R_SVM) and Riemannian-based AdaBoost logistic regression (R_Ada_Lgr). 

3.2.5 Detection Ensemble Learning 

This study proposed an ensemble learning method for detecting movement intention, 

combining R_SVM, EEGNET, and SVM by majority voting. First, these three classifiers were 

trained individually on low, high and full bands EEG. Then, their results were combined by a 

simple hard majority voting rule such that the result was dependent on two or more identical 

outputs of three classifiers. 

 

Figure 10. Ensemble learning structure 
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3.3 Analyses 

 

Figure 11. Training and testing procedures for pseudo-online and time-locked analysis. A timeline 

including two random trials are illustrated to demonstrate the training and testing details of both 

pseudo-online and time-locked analysis. The top timeline shows the training window extraction for 

both analyses. The movement and non-movement windows are shown in green and purple rectangles, 

respectively. The movement windows are extracted between -1.6s and 0.6s with a stride of 0.01s and 

the non-movement windows are extracted from -8s to -2s and 2s to 8s with a stride of 0.05s, with 

respective to movement onset as 0s. In the testing timeline, a window (red rectangle) moves at a constant 

rate (0.1s) to scan the testing run, which could be predicted as either Mov or non-Mov during pseudo-

online detection. Detection period is between -1s to 1s of each trial. FP, TP, TN and FN of detection are 

shown in red, green, gray and blue, respectively. A refractory period is shown in purple rectangle with 

italic lines. In pseudo-online classification, only the TP of detection would be classified to one movement 

type (IE_L for the first trial). In time-locked classification, movement types would be predicted for all 

windows (red rectangles) extracted by a stride of 0.1s within the detection period.  
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EEG could be analyzed offline, pseudo-online, or online based on the different data collection 

approaches and experiment protocols. The offline analysis is done after the data collection 

based on trials, which is the most prevalent method of EEG analysis in literature due to its 

simplicity. In contrast, online analysis processes data in real-time and sometimes provide 

feedback to make a closed-loop BCI. Obviously, online analysis is more preferable for most 

practical situations. When data are acquired continuously throughout the experimental with 

data between the trials also recorded, Pseudo-online analysis can be used, as an approximation 

of online analysis. It is a useful technique during the algorithm development, before applying 

newly development algorithms in online analysis. 

3.3.1 Pseudo-online Analysis 

In an online BCI scenario, the system analyzes input data and constantly makes predictions 

based on the real-time incoming EEG stream. We implemented the sliding time window on 

preprocessed epochs to simulate the online scenario after the data collection to analyze 

classifier performance on these windows pseudo-online. In this analysis, detection classifiers 

first predicted time windows as movement or non-movement. Next, the classification 

algorithm gave predictions on movement windows to distinguish movement types. 

The pseudo-online analysis adopted 6-fold cross-validation to evaluate classifiers based on 

runs. Training, validation, and testing sets were separated in terms of classifiers’ characteristics. 

For EEGNET, one run was pre-selected for testing; one run was randomly chosen from the left 

runs for validation; four runs were reserved for training. However, for SVM, R_SVM, and 

R_Ada_Lgr, five runs were used for training, one run was used for testing. No validation set 

was assigned for them because no hyperparameter tuning was needed.  

3.3.1.1 Detection 

Detection is essentially a binary classification between non-movement and movement. The 

ensemble learning method, consisting of SVM, R_SVM, and EEGNET, conducted the 

detection task using low-band, high-band, and full-band EEG. Firstly, the individual classifiers 

were trained using all bands. The training, validation, and testing set of one algorithm used the 
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same frequency band. Next, each classifier selected its best-performed band. Finally, three 

classifiers constitute the ensemble learning method.  

• Training 

As shown in Figure 11, a 2s time window scanned movement epochs (-1.6s to 0.6s) and non-

movement epochs (-8s to -2s and 2s to 8s) with a 0.01s and 0.05s stride, respectively. Shorter 

stride on movement epochs obtained a more detailed description of temporal information, 

while a longer stride on non-movement epochs saved computational power since there should 

not be any time-sensitive information during the rest state. As a result, one trial generated 

21movement windows and 162 non-movement windows. In order to balance two classes, 21 

windows were randomly selected from 162 non-movement windows for every trial. SVM, 

R_SVM, and EEGNET were trained using these windows in their own training sets. 

• Testing 

After training, EEGNET obtained the best model by tuning parameters in the validation set 

while SVM and R_SVM directly got the optimal parameters in the training set. A 2s time 

window scanned the testing run with 0.1s stride to obtain testing windows, as shown in Figure 

11. For each time window, EEGNET, SVM, and R_SVM first predicted whether it was 

movement or non-movement, then their predictions were majority voted to give a final label. 

If a movement window was found, all classifiers would take a break for 2s without giving new 

predictions. This 2s break is the refractory period meaning no second movement intention 

could be detected inside this duration because MRCP length, which is 2s, restrained movement 

resolution. The overlapping of MRCPs for successive intentions is beyond the scope of the 

current study. 

Unanimous voting of multiple consecutive windows was also investigated, which means a 

detection could only be found if several successive windows reported movement consistently. 

This measure would restrict the non-movement window being mispredicted as a movement 

but would likely miss some of the movement windows on the other hand.  

• Evaluation 
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 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 𝐹𝑃𝑠 𝑝𝑒𝑟min =
𝐹𝑃

𝑛𝑜𝑛 −𝑚𝑜𝑣 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(min)
 (4) 

 𝐹1 =
𝑇𝑃

𝑇𝑃 + 0.5 ∗ (𝐹𝑃 + 𝐹𝑁)
 (5) 

 𝐷𝐿 = 𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤 − 𝑡𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑛𝑠𝑒𝑡 (6) 

In order to measure the performance of algorithms, four basic metrics were introduced: true 

positive number (TP), false positive number (FP), true negative number (TN), and false 

negative number (FN). A true positive happens if detection was within ±1s of movement onset, 

shown as the green point in Figure 11. In contrast, any detection beyond this range was a false 

positive, shown as the red points in Figure 11. False negatives occurred if any window in this 

range was predicted as non-movement, shown as the blue point in Figure 11. True negatives 

are correctly predicted non-movement windows, which are grey points in Figure 11.Based on 

these four metrics, true positive rate (TPR), false positives per minute (FPs/min), and F1 scores 

were computed to evaluate the system according to equation (3)(4)(5), respectively. TPR was 

the rate of correctly detected trials; FPs/min was the number of false positives that happened 

per minute in the rest state. TPR and FPs/min were drawn in the receiver operator characteristic 

(ROC) curve to demonstrate the performance change by varying unanimous voting window 

numbers. F1 score was used to quantify the behavior of the classifier in the unbalanced scenario 

in pseudo-online testing, for it has more false samples (non-movement window) than true 

samples (movement window).  

Detection latency (DL) is the time difference between the end of the true positive window 

and its corresponding movement onset according to equation (6), representing the responsive 

speed of the detector. 

3.3.1.2 Classification 

Once a movement window was detected, the classification algorithm (R_Ada_Lgr) predicted 

its movement type. In order to investigate the influence of lateralization on classification, we 
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performed two binary classifications: left vs. right and WE vs. IE. Finally, we performed a 4-

class classification (WE_L vs. WE_R vs. IE_L vs. IE_R). In addition, three frequency bands 

were investigated to determine the optimal frequency band in each classification. 

• Training 

R_Ada_Lgr was trained on movement windows, extracted from -1.6s to 0.6s of each trial using 

a 2s time window scanning at a stride of 0.01s. For the 4-class classification, four types of 

movement windows constitute four classes. For binary classifications, the windows were 

combined based on their labels. For example, for WE-vs.-IE classification, WE_L and WE_R 

windows were combined as the WE class, IE_L and IE_R windows were combined as the IE 

class. A similar procedure was applied for left-vs.-right classification as well. 

• Testing 

Since the classification followed the detection, the trained R_Ada_Lgr only gave predictions 

to previously detected windows in the testing run.  

• Evaluation 

The classification performance was measured only on true positive detection windows, false 

positives were not considered because assigning movement type to non-movement windows 

is unnecessary. As a result, one trial obtained one classification label, so the classification was 

conducted on the trial level. Accuracy and confusion matrices were used to present the 

classification results. The accuracy was chosen due to the trial numbers in each classification 

condition being nearly balanced. In addition, the confusion matrix was selected to show the 

classification details. The diagonal elements of a confusion matrix gave the number of 

correctly classified trials, while the off-diagonal elements represented misclassified trials. In 

addition, the confusion matrix was normalized to get the percentage of predicted categories in 

true classes by computing the division between each element and the sum of its corresponding 

row.  
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3.3.2 Time-locked Classification Analysis 

Unlike the pseudo-online classification, the time-locked classification did not depend on 

detected windows. Instead, it classified all windows in a short period (-1s to 1s of movement 

onset) to investigate the influence of time on classification performance. R_Ada_Lgr and 

sLDA classified low-band EEG to provide a comparison between the proposed algorithm and 

the conventional algorithm. Two types of classifications were carried out in this analysis: 1) 4-

class classification (WE_L vs. WE_R vs. IE_L vs. IE_R), 2) pairwise classification (WE_L vs. 

WE_R, WE_L vs.IE_L, WE_L vs. IE_R, WE_R vs. IE_R, WE_R vs. IE_L, IE_L vs. IE_R). 

• Training 

The training process was precisely the same as pseudo-online classification. We extracted 21 

windows from movement epochs (-1.6s to 0.6s of movement onset) from the training runs 

using a 2s time window moving at a stride of 0.01s.  R_Ada_Lgr and sLDA were trained for 

different classifications by combining windows accordingly.  

• Testing 

A 2s time window scanned every trial from -1s to 1s in the testing run with a stride of 0.1s, as 

Figure 11 shows. R_Ada_Lgr and sLDA predicted all extracted testing windows for both 

pairwise and 4-class classifications. 

• Evaluation 

Accuracy was computed for each testing window in a trial-based manner, meaning the 

proportion of correctly classified trials was the accuracy for that window. As a result, 

accuracies of all windows between -1s and 1s were obtained using R_Ada_Lgr and sLDA.  
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4.1 MRCP 

The MRCPs shown in Figure 12 were calculated by averaging nine subjects' low-band EEG 

(0.05 - 5Hz). MRCPs decreased from -2s to 0s and rebounded from 0s to around 1s in all 

Chapter 4 

Results 

 

Figure 12. MRCP of four movements. MRCP of WE_L, WE_R, IE_L and IE_R are shown in green, 

red, black and blue curves, respectively, in 15 channels covering frontal, central and parietal lobes. 

The shaded areas are the standard deviations of MRCP among nine subjects. The x-axis is from -2s to 

4s with respective to movement onset as 0s. The y-axis ranges from -13V to 7V. 
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channels with varied peak-to-peak amplitudes. From direct observation, the peak-to-peak 

amplitude of MRCPs decrease from central channels to surrounding channels. FC1, FC2, and 

Cz have the largest MRCPs peak-to-peak amplitude at approximately 12V. Conversely, P3, 

Pz, and P4 have the smallest MRCPs with approximately 4V peak-to-peak amplitude. The 

varied MRCP amplitude on these channels suggests that the upper-limb MRCPs were 

generated below FC1, FC2, and C2 with a diffuse distribution over the premotor and motor 

cortex. The morphology characteristics of MRCP observed in the current study are in 

agreement with other studies of upper-limb MRCP in the literature [5][62][77]. 

The variability of MRCPs might relate to time and channel locations. For example, in Fz, 

FC1, FC2, C1, Cz, and C2, the shaded areas became narrower when approaching the movement 

onsets. However, this trend is unclear in other channels, presenting as approximately equal 

variability from -2s to 4s.  

The MRCP differences among the four movements are generally subtle across all channels. 

However, slight contra-lateralization could be noticed in two pairs of channels (FC1 vs. FC2 

and C1 vs. C2). Close observation shows that the peak-to-peak amplitudes of green curves 

(WE_L) are smaller than the red curves (WE_R) in FC1 and C1 and vice versa in FC2 and C2. 

Similar patterns are found for IE_L and IE_R as well. Nevertheless, no MRCP difference 

between two movements on the same limb could be observed. 
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4.2 ERD/ERS 

In order to calculate ERD/ERS, the baseline power was first computed by averaging the power 

between -3s and -2s. Then the percentage change was calculated by the following power from 

-2s to 4s subtracting and dividing by the baseline power. If the following power is lower than 

baseline power, ERD occurs. Conversely, ERS occurs. By observing Figure 13, the 

topographical maps shows that the power decrease is manifested as ERD dropping from -2s 

and hitting the bottom between -1s and 0s. Then, the power increases and surpasses the baseline 

at around 3s, showing as ERS. A similar trend shows up on the continuous power change for 

C1 and C2 on the right-side figure of Figure 13. In addition, ERD topographical maps show 

contra-lateralization on WE_L and IE_L between -1s and 0s, and the activation region is 

around FC2, C2, and C4. However, this pattern is not apparent in the right-side figure, which 

suggests the contra-lateralization of ERD is too subtle to be captured in continuous power 

 

Figure 13. ERD/ERS of high-band EEG for four movements. The left topographical maps show the 

average ERD/ERS of four movements in six 1s intervals from -2s to 4s with baseline from -3s to -2s. 

The percentage change is indicated by color variation from red (30%) to blue (-30%). The right figures 

present the continuous power changes of four movements on C1 and C2 in orange and blue, 

respectively, from -2s to 4s with the range from -30% to 30%. The dashed gray lines indicate the 

baseline power. ERD occurs from around -2s to 3s when the power changes are below the baseline, 

while ERS occurs from approximately 3s to 4s when the power changes are above the baseline.  
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change. Although the ERD of left movements indicates contra-lateralization in topographical 

maps, ERD of the right movements does not give clear activation regions.  

Unlike ERD, ERS gives pronounced contra-lateralization on both left and right movements. 

In topographical maps from 3s to 4s, ERS appears in the left hemisphere for the right-hand 

movements and the right hemisphere for the left-hand movements. The distribution of ERS is 

more widespread and not as localized as ERD. The contra-lateralization of ERS is also evident 

in the right-side figure from 3s to 4s, which might infer that the ERS could be a better indicator 

to differentiate the sidedness of movements.  

Apart from contra-lateralization, ERD and ERS of WE and IE on the same limb also 

manifest subtle differences. For example, from the topographical maps, the ERD of IE_R is 

slightly lower than WE_R on C2 between -1s and 0s. Conversely, the ERS of IE_R is slightly 

larger than WE_R in the left hemisphere from 3s to 4s. 

Overall, the ERD/ERS might be a good indicator for classification between two sides of 

movements. Nevertheless, it does not give an indicator as time-locked as MRCP for detection. 
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4.3 Pseudo-online Detection  

4.3.1 Relationship between Detection Algorithms and Frequency Bands 

As mentioned in Section 3.3.1.1, the F1 score gives a balanced measurement for different 

combinations between detection algorithms and frequency bands. We conducted a statistical 

analysis using two-way mixed model analysis of variance (ANOVA) with subject as a random 

factor, algorithm and band as fixed factors. According to equation (5), the F1 score was 

calculated for every fold. Each subject got six F1 scores due to 6-fold cross-validation. As a 

result, fifty-four F1 scores were obtained from nine subjects. Each violin plot in Figure 14 

represents the data distribution of 54 F1 scores for each combination.  

We can see from direct observation that classifiers trained on the full and the low band 

generally have better F1 scores than classifiers trained on the high band. The statistical 

 

Figure 14. Violin plots of F1 score for four algorithms in three frequency bands. The violin plots of four 

detection algorithms, including R_SVM, EEGNET, SVM, Ensemble, are shown in blue, yellow, green, 

and red, respectively. Four groups of frequency bands (full-full-low, full, low and high) are shown in 

x-axis from left to right. Ensemble method consists of full-band trained R_SVM, full-band trained 

EEGNET and low-band trained SVM. Hence, its frequency band is shown as full-full-low. The other 

three algorithms were trained with full, low and high bands. Inside each violin plot, the white point 

stands for the median value, the black bar is the interquartile range, and the curve outside represents 

the kernel density of the data distribution. The statistical groupings calculated by two-way ANOVA 

with alpha as 0.05 are presented as letters from A to F below the plots. 
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grouping further proves this phenomenon. For example, the SVMs trained by the full and low 

bands are significantly better than SVMs trained using the high band since the high-band SVM 

is in group F while the other two share group C, D, and E. A slowly decreasing performance 

shows up on EEGNET by observing the change of statistical groupings from full band to high 

band. (Group B, C for the full band; group C, D for the low band and group D, E for the high 

band)  

Slight differences also exist between full and low bands for all algorithms. For example, 

R_SVM performs significantly better in the full band, and EEGNET performs slightly better 

in the full band than the low band by observing their statistical groupings. However, SVM 

trained by the full band is a bit worse than that trained by the low band because its F1 scores 

in the full band cover broader statistical groupings, which are group D and E, than its 

correspondent. 

Three individual classifiers trained on their preferred bands were combined to establish the 

ensemble method. According to the statistical groupings in Figure 14, the ensemble method 

significantly outperforms nearly all individual classifiers except the R_SVM trained on the full 

band. Nevertheless, the F1 score variability of the ensemble method is smaller than full-band 

trained R_SVM, presenting the superiority of the ensemble method in another perspective.  
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4.3.2 Impact of Window Number on Detection Performance 

As introduced in 3.3.1.1, the detection performance of four algorithms trained on their optimal 

bands was investigated by varying the number of windows needed for unanimous voting from 

1 to 19. TPR and FPs/min were calculated according to equations (12) and (13) for each 

window number, respectively. Modified ROC curves were obtained by connecting 19 TPR-

FPs/min points. From Figure 15, TPR and FPs/min drop down from the right-upper side to the 

left-lower side in each ROC curve with the window number increasing. As the window 

increases, it is less likely to get FP and TP since more windows contribute to the unanimous 

voting. By observing the characteristics of the four curves, we can find that the algorithms act 

in different ways. For example, EEGNET gives the best TPR with the worst performance on 

FPs/min, while R_SVM shows a contrary result with the worst TPR and best FP/min. SVM 

 

Figure 15. Modified ROC curves of four algorithms. The modified ROC curves of full-band trained 

EEGNET, full-band trained R_SVM, low-band trained SVM and full-full-low trained ensemble 

method are shown as yellow, blue, green, and red, respectively. On each curve, the TPR and FPs/min 

are reported for all points from upper-right to lower-left, representing the number of windows needed 

for unanimous voting from 1 to 19.  
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has a middle performance between EEGNET and R_SVM. The ensemble method outperforms 

the others as its ROC locates on the left-upper side compared with other methods, which means 

 

Figure 16. Detection latency variation with window number change. In the upper figure, average 

detection latencies of all TPs in nine subjects are shown for all algorithms by varying the window 

number from 1 to 19. The ensemble method, EEGNET, R_SVM and SVM are plotted in red, yellow, 

blue, and green, respectively. The latency is given in millisecond unit ranging from -50ms to 750ms. In 

the lower figure, the ensemble method detection latency are plotted as histograms from window number 

1 to 19. The units and labels of the histogram show in the lower right plot, x-axis stands for the latency 

time ranging from -1000ms to 1000ms and y-axis is the trial count number ranging from 0 to 150. In 

each histogram, 20 bars are plotted with 100ms interval from -1000ms to 1000ms. 
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better TPR and FPs/min.  

The detection latencies of correctly detected trials are calculated by equation (6). The upper 

graph of Figure 16 shows the averaged latencies among all trials for each window amount. In 

this graph, the latency increases steadily from window number 1 to around window number 8 

for all algorithms. Then it continues climbing at a slower rate until around window number 13. 

Finally, it fluctuates to the end. By comparing four algorithms, the average latency from the 

shortest to the longest appears in the following order for all windows: EEGNET < SVM < 

Ensemble < R_SVM. The latency of the ensemble method is approximately the average of the 

others. 

The lower graph of Figure 16 illustrates the detection latency of all trials using the ensemble 

method in histograms for every window number. The ensemble method is selected to represent 

the general trending of latency distribution since the histograms of all methods look similar. 

The histograms give another perspective on latency based on individual trials compared to the 

averaged latency of all trials in the upper graph. Observing the histogram when the window 

number is one shows that the distribution is approximately Gaussian. With the window number 

increasing from 1 to 8, the mean of the histogram keeps shifting to the right, leading to 

postponed detection time. Besides, the total TP count decreases slowly, consistent with the 

TPR drop shown in Figure 15. With the window number increasing from 9 to 19, the 

distribution keeps right-skewed, and the total TP count decreases dramatically. As a result, 

more randomness was added to the latency, leading to a slower rate of increase and fluctuation.  

In conclusion, more unanimous voting windows lead to better FPs/min but worse TPR and 

detection latency. As a result, the system with one window was adopted, giving high TPR, 

short latency, and high FPs/min by satisfying two metrics out of three. More detailed results 

of this choice of are presented next.  
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4.3.3 Detection Performance with One Window 

As discussed in the previous section, one window was adopted for the system. The detection 

performance with one window was investigated in detail for subjects and algorithms in Table 

1. The results in this table correspond to the one-window condition in Figure 15 and Figure 16. 

The mean TPRs and FPs/min in the last row of Table 1 are equivalent to the right-most points 

of the ROC curves in Figure 15, and the mean latencies are equivalent to the left-most points 

in Figure 16. Furthermore, this table reveals the standard deviation in nine subjects. Two-way 

mixed-factor ANOVA tested the statistical significance of four algorithms in each metric by 

setting subjects as random factor and algorithms as fixed factor with the alpha of 0.05.  

Subjects play an essential role in validating the system’s adaptation ability. Regarding TPR, 

subject 5 gave the highest TPR in all algorithms, while subject 7 has the worst TPR in three 

classifiers. However, TPR has no significant difference among subjects. FPs/min does not 

show significant difference among subjects either, although subject 8 has the fewest FPs/min 

in all algorithms. However, latency shows a significant difference in subject 8 with a p-value 

Subject 

Ensemble EEGNET R_SVM SVM 

TPR 

(%) 

FPs/

min 

Latency 

(ms) 

TPR 

(%) 

FPs/

min 

Latency 

(ms) 

TPR 

(%) 

FPs/

min 

Latency 

(ms) 

TPR 

(%) 

FPs/

min 

Latency 

(ms) 

1 85.5 3.3 37.0 90.2 6.3 -95.0 62.4 1.5 154.7 87.3 4.4 28.6 

2 84.8 3.4 60.0 84.8 7.0 -44.0 45.7 1.2 52.5 81.9 4.8 75.3 

3 75.2 4.4 -16.0 75.8 7.4 -105.0 49.7 1.6 138.5 77.1 5.6 -25.9 

4 85.0 3.0 32.0 90.3 7.8 -120.0 79.2 3.0 72.4 72.0 5.2 63.7 

5 96.0 1.8 47.0 95.4 3.2 -23.0 80.6 1.0 264.9 91.4 3.9 34.0 

6 77.3 2.8 136.0 92.0 4.9 -37.0 56.4 1.7 231.3 69.9 6.4 78.4 

7 68.2 4.2 11.0 74.8 9.8 -35.0 19.2 1.4 254.7 66.9 6.2 -23.9 

8 73.4 0.9 345.0 83.8 2.1 309.0 66.2 0.9 391.9 72.7 3.1 287.0 

9 71.2 4.3 171.0 80.1 6.8 26.8 45.5 1.2 248.6 66.0 6.3 6.4 

Mean ± 

SD 

79.6 
± 

8.8 

3.1 
± 

1.2 

91.4 
± 

111.9 

85.2 
± 

6.9 

6.1 
± 

2.2 

-13.8 
± 

129.4 

56.1
± 

17.9 

1.5 
± 

0.6 

201.1 
± 

106.8 

76.1
± 

8.5 

5.1 
± 

1.1 

58.2 
± 

94.2 

Table 1. Detection performance of nine subjects using Ensemble method, EEGNT, R_SVM and SVM. 

TPR, FPs/min and latency are listed for every subject and every algorithm. The last row shows the mean 

and standard deviation of nine subjects for each metric.  

 

 

Table 2. Detection performance of nine subjects using Ensemble method, EEGNT, R_SVM and SVM. 

TPR, FPs/min and latency are listed for every subject and every algorithm. The last row shows the mean 

and standard deviation of nine subjects for each metric.  
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of 0.004. Overall, the system performs steadily on most tested subjects. Four algorithms are 

further compared regarding TPR, FPs/min, and latency in one window scenario, as shown in 

Figure 17. R_SVM has the worst TPR and latency but the best FPs/min in four algorithms 

based on its statistical grouping. The unbalanced performance of R_SVM in three metrics also 

shows up in Figure 15 and Figure 16 in multi-window scenarios. Like R_SVM, EEGNET is 

unbalanced in three metrics: it has the first-tier TPR and latency while the worst level of 

FPs/min in terms of statistical grouping. Besides, these two algorithms have unstable 

performance across nine subjects, revealed as the large variability of FPs/min in EEGNET and 

large variability of TPR and latency in R_SVM. Compared to R_SVM and EEGNET, SVM 

has more balanced performance across three metrics and relatively stable variability among 

nine subjects. As its statistical grouping suggests, the ensemble method has the first-level TPR, 

middle-level FPs/min, and middle-level latency. In addition, it also performs stably in nine 

subjects with low variability in three metrics. 

 

Figure 17. Boxplots of TPR, FPs/min and latency of nine subjects for four algorithms with statistical 

groupings. TPR, FPs/min and latency are shown from left to right in three graphs. In each graph, 

R_SVM, EEGNET, SVM and ensemble method are shown as blue, yellow, green, and red, respectively. 

Boxplot of each algorithm is plotted. The individual subject values are shown as black points. The 

statistical groupings are shown below each graph. 

 

 

 

Figure 18. Boxplots of TPR, FPs/min and latency of nine subjects for four algorithms with statistical 

groupings. TPR, FPs/min and latency are shown from left to right in three graphs. In each graph, 

R_SVM, EEGNET, SVM and ensemble method are shown as blue, yellow, green, and red, respectively. 

Boxplot of each algorithm is plotted. The individual subject values are shown as black points. The 

statistical groupings are shown below each graph. 
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4.3.4 Influence of Four Movements on Detection Performance 

 

Figure 19. Boxplots of TPR and latency using the ensemble method for four classes with statistical 

grouping. TPR and latency are shown from left to right in two graphs. In each graph, WE_L, WE_R, 

IE_L and IE_R are shown as green, orange, purple, and pink respectively. Boxplot of each movement 

class is plotted with the individual subject value as black point. The statistical grouping are shown 

below each plot. 

 

 
Subject 

WE_L WE_R IE_L IE_R 

TPR (%) 
Latency 

(ms) 
TPR (%) 

Latency 
(ms) 

TPR (%) 
Latency 

(ms) 
TPR (%) 

Latency 
(ms) 

1 86.4 -16.6 90.9 -17.1 83.7 85.5 81.0 33.1 

2 91.4 44.3 78.8 -59.8 88.9 186.8 79.4 80.4 

3 62.2 -117.9 92.7 57.4 66.7 -122.3 77.8 -104.1 

4 80.0 -23.8 86.3 72.4 88.5 -4.2 85.2 61.9 

5 95.5 60.1 88.6 68.6 100.0 58.0 100.0 111.5 

6 81.0 15.3 77.5 166.7 69.8 147.4 81.6 92.8 

7 65.9 97.9 68.6 -10.8 75.7 -4.4 63.2 73.8 

8 75.0 315.0 70.0 285.3 75.7 464.4 73.0 367.8 

9 61.5 188.2 74.4 -103.1 80.5 234.6 67.6 214.7 

Mean 

± Std 
77.6±11.8 62.5±120.0 80.9±8.5 51.1±112.3 81.0±9.9 116.2±160.4 78.7±10.0 103.6±121.8 

Table 2. TPR and latency of WE_L, WE_R, IE_L, IE_R using Ensemble method. TPR and latency are 

listed for every subject and every movement. The last row shows the mean and standard deviation of 

nine subjects for each metric.  
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Based on one-window detection model, the impact of movement on detection performance was 

investigated. Figure 18 demonstrates the TPR and latency of four movements using the 

ensemble method. The performance details for each subject could be found in Table 2. FPs/min 

was not analyzed because an FP does not have a movement label by default. Two-way mixed-

factor ANOVA tested the significant effects of movements with subjects as random factor with 

alpha of 0.05.  

No significant difference was found in movements or subjects. However, the TPR of WE_R 

and IE_L are generally better than WE_L and IE_R by observing the left graph of Figure 18. 

Besides, the latency of IE_L and IE_R are slightly higher than WE_L and WE_R by observing 

the right graph of Figure 18. Subject 5 has significantly better TPR than others in IE_L and 

IE_R. In addition, subject 8 has a significantly longer latency than others, consistent with the 

previous finding.  
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4.3.5 Trial Distribution of Detection Latency 

Detection latency has been presented as the average of subjects in the previous sections. 

However, the trial distribution of detection latency inside each subject might reveal more 

information for the detection performance. Figure 19 shows the histograms of latency for nine 

subjects and the mean of them. Twenty bins were obtained in each histogram from -1000ms to 

1000ms since the testing window gives prediction every 100ms in pseudo-online detection. 

First, we calculated the number of trials that happened inside each 100ms. Then, they were 

divided by the total number of trials to obtain the percentage value for each bin in histograms. 

The mean histogram represents the average latency of nine subjects.  

 

Figure 20. Histograms of detection latency for nine subjects and their mean. The histograms of detection 

latency using ensemble method are plotted for nine subjects and their mean. In each histogram, x-axis 

stands for the latency time ranging from -1000ms to 1000ms and y-axis is the trial percentage ranging 

from 0 to 20%. 20 bins are plotted for each histogram by calculating the percentage of trials fallen into 

every 100ms period.  
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The average value of the mean histogram is around 300ms to 500ms, inferring that most of 

the detections occurred in this interval. Most subjects’ latency histograms are similar to the 

mean histogram and follow the normal distribution, such as subject 1, subject 2, subject 3, 

subject 4, subject 5, subject 6, and subject 9. However, the left tail of subject 7’s histogram is 

more like uniform distribution. Besides, subject 8’s histogram is right-skewed, with most 

detections happening in the last 200ms.  

Due to the sweet period of inducing Hebbian plasticity being within 400ms to 500ms of the 

movement onset, the histograms of latency provide another perspective to evaluate the system's 

efficiency for plasticity induction [82]. From the mean histogram, around 75% of the trials are 

detected from -500ms to 500ms of movement onset, proving most of the trials would be valid 

for rehabilitation.  
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4.4 Pseudo-online Classification  

 

Figure 21. Accuracy and confusion matrix of three classifications. Three different classification results 

are shown as left vs. right, WE vs. IE and 4-class comparisons in left, middle and right columns, 

respectively. The upper row shows the classification accuracy boxplots of three frequency bands. For 

each boxplot, the individual points of nine subjects are shown in black point and the mean accuracy of 

nine subjects is shown as white point. The statistical groupings are listed below on x-axis. In the lower 

row, the confusion matrices are shown for the optimal frequency band in each classification case, which 

are high band, full band, and low band for left vs. right, WE vs. IE and 4 class comparison, respectively. 

The arrows indicate the match between optimal frequency band in accuracy plots and the normalized 

confusion matrices. The confusion matrices are normalized so that the sum of each row is 100.  
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As introduced in 3.3.1.2, three types of classification, including left vs. right, WE vs. IE, and 

4-class comparison, are conducted and showed their accuracy and confusion matrices results 

in Figure 20. In addition, two-way mixed-factor ANOVA was applied to test the statistical 

differences among three frequency bands in each classification type with subjects as the 

random factor and the frequency band as the fixed factor. Their statistical groupings are shown 

as letters below the boxplots.  

Observing the accuracy boxplots of left vs. right shows that the high band gives the best 

performance in terms of mean accuracy and is significantly better than the low band. The 

normalized confusion matrix was drawn for the high band classification, showing that around 

70% of the left and 67% of the right movements are correctly classified. The classification 

between WE and IE is shown in the middle column of Figure 20, the full-band trained classifier 

performed the best and is significantly better than the high-band trained classifier. The 

normalized confusion matrix of full band classification shows that 65% of IE and 43% of WE 

were classified correctly. As a result, high band contributes most to left vs. right classification, 

while full band gives the best classification between WE and IE. In addition, it can be seen that 

the classification between left and right is easier than the classification between WE and IE by 

comparing these two types of classification,. 

The 4-class classification is presented in the right column of Figure 20. There is no 

significant difference found among the three frequency bands. However, the mean accuracy of 

the low band is slightly higher than the other two. Observing the confusion matrix shows that 

IE_L and IE_R have 40% and 46% accuracy, respectively, as shown in the diagonal, above 

chance level. However, WE_L and WE_R have 21% and 25% accuracy, respectively, around 

the chance level. In addition, WE is more likely to be predicted as IE. 38% of WE_L were 

predicted as IE_L and 36% of WE_R were predicted as IE_R by observing the 4-class 

normalized confusion matrix.  
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4.5 Time-locked Classification 

As introduced in 3.3.2, the effect of time on classification performance was investigated in a 

time-locked analysis, the 4-class time-locked classification was conducted on low band EEG 

using two algorithms, including R_Ada_Lgr and sLDA. By observing Figure 21, it can be 

found that the mean accuracies of two classifiers fluctuate from -1000ms to -300ms below the 

significant chance level, and the standard deviation among subjects is small in this range, 

suggesting the classification information is not sufficient for all subjects in this period. Then 

they slowly increase from approximately 25% at -300ms to around 35% at 200ms and surpass 

the significant chance level (31.26%) at 100ms. The sharp increases happen from 200ms to 

500ms with around 27% accuracy boost. R_Ada_Lgr and sLDA achieved 51.8% and 45.2% 

mean accuracy at 500ms, respectively. Finally, they both decrease to around the significant 

 

Figure 22. 4-class time-locked classification using R_Ada_Lgr and sLDA. The accuracies of 4-class 

classification are shown in blue and orange for R_Ada_Lgr and sLDA, respectively. 21 accuracy points 

are reported for each window with interval of 100ms ranging from -1000ms to 1000ms. The standard 

deviation among subjects of each accuracy point is shown as bar with corresponding color. The green 

line is the significant chance level (31.26%) calculated by adjusted Wald interval with alpha of 0.05. 
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chance level at 1000ms. Mean accuracies of the two algorithms are above the significant 

chance level between 100ms and 900ms, indicating the most relevant information for 

classification is in this range. The standard deviation in this period is much larger than before, 

suggesting considerable classification accuracy variability among subjects. Overall, the trends 

of the two algorithms are similar and show a time-locked peak at 500ms. However, R_Ada_Lgr 

is better than sLDA from 200ms to 1000ms.  

R_Ada_Lgr conducts the classifications between pairs of movements to analyze the 

difference of movements. From Figure 22, we can see that the accuracy curves of 6 pairwise 

classifications have a similar trend, increasing from -1000ms to 500ms and dropping from 

500ms to 1000ms. All pairs are time-locked at 500ms to achieve peak accuracy as the 4-class 

classification shown in Figure 21. However, performance difference exists among pairs. For 

 

Figure 23. Pairwise time-locked classification using R_Ada_Lgr. The accuracies of 6-pair binary 

classification with two movements are shown in different colors. 21 accuracy points are reported for 

each binary classification with interval of 100ms ranging from -1000ms to 1000ms. The standard 

deviation of each accuracy point is shown as bar with corresponding color. The green line is the 

significant chance level (60.1%) calculated by adjusted Wald interval with alpha of 0.05. 
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example, the orange and purple are lower than others from -500ms to 1000ms curves, 

representing WE_L vs. IE_L and WE_R vs. IE_R, respectively. In addition, they cross the 

significant chance level later than other curves by approximately 400ms. The lower accuracy 

of these two curves indicates it is difficult to differentiate the same-limb movements, consistent 

with the subtle difference of ipsilateral MRCP shown in Figure 12. The red and green curves 

representing WE_R vs. IE_L and WE_L vs. IE_R respectively are constantly higher than 

others between 200ms and 700ms, suggesting that movement type and sidedness contribute to 

the classification. The other two pairs, including WE_L vs. WE_R and IE_L vs. IE_R, perform 

between the two groups above.  

In conclusion, both 4-class and pairwise classifications show the time-locked phenomenon, 

the peak accuracy in 500ms, inferring that the most relevant information for classification 

resides in the period between -1.5s and 0.5s. Furthermore, contralateral movements are easier 

classified than ipsilateral movements, aligning with the physiological results shown in 4.1. 
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Chapter 5 

Discussion 

5.1 Influence of Frequency Band on Detection and Classification 

This study trained three individual classifiers, including SVM, R_SVM, and EEGNET, on low, 

high, and full bands EEG for pseudo-online detection. F1 score provided a unified metric when 

comparing the combinations between frequency bands and algorithms.  

Frequency band plays an important role in detection. As discussed in 4.3, full-band and low-

band feature generally perform better than high-band feature. When SVM and EEGNET were 

used as detector, statistically significant differences between the high band and others two were 

found, indicating that the high band EEG from 5Hz to 40Hz are not as valuable as the full or 

low band for the detection task. The supporting evidence could be found in different 

morphologies in MRCP and SMR from Figure 12 and Figure 13. MRCP has a more prominent 

negative peak time-locked with movement onset compared to ERD/ERS. By comparing the 

full band and the low band, it was found that the full band is mostly better than the low band, 

which suggests the combination of SMR and MRCP would give better results than solely 

MRCP features. Similar findings were also reported in other studies. Slow cortical potentials 

(SCP), filtered between 0.1Hz and 6Hz, were found to be more synchronized with the 

movement onsets than ERD, which might be due to the phase-locked and time-locked nature 

of SCP [63], A self-initiated walking study also proved that MRCP is more valuable than ERD 

to predict gait premovement. Furthermore, they provided methods to combine MRCP and ERD 

features in concatenated and meta ways, which showed better performance than either MRCP 

or ERD individually [64]. 

Detection algorithms have their own preference for frequency bands. For example, although 

the full band is regarded in general as a valuable frequency band for detection using R_SVM 

and EEGNET, the low band provides the best F1 score for SVM as shown in Figure 14. We 

can find R_SVM performs significantly better in the full band than the low band, EEGNET 

prefers the full band, and SVM prefers the low band by observing the median values of their 

violin plots. The covariance matrix design might explain why R_SVM prefers the full band. 
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As introduced in 3.2.4, the covariance between a class template and a trial can only be large if 

the morphology of the trial matches one of the class templates, in which way the temporal 

information is decoded. MRCP provides such information since the low-frequency signal 

manifests the shape as their main discriminant feature. However, another part of the covariance 

matrix (sample covariance of the trial) contains the spatial information, in which ERD shows 

better contra-lateralization than MRCP. As a result, the full band consisting of both MRCP and 

ERD performs best for R_SVM. EEGNET prefers full band because it emulates the FBCSP, 

which requires learning power features by bandpass filtering over a broad bandwidth range in 

the first convolutional layer. The theoretical reason for SVM preferring low band is difficult 

to explain. One possible inference could be that it is more sensible for low-frequency features. 

Empirically, SVM was tested in various MRCP studies and proved its robustness [65][66].  

Feature extraction algorithms could also have their preference over frequency bands. For 

instance, one study reported that the discriminative canonical pattern matching (DCPM) 

technique performed best in the delta band while CSP performed best in the beta band [67].  

The classification was influenced by the frequency band as well. As shown in Figure 20, 

high-band EEG is more helpful to classify between left and right movements than both low-

band and full-band EEG, which could be explained by MRCP hardly showing any noticeable 

difference between left and right movement, while the topographical maps of ERD showing 

the contra lateralization in FC2, C2, and C4. One study classified left and right keyboard typing 

using features from delta band to beta band and reported that the best frequency band is 

dependent on subjects [67]. The classification between WE and IE shows a different scenario. 

Full-band EEG provides significantly more discriminant information than the high-band EEG, 

but it is not significantly better than the low-band EEG. Since neither ERD nor MRCP shows 

noticeable spatial or morphology features for ipsilateral movements, the full band might 

combine the information from these two bands and provide better classification performance. 

A study investigating lateral and palmar grasp supports this finding since they claimed the 

combination of alpha-band feature and MRCP is better than only using MRCP for 

classification between two grasps [68]. For the classification among four movements, three 

frequency bands do not show a significant difference.  



 

 52 

5.2 Feasibility of Ensemble Learning 

Wisdom of crowd is a vivid explanation for ensemble learning, which strategically aggregates 

multiple classifiers to make wiser decisions. Standard methods of aggregating classifiers 

include bagging, boosting, voting, and stacking [69]. The current thesis study constructed the 

detection model using hard majority voting among three different classifiers: EEGNET, 

R_SVM, and SVM. The majority voting method did not provide further training to existing 

models for detection ensemble learning but rather combined their results. This approach is 

usually suitable for integrating strong learners, classifiers with good performance with 

strengths and weaknesses towards different metrics. For instance, EEGNET gave the highest 

TPR but also the highest FPs/min, R_SVM performs the opposite of EEGNET and SVM is 

between them. In this circumstance, majority voting successfully combined three classifiers in 

a complementary way to provide balanced TPR and FPs/min. 

However, hard majority voting is not the only method to ensemble strong learners. Soft 

majority voting assigns different weights to individual classifiers and votes based on their 

performance. However, looking for appropriate weights could take a long time by emulating 

the possible combinations of weights. Stacking solves this parameter searching problem by 

training a separate classifier to learn the characteristics of individual classifiers and combine 

them in a more sophisticated manner. Nevertheless, training such a classifier would require 

more training data and computational time to generate sufficient samples. For example, we 

need to divide the dataset into three parts: a training set for individual classifiers, a training set 

for the stacking classifier, and a testing set for the ensemble classifier. Lesser training data 

would add more difficulties to getting a good individual classifier. In BCI studies, the ensemble 

of algorithms often happens in both the feature extraction and the classification stage. One 

study computed four detection models by combining MRCP and ERD features in different 

ways: MRCP model, ERD model, concatenated model, and META model. The MRCP and 

ERD models are individual classifiers based on MRCP and ERD features, respectively. The 

concatenated model combines MRCP and ERD features to feed into a classifier. The META 

model is similar to a stacking method, which interprets the output of MRCP and ERD models 

using LDA. Their results showed that META model gives the best F 0.5 score and accuracy 
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performance [64]. Another study found the optimal frequency band for two feature extraction 

methods (DCPM and CSP) and combined their decision using LDA in both feature and 

decision phases [67]. 

In the classification phase of the current study, ensemble learning was applied by adaptive 

boosting multiple logistic regression models using Riemannian features. Classification 

ensemble learning also outperformed sLDA, which was used by plenty of studies to obtain 

optimal classification results [70]-[74]. AdaBoost could be used to train other classifiers as 

well. One study used AdaBoost extreme learning machine (ELM) for motor imagery and 

showed better classification accuracy than individual ELM, SVM, and LDA [75]. Another 

study applied AdaBoost SVM with regularized CSP (RCSP) to achieve better performance 

than previous methods and found AdaBoost may be a good match for RCSP features [76]. 

5.3 Detection 

Decoding movement intention from rest state EEG has always been a challenge in the BCI 

field for rehabilitation. Such a system requires high TPR and low FPs/min to provide an 

acceptable detection rate and a short latency for inducing Hebbian plasticity. In terms of the 

developing phase of such a system, efforts have been put into researching in offline, pseudo-

online and online BCI.  

Due to the simplicity of offline analysis, tons of studies have been conducted to develop and 

test every chain of the BCI loop, including preprocessing, feature extraction, and classification 

algorithms [55][77][78]. Both movement execution and motor imagery have been investigated 

for detection [75]. Offline studies usually extract the equal length of non-movement and 

movement epochs as two classes to provide a balanced dataset to a classifier. However, 

rehabilitation therapy patients spend most of their time resting and are only required to think 

about moving during short intervals, which could potentially nullify the hypothesis in balanced 

dataset. Besides, participants were usually asked to perform rest as a task in a constrained 

condition by keeping the body still and not blinking eyes. The non-movement epochs collected 

this way can not represent the humans’ normal rest state, which will add another layer of 

difficulty transferring offline to online BCI. Compared to the constrained conditions adopted 
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by offline studies, our experimental settings allow user to blink. Last but not least, the 

movement epochs of offline studies always cover long periods after movement onset, which 

contains the most discriminative motor features. Nevertheless, rehabilitation-aimed detection 

requires predicting movement intentions as early as possible, without access to after-onset 

information. Overall, offline analysis is not ideal for practical usage, but it does provide a stable 

and unified platform for different studies to compare their processing methods.  

In order to tackle the overlooked aspects in offline analysis, pseudo-online processing was 

proposed to process data after data collection on time windows. The current study successfully 

detected WE and IE movements with an average TPR of 79.6% ± 8.8% and 3.1 ± 1.2 FPs per 

minute with an average latency of 91.4 ± 111.9ms. Plenty of research has adopted TPR and 

FPs/min as an evaluation metric for the detection model. One study investigated ballistic ankle 

dorsiflexion using MRCP in healthy participants and obtained 82.5% ± 7.8% TPR, 6.9 ± 7.41 

FPs in 5 minutes, and -66.6 ± 121ms latency [79]. Another study of pedaling intent achieved 

76.7% TPR with 4.94 FPs/min on five healthy subjects [80]. Direct comparison with our study 

is not easy since their targeting movements are lower limb, known to have more profound 

MRCP features than upper-limb movements. Studies working on upper-limb movement often 

report false positive rate (FPR) rather than FPs/min. They often conduct window prediction 

within pre-selected trials like offline studies, which might not represent the non-movement 

state well if their epoch length is short. For example, one study detected palmar and pincer 

grasps in asynchronous mode and reported a TPR of 83.49% and FPR of 13.84%. Their FP 

was regarded as detection made from -2s to -0.3s despite the actual non-movement period 

being around 5s per trial. This partially clipped rest period could lead to fewer FPs [63]. 

Compared to them, the rest period of the current study was chosen to be -8s to -2s and 2s to 8s 

relative to movement onset for each trial, which covered most of the non-movement period 

and would provide a more representable false positive performance.  

Although most studies are still in offline or pseudo-online stages, some attempts were made 

to detect both lower-limb and upper-limb movements in real-time. One study proposed a 

manifold-based method called LPP to efficiently reduce EEG dimensionality and preserve 

intrinsic features in the meantime. They asked healthy participants to execute ankle 
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dorsiflexion and provided real-time visual feedback. Their results were statistically better than 

the conventional method, with a TPR of 79% ± 11%, 1.4 ± 0.8 FPs/min, and 315 ± 165ms 

latency [35]. A following study from the same group demonstrated the feasibility of provoking 

neural plasticity in healthy participants by using the same algorithm to detect ankle dorsiflexion 

with a BCI-driven motorized ankle-foot orthosis as feedback. They measured motor evoked 

potential (MEP) before and after the intervention of transcranial magnetic stimulation (TMS) 

and found significantly increased activity in MEP, which suggested the occurrence of neural 

plasticity. They reported TPR as 73% ± 10.3% and FPs/min as 1.3 ± 0.5 [81]. Compared to 

their previous study, the slight drop in performance might be due to the motor imagery 

paradigm adopted this time, which has less significant MRCP features than the execution of 

movement. A preliminary study was conducted for upper-limb movement detection as well, in 

which they attempted to detect hand open and palmar grasp using MRCP on one spinal cord 

injury (SCI) patient. In the best session, they obtained 36.9% TPR and 3.6 FPs/min with 2.2s 

latency [73]. Their following study adopted a similar hierarchical approach to first detect 

reach-and-grasp movement from rest state and then classify ‘move & look’ against ‘look’ on 

20 healthy participants. They obtained 54.1% TPR, 1.2 FPs/min with 1.2s latency in online 

detecting scenario [82]. Although improvements were achieved in all metrics compared to their 

preliminary study, there is still a performance gap with lower-limb studies, which further 

proved the challenges in upper-limb movement detection.  

Short latency is a critical factor for inducing neural plasticity. Too short or too long latency 

beyond 400ms to 500ms range is considered not helpful [82]. The current thesis study reports 

average latency of around 91.4 ± 111.9ms, which is inside this range. Furthermore, we 

presented the trial distribution of latency in Figure 19, which shows that around 75% of trials 

were detected within -500ms to 500ms. However, few studies disclosed the trial distribution 

of latency, which makes it difficult to imply their system's efficiency.  

5.4 Classification 

The current thesis study investigated classification among four movements in both time-locked 

and pseudo-online ways and showed the feasibility of differentiating movements of two sides 
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and of two types on the same side. Time-locked analysis showed better accuracy than pseudo-

online analysis for all classification scenarios. For example, the maximum classification 

accuracy between left and right was around 75% at 500ms after movement onset in time-locked 

mode. However, the average classification accuracy between left and right using the optimal 

band in pseudo-online mode was approximately 66%. Similar effects were found for WE vs. 

IE and 4 class classification as well. The time-locking effect of classification may contribute 

to the accuracy discrepancy between the two analyses. During pseudo-online classification, the 

timing of the window is not fixed but depends on the detection latency. By observing Figure 

19, we can find the distribution of detection latency is approximately normal, with the mean at 

around 300ms to 500ms for the average of nine subjects. This means that although most of the 

windows were detected in the best period for classification around 500ms, considerable 

amounts of trials were detected out of this range, which leads to the potential accuracy drop in 

pseudo-online mode. This phenomenon indicates that the pseudo-online analysis considers 

more complicated and practical aspects, which reiterates the importance of analyzing 

algorithms in pseudo-online mode.  

Sides of the movement are easier classified than movement types from the same limb in both 

pseudo-online and time-locked scenarios. During time-locked classification between pairs of 

movements, we can find the peak accuracy of WE_L vs. IE_L and WE_R vs. IE_R are lower 

than other pairs containing both left and right movements. The accuracy of pseudo-online left 

vs. right classification (around 67%) is also higher than the classification accuracy between 

WE and IE (around 52%). This might imply the spatial information is more critical in 

classification since the temporal information is similar for all movements. Contra-lateralization 

was observed in both MRCP and ERD for two-side movements, while WE and IE did not show 

such differences on the same side. The cortical homunculus could partially explain this because 

wrist and index finger mapping areas are close. This phenomenon was also reported in previous 

studies. One study experimented with palmar and lateral grasp from both left and right arms 

offline. In their confusion matrix reported on the evaluation set, the palmar grasp and lateral 

grasp were more frequently misclassified than left and right grasps [83]. 
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The discrepancy of classification performance also exists between WE and IE. The classifier 

performs better when recognizing IE by observing WE vs. IE and 4-class confusion matrices 

in Figure 20. The worse classification of WE may be due to they have shorter detection latency 

(around 50ms) than IE (around 110ms), as shown in Figure 18, which are further away from 

the optimal classification time (500ms) as shown in time-locked analysis. 

5.5 Study Limitation and Future investigation 

The current thesis study adopted a hierarchical pipeline to first detect movements from the rest 

state and then classify them against each other, giving a proof-of-concept solution for training 

multiple movements during BCI-assisted rehabilitation. Although detection gave promising 

results, the classification was still not ideal. There could be several factors leading to the 

current limitation in hierarchical pipeline design. First, the amount training windows for 

detection is much more than that for classification due to the experiment setup. Second, the 

classifications were made based on the detected windows with varied latencies, which might 

not favor classification since a time-locking effect exists. Future work would focus on 

designing better classification strategies such as dynamically looking for the best classification 

timing after detection rather than relying on the same detection window. Another major 

limitation of this study is that it is still not online, although the processing was considered more 

practical aspects than traditional offline study. There could be some foreseeable challenges 

between pseudo-online and online study, including real-time preprocessing and classification 

algorithm design, algorithm and platform latency, and appropriate plasticity measurement. 
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Chapter 6 

Conclusion 

The objectives were as follows: 

1. Detect intentions of the four movements from rest state in a pseudo-online manner and 

investigate the optimal way of combining algorithms and frequency band features 

(MRCP and SMR) to achieve a high detection rate with low latency. 

2. Evaluate the possibility of classifying the four movements against each other following 

the detection in a pseudo-online manner and understand the contribution of MRCP and 

SMR during classification. 

Objective 1 was complete. We investigated three EEG frequency bands, including low band, 

high band, and full band, and found out the primary contribution of MRCP during detection. 

An ensemble learning algorithm was proposed using majority voting among SVM, EEGNET, 

and R_SVM, achieving state-of-the-art performance for distal simple upper-limb movement 

detection with an average TPR of 79.6% ± 8.8%, 3.1 ± 1.2 FPs per minutes and an average 

latency of 91.4 ± 111.9ms. Further explorations were conducted in the effect of window 

number and movement types on detection performance. Objective 2 was also complete. A 

novel algorithm R_Ada_Lgr was proposed and was proved to have better performance over 

the current state-of-the-art algorithm sLDA. Analysis on frequency bands was performed for 

three types of classifications in a pseudo-online manner: 1) left vs. right, 2) WE vs. IE, 3) 

WE_L vs. WE_R vs. IE_L vs. IE_R. The left vs. right classification achieved above chance 

level performance, while the distinction between WE and IE on the same limb was not 

significantly better than chance. Further investigations were carried out in time-locked analysis 

and found out the time-locking effect of classification could be the major limitation for 

classification.  

Overall, this study proved the feasibility to detect upper-limb distal simple movements with 

a high detection rate in short-latency and the possibility to classify left against right movements 

during pseudo-online analysis. 
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