
Security Vulnerabilities in Smart
Contracts as Specifications in Linear

Temporal Logic

by

Indrani Ray

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

c© Indrani Ray 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Ethereum is a distributed computer with a native cryptocurrency. Like other monetary
transaction based systems, a problem this platform faces is accounts and transactions
being susceptible to theft and other hacks. Smart contracts (programs which run on this
blockchain) can store money and initiate financial transactions. They need to be carefully
studied to safeguard against threats. This is especially true before deployment, as they
become immutable after. Software analysis and verification techniques are applied to
study security vulnerabilities in smart contracts. Currently, there are over 35 tools that
do so. Many of them directly study contracts written in high level languages such as
Solidity. In this work, we similarly study contracts, but at the lower bytecode level. We
focus on different classes of smart contract vulnerabilities– access control, bad randomness,
denial of service, front running, integer overflow/underflow, re-entrancy, short address,
time manipulation, and unchecked low-level calls. We create specifications based on linear
temporal logic to describe vulnerabilities in each of these categories, and we test them
against real-world contracts.

iii

Acknowledgements

I thank Professor Mahesh Tripunitara for his supervision; professors Arie Gurfinkel and
Derek Rayside for their help in thesis revision; and my family and friends for their sup-
portive disposition(s).

iv

Dedication

This is dedicated to my past self.

v

Table of Contents

1 Introduction 1

2 Background 3

2.1 Introduction to Ethereum . 3

2.1.1 Bitcoin . 3

2.1.2 Ethereum State Machine . 4

2.2 Existing Tools . 7

2.2.1 Oyente . 7

2.2.2 Zeus . 8

2.2.3 Maian . 8

2.2.4 Mythril . 8

2.2.5 Vandal . 8

2.2.6 MadMax . 9

2.2.7 teEther . 9

2.2.8 Securify . 9

2.2.9 Manticore . 10

2.2.10 eThor . 10

2.2.11 ETHBMC . 12

2.3 SmartBugs . 13

2.4 Model Checking . 15

vi

2.4.1 Kripke Structure . 15

2.4.2 Linear Temporal Logic (LTL) . 15

2.4.3 nuXmv . 16

3 Vulnerabilities in Smart Contracts 18

3.1 Access Control . 18

3.1.1 Description . 18

3.1.2 Example . 19

3.2 Bad Randomness . 20

3.2.1 Description . 20

3.2.2 Example . 20

3.3 Denial of Service . 22

3.3.1 Description . 22

3.3.2 Example . 22

3.4 Front Running . 24

3.4.1 Description . 24

3.4.2 Example . 25

3.5 Integer Overflow/Underflow . 26

3.5.1 Description . 26

3.5.2 Example . 27

3.6 Re-entrancy . 28

3.6.1 Description . 28

3.6.2 Example . 28

3.7 Short Address . 30

3.7.1 Description . 30

3.7.2 Example . 30

3.8 Time Manipulation . 31

3.8.1 Description . 31

vii

3.8.2 Example . 32

3.9 Unchecked Low-Level Calls . 33

3.9.1 Description . 33

3.9.2 Example . 33

4 Encoding Vulnerabilities as LTL Formulae 35

4.1 Access Control . 41

4.2 Bad Randomness . 45

4.3 Denial of Service . 46

4.4 Front Running . 48

4.5 Integer Overflow/Underflow . 49

4.6 Re-entrancy . 50

4.7 Short Address . 51

4.8 Time Manipulation . 52

4.9 Unchecked Low-Level Calls . 52

5 Validation 56

5.1 Basic Approach . 57

5.1.1 Disclaimers . 57

5.1.2 Hypotheses . 58

5.1.3 Results . 59

5.2 Future Validation . 64

6 Conclusion 66

6.1 Pattern Refinement . 66

6.2 Further Validation . 67

6.3 Future Inspiration . 67

References 69

viii

Chapter 1

Introduction

Ethereum is a blockchain technology containing a native cryptocurrency, Ether, and the
ability to run decentralized applications (DApps) through the usage of smart contracts
with frontend user interfaces [20]. The term Ethereum Virtual Machine (EVM) refers to
environment containing all smart contracts and accounts. It has one canonical state that
is maintained by computers running Ethereum clients, and it operates as a stack machine.
We present more details about EVM in Chapter 2. The benefits of using the Ethereum
platform for transactions are that users are not censored, data is public and immutable,
and contracts have verifiable behavior. Nevertheless, there are drawbacks. Some draw-
backs and bugs were discovered through hacks– several of which lead to monetary losses.

One of the most famous hacks, the DAO hack, happened in 2016 which resulted in 3.6
million Ether ($50 million USD) being stolen. Here is a brief summary of the hack as
given by Siegel [48]. A Decentralized Autonomous Organization (DAO) was created by the
company Slock.it to build “smart locks” allowing people to share cars, boats, apartments,
etc. A DAO is run by smart contracts. It has an initial funding period (the time for this
incident was 28 days) in which people participate in a crowdsale; after which, it begins
to operate. People propose ways to spend the money, and the members who bought-in
vote on the proposals. This organization had raised over $150m during its funding period.
Before the members could determine projects to fund, an attacker began draining funds
into another DAO with the same structure as the original.

The attackers were able to perform a sequence of calls to continuously withdraw from the
DAO. The withdrawal process, as expected, sends funds to the withdrawer. However, it

1

triggers a special function (of the withdrawer) when doing so. This function can be edited
to make further withdrawals– before the original process (which includes steps such as
updating the balance after the withdrawal) is complete. The attackers made their child
DAO (the withdrawal recipient) continuously withdraw from the DAO. This process is an
example of a smart contract re-entrancy attack.

The DAO hack (and other real-world incidences) inspires researchers to study security
vulnerabilities in smart contracts. As smart contracts can be thought of as programs,
researchers implement program analysis and verification techniques to study them. In
this work, we take a close look at different types of security vulnerabilities existing in
Ethereum smart contracts written in the high-level language Solidity. We extract patterns
at the bytecode level (expressed as human-readable opcodes) to describe these vulnerabil-
ities, and formulate them syntactically.

This thesis is organized as follows. Chapter 2 begins with an introduction of Ethereum.
The introduction is comprised of a brief discussion of Bitcoin followed by a description of
the Ethereum Virtual Machine (EVM) and smart contracts. This section is followed by
summaries of existing tools used in contract analysis. We then present a work, SmartBugs
[31], which has guided and provided data for our work. We end the chapter with back-
ground information about model-checking. Chapter 3 presents descriptions and examples
of nine types of vulnerabilities in smart contracts written in Solidity. They are access con-
trol, bad randomness, denial of service (DoS), front running, integer overflow/underflow,
re-entrancy, short address, time manipulation, and unchecked low-level calls. Chapter 4
presents the crux of our work. We translate the vulnerabilities from the previous chapter
into expressions written in Linear Temporal Logic (LTL). We discuss validation techniques
for these in Chapter 5. We conclude with a summary of this work and plans for the next
steps.

The hypothesis we are trying to show is can we meaningfully express security vulnerabilities
in Ethereum smart contracts using LTL formulae based of off Ethereum Virtual Machine
(EVM) opcodes 1. The eventual goal is to show whether a smart contract is susceptible to
a given vulnerability.

1We use LTL, instead of other temporal specification languages, for ease-of-compatibility with our
model checker. This is discussed in Chapter 2.

2

Chapter 2

Background

2.1 Introduction to Ethereum

Ethereum is a decentralized, open-source blockchain technology. It is similar to other
digital currency platforms such as Bitcoin but has a language to write smart contracts. In
the following subsections, we will discuss Bitcoin, the structure of Ethereum, and other
key terminology related to Ethereum.

2.1.1 Bitcoin

Bitcoin [1] allows for decentralized, digital currency on a blockchain platform. A blockchain
is a set of records (blocks). Each block contains a hash of the previous block, a timestamp,
and transaction data. A block is immutable– changing it would cascade changes in subse-
quent blocks. The ledger of Bitcoin is a state transition system– the states represent the
ownership status of all existing bitcoins. A state transition takes a state and a transaction
and outputs the resulting state. A transaction can be, for instance, a transfer of bitcoins.
Bitcoin establishes a proof-of-work system. This is a way for the blocks to verify the ap-
pending of a new block and mining of currency.

Like Bitcoin, Ethereum is reliant on blockchain technology and has a native cryptocurrency,
Ether. Instead of a distributed ledger, Ethereum is a distributed state machine.

3

2.1.2 Ethereum State Machine

Ethereum can be viewed as a transaction-based state machine [20]. The states are made
up of accounts. There are two types– externally owned accounts and contract accounts.
An externally owned account has a public-private key pair to sign and authenticate trans-
actions; a contract account interacts with other accounts as specified in its code. Each
account is identifiable by a 160-bit address and contains: a nonce (for an externally owned
account, this is the number of transactions sent from its address, and for a contract account,
this is the number of contract-creations made by this account), a balance (the number of
Wei owned by the address of this account), a storage root (the 256-bit hash of the root
node of a Merkle Patricia tree that encodes the storage contents of the account), and the
code hash (the hash of the immutable EVM code that gets executed when the address of
this account is called).

Transactions are actions initiated by externally-owned accounts. Transactions can either
result in message calls or contract creation [51]. Moreover, the term “transaction” some-
times explicitly refers to the signed data package [20]. A transaction includes a nonce
(number of transactions sent by the sender), gas price (number of Wei for all computation
costs due to the execution of the transaction), gas limit (the maximum amount of gas that
should be used to execute the transaction), either a 160-bit address of the message call’s
recipient or an empty field in the case of contract creation, an endowment (for contract
creation) or amount of Wei to be transferred to the message call’s recipient, a signature
to determine the sender of the transaction, and an unlimited size byte array (For contract
creation, this contains code corresponding to the account initialization procedure. For
message call, this specifies the input data of the call.).

Smart Contracts

A smart contract is a computer program which serves as an agreement between two parties
and is implemented by the consensus of the blockchain without the need for a third-party
trusted authority [23]. Smart contracts are a type of account in Ethereum. They are
written in high-level, object-oriented languages such as Solidity and Vyper [33, 16]. The
smart contracts discussed in this work are written in the former language. Smart contracts
are compiled into bytecode which is natively executed on the Ethereum virtual machine
(EVM). The bytecode can be disassembled to human readable opcodes; we use the terms
“bytecode”, “opcode”, and “instruction” interchangeably.

4

We examine contracts written in Solidity. Solidity is statically typed. It supports in-
heritance, libraries, and user-defined types and structures. Each Solidity file contains a
pragma. This must be declared explicitly as Solidity syntax and compiler versions fre-
quently evolve– consequently, some vulnerabilities become obsolete. In fact, the compiler
version has changed around 30 times since January 2020. Ether and time units can be
expressed in Solidity contracts using keywords such as wei and seconds. There are also
special variables and functions. For example, tx.gasprice is used to determine the gas
price of the transaction. Solidity also has ABI encoding and decoding functions, error
handling functions, and cryptographic functions. For more information, please refer to the
documentation [33].

Solidity contracts are compiled into EVM code. As mentioned earlier, this is expressed a
a sequence of opcodes. These dictate how stack items are added or removed, how gas is
reduced, how the program counter changes, how memory is read from and written to, and
other state changes. More information can be found in the Yellow Paper [51].

EVM is the runtime environment for smart contracts. The machine state is defined by a
tuple which contains available gas (non-negative integer), program counter (natural num-
ber whose value is at most 2256), memory (word-addressed byte array), active number of
words in memory (word size is 256-bit), and stack (container with maximum size of 1024).
It is altered by a series of instructions. The EVM is a quasi-Turing complete machine
[51]. The term quasi is used because computation is bounded. A system with a set of
instructions is said to be Turing complete if it can simulate any Turing machine.

We support the claim of EVM being a quasi-Turing complete machine. An unlimited reg-
ister machine (URM) is equivalent to a Turing machine (TM). We show that an EVM can
‘model’ a URM, and thereby a TM.

A URM has an infinite number of registers containing natural numbers as well as a program
which is a finite list of instructions. The register contents can be altered using the four
types of instructions: zero Z(n), successor S(n), transfer T (m,n), and jump J(m,n, q).
In EVM, computation is done using the stack. However, the stack size is not unlimited–
it can hold 1024 256-bit values. Below, we show a reduction from EVM opcodes to URM
instructions. We first define the instruction then simulate it using a sequence of opcodes.

1. Z(n): Change the content of register n to 0. Proceed to next instruction.
Assume that the nth entry in the stack is N . We can change this to 0 using the EVM

5

opcodes of PUSH1 0x00 SWAP(n+1) POP. The first opcode appends a 1-byte item of
value 0 to the first position of the stack. The second opcode swaps the first and
(n + 1)st item, so the first item of the stack is N and the (n + 1)st is 0. The final
opcode removes the first item off the stack. So we have our original register, but with
0 as the nth entry.

2. S(n): Add 1 to the value of the content in register n. Proceed to next instruction.
Let the nth entry of the stack be N and the first entry be X. We can create a successor
function as follows: SWAP(n-1) PUSH 0x01 ADD SWAP(n-1). The first opcode swaps
X and N . Then 1 is appended to the first position of the stack. ADD adds the first
two items of the stack. It removes them and pushes their sum to the first position of
the stack. So we have 1 +N at the first position, X in the nth, and the other items
as they were initially. We finally swap 1 + N and X. We have our original register,
but with the nth item incremented by 1.

3. T(m, n): Replace the content of register n by that of register m. Proceed to next
instruction.
Assume that our stack is such that the value in position m is M , in n is N , and
1 is X. We can create a transfer function as follows: SWAP(n-1) POP DUP(m-1)

SWAP(n-1). This first switches X with N . The next instruction removes N from
the first position of the stack. The third instruction duplicates M and pushes this
duplicate onto the stack. At this point our stack has M in position 1, M in position
m, and X in position n. The final instruction switches items in position 1 and n. We
are left with our original stack, but with a copy of M in position n and no N .

4. J(m, n, q): If the contents of registers m and n are equal, then proceed to instruction
q. Otherwise proceed to next instruction.
Assume that our stack is such that the mth item is M and the nth item is N . Fur-
ther, assume Q is the hexadecimal version of the number q − 3. To perform this
jump operation, we will do the following: PUSH1 Q DUP(m+1) DUP(n+2) EQ ISZERO

JUMPI JUMPDEST POP POP. We begin by adding Q to the top of the stack. We then
duplicate M and N . At this point, our stack has N in position 1, M in position 2,
Q in position 3, and the original stack contents shifted down three positions (so the
original M is in position m+ 3 and N in n+ 3). The next opcode EQ compares the
items in the first two positions of the stack. It removes these and pushes either 1 or
0 onto the stack– 1 if they are equal and 0 otherwise. ISZERO changes the first item
of the stack to 1 if it is 0 and to 0 otherwise. The stack is now 1 or 0 followed by Q
followed by the original stack contents. We then switch the first two stack entries.
The next opcode JUMPI conditionally alters the program counter. If the second item

6

of the stack is 0, then the program counter is incremented by 1. If the second item
is 1, then the program counter is set to the first item of the stack (in our case, Q).
We use JUMPDEST as a place holder for the q − 3rd instruction. The next two opcodes
remove the first two items of the stack (either Q and 0 or Q and 1). We are left with
our original stack and our program counter set to q.

We have used EVM opcodes to simulate zero, successor, transfer, and jump instructions.
All computable functions can be expressed as a combination of these four instructions and
computations can be done using an unlimited register of natural numbers. However, as the
size of the EVM stack is finite, we cannot fully model a URM. Therefore, not all computable
functions can be expressed as a combination of EVM opcodes with computations done on
the EVM stack. We cannot claim that EVM is Turing complete, but we can support the
statement of EVM being quasi-Turing complete 1.

2.2 Existing Tools

There are over 35 tools that analyze Ethereum smart contracts. We briefly discuss some
of the prominent ones below.

2.2.1 Oyente

Oyente [39, 52] is a symbolic execution tool used to find security bugs. It takes as input
the bytecode of a contract to be analyzed and the Ethereum global state (this provides the
current values of contract variables). It outputs ‘problematic’ symbolic paths. The tool has
four main parts. The first part constructs a control-flow graph of the contract. The next
part explores the paths of control-flow. It produces a set of traces. Each trace is associated
with a path constraint, and a Z3 solver is used to eliminate provably infeasible traces.
The third part contains the bulk of the analysis. It determines whether a contract has
transaction-ordering dependence, timestamp dependence, mishandled exceptions, and/or
re-entrancy vulnerabilities. The last component validates whether a flaw (as mentioned in
the prior segment) can actually occur from a given trace.

1The Ethereum Yellow Paper [51] also points out that computation is bounded by gas which also
contributes to the quasi qualification.

7

2.2.2 Zeus

Zeus [37] is a symbolic model checker for Solidity-based smart contracts. The authors clas-
sify contracts into two categories: incorrect and unfair. They further split these depending
on the types of vulnerabilities present in the contracts. The categories for the former are
re-entrancy, unchecked send, failed send, integer overflow/underflow, and transaction state
dependence. The categories for the latter are absence of logic, incorrect logic, and logically
correct but unfair. We base our understanding of the vulnerabilities, in this thesis, off of
their definitions in the incorrect category. The tool creates policies based on these vulner-
abilities and inserts corresponding assert statements into the smart contract code. It then
translates this into LLVM bitcode and uses the SeaHorn verifier to determine assertion
violations. The tool is also compatible with other LLVM bitcode based verifiers such as
SMACK or DIVINE.

2.2.3 Maian

Maian [44, 43] is a symbolic analyzer for smart contract execution traces. It takes as input
a contract in bytecode form and a concrete starting block value. The tool then symbolically
executes contract traces to find whether certain properties can be violated. It then uses a
concrete validation routine to confirm concrete exploits. The goal of the tool is to be able
to automatically detect three types of buggy smart contracts: suicidal (can be killed by
anyone), prodigal (can send Ether to anyone), and greedy (cannot extract Ether from).

2.2.4 Mythril

Mythril [41, 45] is an analysis tool that detects security vulnerabilities in smart contracts.
It uses a symbolic interpreter for EVM bytecode known as LASER. This represents smart
contract execution as a space of states and path formulae (expressed in propositional logic).
Mythril then uses an SMT solver to determine whether states are reachable following
certain conditions. This helps determine vulnerabilities. Mythril then uses concolic testing
to determine whether these vulnerabilities are exploitable.

2.2.5 Vandal

Vandal [24, 15] is a security analysis framework for Ethereum smart contracts. The tool
is comprised of four parts: scraper (retrieves bytecode from the blockchain), disassembler

8

(translates bytecode into opcode), decompiler (translates bytecode to register transfer lan-
guage to show control-flow), and extractor (translates register transfer language into logic
semantic relations). The logic relations are defined in Soufflé which is based on Datalog.

2.2.6 MadMax

MadMax [35, 10] is a static program analysis framework which detects gas-based vulnera-
bilities in compiled smart contracts. Many vulnerabilities arise from out-of-gas exceptions.
This happens primarily because a user pays for a transaction upfront. The transaction
computation may require more gas than what is paid, so the transaction may get aborted.
The tool utilizes the Vandal decompiler to translate the EVM bytecode to an intermediate
representation. Then, it determines gas-based vulnerabilities (for instance caused by un-
bounded mass operations, wallet griefing, and integer overflows) and correlates them with
analysis done at the bytecode level (on, for instance, program constructs, program flow,
data structures, memory layout, and other characteristics).

2.2.7 teEther

teEther [18, 14] is an automatic exploitation framework. The tool first dissassembles the
EVM bytecode to construct a control-flow graph. This is scanned to find EVM instructions
that can be used to extract Ether from smart contracts. Critical instructions are CALL,
SELFDESTRUCT, CALLCODE, and DELEGATECALL. These instructions combined with certain
conditions are used to define a contract being in a vulnerable state. The tool has a path
generation module which explores the paths (in the CFG) that lead to such states. A set of
path constraints is created (through symbolic execution). These are then used to produce
sequences of transactions attackers can perform to exploit contracts.

2.2.8 Securify

Securify [50, 12] is a security analyzer for Ethereum smart contracts. It takes as input the
EVM bytecode of a contract and a set of compliance and violation security patterns written
in a domain-specific language. (Security patterns can be re-entrancy bugs, locked Ether,
missing input validation, unrestricted Ether flow, and others). The bytecode is initially
transformed into a stackless representation in static-single assignment form. Then the tool
performs decompilation. Afterwards, it infers behaviors of the contract such as data and
control-flow dependencies. These facts inferred in this process are known as semantic facts.

9

The tool checks the security patterns against the semantic facts. It then points out the
instructions that caused a violation or compliance.

2.2.9 Manticore

“Manticore is a symbolic execution framework for analyzing binaries and smart contracts”
[40, 11]. The main elements of Manticore are the core engine, the native and Ethereum
execution modules, SMT module, event system, and API. The core engine manages states
at each point of execution (a point is after the invocation of one instruction). It implements
state exploration. The Ethereum module symbolically executes smart contracts with sym-
bolic transactions (both value and data are symbolic). These are repeatedly executed to
explore the state space of a contract. The features of Manticore are: program exploration,
input generation, error discovery, instrumentation, and a programmatic interface.

2.2.10 eThor

This is a sound and automated static analyzer for EVM bytecode [47, 6, 7]. The tool
supports reachability properties and contract-specific functional properties. It designs a
framework for the specification and implementation of static analyses based on semantic
abstractions specified by a set of constrained Horn clauses (with predicate applications rep-
resenting contract execution) . Its abstractions are based off of the blockchain environment,
gas modelling, the memory model, and the callstack. However, note the following:

• Blockchain environment : As the analysis is based on the invocation of a contract in
an arbitrary environment, the ever-changing execution environment and other parts
of the global state are not modeled.

• Gas modelling this is also not analyzed. Gas does not have much of an impact on
execution until it runs out.

• Memory model : memory is modeled as a word array.

• Callstack is a two-level abstraction– one level represents the original execution of the
invoked contract and the other re-entrancies.

• Execution states are abstracted as predicate applications which include:
MStatepc((size, s),m, stor, cl) which describes a regular execution of the contract at
program counter pc with stack of size size and elements as described by the mapping

10

s (from stack positions), local memory m, the global storage of the contract at this
point stor, and the call level cl; Exc(cl) denotes that an execution of a contract
halted exceptionally on call level cl; Halt(stor, cl) represents a regular execution halt
on call level cl with global storage being stor.

EVM opcodes that are abstracted include ADD, CALL, DELEGATECALL, CALLCODE, CREATE,
and SHA3; however, DELEGATECALL, CALLCODE are later omitted from their analysis. The
analysis supports reachability properties which capture security properties. The reachabil-
ity properties are:

• Single-entrancy: Call reachability is an over-approximation of single-entrancy, be-
cause an internal transaction is initiated by the execution of a call instruction.

• Static assertion checking: Developers can add assertions (which are enforced by the
compiler at runtime by throwing exceptions when they are violated using the INVALID
opcode). This work statically checks the reachability of these opcodes.

• Semi-automated verification of contract-specific properties: {P}C{Q} is a Hoare
triple where P is the precondition on the execution state, C is the contract code, and
Q is the postcondition that should be satisfied.

The security properties of smart contracts taken into consideration in this work are:

• If an execution state executes an annotated contract and the contract is present in
the global state of the state, then the state is strongly consistent with the contract.

• Initial configurations that result in valid external transactions are reachable.

• Sometimes a contract calling another contract can be called back before completing
the original transaction. This is known as re-entrancy. A contract is single-entrant
if it cannot perform any more calls after re-entering.

The authors of this work create a framework, HoRSt, which takes a specification defining
the static analysis and produces an encoding suitable for Z3. They use this to implement
their static analyzer eThor.

11

2.2.11 ETHBMC

After surveying some static analyzers mentioned above, Frank et al. [34, 4], found that
they were lacking in four categories, and proposed a symbolic execution bounded model
checker. Below, we summarize each category and present the solutions from this work.

1. Inter-contract Reasoning: During contract execution, the Ethereum system allows a
contract to execute (and hence interact with) others. When contracts are created by
other contracts, this relationship is referred to as intra-contract. ETHBMC reasons
about this as follows. The researchers model the execution of the first contract as
an abstract state machine. If there is a message call to another contract during
execution of this one, they create another abstract state machine for latter contract.
From these, they construct execution trees which are comprised of the states of the
machines. The execution tree of the initial contract forks (at the state in which the
call to the second contract is made) into the final states of the second contract. This
procedure can be done recursively and with multiple calls, and each possible outcome
is simulated.

2. Memory: Program code gets executed on the virtual machine which provides a
memcpy like opcode. pIn C, this function takes in as parameters: pointer to the
destination array where the content is to be copied, pointer to the source of the data
to be copied, and the number of bytes to be copied. It returns a pointer to the
destination [2] y. In Solidity, CALLDATACOPY takes some number of bytes of the call
data at a specific position and copies it into a specific position in the memory [49].
To recall, a contract receives a fresh instance of memory for each message call. Ac-
cording to the authors of this work, this is not modeled correctly in previous works.
They model memory using a memory modification graph. Each node has a unique
index and a label (init, write, copy, set) which corresponds to how the memory
is altered upon contract execution. The resulting graph has a tree-like structure,
and can be encoded into logical formulae. Note: a contract may have multiple such
memory graphs based on execution memory, calldata, and storage; in such a case, the
graph will have a forest-like structure. Each account’s memory graph is initialized by
a storage memory node upon the account’s execution. The graph(s) is altered based
on the instructions such as SSTORE, MSTORE, and CALLDATALOAD.

3. Symbolically modeling every possible outcome of this hash function is basically im-
possible. Solidity uses Keccak256 Function, for example, when implementing map-
ping datatype. This work proposes an encoding of pairs of 3-tuples. Each tuple

12

(keccak.adr, keccak.len, keccak.m) contains the starting memory address,
the length of the memory range, and the index of the execution memory at the
time of computation respectively. The encoding takes as input in two distinct tuples,
the set of path constraints, and the memory graph. It outputs a modified set of path
constraints.

4. Validation: The authors of this work claim that other analysis tools over-approximate
and find several false positives. Those works do not validate their findings. They
address this issue by empirically validating their findings.

The tool has a symbolic executor, a detection module, and a validation module. The
executor performs a breadth-first search and uses an SMT solver (Yices2, Boolector, or Z3)
to assert satisfiability of a code path. They encode various types of attacks using additional
path constraints in their detection module. For example, they identify contracts which can
be destroyed by external attackers by flagging states with SELFDESTRUCT instructions. In
the validation module, they generate valid transactions (using an SMT solver) for states
which have feasible attack paths.

2.3 SmartBugs

We adopt two components of the work “Empirical Review of Automated Analysis Tools
of 47, 587 Ethereum Smart Contracts” [31]. This paper compares nine analysis tools in
detecting vulnerabilities in smart contracts. The comparison is done in two parts. The
authors have amassed a dataset of 69 2 smart contracts– referred to as sbcurated [29]. These
contracts are manually flagged as having security vulnerabilities in one of the categories
from the Decentralized Application Security Project [3]. We will discuss these categories
in further detail in Chapter 3. This dataset is used to analyze the precision of the analysis
tools. The second dataset, sbwild [30], is a set of 47518 smart contracts whose source code
is available on Etherscan [5]. The researchers conclude that the tools can only find 42%
of the vulnerabilities. They under-perform in the areas of access control, denial of service
(DoS), and front running, and are unable to detect bad randomness and short address vul-
nerabilities. The tools flag 93% of actual smart contracts as having vulnerabilities (there
is a high number of false positives).

2We use a larger set of contracts provided by the authors of this work– containing 135 contracts.

13

There are some limitations of this work which we include here. The first is with regards
to their classification of types of vulnerabilities. The work follows DASP10 [3]. The cate-
gories here are broad. For example, one category is access control. In our study, we found
this category incorporates the vulnerabilities of unprotected SELFDESTRUCT instruction,
unprotected Ether withdrawal, and authorization through tx.origin 3. DASP10 is not
comprehensive. One of the DASP10 categories is unknown unknowns. This category is not
well-defined. The authors include contracts they come across as potential new categories
of vulnerabilities. For example, the authors of one of their surveyed tools come up with
a vulnerability type known as locked Ether. The authors of this work include that in the
unknown category but do not define it. We, therefore, do not study the contracts in this
category.

Next, many of the tools compared do not target all of the 10 categories. Moreover, some
tools compared are not designed to detect vulnerabilities. For example, as mentioned in
Section 2.2.3, Maian is designed to detect suicidal, prodigal, and greedy smart contracts.
It is not designed to detect, for instance, front running vulnerabilities. When testing this
tool, the authors of this work accordingly found that it was unable to detect any of the
DASP10 in contracts with those known vulnerabilities. Thus, not all tools are suited for
the tasks attempted.

Furthermore, the choice of tools to include in the study is restricted. This is understandable
as comparing a wide variety of tools is difficult. The selection bias omits some well-known
tools from the study. For example, the tools examined must take contracts written in
Solidity as input. This criteria excludes tools such as Vandal which take EVM bytecode.
Some tools are excluded because they are not compatible with the framework created in
this work.

Finally, the categorization of contracts can be questioned. The assumption that each
contract only contains one type of vulnerability can be questioned. We argue, in the sub-
sequent chapters, that a contract can be susceptible to multiple vulnerabilities of different
types.

3This nomenclature comes from the SWC Registry [13].

14

2.4 Model Checking

Although not a part of this thesis, we give a brief background to model checking to help
understand our ongoing work. Model checking is a way to determine whether a finite-state
model of a system (such as a push-down system or timed automaton) meets a specification.
Given a Kripke structure K and a temporal logic formula φ, a model checker decides
whether K |= φ [28]. Model checking is restricted to finite state systems to mitigate the
state explosion problem (the size of the system state grows exponentially as the number of
state variables increases).

2.4.1 Kripke Structure

A Kripke Structure [38, 27] contains a finite, directed graph along with an interpretation
and is used to represent a system. The vertices of the graph represent states and the
edges are state transitions. States encapsulate information about the system at specific
moments of time; transitions show gradual changes. Formally, a Kripke structure over a
set of atomic propositions AP is a tuple M = (S, I, R, L) where

• S: a finite set of states

• I ⊆ S: a set of initial states

• R ⊆ S × S: a transition relation where ∀s ∈ S ∃ s′ ∈ S s.t. (s, s′) ∈ R

• L : S → 2AP : a labelling function

2.4.2 Linear Temporal Logic (LTL)

We adopt our understanding of Linear Temporal Logic (LTL) from Principles of Cyber-
Physical Systems [22]. LTL is a fragment of first-order logic which incorporates temporal
operators. We use the following notation. Let q be a valuation over a set of typed variables,
V , and let f be a Boolean expression over V . Then, q satisfies f if q(f) = 1: q(f) represents
evaluating f using the values of the variables given by q. We often need to consider an
infinite sequence of valuations, a.k.a. a trace, when reasoning about a temporal logic
formula. A trace ρ satisfies the Boolean expression f if the first valuation satisfies it.
Temporal logic formulae can be combined using the standard ∧,∨,¬,→ operators. There
are some additional operators as well: always �, eventually ♦, next ©, and until U. The

15

following summarizes the satisfaction rules [22]. We are given a trace (which recall is an
infinite sequence of valuations) ρ = q1q2q3..., LTL-formulae φ, φ1, and φ2, positions j and
k, and a Boolean expression f (note: a Boolean expression is also an LTL-formula).

• (ρ, j) |= f if the valuation qj satisfies the Boolean expression f .

• (ρ, j) |= ¬φ if it is not the case that (ρ, j) |= φ.

• (ρ, j) |= φ1 ∧ φ2 if both (ρ, j) |= φ1 and (ρ, j) |= φ2.

• (ρ, j) |= φ1 ∨ φ2 if either (ρ, j) |= φ1 or (ρ, j) |= φ2.

• (ρ, j) |= φ1 → φ2 if either (ρ, j) |= ¬φ1 or (ρ, j) |= φ2.

• (ρ, j) |=©φ if (ρ, j + 1) |= φ.

• (ρ, j) |= �φ if for every position k ≥ j, (ρ, k) |= φ.

• (ρ, j) |= ♦φ if for some position k ≥ j, (p, k) |= φ.

• (ρ, j) |= φ1Uφ2 if for some position k ≥ j, (ρ, k) |= φ2 and for all positions j ≤ i < k,
(ρ, i) |= φ1.

The language L of a Kripke structure is the set of computation paths. We say K |= φ if
and only if ∀` ∈ L, ` |= φ.

2.4.3 nuXmv

This thesis is part of an ongoing work. The validation using model checking is briefly
discussed in this thesis. We adopt NuXmv for the purpose of our validation.

NuXmv is a symbolic model checker based off of NuSMV. NuSMV [26] is a model checker
which supports SAT-based and BDD-based techniques. It can be used to check whether
an LTL or CTL specification holds for a defined model. NuSMV recognizes six types. The
Boolean type comprises True and False values. The integer type is any whole number in
the range [−231 + 1, 231 − 1]. The two enumeration types symbolic enum and integers-
and-symbolic enum contain symbolic constants and both integer numbers and symbolic
constants respectively. The word types unsigned and signed are used to model vectors of
bits thereby allowing arithmetic and bit-wise logical operations. Array types can be of

16

Booleans, integers, enumerations, or words. Finally, set types are expressions representing
set of values– they are Boolean set, integer set, symbolic set, and integers-and-symbolic set.

NuXmv has several features. In addition to new model checking algorithms for finite-state
systems, it includes symbolic algorithms for infinite-state systems (for example bounded
model checking and counter-example guided abstraction refinement). It also contains an
extended language for synchronous systems. This includes the new types of integer, reals,
and uninterpreted functions. For more information, please refer to “The nuXmv Model
Checker” [25].

17

Chapter 3

Vulnerabilities in Smart Contracts

A comprehensive set of vulnerabilities existing in smart contracts written in Solidity, with
examples, can be found in the SWC Registry [13]. The vulnerabilities mentioned here
correspond to common hardware and software weaknesses. However, this thesis is based
on a more general categorization as given in the curated dataset of smart contracts [31]
which is based off of the DASP10 [3]. However, we limit this to nine vulnerabilities, as
DASP10 contains one miscellaneous category.

3.1 Access Control

3.1.1 Description

There are different types of access control issues that can exist in smart contracts. One
predominant one is with respect to the special variable tx.origin. tx.origin is a global
variable in Solidity which yields the address of a transaction’s sender [33]. If there is a
chain of contract transactions A → B → C, calling the variable tx.origin in C will
return the address of A. Using tx.origin for authorization can result in an access control
vulnerability (as shown in the example below). It is advised to use msg.sender instead of
tx.origin for authorization [33] as the former variable yields the address of the invoker
of the current call.

18

3.1.2 Example

There are two contracts above. UserWallet’s constructor sets an address variable to the
address of whoever is currently calling this contract. It also has a function which sends an
unsigned integer amount to the address of another contract. Before doing so, it allegedly
checks the authorization of the contract initiating this transaction.

AttackWallet, has a constructor which creates an instance of UserWallet and assigns the
address of the invoker as the owner. It also has a function which calls the sent function
of that UserWallet instance. Finally, there is a function which, although not relevant in

19

the actual attack, helps visualize it.

Walk-Through of Attack

An attack which exploits this vulnerability (in UserWallet) is as follows.
Deploy UserWallet and then deploy AttackWallet using the former’s address. From the
second contract, invoke getIt. During this, the execution jumps to sent function (written
on the left in the above diagram). Now, it should be the case that the authorization
(the subsequent line) fails and the function reverts. However, that is not the case. The
execution continues on (to destination.transfer(amount)), and the AttackWallet is
able to pour funds into the contract specified in the sent portion of getIt– in this case, the
contract that deployed AttackWallet. To understand the attack better, call the seeThwart
function. This returns two addresses. The first address is one used for the getIt call (in
this example, the parent contract) and the actual address of the contract making said call.
It is important to note that if AttackWallet is deployed by a contract different from the
one deployed by UserWallet, then this attack does not work.

3.2 Bad Randomness

3.2.1 Description

Some contracts use and generate random numbers. An example application using such
contracts is for gambling DApps which rely on the generation of pseudo-random numbers
to select winners. Sometimes this random number generation is dependent on computations
using hard-to-predict values such as a block’s timestamp, hash, number, and/or difficulty.
However, these values can be manipulated by the block’s miner, and therefore the numbers
generated using them are not random. Instead of relying on block characteristics as sources
of randomness, using an external oracle or commitment scheme is recommended [13].

3.2.2 Example

The example below is from Tasuku Nakamura [42].

20

The first contract, GuessTheRandomNumber has a function which computes a “random”
number using the block number and timestamp. If a contract calling this one can guess
the “random” number, then it sends 1 ether to it. The second contract has a function that
computes a number and uses it as a guess to send to the first contract.

Walk-Through of Attack

The idea behind the attack is that the second contract makes an educated guess thereby
showing that the number computed is not actually random. A contract which repeatedly
invokes guess(...) to guess the “random” number will deem it impossible to find out.
However, the contract Attack makes an educated guess and is rewarded. Let us say
GuessTheRandomNumber is deployed with 1 ether. An attacker can create the Attack

contract, deploy it, and call attack(). Since the attacker’s guess is computed the same
way as the number to be guessed, it will be correct. Therefore, GuessTheRandomNumber
will send Attack 1 ether.

21

3.3 Denial of Service

3.3.1 Description

There are different types of Denial of Service (DoS) attacks. One type is called DoS with
Unexpected Revert. It is also known as DoS with Failed Call [17]. We will discuss this
below, but the idea behind this DoS is that external calls can fail. It is recommended to
isolate external calls into individual transactions that can be initiated by the recipient of
the call and to assume external calls can fail. The other type of DoS is Block Gas Limit
[17]. The amount of computation done by each block is dependent on the amount of gas
it has. If the gas spent by the block exceeds the amount of gas available, there can be a
failed transaction and, therefore, a DoS. This DoS can be on a contract (via unbounded
operations) or on the network (via block stuffing). The main remediation advice is to avoid
actions that require looping over data structures [13].

3.3.2 Example

The type of DoS attack given in this example is caused by an unforeseen revert function.
When a contract calls another, the second contract may have such a function which inter-
rupts the execution of the first.

22

The above example has two contracts. Bid has address and unsigned integer variables
along with a function. This function, when called by other contracts, does the following.
It makes sure the amount of Wei sent with the call is more than the integer highestBid.
If so, and if another contract had called this function previously, it allegedly refunds the
previous contract. Then, it sets the highestBid value to be the value sent in the current
message call and the winner to be the contract that called this function.

The second contract, HowToStayWinner creates an instance of a Bid. It has a function
which calls InItToWin with some input Wei value.

The third contract, TryToWin is similar to the second. It is not needed in the attack, but
helps illustrate the attack. It will be used in the discussion below.

Walk-Through of Attack

An example of a DoS attack is as follows. Deploy the first contract and the second using the
first’s address. From the second contract, call the attack function with some amount of
Wei (e.g. 5 Wei). Deploy Try to Win similarly to the deployment of InItToWin. From this

23

third contract, invoke attack with some amount of Wei greater than the other contract’s
invocation (e.g. 6 Wei).

It should be the case that TrytoWin wins the bid: InItToWin will be refunded its bid value
(5 Wei), highestBid will be set as the new value (6 Wei), and winner will be TrytoWin.
However, these three consequences do not happen. The refund process fails, so InItToWin

stays as the winner.

3.4 Front Running

3.4.1 Description

This category of vulnerability is sometimes referred to as Transaction Order Dependence
(TOD), as Time-of-Check vs. Time-of-Use (TOCTOU), and as Race Conditions [3]. When
a transaction is initiated, there is no guarantee that the transaction will run from the same
state that the contract is in upon initialization of the transaction. So, if a contract has
multiple transactions there is no way for the transaction senders to determine the order
in which the transactions will be run (thus the contract state is not determinable). The
transaction execution order is determined by block mining. Miners have the ability to
influence the ordering of transactions.

According to Eskandari et al. [32], front running vulnerabilities are categorized into three
types: displacement, insertion, and suppression. A displacement attack is one where a
user/contract ends up making a function call with no meaningful effect, because that call
was made by another (usurper). For example, if there is an auction, a malicious user can
make a bid by copying the bid of another. The original bidder may end up losing the
bid. An insertion attack is one in which the adversary makes a call which changes the
state of a contract, so a benign call ends up running on the modified state: The original
(benign) function call runs after the adversary’s transaction. For instance, let there be a
contract selling an asset at a given price or, ideally, higher. Assume someone places an
offer with a higher price. Now assume someone else places an offer with the given price,
buys the asset, and decides to sell it in the same way, but at the higher price. If the first
person’s transaction runs after the second’s, then the first person will end up with the
asset (by inadvertently purchasing from the second), and the second person would make
a profit. In a suppression attack, the attacker tries to delay the other contract’s function
call. An example of this, not discussed here, is conducted by the first winner of Fomo3D [8].

24

The main fix to this problem, other than removing the importance of transaction ordering,
is to protect the confidentially of the transaction by limiting the visibility [13]. This can
be done through commitment schemes.

3.4.2 Example

The following example is written by Tasuku Nakamura [42].

We are given a contract FindThisHash containing a 32 byte sequence value hash, a con-
structor function, and a function solve. What this function does is given a string, calcu-
lates the Keccak256 hash of it, and compares it to a the fixed hash variable. If they are
equal, it sends 10 Ether to the contract invoking this function.

Walk-Through of Attack

Once this contract is deployed, it can be exploited as follows. Assume another contract,
B, finds the correct string (in the case above, the string is “Ethereum”). To be rewarded,
B calls solve("Ethereum") with some amount of gas (e.g. 10 Wei). If another contract
is watching the transaction pool, it can see B’s answer and also call solve("Ethereum")
but with a higher gas price (e.g. 100 Wei). The latter contract’s transaction may be mined
first. So the reward goes to the second contract instead of the first.

25

3.5 Integer Overflow/Underflow

3.5.1 Description

In Solidity, integer types 1 are represented as at most 256-bit binary values. The largest
number that can be expressed is 2256 and the smallest is 0 (negative numbers are represented
according to the two’s complement method). Arithmetic done with these integers can result
in overflows and underflows. The following list summarizes the types of errors that occur
[36].

• Overflow in addition, multiplication, and exponentiation.

• Overflow in ++, + =, and ∗ =.

• Underflow in subtraction.

• Underflow in −− and − =.

• Division or modulo by zero causes an error.

• Overflow in the expression type(int).min/(−1).

• Overflow in signed to unsigned conversion or vice versa (this is because the number
may not be expressible in the target type).

• Overflow in size-decreasing implicit conversion.

• Overflow in shift operations (<< or >>).

• Compiler error on an out-of-range constant expression interpreted into a type, e.g.
(uint x = −1).

It is important to note that since Solidity 0.8.0, all arithmetic operations revert on overflow
and underflow unless in unchecked mode [33].

1A variable of type uint8 is a value in the range [0, 256).

26

3.5.2 Example

As underflows and overflows can occur as results of arithmetic, an example is adding two
uint8 integers whose sum is greater than 256. This is basically the idea behind the example
below.

We have a contract with a mapping and two functions. The mapping is between addresses
and integers. The first function allows an invoker to populate the mapping entry corre-
sponding to his address. The second allows for a value transfer, in the mapping entries,
from the invoker to another address.

Walk-Through of Attack

The exploit is as follows. We deploy this contract. Using some address A we populate a
mapping entry, with say a value 255, using the populateentry function. Using another
address B we invoke populateentry another value, say 4. From A we can call the transfer
function and shift 255 to B. The value corresponding to B was 4, but it gets incremented
by 255 which causes an overflow as the mapping is restricted to containing uint8 values
(which, recall, are between 0 and 255).

27

3.6 Re-entrancy

3.6.1 Description

When a contract calls another contract, the current execution is halted until the call is
finished– that is, until the recipient’s execution is finished. Now what may happen is that
the recipient calls the former contract during its execution. In that case, the first contract
is re-entered before its original execution is done. To limit the chances of re-entrancy, it
is advised to follow the coding practice of using a checks-effects-interactions pattern or to
use a mutex.

Most functions perform checks to determine who called the function, whether the call has
enough Ether, whether the parameters of the function are properly-formatted, etc. The
function code should be arranged to do such checks first. Next, effects to the state variables
should be made. Interactions with other contracts should be done last.

The next practice is to use a mutex. “A lock or mutex is a synchronization primitive: a
mechanism that enforces limits on access to a resource when there are many threads of
execution” [9].

3.6.2 Example

28

Above are two contracts– Wallets and Attacker. The former contract contains a mapping
of addresses to unsigned integers, a function which retrieves the integer corresponding to
a given address in the mapping, a function which adds the amount of Wei sent in the
message to the value in the mapping corresponding to the address of the message sender,
and a function which allegedly withdraws the mapping value corresponding to the message
sender’s address. The last function is key to the re-entrancy vulnerability. It is called by
Attacker.

The second contract Attacker creates an instance of Wallets, w. It also has an unsigned
integer state variable: This is not important for the actual attack but helps in visualization
of the attack and in limiting the number of re-entrancies (to only 10). The contract has a
withdraw function and a fallback function.

Walk-Through of Attack

After both contracts are deployed, the attack begins with the invocation of firstWithdraw
in the Attacker contract. The execution then jumps to the withdraw function of Wallets.
For the withdrawal to be successful, the if-condition (if((msg.sender.call...))) must
be passed successfully. The contract will receive its funds from the mapping and this
amount will be cleared (in the subsequent line). However, this does not happen.

To understand what happens, parse msg.sender.call.value(balances[msg.sender])().
The first instruction, msg.sender, returns the address of the sender of the message for the
current call. This keyword is followed by call which calls the fallback function of the
invoker (in this case msg.sender) and forwards all available gas. Note: the call in-
struction returns a success condition; it does not return data. The next part, value, is
the integer number of Wei sent with the message call. In this example, this amount is
balances[msg.sender] which is the current balance of the withdrawer. Finally, note the
empty set of parentheses. This signifies there not being a payload (data in the transaction).

In the context of this attack, Attacker’s fallback function is invoked and Attacker receives
all available gas “on file” (albeit in this example that number was not initialized and is
therefore 0). However, when Attacker’s fallback function is executed, there is another
call back into the withdraw function. This happens before the initial if-condition can
be passed– before the balance can be cleared. The process repeats creating a series of
re-entrancies in the withdraw function.

29

3.7 Short Address

3.7.1 Description

This vulnerability is a consequence of the EVM accepting incorrectly padded arguments.
Attackers can craft truncated addresses which clients may encode incorrectly in transac-
tions. With latest compilers, this vulnerability has become obsolete. Additionally, it has
not been exploited in the wild as mentioned in the sbcurated dataset [29].

3.7.2 Example

The following example originally comes from Eric Rafaloff’s analysis of the Short Address
Attack, [46], but file has been taken down by the uploader.

The contract has a mapping of addresses to integers. It also has an event with two addresses
and integer parameters. Recall, “Events are inheritable members of contracts. When you
call them, they cause the arguments to be stored in the transaction’s log” [33]. It has a

30

function MyToken which, when called, populates the mapping item corresponding to the
transaction originator with 10000 gas. It also has a function which sends an integer amount
to an address from the caller of the function.

Walk-Through of Attack

The exploit is as follows. Assume we have an exchange API which interacts with the
transfer function above. However, it prepends an (expected 20-byte long) address with
12 zero-bytes to make the address input 32-bytes long. Assume a contract has an address
which is 20-bytes in length with the last byte being zero, and gives the API the truncated
19-byte address along with some integer x (these values correspond to the input of the
transfer function). When the API pads this 19-byte address, the argument becomes 31
bytes. When the API interacts with the transfer, the EVM will note that the input data
is not properly formatted. Instead of amending the address to argument, it will add a
byte at the end of the uint amount argument. Consequently, the transfer will be 256x
instead of x.

3.8 Time Manipulation

3.8.1 Description

This vulnerability is also known as Block Timestamp Alteration. According to the Ethereum
Yellow Paper [51], a block’s timestamp is, “A scalar value equal to the reasonable output of
Unix’s time() at [its] inception.” In Solidity, this variable is designated by block.timestamp

or its alias now (although, now is any time in the range of the current timestamp and 900
seconds in the future). The timestamp is used to generate pseudo-random numbers2, to
trigger time-dependent events, and to control monetary transactions. However, this value
can be manipulated by a block’s miner. It should be noted that a block’s timestamp cannot
be earlier than that of its parent block (and thus cannot be altered as so), nor can it be too
ahead in the future (although this is not explicitly specified in the Yellow Paper). A general
rule of advice, to developers using this variable, is: “If the scale of your time-dependent
event can vary by 15 seconds and maintain integrity, it is safe to use a block.timestamp”
[17]. The following contains an example of a smart contract which uses the special variable
block.timestamp.

2Generating pseudo-random numbers falls under another vulnerability category known as bad random-
ness. See Section 3.2.

31

3.8.2 Example

The contract above has two integer variables and a mapping between number and addresses.
This contract simulates a raffle. By calling its function participate, a contract can join
the raffle (the contract is added to the mapping). The raffle is designed so that a contract
whose timestamp is divisible by 4 wins and is transferred some monetary value.

Walk-Through of Attack

The attack, here, is simple. Assume the contract is deployed. Lets say there are a sequence
of contracts that call participate with varying amounts of Wei. They may or may not
decide to enter the raffle. Now assume there is an attacker who knows to be eligible to
win the raffle, the timestamp needs to be divisible by 4. The attacker can manipulate
his timestamp to be divisible by 4. Then he can call participate and immediately call
raffle (so that he is the latest player), and be transferred 3500 gas.

32

3.9 Unchecked Low-Level Calls

3.9.1 Description

In general, “Solidity uses state-reverting exceptions to handle errors.” These exceptions
undo changes made in the current call and its sub-calls. However, this exception-throwing
does not happen for the low-level functions of call, delegatecall, staticcall, send,
and transfer. Instead, these return the Boolean value false and continue execution
when encountering errors. For example, if a contract invokes another using the send call,
an out-of-gas exception might arise because the call is limited to 2300 gas– but execution
of the receiver’s fallback function, to which the call is directed, might be more expensive
[37].

The main recommendation is to check the return value of a call; also, assume calls will
fail and handle them accordingly. It is advised to never call into not-trusted contracts
(especially with delegatecall).

3.9.2 Example

This example comes from the sbcurated dataset [29].

The contract above has a mapping of address to uint types. It also has a function which,
upon invocation, transfers the integer value corresponding to the address of the invoker (in
the mapping structure) to the contract calling this function.

33

Walk-Through of Attack

The following is not an attack scenario. Rather it is an example of how this vulnerability
can be exploited, and consequently, how this contract can be misused. Assume we have
another contract which creates an instance of SendBack that is not payable. Furthermore,
assume this contract has a function which invokes withdrawBalance on the created in-
stance of SendBack 3. After deploying both contracts, call the function of the second.
Upon doing so, the execution will jump to withdrawBalance. When the execution hits
msg.sender.send(amountToWithdraw, what happens is that return value of this function
is false as the caller of this function (the second contract we created) is not payable.
Therefore, the changes to the contract will be updated (such as the mapping value being
set to 0). The return value in that special function should have been checked, and changes
to the contract should have been halted.

Disclaimer: this type of exploit can be avoided depending on the compiler version. For
example, on the Remix platform, compiler version 0.8.7+commit.e28d00a7 preemptively
issues a warning saying, “TypeError: ‘send’ and ‘transfer’ are only available for objects of
type ‘address payable’, not ‘address’.”

3To understand this construction, regard other vulnerabilities (such as DoS).

34

Chapter 4

Encoding Vulnerabilities as LTL
Formulae

In the previous chapter, we discussed nine classes of vulnerabilities in Ethereum smart
contracts written in Solidity. In programs, some bugs might be present due to poor pro-
gramming practices such as mishandling of arithmetic operations (division by zero). Others
may exist inherently within a contract such as repeated invocation of a function or lack of
a termination condition. Other vulnerabilities arise from attacks. To distinguish between
these categories, some inspection needs to be done regarding what manifests a vulnerabil-
ity. The tools mentioned in the background section examine smart contracts. They do so
by directly analyzing Solidity code or by creating symbolic abstractions to reason about
them. Instead, we base our analysis at the EVM bytecode level given the assumption below.

Claim: Given the assumption that contracts written at higher languages such as Solidity
and Vyper are compiled to the assembly level to be processed by the EVM, vulnerabilities
that exist in a contract can be expressed through execution steps as a series of EVM op-
codes.

Our approach is as follows. For each category, we attempt to isolate causalities between
the vulnerability and written Solidity code. For example, some contracts use built-in func-
tions and special variables which may be invoked or misused in an attack. We attempt to
express these according to related EVM opcodes. We then examine the contracts within
the given category in sbcurated [29]. There are 18 access control, 8 bad randomness, 6 DoS,
4 front running, 15 integer overflow/underflow, 31 re-entrancy, 1 short address, 5 time ma-

35

nipulation, and 53 unchecked low-level call contracts. The contracts here are annotated to
show where the vulnerability lies. Using the Remix platform [21], we debug the compiled
contract– isolating the instances in which the vulnerability arises. We trace the EVM op-
codes corresponding to these segments. Below, is an example of this process.

Let us take the special function in Solidity <address>.call(...). For reference, please
see the documentation [33]. The contract, wherein this lies, will call the contract specified
by <address>. If successful, the contract forwards all available gas to it (this can also be
specified in the call), and the function returns the Boolean value true. Otherwise, the
function returns false. Based on its functionality, we can surmise that EVM opcodes
related to this function include GAS and CALL. We can further create an experimental
contract where there is only one function that specifically calls another contract to gather
more opcodes– but we leave this intermediate step out in this example. Now, let us look at
an actual contract from sbcurated. This contract is supposed to demonstrate an unchecked
call (flagged by the comment).

We deploy this contract and invoke the second function with, for example, the address
of the contract. The execution trace corresponding to this is DUP1 ISZERO PUSH2 0xA0

JUMPI followed by:

JUMPDEST POP PUSH2 0xD5 PUSH1 0x4 DUP1 CALLDATASIZE SUB DUP2 ADD SWAP1

DUP1 DUP1 CALLDATALOAD PUSH20 0xFF

AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x110

JUMP

36

Then the special function (flagged line) is executed:

JUMPDEST DUP1 PUSH20 0xFF AND

PUSH1 0x40 MLOAD PUSH1 0x0 PUSH1 0x40 MLOAD DUP1 DUP4 SUB DUP2 PUSH1 0x0

DUP7 GAS CALL

At this point, the execution stalls. Once the call is complete, it resumes and ends with
SWAP2 POP POP POP POP JUMP then JUMPDEST STOP.

On the other hand, if we deploy the above contract and invoke the first function with
the address of the contract, we get the following trace: DUP1 ISZERO PUSH2 0x5D JUMPI

followed by:

JUMPDEST POP PUSH2 0x92 PUSH1 0x4 DUP1 CALLDATASIZE SUB DUP2 ADD SWAP1

DUP1 DUP1 CALLDATALOAD PUSH20 0xFF

AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0xD7

JUMP

Then:

JUMPDEST DUP1 PUSH20 0xFF AND

PUSH1 0x40 MLOAD PUSH1 0x0 PUSH1 0x40 MLOAD DUP1 DUP4 SUB DUP2 PUSH1 0x0

DUP7 GAS CALL SWAP2 POP POP ISZERO ISZERO PUSH2 0x10D JUMPI PUSH1 0x0

DUP1 REVERT

In this case, the require statement failed. Note that it can also be passed successfully 1.

Both of these functions make the call to another contract; their executions proceed as

DUP1 PUSH20 0xFF AND PUSH1 0x40

MLOAD PUSH1 0x0 PUSH1 0x40 MLOAD DUP1 DUP4 SUB DUP2 PUSH1 0x0 DUP7 GAS

CALL

1We temporarily omit our analysis of this case here, but discuss it in Section 9

37

However, the execution resumes differently in checked and unchecked calls. We can express
the unchecked call in two ways. The above sequence of opcodes followed by the second
sequence in the second function (corresponding to the return from an unchecked call). Or
the above sequence followed by the lack of the second sequence in the first function (cor-
responding to the return from a checked call). For this example, let us consider the latter.
Although we lose some information, we can simplify the second sequence to be PUSH1 0x0

DUP1 REVERT as this only arises from the require statement which occurs if the call is
checked.

For the conversion to LTL we make the following assumptions. First, we take opcodes
themselves as LTL formulae. We take a trace ρ to be a sequence of opcodes. We make
this decision, because if we take it as all possible sequences of opcodes 2, then we would
rather use branching-time temporal logic. We extend our finite-length execution trace to
an infinite trace by stuttering: We will repeat the last opcode. A valuation qj is an opcode.
In this work, we are only expressing EVM instructions. However, note that we could also
track and express changes to the stack, the memory, etc.3 based on the instructions as
specified in Appendix H of the Yellow Paper [51]. Our expression does not account for
explicit operand values.

Our structure symbolizes how a contract changes upon its execution. The initial state is
the input contract (along with corresponding storage, balance, etc.). The transitions are
determined by the contract code: The contract changes after each instruction is executed.

Recall the unchecked call example above. We have two statements DUP1 PUSH20 ...
CALL and PUSH1 DUP1 REVERT. We will express both of these as follows:

φ1 = DUP1 ∧©(PUSH20 ∧©(AND ∧©(PUSH1 ∧©(MLOAD ∧©(PUSH1∧
© (PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4 ∧©(SUB ∧©(DUP2 ∧©(PUSH1∧

© (DUP7 ∧©(GAS ∧©(CALL))))))))))))))

and
φ2 = ♦(PUSH1 ∧©(DUP1 ∧©(REV ERT))).

We need to be careful in how we combine these two. One way is φ1 ∧ ¬♦φ2. Then,

2For example, a require statement can pass or fail. There are two traces corresponding to it.
3We discuss this in Chapter 6

38

(ρ, j) |= (φ1 ∧ ¬φ2) means that at time j, the trace satisfies both φ1 and φ2. The first
satisfaction makes sense:

(ρ, j) |= DUP1 ∧©(PUSH20 ∧©(AND...(CALL)...))

⇐⇒ (ρ, j) |= DUP1 and (ρ, j) |=©(PUSH20 ∧©(AND...(CALL)...))

⇐⇒ (ρ, j) |= DUP1 and (ρ, j + 1) |= (PUSH20 ∧©(AND...(CALL)...))

⇐⇒ (ρ, j) |= DUP1 and (ρ, j + 1) |= PUSH20 and (ρ, j + 1) |=©(AND...(CALL)...)

...

⇐⇒ (ρ, j) |= DUP1 and (ρ, j + 1) |= PUSH20 and ... and (ρ, j + 15) |= CALL

The second satisfaction is:

(ρ, j) |= ¬(♦(PUSH1 ∧©(DUP1 ∧©(REV ERT)))

Which means it is not the case that

(ρ, j) |= ♦(PUSH1 ∧©(DUP1 ∧©(REV ERT))

⇐⇒ for some k ≥ j, (ρ, k) |= (PUSH1 ∧©(DUP1 ∧©(REV ERT))

...

⇐⇒ (ρ, k) |= PUSH1 and (ρ, k + 1) |= DUP1 and (ρ, k + 2) |= REV ERT

Now the above works for the given contract but we have to be careful. Suppose the func-
tion callnotchecked has a subsequent require statement which reverts. We would then
see the first sequence as well as the revert sequence. Consequently, we might mis-classify
the contract as not having an unchecked call. Considerations such as this one are taken
into account when developing explicit LTL-formulae corresponding to vulnerabilities. In
our future work, we may use a different type of temporal specification language to bound
the operators (so the eventually in this example is after 8 steps). Additionally, we will
justify the correctness of the formulae we come up with.

We do the above process for 18 access control, 8 bad randomness, 6 denial of service, 4
front running, 15 integer overflow/underflow, 15 re-entrancy, 1 short address, 5 time ma-
nipulation, and 10 unchecked low-level call contracts from the sbcurated dataset. We extract
similarities as patterns in each category. We summarize our findings in the following sec-
tions.

39

Before we proceed, we present a few points to keep in mind. The first is with regards to
halting condition. In Ethereum, execution terminates normally when encountering RETURN,
REVERT, STOP, or SELFDESTRUCT. Exceptional halting happens when there is insufficient gas,
insufficient stack items, the instruction is invalid, the jump destination is invalid, the stack
size is larger than 1024, or when attempting state modification in a static call [51]. Op-
codes that may be encountered during exceptional halting include CREATE, CREATE2, CALL,
STATICCALL, DELEGATECALL, CALLCODE, SSTORE, JUMPI, JUMP, JUMPDEST, and INVALID.
Some LTL formulae below are described with a terminating condition. For example, the
sequence JUMPDEST STOP or PUSH1 DUP1 REVERT (some formulae show the lack thereof
of the latter). The lack of a terminating sequence in an expression does not imply that
execution does not halt. In some cases, an argument can be made to not include a termi-
nating sequence in the LTL expression– for instance, ♦JUMPDEST ∧©(STOP) might
be attainable in several contracts regardless of whether they contain a specific vulnerability
whose characterization includes this expression.

The next point is that a contract ‘containing’ a vulnerability specification is not neces-
sarily vulnerable: There are false positives. This is relevant, for example, in the integer
overflow/underflow category (Section 4.5). As mentioned in Section 3.5, several of these
errors are consequences of arithmetic. Let us have a contract which adds two numbers.
Given that our expression captures addition, we may see that such a contract is flagged as
having an integer overflow/underflow vulnerability. However, say in practice, the contract
is used to add 1+1. This addition will not cause an overflow or underflow. Whether or not
we can support the claim that a vulnerable contract ‘contains’ the respective specification
for the vulnerability will be discussed in the next chapter.

Finally, several formulae below were created by observing the sbcurated dataset. The con-
tracts here are annotated to show where the vulnerability occurs. Some formulae capture
the annotated part. They do not capture how the vulnerability is exploited or is mani-
fested. This is apparent, for example, in front running (Section 4.4). This vulnerability
arises in contract-to-contract or off-chain situations. Expressing these interactions by ob-
serving contract code is not feasible, so we can only express the parts of the contract that
are interacted with.

We have a few more remarks with regards to our process. It is important to note that the
LTL formulae were created to find patterns, but not all vulnerable contracts follow these
patterns. For example, by looking at all access control contracts in sbcurated (18 unique
contracts) we find that 3 of them follow a specific pattern. Our LTL formula corresponding

40

to this group will therefore ‘fail’ on the remaining 15 contracts. One might argue for com-
plete coverage– such as 15 formulae for 15 contracts (or another surjection from formulae to
contracts). But, our goal in this work is to describe vulnerabilities not individual contracts.
Another remark although we have tried to keep our notation standard, some LTL formulae
are aesthetically inconsistent. Some appear as a long continuous formula while others are
broken into smaller ones. Furthermore, in some places, we write formula = operator(...)
and in others we write formula = (...) and then present it as operatorformula – although
they appear to be different, they are not in the context of this work.

4.1 Access Control

In Chapter 2, we discuss a type of access control issue stemming from the usage of the
special variable, in Solidity, tx.origin for authorization. Most contracts with this type
of vulnerability check the value of this variable against the value of msg.sender. This is
the address of the one initiating the current call. The contracts containing this type of
vulnerability have the pattern ((φ1 ∧©φ2) ∨ (φ1 ∧©φ2 ∧©© φ2)) ∧ ♦(φ3 ∨ (φ3 ∧©φ4))
where

φ1 = ORIGIN ∧©(PUSH20 ∧©(AND ∧©(EQ)))

φ2 = ISZERO

φ3 = PUSH2 ∧©(JUMPI)

φ4 = PUSH1 ∧©(DUP1 ∧©(REV ERT))

This characterization is quite broad. Let us walk through what that above formula means.
We have a conjunction of two formulae at a given time j. Let us parse the shorter one
(following ♦). This says that eventually for some k ≥ j, our trace either satisfies φ3 or
φ3 followed by φ4. Note: we could have left our formula to end at φ3– the φ4 is some
additional information which we will talk about. φ4 corresponds to a sequence of op-
codes PUSH1 DUP1 REVERT. This sequence manifests in the execution trace when there is
some assertion that fails. For the tx.origin vulnerability, this arises when the contract
requires some variable representing ownership to be equal to tx.origin. φ3, by itself,
does not have much of a meaningful semantic. However, φ1, φ2, and φ3 taken together
do. They correspond to part of an execution trace which checks if tx.origin is equal
to some value. Although the formula above can perhaps be simplified to (φ1 ∧ ♦φ3) with

φ1 = ORIGIN ∧©(PUSH20 ∧©(AND ∧©(EQ ∧©(ISZERO)))) , we keep the lengthier
expression (as it is more detailed).

41

If our contract compares the value of tx.origin to the value of msg.sender our formula
above will contain some instance of CALLER. If these two values are directly compared, our
formula will look like CALLER PUSH20 AND ORIGIN.... If there is some intermediate step
such as an intermediate variable being set to msg.sender and that variable being compared
to tx.origin, then the execution trace will contain CALLER followed by some sequence of
opcodes and then eventually ...PUSH20 AND ORIGIN.... In these cases, we can modify
our formula to be: φ5∧♦(((φ1∧©φ2)∨ (φ1∧©φ2∧©©φ2))∧♦(φ3∨ (φ3∧©φ4))) where

φ1 = PUSH20 ∧©(AND ∧©(ORIGIN ∧©(PUSH20 ∧©(AND ∧©(EQ)))))

φ5 = CALLER

and the other formulae are as they were above. Again, an argument can be made to
condense this as done above.

Another type of access control vulnerability is “incorrect constructor name.” According to
the Solidity documentation [33], this optional function is declared with the constructor
keyword and is executed upon contract creation. The author of the contracts with this
vulnerability in sbcurated claims: the constructor function needs to have the same name
as the contract class; otherwise, it is just a callable function. However, according to the
Solidity documentation, this was true prior to Solidity version 0.4.22. Recent compilers do
not detect any issues with this. The formula for this vulnerability is:

φ5 = ISZERO ∧©(PUSH2 ∧©(JUMPI ∧ ♦(JUMPDEST ∧©(POP ∧©(PUSH2∧
© (PUSH2 ∧©(JUMP ∧ ♦(JUMPDEST ∧©(CALLER ∧©(PUSH1 ∧©(DUP1∧
© (PUSH2 ∧©(EXP ∧©(DUP2 ∧©(SLOAD ∧©(DUP2 ∧©(PUSH20 ∧©(MUL∧
© (NOT ∧©(AND ∧©(SWAP1 ∧©(DUP4 ∧©(PUSH20 ∧©(AND ∧©(MUL∧
© (OR ∧©(SWAP1 ∧©(SSTORE ∧©(POP ∧©(JUMP ∧ ♦(JUMPDEST∧

© (STOP))))))))))))))))))))))))))))))))

The above formula captures more information than needed for this vulnerability as it
encapsulates what the function does in addition to what the function is. The sequence
beginning with CALLER describes the computation of setting a private variable to the value
of msg.sender. Recall, msg.sender yields the payable address of the originator of the
current call. If we want to isolate the function apart from what happens inside of it, we
can say

φ5 = ISZERO ∧©(PUSH2 ∧©(JUMPI ∧ ♦(JUMPDEST ∧©(POP ∧©(PUSH2∧
© (PUSH2 ∧©(JUMP ∧ ♦(JUMPDEST ∧©(STOP))))))))).

42

But, this may occur as evidence of any function4 – not necessarily an incorrect constructor
name one. In which case, every contract containing a function will be flagged as having
this vulnerability. To reduce the number of false positives (arising from using these LTL
formulae to detect vulnerabilities), it is better to use the original φ5.

One more vulnerability in the access control category is known as “missing modifier.” The
formula corresponding to the contracts with this in sbcurated is:

φ6 = DUP3∧©(PUSH20∧©(AND∧©(EQ∧©(ISZERO∧©(ISZERO∧©(ISZERO∧
© (PUSH2 ∧ ♦(JUMPI ∧ ♦(JUMPDEST ∧©(CALLER ∧©(PUSH1∧
© (PUSH1 ∧©(DUP5 ∧©(PUSH20 ∧©(AND ∧©(PUSH20 ∧©(AND∧
© (DUP2 ∧©(MSTORE ∧©(PUSH1 ∧©(ADD ∧©(SWAP1 ∧©(DUP2∧
© (MSTORE ∧©(PUSH1 ∧©(ADD ∧©(PUSH1 ∧©(SHA3 ∧©(PUSH1∧
© (PUSH2 ∧©(EXP ∧©(DUP2 ∧©(SLOAD ∧©(DUP2 ∧©(PUSH20∧
© (MUL ∧©(NOT ∧©(AND ∧©(SWAP1 ∧©(DUP4 ∧©(PUSH20∧

© (AND ∧©(MUL ∧©(OR ∧©(SWAP1 ∧©(SSTORE ∧©(POP ∧©(PUSH1∧
© (SWAP1 ∧©(POP ∧©(SWAP2 ∧©(SWAP1 ∧©(POP ∧©(JUMP∧

© (JUMPDEST)))

According to the Solidity documentation, there is an issue known as modifier overriding.
To prevent this keywords virtual and override must be used. Here is an example:

4In fact, if we debug, for example, the withdraw function of the vulnerable contract “incor-
rect constructor name1” from sbcurated, we see this pattern– even though that function is not related
to this vulnerability.

43

If the keywords are not used, the contracts are not able to be compiled. With that being
said, the execution trace for both modifier lines is:

PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH1 0xF JUMPI JUMPDEST POP

PUSH1 0x3F DUP1 PUSH1 0x1D PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN

This also appears when one of the modifiers is modifier foo() {-;}. In fact, the entire
compiled code for both contracts appears similar. The opcodes of the three types of mod-
ifiers differ from opcode number 5 34 onwards: The first contract is SWAP1...BASEFEE...,
the second is EXP...SELFBALANCE..., and the third (not shown above) is EXTCODESIZE

SHL BASEFEE.... We can perhaps create a formula for missing modifiers from the sequence
above and the opcodes in the three sets, but that is left as future work.

Another access control issue arises when a contract has a function to kill itself using
selfdestruct(<address>). This kills the current contract and forwards remaining gas
to the given address. Our corresponding formula can be just φ7 = SELFDESTRUCT .
Note: if the address is msg.sender, then our formula can be modified to φ7 = CALLER ∧
©(PUSH20 ∧©(AND ∧©(SELFDESTRUCT))).

The sbcurated dataset has some contracts flagged as vulnerable to access control issues,
because they contain a private variable which can be modified by using a public function.
We have yet to come up with a formula to express this as it depends on what happens in
the function. The contracts in sbcurated follow φ8 ∧ ♦(φ9 ∧ ♦(φ10 ∧©(φ11 ∧ ♦(φ12))))

φ8 = ISZERO ∧©((PUSH1 ∨ PUSH2) ∧©(JUMPI))

φ9 = JUMPDEST ∧©(POP ∧©(((PUSH1 ∧©PUSH1) ∨ (PUSH2 ∧©PUSH2))∧
♦(JUMP)))

φ10 = JUMPDEST ∧©((DUP1 ∧©(PUSH1 ∧©(DUP1)))∨
(CALLER ∧©(PUSH1 ∧©(PUSH1))))

φ11 = PUSH2 ∧©(EXP ∧©(DUP2 ∧©(SLOAD ∧©(DUP2 ∧©(PUSH20∧
© (MUL ∧©(NOT ∧©(AND ∧©(SWAP1 ∧©(DUP4 ∧©(PUSH20∧
© (AND ∧©(MUL ∧©(OR ∧©(SWAP1 ∧©(SSTORE ∧©(POP∧

♦(JUMP)))))))))))))))))))

5Enumerate every opcode in the compiled code regardless of execution path.

44

φ12 = JUMPDEST ∧©(STOP)

If we were to define a contract with this vulnerability as any contract which sets a private
variable using a public function, our formula would be more broad– again we leave this as
future work.

4.2 Bad Randomness

The specification corresponding to this vulnerability is quite loose. The formula, φ1, corre-
sponds to setting a variable to be a random value using special variables block.timestamp,
block.number, or blockhash.

φ1 = PUSH1 ∧©(PUSH1 ∧©(MSTORE ∧©((TIMESTAMP ∨NUMBER∨
BLOCKHASH) ∧©(PUSH1 ∧©(STORE ∧©(CALLV ALUE))))))

Several contracts do arithmetic calculations using these special variables to compute a
random number. We have yet to come up with an expression to capture this as it varies
from a contract-to-contract basis. For example, the contract below, from sbcurated, uses
addition, multiplication, division, and modular arithmetic.

It has been flagged for bad randomness four times. The execution traces for these differ:
for the variables salt, y, seed, and h. The execution traces of the last three are

PUSH1 0x5 PUSH1 0x0 SLOAD DUP2 ISZERO ISZERO PUSH2 0xB0 JUMPI JUMPDEST

45

MOD NUMBER PUSH1 0x0 SLOAD MUL DUP2 ISZERO ISZERO PUSH2 0xBF JUMPI

JUMPDEST DIV SWAP3 POP

; then

DUP3 PUSH2 0x12C PUSH1 0x0 SLOAD DUP2 ISZERO ISZERO PUSH2 0xD2 JUMPI

JUMPDEST MOD PUSH1 0x3 NUMBER DUP2 ISZERO ISZERO PUSH2 0xDF JUMPI

JUMPDEST DIV ADD ADD SWAP2 POP

; and

DUP2 BLOCKHASH PUSH1 0x1 SWAP1 DIV SWAP1 POP

A generic formula for this vulnerability could be φ2 = (TIMESTAMP ∨ NUMBER ∨
BLOCKHASH), but that would flag any contract using one of these three variables– the
contract might not even be using them to generate a random number.

4.3 Denial of Service

As mentioned in Chapter 2, there are different types of attacks. Our first formula corre-
sponds to a re-entrancy type DoS.

φ1 = PUSH1 ∧©(DUP1 ∧©(SWAP1 ∧©(SLOAD ∧©(SWAP1 ∧©(PUSH2∧
© (EXP ∧©(SWAP1 ∧©(DIV ∧©(PUSH20 ∧©(AND ∧©(PUSH20∧
© (AND ∧©(PUSH2 ∧©(PUSH1 ∧©(SLOAD ∧©(DUP2 ∧©(SLOAD∧
© (SWAP1 ∧©(DUP2 ∧©(ISZERO ∧©(MUL ∧©(SWAP1 ∧©(PUSH1∧
© (MLOAD ∧©(PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4∧

© (SUB ∧©(DUP2 ∧©(DUP6 ∧©(DUP9 ∧©(DUP9 ∧©(CALL∧
♦(SWAP4 ∧©(POP ∧©(POP ∧©(POP ∧©(POP ∧©(ISZERO∧
© (ISZERO ∧©(PUSH2 ∧©(JUMPI ∧©(PUSH1 ∧©(DUP1∧

© (REV ERT)))

This vulnerability arises from the failure of a refund process– gas needs to be forwarded
to a contract, but is being blocked/prevented from being sent. This obstacle manifests

46

through the last three opcodes of the formula above. The first eleven opcodes PUSH1 ...

AND take an address to which gas will be sent. Opcodes 14 through 19, PUSH2 ... SWAP1

process the amount of gas to be sent. The rest of the formula until CALL deals with sending
this amount to that address. After that transfer is made, the execution resumes with SWAP4

until the failure mentioned above.

The second type of DoS arises from entering a special type of if-statement. The formula is
φ2 ∧ ¬© φ3 or φ2 ∧©φ4 where

φ2 = PUSH2 ∧©(PUSH1 ∧©(DUP1 ∧©(SLOAD ∧©(SWAP1∧
© (POP ∧©((GT ∨ LT) ∧©(ISZERO ∧©(PUSH2 ∧©(JUMPI)))))))))

φ3 = JUMPDEST ∧©(JUMP ∧©(JUMPDEST ∧©(STOP)))

φ4 = PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(SWAP1...)))

Our characterization is redundant as φ4 is an instance of ¬φ3; however, it may be the case
the second formula detects fewer false positives than the first.

The third type of DoS comes from an exhaustion of gas. The formula is φ6U(φ7 ∨ φ8) or
φ6 ∧©(φ8 ∧ ¬♦φ9) where:

φ6 = DUP1 ∧©(DUP1 ∧©(PUSH1 ∧©(ADD ∧©(SWAP2∧
© (POP ∧©(POP ∧©(PUSH2 ∧ ♦(JUMP ∧ ♦(JUMPDEST∧

© (DUP2 ∧©(DUP2 ∧©(LT ∧©(ISZERO ∧©(PUSH2 ∧©(JUMPI∧
© (PUSH1 ∧©(DUP1 ∧©(SLOAD ∧©(SWAP1 ∧©(POP ∧©(PUSH1∧
© (SLOAD ∧©(EQ ∧©(ISZERO ∧©(PUSH2 ∧©(JUMPI ∧©(PUSH1∧
© (DUP1 ∧©(DUP2 ∧©(DUP2 ∧©(DUP1 ∧©(SLOAD ∧©(SWAP1∧
© (POP ∧©(ADD ∧©(SWAP2 ∧©(POP ∧©(DUP2 ∧©(PUSH2∧
© (SWAP2 ∧©(SWAP1 ∧©(PUSH2 ∧©(JUMP ∧ ♦(JUMPDEST∧
© (POP ∧©(JUMPDEST ∧©(DUP3 ∧©(PUSH1 ∧©(PUSH1∧

© (DUP1 ∧©(DUP2 ∧©(SLOAD ∧©(DUP1 ∧©(SWAP3 ∧©(SWAP2∧
© (SWAP1 ∧©(PUSH1 ∧©(ADD ∧©(SWAP2 ∧©(SWAP1 ∧©(POP∧
© (SSTORE ∧©(DUP2 ∧©(SLOAD ∧©(DUP2 ∧©(LT ∧©(ISZERO∧

© (ISZERO ∧©(PUSH2∧
© (JUMPI))

φ7 = INV ALID

47

φ8 = JUMPDEST ∧©(SWAP1 ∧©(PUSH1 ∧©(MSTORE∧
© (PUSH1 ∧©(PUSH1 ∧©(SHA3 ∧©(ADD ∧©(DUP2∧

© (SWAP1 ∧©(SSTORE ∧©(POP)))))))))))

φ9 = POP ∧©(POP ∧©(PUSH2 ∧©(JUMP ∧©(JUMPDEST∧
© (DUP2 ∧©(DUP2 ∧©(LT ∧©(ISZERO ∧©(PUSH2∧

© (JUMPI ∧©(JUMPDEST ∧©(POP ∧©(POP ∧©(POP∧
© (JUMP ∧©(JUMPDEST ∧©(STOP)))))))))))))))))

The pattern of φ6 comes from the continuous execution of a loop. When the loop is
exited, the execution continues with φ9. So if φ9 is not present, the loop has not been
exited. Alternately, if we encounter the INVALID instruction, φ7, after φ6, we have run
out of gas (hence, there will be a denial of service). We use the U operator to show the
repeated existence of φ6.

4.4 Front Running

It is difficult to express this vulnerability in LTL as transaction ordering is not a char-
acteristic of the contract, but rather how contracts interact with other members of the
blockchain. The contracts in sbcurated susceptible to this bug have either a require or an
if statement that, when passed, make the contract vulnerable. These statements end with
EQ ISZERO ISZERO PUSH2 JUMPI– sometimes, there are three ISZEROs. Sometimes these
are preceded by, but not necessarily immediately, CALLER or CALLVALUE. Depending on the
smart contracts, this string might be preceded by other computations (such as comparing
the input of a function to a fixed value). There is no succinct way of describing all compu-
tations, so we will keep our formula loose (additionally, the opcodes PUSH1 and DUP4 show
up in these computations). So, a starting point, corresponding to the require statement, is

φ1 = (CALLV ALUE ∨ CALLER ∨ (PUSH1 ∧ ♦DUP4)) ∧ ♦(EQ ∧©(ISZERO∧
© (ISZERO ∧ ♦(PUSH2 ∧©(JUMPI ∧ ♦(JUMPDEST)))))))

Note: instead of ♦(JUMPDEST), we could have also said ¬ © (PUSH1 ∧ ©(DUP1 ∧
©(REV ERT))). Then, the contracts have some type of transfer function. As we see in
other vulnerabilities, transfer functions can be expressed as a sequence of opcodes. In our

48

case, we have

φ2 = SWAP1 ∧©(DUP2 ∧©(ISZERO ∧©(MUL ∧©(SWAP1 ∧©(PUSH1∧
© (MLOAD ∧©(PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4∧
© (SUB ∧©(DUP2 ∧©(DUP6 ∧©(DUP9 ∧©(DUP9 ∧©(CALL))))))))))))))))))

All together, we have φ1 ∧ ♦φ2

Another front running expression is:

φ3 = ISZERO ∧©(PUSH2 ∧©(JUMPI ∧ ♦(JUMPDEST ∧©(POP∧
© (PUSH2 ∧©(PUSH2 ∧©(JUMP ∧ ♦(JUMPDEST ∧©(CALLER∧
© (PUSH1 ∧©(DUP1 ∧©(PUSH2 ∧©(EXP ∧©(DUP2 ∧©(SLOAD∧
© (DUP2 ∧©(PUSH20 ∧©(MUL ∧©(NOT ∧©(AND ∧©(SWAP1∧
© (DUP4 ∧©(PUSH20 ∧©(AND ∧©(MUL ∧©(OR ∧©(SWAP1∧

© (SSTORE ∧©(POP ∧©(JUMP ∧ ♦(JUMPDEST∧
© (STOP))))))))))))))))))))))))))))))))

The first three opcodes, as we have seen, are not explicitly related to this vulnerability but
arise when functions are entered in smart contracts. The subsequent opcodes arise when
a private structure is changed. In Solidity, new types can be defined through the usage of
a Struct datatype. A contract in sbcurated that follows this pattern has a structure which
is comprised of tuples of addresses and integers. It has a function which sets the address
to msg.sender and the integer to the given input of the function.

4.5 Integer Overflow/Underflow

We have, at the minimum, φ1 ∧ ♦(φ2 ∧ ♦φ3) where:

φ1 = PUSH1

φ2 = DUP3 ∧©(DUP3 ∧©(SLOAD ∧©((ADD ∨ SUB ∨MUL ∨DIV)∧
©(SWAP3∧©(POP ∧©(POP ∧©(DUP2∧©(SWAP1∧©(SSTORE∧©(POP))))))))))

φ3 = JUMPDEST ∧©(STOP)

49

However, some contracts also have an optional DUP1 followed by one or two PUSH1 then
optionally SHA3, DUP1, or DUP2, then sometimes PUSH1 and DUP1, followed by the above
formula. This is too complicated to express, and is already captured by the above formula,
so we do not write another LTL formula for it. In fact, we can perhaps further tighten the
expression to just φ2 ∧♦φ3 as PUSH1 is a popular instruction, so the chance of it preceding
the rest of the expression anywhere (e.g. by being the very first instruction for a contract)
is highly likely. The same argument can be made about JUMPDEST ∧ ©(STOP)s suc-
ceeding which we have kept for the sake of consistency with other vulnerabilities.

The contracts in sbcurated with this vulnerability have arithmetic operations. In most
cases, some value– such as a variable or mapping entry– is being changed. There is no
evidence of other types of overflow and underflow vulnerabilities in sbcurated. We could try
to extrapolate some more patterns as follows:

Consider the shift operations. Create a dummy contract such as:

If we deploy this and call overflow(2), we see the trace DUP2 SWAP1 SHL PUSH1 0x0

DUP2 SWAP1 SSTORE POP POP JUMP. If we create another dummy contract like the above
but with right shift, our trace is DUP2 SWAP1 SHR PUSH1 0x0 DUP2 SWAP1 SSTORE POP

POP JUMP. Our LTL formula will reflect this with one part being SHL ∨ SHR. We can
make similar extrapolations for the other categories.

4.6 Re-entrancy

Re-entrancy is (φ1 ∨ (φ2 ∧ ♦φ1)) ∧©¬φ3 where

φ1 = PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4∧
© (SUB ∧©(DUP2 ∧©(DUP6 ∧©(DUP8 ∧©(GAS ∧©(CALL))))))))))

φ2 = (CALLER ∨ CALLV ALUE)

50

φ3 = SWAP3 ∧©(POP ∧©(POP ∧©(POP)))

As articulated in other sections, we can perhaps eliminate the need for φ2 as the main
commonality is φ1. The opcodes in φ2 occur in specific instances of re-entrancy– for exam-
ple, CALLER occurs when the current contract is invoking another specified by msg.sender.
The opcodes of GAS and CALL are especially important in this vulnerability. They appear
when a contract makes a call to another and forwards some amount of gas. Most contracts
with re-entrancy contain a line like this: <address>.call.value(<uint>). In this line,
the contract calls the fallback function of the contract specified by the given address. Note:
a contract’s fallback function is executed whenever the contract receives Ether– it is also
the ‘default’ function that is executed if the caller contract calls a function that is not
available. The contract sends an integer number of Wei 6 with the message. Eventually,
the call instruction returns a success condition. Re-entrancy happens when the contract
is entered again from the called contract (before the first execution finishes). The original
execution should eventually resume with φ3. If it does not, then perhaps the contract
has been re-entered. We have used the © operator instead of the ♦ operator to trace
the original contract’s execution (even though there may be intermediate execution steps
belonging to the called contract). As a side note, generally φ3 is followed by one or two
ISZERO then PUSH2 JUMPI, but we have left it out to shorten the formula somewhat.

4.7 Short Address

Below is the formula corresponding to the flagged part of the one contract with this vulner-
ability in sbcurated. The expression below does not justly describe the vulnerability, as the
vulnerability arises from manipulation done off-chain. Instead it describes a function which
sends some integer amount to a mapping entry corresponding to an address. According to
the annotations of sbcurated, if the transfer is successful, the vulnerability exists– we express
it as a failure of reverting ¬φ1 where

φ1 = DUP1 ∧©(ISZERO ∧©(PUSH2 ∧©(JUMPI ∧©(PUSH1∧
© (DUP1 ∧©(REV ERT))))))

It should be emphasized once more that there only exists one contract with this vul-
nerability. Furthermore, most debuggers, such as the one built into Remix, prevent this
vulnerability from taking place by warning users about input not being properly formatted.

6Wei is the smallest denomination of currency in Ethereum. 1 Ether = 1018 Wei.

51

4.8 Time Manipulation

Time manipulation is another broad category. The contracts in sbcurated with this vulner-
ability contain the keyword block.timestamp. In a contract, when some variable is set to
this value, our formula is

φ1 = TIMESTAMP ∧©(PUSH1 ∧©(DUP2 ∧©(SWAP1 ∧©(SSTORE ∧©(POP)))))

If there is a function where this value is returned (not set to a variable), then we have

φ2 = TIMESTAMP ∧©(SWAP1 ∧©(POP ∧©(SWAP1))).

Actually, if we have a return line, such as return block.timestamp >= 1546300800, the
trace contains more opcodes like TIMESTAMP LT ISZERO SWAP1 POP SWAP1. So, we change
our formula to be more flexible:

φ2 = TIMESTAMP ∧ ♦(SWAP1 ∧©(POP ∧©(SWAP1))).

Generally contracts do some computation using this value. For example, the contract
entitled “time manipulation” in sbcurated has a line flagged for this vulnerability:
var random = uint(sha3(block.timestamp))% 2;

The trace corresponding to this is

TIMESTAMP PUSH1 0x40 MLOAD DUP1 DUP3 DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP

POP PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1 KECCAK256 PUSH1 0x1 SWAP1 DIV

DUP2 ISZERO ISZERO PUSH2 0x156 JUMPI (not INVALID) JUMPDEST MOD SWAP1 POP

A, perhaps not meaningful, characterization of this vulnerability may just be the existence
of TIMESTAMP.

4.9 Unchecked Low-Level Calls

Most of the sbcurated contracts in this category have the keyword call. There are some
contracts with the keyword delegatecall in the access control section; they display this
vulnerability too. There are similarities between this category and re-entrancy (Section

52

4.6), as the latter is sometimes caused by the former.

Our first formula is:

φ1 = DUP1 ∧©(PUSH20 ∧©(AND ∧ ♦(PUSH1 ∧©(MLOAD ∧©(PUSH1∧
© (PUSH1 ∧©(MLOAD ∧©(PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1∧

© (DUP4 ∧©(SUB ∧©(DUP2 ∧©(PUSH1 ∧©(DUP7 ∧©(GAS∧
© (CALL ∧ ♦(SWAP2 ∧©(POP ∧©(POP ∧©(POP ∧©(POP∧

© (JUMP ∧©(JUMPDEST ∧©(STOP))))))))))))))))))))))))))

This arises with an <address>.call(<bytes>) method. This is a low-level call with a
given payload of bytes of memory. It forwards all available gas to the contract called.
The return is a Boolean value along with bytes of memory. This method bypasses type
checking, function existence checking, and argument packing [33]. As mentioned in the
example walk-through, we can also create a formula incorporating the lack of revert. This
would look similar, but after CALL, we would include the lack of an eventual PUSH1 ∧
©(DUP1 ∧©(REV ERT)). In fact, to be more specific, we can include some more details
in our revert statement.
An expression, such as: φ11 ∧ ♦(φ12 ∨ ¬φ13) where

φ11 = DUP1 ∧©(PUSH20 ∧©(AND ∧ ♦(PUSH1 ∧©(MLOAD ∧©(PUSH1∧
© (PUSH1∧©(MLOAD ∧©(PUSH1∧©(PUSH1∧©(MLOAD ∧©(DUP1∧©(DUP4∧

© (SUB ∧©(DUP2 ∧©(PUSH1 ∧©(DUP7 ∧©(GAS ∧©(CALL))))))))))))))))))

φ12 = SWAP2 ∧©(POP ∧©(POP ∧©(POP ∧©(POP ∧©(JUMP ∧©(JUMPDEST∧
© (STOP)))))))

φ13 = SWAP2∧©(POP ∧©(POP ∧©(ISZERO∧©(ISZERO∧©(PUSH1∧©(JUMPI∧
© (PUSH1 ∧©(DUP1 ∧©(REV ERT)))))))))

is redundant. Furthermore, a revert statement (like φ13 arises from an assertion failing.
The case of the assertion passing needs to be included in the so-called redundant formula.
In other terms, we could write φ11 ∧ ♦(φ12 ∨ ¬(φ13 ∨ φ14)) where

φ14 = SWAP2∧©(POP ∧©(POP ∧©(ISZERO∧©(ISZERO∧©(PUSH1∧©(JUMPI∧
© (JUMPDEST ∧©(POP ∧©(JUMP ∧©(JUMPDEST ∧©(STOP))))))))))).

53

Again, this is redundant. We, therefore, express our formulae below in the style of
φ11 ∧ ♦φ12.

When we have <address>.send(<uint>) or <address>.transfer(<uint>), our formula
is :

φ2 = (CALLER ∨DUP1) ∧©(PUSH20 ∧©(AND ∧©(PUSH2 ∧©((PUSH1 ∨DUP3)∧
© (SWAP1∧©(DUP2∧©(ISZERO ∧©(MUL∧©(SWAP1∧©(PUSH1∧©(MLOAD∧
© (PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4 ∧©(SUB ∧©(DUP2∧
© (DUP6 ∧©(DUP9 ∧©(DUP9 ∧©(CALL ∧ ♦(SWAP4 ∧©(POP ∧©(POP∧

© (POP ∧©(POP)))))))))))))))))))))))))))

Another example of this vulnerability (akin to φ1 above is):

φ3 = PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧ ♦(DUP1 ∧©(DUP4 ∧©(SUB∧
© (DUP2 ∧©((PUSH1 ∨DUP6) ∧©(DUP8 ∧©(GAS ∧©(CALL ∧©(SWAP3∧

© (POP ∧©(POP ∧©(POP ∧©(POP ∧ ♦(JUMP ∧©(JUMPDEST∧
© (STOP))))))))))))))))))

This is also a manifestation of the call function. However, it includes some explicit bytes
of data.

Some contracts with the delegatecall keyword (such as ‘Fibonacci’ in the access control
set) have the following:

φ4 = PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4 ∧©(SUB∧
© (DUP2 ∧©(DUP7 ∧©(GAS ∧©(DELEGATECALL ∧©(SWAP3 ∧©(POP∧

© (POP ∧©(POP)))))))))))))

The main opcode above is DELEGATECALL. This call variant allows a contract to dynami-
cally load and execute code from another contract [33].

We have one more formula for a contract with delegatecall, but it is more complicated

54

than the other formulae above. φ5 ∧©(φ6 ∧©(φ7 ∧©(φ6 ∧ ♦(φ8 ∧©¬φ9)))).

φ5 = DUP2 ∧©(PUSH20 ∧©(AND ∧©(DUP2 ∧©(PUSH1 ∧©(MLOAD∧
© (DUP1 ∧©(DUP3 ∧©(DUP1 ∧©(MLOAD ∧©(SWAP1 ∧©(PUSH1∧

© (ADD ∧©(SWAP1 ∧©(DUP1 ∧©(DUP4 ∧©(DUP4 ∧©(PUSH1)))))))))))))))))

φ6 = JUMPDEST ∧©(DUP4 ∧©(DUP2 ∧©(LT ∧©(ISZERO ∧©(PUSH2∧
© (JUMPI))))))

φ7 = DUP1 ∧©(DUP3 ∧©(ADD ∧©(MLOAD ∧©(DUP2 ∧©(DUP5∧
© (ADD ∧©(MSTORE ∧©(PUSH1 ∧©(DUP2 ∧©(ADD ∧©(SWAP1∧

© (POP ∧©(PUSH2 ∧©(JUMP))))))))))))))

φ8 = JUMPDEST ∧©(POP ∧©(POP ∧©(POP ∧©(POP ∧©(SWAP1∧
© (POP ∧©(SWAP1 ∧©(DUP2 ∧©(ADD ∧©(SWAP1∧

© (PUSH1 ∧©(AND ∧©(DUP1 ∧©(ISZERO ∧©(PUSH2 ∧©(JUMPI∧
© (DUP1 ∧©(DUP3 ∧©(SUB ∧©(DUP1 ∧©(MLOAD ∧©(PUSH1∧
© (DUP4 ∧©(PUSH1 ∧©(SUB ∧©(PUSH2 ∧©(EXP ∧©(SUB∧
© (NOT ∧©(AND ∧©(DUP2 ∧©(MSTORE ∧©(PUSH1 ∧©(ADD∧

© (SWAP2 ∧©(POP ∧©(JUMPDEST ∧©(POP ∧©(SWAP2 ∧©(POP∧
© (POP ∧©(PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4∧

© (SUB ∧©(DUP2 ∧©(DUP6 ∧©(GAS ∧©(DELEGATECALL ∧©(SWAP2∧
© (POP ∧©(POP ∧©(ISZERO ∧©(ISZERO ∧©(PUSH2∧

© (JUMPI))

φ9 = PUSH1 ∧©(DUP1 ∧©(REV ERT))

As this is a lengthy formula, it is most likely specific to only a few contracts. A more
apt pattern would be a slice of it such as PUSH1∧©(PUSH1∧©(MLOAD ∧©(DUP1∧
©(DUP4 ∧©(SUB ∧©(DUP2 ∧©(DUP6 ∧©(GAS ∧©(DELEGATECAL)))))))).

We did not observe any contracts with staticcall. However, it can be surmised that they
have similar patterns as some above (but with the keyword STATICCALL).

55

Chapter 5

Validation

In the previous chapter, there were several expressions corresponding to vulnerabilities. Al-
though the expressions were derived directly from contracts with the given vulnerabilities,
their accuracy in vulnerability detection/identification needs to be studied. In this chapter,
we discuss a basic validation approach and future plans for more-thorough approach. We
corroborate our findings with the sbcurated dataset 1. Based on our results, we will refine
the expressions, and test them on the sbwild dataset– but this is left as future work. The
question we are trying to answer through the validation process is: Given a smart contract
and a vulnerability specification, does the contract contain that vulnerability?
We define the following terms in the context of this study:

• False positive: A contract does not contain a specific vulnerability, but our specifi-
cation detects one.

• False negative: A contract contains a specific vulnerability, but our specification does
not detect one.

• True positive: A contract contains a specific vulnerability, and our specification de-
tects one.

• True negative: A contract does not contain a specific vulnerability, and our specifi-
cation does not detect one.

1We omit short address from our set as there is only one contract. Also, we eliminate the miscellaneous
category.

56

5.1 Basic Approach

The first approach is quite rudimentary. We break our LTL expressions into sequences of
opcodes, and we search for these sequences in the compiled code of contracts (which is
represented in the human-readable EVM opcode form). We use the Remix [21] and SolC
[19] platforms to compile the contracts– the versions automatically adjust depending on
the pragma specified by the contract 2.

5.1.1 Disclaimers

Before we present the results of this analysis, we present a few disclaimers. As in other
programming languages, the compiled code of contracts written in Solidity reflect multiple
execution paths. For example, if the contract has an assertion, both successful and un-
successful passing of the assertion are reflected in the compiled code. Let us say we have
a formula (A ∧ ©¬B). If A′ and B′ are the corresponding opcode sequences to A and
B, we want the last term of A to not be followed by the first term of B. However, the
compiled code might show otherwise. Likewise, if we want A ∧ ©C, with C ′ being the
opcode sequence corresponding to C, we might see A′B′C ′ in our compiled code.

Moreover, some vulnerabilities arise from a contract’s interaction with another. Some LTL
formulae given above are written to show interruptions in contract execution. For example,
in the re-entrancy specification, we want PUSH1 PUSH1 MLOAD DUP1 DUP4 SUB DUP2 DUP6

DUP8 GAS CALL to not be followed by SWAP3 POP POP POP. But, in the compiled code of a
contract, we see PUSH1 PUSH1 MLOAD DUP1 DUP4 SUB DUP2 DUP6 DUP8 GAS CALL SWAP3

POP POP POP. This result seemingly contradicts our specification. We need to, therefore,
loosen our specification by only searching for the first sequence. Loosening our specifica-
tions might increase our number of false positives.

Furthermore, succeeding execution steps do not manifest sequentially in the compiled code.
The concept of ‘eventually’ is, therefore, difficult to model. Let us have the LTL formula
A♦B, and let A′ and B′ be the sequences of opcodes corresponding to A and B. In our
approach, we will scan the contract for A′ and for B′. We might find both A′ and B′, but

2The following contracts were unable to be compiled: parity wallet bug 1.sol

from the access control category, smart billions.sol from the bad ran-
domness category, and 0xe09b1ab8111c2729a76f16de96bc86a7af837928.sol and
0x19cf8481ea15427a98ba3cdd6d9e14690011ab10.sol from the unchecked low-level calls category.

57

they might just be two unrelated sequences in the compiled code.

We base our analysis on the assumption that the contracts in sbcurated only have one
vulnerability each as per the classifications of the work [31].

5.1.2 Hypotheses

Below are two hypotheses we have regarding our validation.

1. The mapping from LTL formulae to vulnerable contracts is not a surjection. In our
approach, we extract common patterns amongst contracts in a given category to base
our respective formulae off of. Not all members of that category follow the derived
patterns. The corresponding specifications, therefore, will not cover all contracts–
we will have false negatives. To eliminate such false negatives, it can be argued–
for example– to create an LTL formula for each contract in a category and have
the disjunction of these be the overall specification. But this brute-force approach
defeats the purpose of this work.

2. False positives are expected by design when checking all contracts with all specifi-
cations. For example, one unchecked low-level call specification is based off of the
built-in Solidity function <address>.delegatecall(<bytes>). The contract below
has this function but is in the access control category.

Moreover, some specifications are quite broad– such as the integer overflow/under-
flow one. As mentioned in Section 4.5, many contracts in sbcurated which display this

58

vulnerability have simple arithmetic. One, for example, has a variable initialized to 0
and a function which takes an integer input and adds it to that variable. The specifi-
cation captures contracts which change a value using basic arithmetic. Consequently,
any contract that does so is flagged as being vulnerable to integer overflow/underflow.
For example, this contract from the re-entrancy category has a line which subtracts
some value from an integer mapping entry.

5.1.3 Results

Before we present the results, we mention the following. In the modified sbcurated dataset,
the access control category has 17 contracts, bad randomness has 7 contracts, DoS has
6 contracts, front running has 4 contracts, integer overflow/underflow has 15 contracts,
re-entrancy has 31 contracts, time manipulation has 5 contracts, and the unchecked low-
level calls category has 50 contracts. Additionally, we have omitted some specifications–
corresponding to the future work ones mentioned in Chapter 4 and to the single-opcode
ones (such as TIMESTAMP).

We correctly identify (the true positives are) 8 access control, 7 bad randomness, 3 DoS,
4 front running, 13 integer overflow/underflow, 29 re-entrancy, 3 time manipulation, and
50 unchecked low-level calls. Thereby, the false negatives are 9 access control, 0 bad
randomness, 3 DoS, 0 front running, 2 integer overflow/underflow, 2 re-entrancy, 2 time

59

manipulation, and 0 unchecked low-level calls.

We search for each type of vulnerability in all the contracts in the modified sbcurated dataset
mentioned above, and find 239 false positives and 706 true negatives. The graphs below
show the distribution of these two sets.

We first present our false positives. Recall, we define a false positive as a contract not
containing a specific vulnerability but our specification detecting one. We calculate our
false positives with the underlying assumption that each contract in sbcurated only contains
one type of vulnerability.

The horizontal groups represent contracts’ original vulnerability categories (according to
sbcurated); the vertical axis represents the number of false positive instances. For exam-
ple, the contracts in the re-entrancy category get marked as having unchecked low-level
calls 29 times 3. According to the graph above, the primary contributors to false posi-
tives are unchecked low-level calls, integer overflow/underflow, and bad randomness. This
can be attributed to the broadness of the specifications– contracts with Solidity functions

3Note: we are using multiple unchecked low-level call specifications on each re-entrancy contract.

60

of call, transfer, send, etc. get marked for unchecked low-level calls, specific arith-
metic operations get marked for integer overflow/underflow, and computations done using
Solidity variables block.timestamp, block.number, and blockhash get marked for bad
randomness 4. The graph above is based on raw data, so it may seem that certain contract
categories are more likely to be flagged as having other vulnerabilities. However, that is not
the case– keep in mind that the categories have different numbers of contracts. The graph
below proportionally shows the distribution of false positive by type in each category.

Going back to the example above: the re-entrancy category gets incorrectly marked 83
times. Re-entrancy contracts are identified as unchecked low-level calls 29 times. So,
unchecked low-level calls make up roughly 35% of the re-entrancy false positives. Surpris-
ingly, many of the contracts are being marked as having front running vulnerabilities. In
the next steps of this research, we will inspect why this is.

We next present true negatives. Recall, a true negative occurs when a contract does not
contain a specific vulnerability and our respective specification does not detect one.

4If we include the single opcode TIMESTAMP as a time manipulation specification, then we see several
false positives in this category.

61

It is hard to see, but each column contains seven colors (corresponding to the vulnerabilities
that are not the given category). For example, there are 86 true negatives in the access
control category and 11 of these come from integer overflow/underflow. For the most part,
the specifications correctly identify true negatives. However, the thinness of the maroon
components corresponding to unchecked low-level calls shows that lack in identifying true
negatives. This intuitively makes sense as this category accounts for several of the false
positives found above. We present a different view of the true negatives akin to what was
done in the false positive case.

62

This graph shows the proportion of true negatives in a category that were found from
different vulnerability specifications. Going back to our example: roughly 12% true neg-
atives in the access control category are accounted for by the integer overflow/underflow
specification.

For the readers who prefer numbers over colored blocks, we give a table summarizing the
data in the false positive and true negative categories. We abbreviate the specification
names to save space.

False Positives
Vulnerability AC BR DoS FR I O/U R-e TM UC
Access Control 0 2 0 12 6 1 0 12
Bad Randomness 0 0 0 4 1 0 0 6
DoS 0 1 0 1 1 0 1 3
Front Running 0 2 0 0 0 0 0 3
Integer O/U 1 3 0 2 0 0 0 2
Re-entrancy 1 21 0 3 29 0 0 29
Time Manipulation 0 5 0 2 2 0 0 4
Unchecked Calls 1 15 0 26 10 26 1 0

63

The counterpart to this is:

True Negatives
AC BR DoS FR I O/U R-e TM UC

Access Control 0 15 17 5 11 16 17 5
Bad Randomness 7 0 7 3 6 7 7 1
DoS 6 5 0 5 5 6 5 3
Front Running 4 2 4 0 4 4 4 1
Integer O/U 14 12 15 13 0 15 15 13
Re-entrancy 30 10 31 28 2 0 31 2
Time Manipulation 5 0 5 3 3 5 0 1
Unchecked Calls 49 35 50 24 40 24 49 0

From the results, we need to improve our specifications. The DoS specifications are too
limited, and do not cover all contracts exhibiting DoS. On the other hand, some specifi-
cations are too broad and find vulnerabilities in contracts not susceptible to that type of
vulnerability, such as front running. More contracts, particularly in these two categories,
need to be studied to find more vulnerability patterns and make the specifications more
accurate. To do so, we can observe the contracts in sbwild. We can, perhaps, use tools
mentioned in Chapter 2 to categorize the contracts based on vulnerability susceptibility.
Then use our methods on them.

5.2 Future Validation

The above approach is a starting point to corroborate our findings. But, it only checks for
whether sequences of opcodes exist in the compiled code of the contracts. To address the
concerns raised in the disclaimer discussion above and to address whether sequences are
indeed reachable, further model-checking techniques need to be implemented. Below is an
outline of a potential future validation method.

Our method will take, as input, a contract and vulnerability specification, and output the
correctness of the specification. We first take a contract and create an SMV file from it.
We can track the opcodes, changes to the stack, changes in gas balance, as well as other
facets of the contract by creating respective SMV modules 5. Our current LTL formulae

5In SMV, a module represents a finite state machine [26].

64

are based off of opcodes, but we can amend them to include other contract details. For
example, we can monitor gas levels to detect Block Gas Limit DoS (mentioned in section
3.3). We then pass the generated SMV file and LTL specification into the nuXmv model
checker. Either the specification is satisfied by the system or the model checker generates
a counterexample. For example, the model checker might show a state is unreachable.

A more concrete example of a counterexample is the following. Recall our LTL formula
for re-entrancy (section 4.6). We have

φ1 = PUSH1 ∧©(PUSH1 ∧©(MLOAD ∧©(DUP1 ∧©(DUP4∧
© (SUB ∧©(DUP2 ∧©(DUP6 ∧©(DUP8 ∧©(GAS ∧©(CALL))))))))))

φ3 = SWAP3 ∧©(POP ∧©(POP ∧©(POP))).

We want φ1∧©¬φ3 to show re-entrancy. Our model checker can yield a counterexample by
presenting an execution trace which encapsulates operations changing ...PUSH1 → PUSH1

→ MLOAD → DUP1 → DUP4 → SUB → DUP2 → DUP6 → DUP8 → GAS → CALL → SWAP3

→ POP → POP → POP... to show otherwise (a contract not being susceptible to re-
entrancy).

We hope to better our specifications by incorporating more contract state and transition
details, and have a more accurate validation method. Once we implement this method, we
will test it on the sbwild dataset. We will also compare it to some of the tools mentioned
in Chapter 2.

65

Chapter 6

Conclusion

We have examined nine classes of vulnerabilities in Ethereum smart contracts. Using the
categorization of contracts done by Durieux et al [31], we come up with LTL expressions
that describe various types of vulnerabilities. We then present a preliminary validation 1

of the expressions against contracts. Overall, our specifications are accurate in identifying
true positives; however, they can be improved for the access control and DoS categories. We
find a high number of false positives– contracts flagged for certain vulnerabilities without
necessarily displaying those. The findings warrant further pattern refinement which we
discuss below along with our future plans.

6.1 Pattern Refinement

In this work, specifications are based off of contract execution traces. We, therefore, focus
solely on EVM opcodes. There are some difficulties with this approach as mentioned in
Chapter 4. The first is with trying to detect whether an execution trace is indeed a pattern
or simply contract-specific. This analysis can be done, perhaps, by regarding the control
flow graphs of contracts and inferring patterns in execution routes. This will help us dif-
ferentiate between which instructions are critical to a vulnerability pattern and which ones
are used in intermediate computations of contracts (regardless of association to vulnera-
bility).

1Our validation excludes the short address category.

66

On the other hand, there is an issue of the pattern being too broad. Take, for instance,
integer overflow/underflow. Currently, the specification searches for general arithmetic
operations. But this results in several contracts being flagged for this vulnerability with-
out actually being vulnerable. A further level of specificity in vulnerability expressions is
needed to reduce the number of false positives. One way to do so is by adding another
component to our specification– such as tracking changes to the stack. Let us say we want
to detect division by zero 2 instead of just division in general. According to the Yellow
Paper [51], the integer division operation, DIV, checks if the second item of the stack is
0. If so, it removes the first two items of the stack, and adds an item with value 0. If
not, the added item is the floor of the result of dividing the two. Therefore, if we track
the value of the second item on the stack before a DIV operation, and see that it is 0, we
can detect an integer overflow/underflow error more precisely. Likewise, we can track addi-
tional changes such as a contract’s gas balance (which would be useful in DoS for example).

6.2 Further Validation

Our next validation steps are two-fold. First, we will implement our NuSMV-based model
checking approach. As mentioned in Chapter 5, this will help us refine our search for
vulnerabilities. We will be able to check whether the flagged points are indeed reachable
or not and whether there is a possibility of attack; thereby, reduce the number of false
positives. Next, we will test our methods on the sbwild dataset. There may not be a way to
corroborate our findings (unless we run other tools on this set), but it is will be interesting
to test our specifications on more complicated real-world data.

6.3 Future Inspiration

We also hope to expand our work to cover more types of vulnerabilities in smart contracts.
As mentioned in Chapter 4, some of formulations do not fully span the given category. For
example, overflows in shift operations and signed to unsigned conversions are not included
in the integer overflow/underflow formula. There are other types of vulnerabilities outside
the DASP10 categories. As Ethereum transactions often involve the exchange of Ether,

2This is moot as Solidity supports a catch clause to handle this exception.

67

creating specifications relating to gas-based vulnerabilities (such as wallet griefing) are of
interest.

We further would like to observe contracts written in other languages such as Vyper. A
hypothesis that is yet to be tested is do the specifications found in this work apply to
vulnerabilities in contracts written in other languages. EVM natively executes low-level
bytecode, so contracts written in high-level languages need to be translated to this lower
level. The specifications in this work are based off of low-level code– can it be inferred that
patterns manifest regardless of the languages contracts are written in.

This work is inspired by the question of whether we can encapsulate vulnerabilities in
Ethereum smart contracts as specifications written in linear temporal logic. We have done
so for certain classes of vulnerabilities such as re-entrancy. But further work needs to be
done to improve upon our specifications, to test them on a larger set of contracts, and to
find specifications for other types of vulnerabilities. We look forward to continuing our
work.

68

References

[1] Bitcoin. https://bitcoin.org/en/.

[2] C library function - memcpy(). https://www.tutorialspoint.com/c_standard_

library/c_function_memcpy.htm.

[3] Decentralized security project. https://dasp.co.

[4] EthBMC. https://github.com/RUB-SysSec/EthBMC.

[5] Etherscan. https://etherscan.io.

[6] eThor. https://secpriv.wien/ethor/.

[7] HoRSt. https://secpriv.wien/horst/.

[8] How the winner got fomo3d prize — A Detailed Explanation.

[9] Lock (computer science). https://en.wikipedia.org/wiki/Lock_(computer_

science).

[10] MadMax. https://github.com/nevillegrech/MadMax.

[11] Manticore. https://github.com/trailofbits/manticore.

[12] Securify. https://github.com/eth-sri/securify/.

[13] SWC Registry: Smart Contract Weakness Classification and Test Cases. https:

//swcregistry.io.

[14] teEther. https://github.com/nescio007/teether.

[15] Vandal. https://github.com/usyd-blockchain/vandal.

69

https://bitcoin.org/en/
https://www.tutorialspoint.com/c_standard_library/c_function_memcpy.htm
https://www.tutorialspoint.com/c_standard_library/c_function_memcpy.htm
https://dasp.co
https://github.com/RUB-SysSec/EthBMC
https://etherscan.io
https://secpriv.wien/ethor/
https://secpriv.wien/horst/
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://github.com/nevillegrech/MadMax
https://github.com/trailofbits/manticore
https://github.com/eth-sri/securify/
https://swcregistry.io
https://swcregistry.io
https://github.com/nescio007/teether
https://github.com/usyd-blockchain/vandal

[16] Vyper. https://vyper.readthedocs.io/en/stable/.

[17] Ethereum Smart Contract Best Practices. https://consensys.github.io/

smart-contract-best-practices/, November 2008.

[18] teEther: Gnawing at Ethereum to Automatically Exploit Smart Contracts. In Proceed-
ings of the 27th USENIX Security Symposium. USENIX, August 2018. https://www.
usenix.org/system/files/conference/usenixsecurity18/sec18-krupp.pdf.

[19] py-solc-x. https://solcx.readthedocs.io/en/latest/, 2020. Revision 26e1a78a.

[20] Ethereum Whitepaper. https://ethereum.org/en/whitepaper, October 2021.

[21] Remix. https://remix.ethereum.org, 2021. Version 0.19.0.

[22] Rajeev Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

[23] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A Survey of Attacks
on Ethereum Smart Contracts. In Proceedings of the 6th International Confer-
ence on Principles of Security and Trust, volume 10204. Association for Comput-
ing Machinery Digital Library, April 2017. https://dl.acm.org/doi/10.1007/

978-3-662-54455-6_8.

[24] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A Scalable Security Analysis
Framework for Smart Contracts. September 2018. https://arxiv.org/pdf/1809.

03981.pdf.

[25] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro
Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The
nuXmv Symbolic Model Checker. In CAV, pages 334–342, 2014. http://dx.doi.

org/10.1007/978-3-319-08867-9_22.

[26] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin Keighren,
Emanuele Olivetti, Marco Pistore, Marco Roveri, and Andrei Tchaltsev. NuSMV 2.6
User Manual. FBK-irst, 2010. https://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.
pdf.

[27] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1
edition, 1999.

70

https://vyper.readthedocs.io/en/stable/
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-krupp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-krupp.pdf
https://solcx.readthedocs.io/en/latest/
https://ethereum.org/en/whitepaper
https://remix.ethereum.org
https://dl.acm.org/doi/10.1007/978-3-662-54455-6_8
https://dl.acm.org/doi/10.1007/978-3-662-54455-6_8
https://arxiv.org/pdf/1809.03981.pdf
https://arxiv.org/pdf/1809.03981.pdf
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/978-3-319-08867-9_22
https://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
https://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

[28] Edmund Clarke, Thomas Henzinger, Helmut Veith, and Roderick Bloem. Handbook
of Model Checking. Springer International Publishing, 2018.

[29] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. SB Curated: A
Curated Dataset of Vulnerable Solidity Smart Contracts. https://github.com/

smartbugs/smartbugs/tree/master/dataset.

[30] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. SmartBugs Wild
Dataset. https://github.com/smartbugs/smartbugs-wild.

[31] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. Empirical Review
of Automated Analysis Tools on 47,587 Ethereum Smart Contracts. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, pages
530–541. Association for Computing Machinery Digital Library, June 2020. https:

//dl.acm.org/doi/10.1145/3377811.3380364.

[32] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dis-
honesty: Front-running attacks on blockchain. In Lecture Notes in Computer Science,
volume 11599, pages 170–189. Springer, March 2020. https://link.springer.com/
chapter/10.1007/978-3-030-43725-1_13#citeas.

[33] Ethereum. Solidity Read the Docs, v0.8.10 edition, 2016-2021. https://docs.

soliditylang.org/en/v0.8.10/index.html#.

[34] Joel Frank, Cornelius Aschermann, and Thorsten Holz. EthBMC: A Bounded Model
Checker for Smart Contracts, August 2020. https://www.usenix.org/system/

files/sec20-frank.pdf.

[35] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. MadMax: Surviving Out-of-Gas Conditions in Ethereum Smart
Contracts. In Proceedings of the ACM on Programming Languages, volume 2. Asso-
ciation for Computing Machinery Digital Library, November 2018. https://dl.acm.
org/doi/pdf/10.1145/3276486.

[36] Yoichi Hirai. Exception on Overflow. https://github.com/ethereum/solidity/

issues/796#issuecomment-253578925.

[37] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: Analyzing
Safety of Smart Contracts. In Network and Distributed Systems Security (NDSS)
Symposium, pages 18–21, February 2018. http://pages.cpsc.ucalgary.ca/~joel.
reardon/blockchain/readings/ndss2018_09-1_Kalra_paper.pdf.

71

https://github.com/smartbugs/smartbugs/tree/master/dataset
https://github.com/smartbugs/smartbugs/tree/master/dataset
https://github.com/smartbugs/smartbugs-wild
https://dl.acm.org/doi/10.1145/3377811.3380364
https://dl.acm.org/doi/10.1145/3377811.3380364
https://link.springer.com/chapter/10.1007/978-3-030-43725-1_13#citeas
https://link.springer.com/chapter/10.1007/978-3-030-43725-1_13#citeas
https://docs.soliditylang.org/en/v0.8.10/index.html#
https://docs.soliditylang.org/en/v0.8.10/index.html#
https://www.usenix.org/system/files/sec20-frank.pdf
https://www.usenix.org/system/files/sec20-frank.pdf
https://dl.acm.org/doi/pdf/10.1145/3276486
https://dl.acm.org/doi/pdf/10.1145/3276486
https://github.com/ethereum/solidity/issues/796#issuecomment-253578925
https://github.com/ethereum/solidity/issues/796#issuecomment-253578925
http://pages.cpsc.ucalgary.ca/~joel.reardon/blockchain/readings/ndss2018_09-1_Kalra_paper.pdf
http://pages.cpsc.ucalgary.ca/~joel.reardon/blockchain/readings/ndss2018_09-1_Kalra_paper.pdf

[38] Saul Kripke. A Completeness Theorem in Modal Logic, volume 24, pages 1–14. Asso-
ciation for Symbolic Logic, 1 edition, March 1959. https://www.jstor.org/stable/
2964568.

[39] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making
Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 254–269. Association for Computing
Machinery Digital Library, October 2016. http://dx.doi.org/10.1145/2976749.

2978309.

[40] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Jos-
selin Feist, Trent Brunson, and Artem Dinaburg. Manticore: A User-Friendly Sym-
bolic Execution Framework for Binaries and Smart Contracts. In IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pages 1186–1189.
IEEE, November 2019. https://ieeexplore.ieee.org/document/8952204.

[41] Bernhard Mueller. Smashing Ethereum Smart Contracts for Fun and Real
Profit. 2018. https://github.com/b-mueller/smashing-smart-contracts/blob/

master/smashing-smart-contracts-1of1.pdf.

[42] Tasuku Nakamura. Solidity By Example. https://solidity-by-example.org, 2018.

[43] Ivica Nikolic. Maian. https://github.com/ivicanikolicsg/MAIAN.

[44] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Find-
ing the Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings of the 34th
Annual Computer Security Applications Conference, pages 653–663. Association for
Computing Machinery Digital Library, December 2018. https://dl.acm.org/doi/

10.1145/3274694.3274743.

[45] Nikhil Parasaram. Mythril. https://github.com/ConsenSys/mythril.

[46] Eric Rafaloff. Analyzing the ERC20 Short Address Attack. https://ericrafaloff.
com/analyzing-the-erc20-short-address-attack/.

[47] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffe. eThor:
Practical and Provably Sound Static Analysis of Ethereum Smart Contracts. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 621–640. Association for Computing Machinery Digital Library, Oc-
tober 2020. https://dl.acm.org/doi/10.1145/3372297.3417250.

72

https://www.jstor.org/stable/2964568
https://www.jstor.org/stable/2964568
http://dx.doi.org/10.1145/2976749.2978309
http://dx.doi.org/10.1145/2976749.2978309
https://ieeexplore.ieee.org/document/8952204
https://github.com/b-mueller/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/b-mueller/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://solidity-by-example.org
https://github.com/ivicanikolicsg/MAIAN
https://dl.acm.org/doi/10.1145/3274694.3274743
https://dl.acm.org/doi/10.1145/3274694.3274743
https://github.com/ConsenSys/mythril
https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/
https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/
https://dl.acm.org/doi/10.1145/3372297.3417250

[48] David Siegel. Understanding the dao attack. https://www.coindesk.com/learn/

2016/06/25/understanding-the-dao-attack/.

[49] Facu Spagnuolo. Ethereum in Depth. https://blog.openzeppelin.com/

ethereum-in-depth-part-2-6339cf6bddb9/.

[50] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen, Arthur Gervais, Florian Buenzli,
and Martin Vechev. Securify: Practical Security Analysis of Smart Contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 67–82. Association for Computing Machinery Digital Library, October
2018. https://dl.acm.org/doi/10.1145/3243734.3243780.

[51] Gavin Wood. Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Technical Report Version fa00ff1, Ethereum & Parity, 2015.

[52] Xiao Liang Yu. Oyente: An Analysis Tool for Smart Contracts. https://github.

com/melonproject/oyente.

73

https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://www.coindesk.com/learn/2016/06/25/understanding-the-dao-attack/
https://blog.openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/
https://blog.openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/
https://dl.acm.org/doi/10.1145/3243734.3243780
https://github.com/melonproject/oyente
https://github.com/melonproject/oyente

	Introduction
	Background
	Introduction to Ethereum
	Bitcoin
	Ethereum State Machine

	Existing Tools
	Oyente
	Zeus
	Maian
	Mythril
	Vandal
	MadMax
	teEther
	Securify
	Manticore
	eThor
	ETHBMC

	SmartBugs
	Model Checking
	Kripke Structure
	Linear Temporal Logic (LTL)
	nuXmv

	Vulnerabilities in Smart Contracts
	Access Control
	Description
	Example

	Bad Randomness
	Description
	Example

	Denial of Service
	Description
	Example

	Front Running
	Description
	Example

	Integer Overflow/Underflow
	Description
	Example

	Re-entrancy
	Description
	Example

	Short Address
	Description
	Example

	Time Manipulation
	Description
	Example

	Unchecked Low-Level Calls
	Description
	Example

	Encoding Vulnerabilities as LTL Formulae
	Access Control
	Bad Randomness
	Denial of Service
	Front Running
	Integer Overflow/Underflow
	Re-entrancy
	Short Address
	Time Manipulation
	Unchecked Low-Level Calls

	Validation
	Basic Approach
	Disclaimers
	Hypotheses
	Results

	Future Validation

	Conclusion
	Pattern Refinement
	Further Validation
	Future Inspiration

	References

