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Abstract 

Forests around the world are believed to perform important chemical and nutrient retention 

functions. Chemical concentration levels have been found to be lower in surface water bodies 

located in areas with a higher forest cover. There is increasing interest from both academics 

and policymakers in understanding the economic value behind these nature-based services 

provided by forests. Including forest cover as green infrastructure in integrated source water 

protection and management strategies is believed to enhance their overall economic efficiency 

by improving water treatability. However, the empirical evidence base linking forest cover and 

forest management to water treatability and treatment costs is limited, and largely absent in 

Canada, one of the most resource-abundant regions in the world. In order to justify investments 

in forest cover as green infrastructure it is vital to understand the economic benefits involved, 

in particular in relation to drinking water treatment. The main objective of this PhD thesis is to 

further analyze the relationship between forest land and water treatment, both theoretically and 

empirically using Canada as a case study area.  

 

The first chapter of this PhD thesis aims to provide a theoretical framework for better 

understanding the costs and benefits of investment decisions in the provision of safe drinking 

water. More specifically, a cost minimization function is specified to reach a given water 

quality standard, for example based on World Health Organization guidelines. The costs are 

based on two possible treatment approaches that can be adopted, denoted as grey and green 

infrastructure, where grey infrastructure represents the traditional water treatment technologies 

and green infrastructure consists of forest cover (e.g. forest protection or re-afforestation). 
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Compared to grey infrastructure, green infrastructure has been found to be less costly, but 

riskier to implement than grey infrastructure to improve water treatability due to the lack of 

engineering control and environmental uncertainties surrounding causal dose-response 

relationships between forest cover and water quality. An optimal control model is developed 

to guide social planners in combining these two complementary types of infrastructure in the 

most cost-effective way given assumptions about the age structure of forests, risk levels, risk 

aversion, and the discount rate used to value future water service delivery from green 

infrastructure. Any optimal allocation between grey and green infrastructure is based on 

balancing the marginal net benefits of both types of infrastructure. Including wildfires as an 

additional risk, makes green infrastructure less attractive, among others because of the 

introduction of additional costs such as forest protection costs and reforestation costs. More 

forest means a higher risk of forest fires and hence damage costs and increases the uncertainty 

surrounding the delivery of the water service. Accounting for the co-benefits of forests as a 

carbon trap increases the likelihood of investing in green infrastructure, because it reduces the 

risk of forest fire in the long term and hence the forest protection costs, but is highly dependent 

on the applied discount rate to factor these long-term benefits into present-day decision-

making.   

 

The second chapter in this PhD makes use of available empirical data for the province of 

Ontario in Canada, and focuses on the potential role of forest cover in potentially reducing 

drinking water incidents, reflecting on concerns in the first chapter about the effectiveness of 

green infrastructure as a means of source water protection. The publicly available Ontario 
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drinking water quality and enforcement data base contains all drinking water incidents over a 

particular fiscal year that failed existing water quality standards in Ontario. The database lists 

all incidents, so-called adverse events, related to municipal water sources. By linking this 

database (n=228) to geographical information retrieved from the Ontario Land Cover (GIS) 

database, a set of interconnected spatial regression models are estimated, aiming to assess the 

relationship between forest cover and drinking water rates and between drinking water rates 

and drinking water safety. In the latter case, the drinking water rates are used as a proxy for 

the drinking water treatment costs. To this end, a spatial instrumental variable model is 

estimated to improve our understanding about the aforementioned (reverse) causal 

relationships, i.e. how drinking water rates influence incidence rates and vice versa incidence 

rates in turn impact water rates. A key finding is that forest cover significantly reduces the 

number of adverse events and drinking water rates. 

 

In the third and final chapter of this PhD thesis, use is made of another important database, the 

biennial Drinking Water Plants Survey conducted by Statistics Canada for the country as a 

whole. The survey aims to gain insight into the financial treatment costs, water treatment 

characteristics, and water plant customers. The survey data are confidential and can only be 

accessed on-site in Statistics Canada in Ottawa after requesting permission and going through 

an extensive (legal) screening procedure of both student and supervisor. The collected data 

provides detailed insight in different treatment cost categories that can help to assess how 

specific cost categories are influenced by surrounding land cover across Canada. Using the 

detailed water treatment costs in similar spatial econometric regression models (n=1,373), 
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accounting for potential spillover effects between neighbouring water service units, a 

significant negative relationship is found for Canada as a whole between forest cover and total 

drinking water treatment costs and the material costs incurred in drinking water treatment, 

whilst accounting for a range of individual water treatment plant characteristics, such as 

treatment capacity, treatment technology, and population served. 

In conclusion, in this PhD thesis I demonstrate that surrounding forest cover has a significant 

negative effect on water rates and incidence rates in Ontario and I show that surrounding forest 

cover significantly reduces water treatment costs across Canada as a whole. However, the 

regression models estimated in this PhD thesis are based on various far-reaching assumptions 

which could not be verified. These include, most importantly, the assumption that there exists 

a direct relationship between water rates and water treatment costs in Ontario and the 

assumption that the spatial analysis conducted at the level of census sub-divisions in both 

Ontario and Canada as a whole is able to capture upstream-downstream relationships between 

land cover upstream and the quality of the water intake downstream in the watersheds 

providing water to the drinking water treatment plants. More research is needed to validate 

these key assumptions.    
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Chapter 1 

Introductory Chapter 

 

1.1  Overview of the thesis 

Green infrastructure is a wide range of natural-based solutions that provide essential natural 

services, including drinking water treatment. The drinking water treatment rate or costs will 

be reduced, given further forest land cover available in the watersheds. However, there is 

limited Canadian research addressing the drinking water treatment functions of forests. Most 

importantly, to my best acknowledgement, no research indicates the economic benefit of 

water treatability, which is received from forest land cover. As one of the most resource-

abundance regions globally, Canada has 347 million HA of forests, which accounting 9% of 

total forests on earth (Food and Agriculture Organization of the United Nations, 2018). 

Simultaneously, the municipal drinking water system in Canada is accounting for surface 

water mostly. It is reported that around 87.8% of potable water, related to municipal water 

treatment, is coming from surface water sources, according to Statistics Canada (2021). 

Therefore, it is vital to understand the economic benefit of forest land covers in drinking 

water treatment. 

 

Forests, among many widely adopted green infrastructures, have been analyzed for their root 

fortification effect. It is believed that this specific natural function plays a crucial role during 

the water circulation process. For instance, certain nutrients and chemicals can be restored in 
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soils instead of recharging back to water bodies(Guo et al., 2001; Futter et al., 2016). 

Downstream treatment plants, thus, can save chemical inputs, which reduce total water 

treatment costs. Based on the substitution effect between green-based solutions like forests 

and grey infrastructure, the integrated water treatment combination is believed to enhance the 

overall drinking water treatment’s cost-efficiency. Moreover, the green-infrastructure-based 

solution is widely conducted and analyzed for the global future. In the sustainable 

development goal(SDG) target 6.6, restoration and conservation forest for securing safe 

drinking water source is one of the targets that shall be reached before 2020(United Nations, 

2021). In one of the most recent research reports, the Intergovernmental Panel on Climate 

Change(IPCC) states the demand to find climate change resilient solutions for the future. 

This includes the green infrastructure of this paper(IPCC, 2021). The Canadian government 

also strengthen the importance of forest conservation. In one of the most recent forest 

governance frameworks, forests management should prioritize forest-related products, 

including water, instead of timber production only(Natural Resource Canada, 2021). 

 

There is an emerging trend in decomposing the substitution effect between forests and grey 

infrastructure. The traditional procedure is a target-based substitution method. For instance, 

two potential solutions can achieve the same water treatment target, while one of them is 

dominated by green infrastructure. It is analyzed that the natural-based solution tends to be 

more cost-efficient than another. Therefore, the cost reduction between projects can be 

mapped as a proxy of cost reduction and benefits of the natural-based solution(Pu-mei et al., 

2001; Biao et al., 2010). Labour substitution can be considered as an extension to the target-
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based solution. Das et al. (2019) illustrate the labour requirement reduction of water 

transportation given the source water protection function provided by forests. 

 

Besides the engineering target-based models, economists evaluate the substitution effect by 

using empirical data directly. Abildtrup et al. (2013) propose a spatial-instrumented model in 

modelling the relationship between French land cover and municipal drinking water rates. 

Warziniack et al. (2017) plotted the causal impact of water treatment costs reduction due to 

further forests. Besides cross-section setups, Mulatu et al. (2019) documented panel data in 

Ethiopia detailing the water treatment cost changes given forests land cover variation 

between years.  

 

 

The main objective of this thesis is scoping on the Canadian drinking water treatment, which 

is influenced by the forest lands. There is no Canadian research addressing water treatment 

costs or rate reduction based on forest shares variation, according to Price and Heberling 

(2018). In that sense, this research is mainly in understanding the economic effect of 

Canadian forests on drinking water treatment. Specifically, the drinking water costs reduction 

due to fewer chemical and other inputs caused by more forest land covers. On top of the cost 

reduction caused by substitution effects between forests and chemical inputs, the risk of 

drinking water treatment, mapped by adverse incidents, is modelled revolving around forest 

land covers and disturbances. This thesis further provides the fisrt framework in evaluating 
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drinking water treatment investment decisions made by social planners, while accounting the 

risk of water treatment. 

 

In chapter 2, a theoretical framework is proposed in understanding the investment strategy 

between green and grey infrastructure. The social planner will implement a combination of 

infrastructure, green and grey, to satisfy the drinking water standard. Several concerns 

regarding forests will alter the social planer’s optimal investment decision. For instance, the 

wildfire risk may deter a social planner from expanding the level of investment. On the other 

hand, the carbon fixation effect that can reduce the long-term climate change pace may 

attract a social planner’s interest in investment. This chapter is mainly utilizing a theoretical 

framework to understand the concerns of social planners in facing the risk and uncertainties 

revolving around green infrastructure.  

 

In chapter 3, an empirical study is conducted to understand the economic benefit of forests 

better. By using Ontario drinking water quality and enforcement data, together with forest 

land cover and water rate information, the study aims to plot the relationship between forest 

land cover and drinking water rate. Merging the drinking water rate info collected by phone 

surveys and public adverse events, the final dataset is the first case study focusing on the 

land-use variation and drinking water safety that municipal drinking water plants are facing.  

 

The final chapter is mainly scoping on the financial information of drinking water treatment 

plants. Other than the drinking water rate, this study narrows the scope of water treatment 
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costs from a confidential dataset across Canada. Other than Price et al.(2015), this paper 

builds the connection between forest land cover and final water treatment costs directly. 

While accessing the dataset from Statistics Canada, the research highlights the forest land 

cover differences across Canada and its influences on annual water treatment costs. Finally, it 

compares the complementary effect between different chemical input costs, related with 

forests or not.  
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Chapter 2 

A Theoretical Modeling Framework to Support Investment 

Decisions in Green and Grey Infrastructure under Risk and 

Uncertainty 

Zehua Pan and Roy Brouwer 

Abstract 

Green infrastructure for source water protection in the form of forest protection and afforestation is 

gaining interest worldwide. It is considered more sustainable in the long-term than traditional 

engineering-based approaches. This paper presents a theoretical model to support investment 

decisions in green and grey infrastructure to deliver safe drinking water. We first develop a static 

optimal control model accounting for the uncertainties surrounding green infrastructure. This model is 

then extended to factor in key characteristics surrounding investment decisions aimed at optimizing 

the stock of green and grey infrastructure. We first include dynamic forest growth, followed by the 

risk of wildfires and finally the potential offsetting effect of carbon sequestration on long-term 

climate change and the reduced risk of wildfires. We provide a numerical example to analyze the 

performance of the different model specifications, interpret their outcomes and draw conclusions to 

guide future investment decisions in green and grey infrastructure. 

 

 

 

 

 

 

 

 

Key words: Green Infrastructure, Drinking Water Safety, Optimal Control, Forest 

Management, Wildfire Risk, Climate Change 
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2.1 Introduction 

Forests provide a wide variety of essential ecosystem services, including valuable hydrological 

ones (Ovando and Brouwer, 2019). They have been found to be able to reduce the 

concentration levels of water pollutants compared to other non-forested land uses (e.g., Clark 

et al., 2000; Guo et al., 2001; Jussy et al., 2002; Bastrup-Birk and Gundersen, 2004; Schelker 

et al., 2012; Warziniack et al., 2017). Forests can retain nutrients and other chemical 

components in the soil instead of discharging them immediately into the water. Maintaining 

forest land instead of harvesting trees for timber production or converting forests into 

agricultural land also reduces the amount of sediments entering rivers. Soil erosion may result 

in the discharge of the chemicals contained in the soils (Guo et al., 2001; Futter et al., 2016), 

affecting water quality. Besides improving water quality, forests may also enhance water 

supply in a watershed. Trees can store water that will then be released again during a drought 

period (Guo et al., 2001; Mastrorilli et al., 2018). This water storage and release capacity can 

ease possible water shortage problems in increasingly urbanized watersheds. 

 

A number of studies exist that try to estimate the economic value of forests in watersheds and 

the hydrological services they provide. These studies demonstrate, among others, that there 

exists a negative correlation between forest cover and water treatment costs (e.g., Abildtrup et 

al., 2013; Warziniack et al., 2017). Compared to conventional (grey) water treatment facilities, 

the costs of this natural (green) water treatment capacity of forests has been shown to be 

significantly lower (Ernst et al., 2004; Warziniack et al., 2017). This has substantially increased 

interest in the water storage, supply and purification performance of forest land as a nature-

based approach instead of engineering a water treatment facility or dam reservoir (e.g., Pu-Mei 

et al., 2001; Biao et al., 2010). New York City’s long history of dependence on the Croton and 

Catskill-Delaware watersheds for its freshwater supply is one of the best-known examples of 

the early recognition of the importance of sustainable land use management in urbanizing 

watersheds (Mehaffey et al., 2005). The supply of water from forested watersheds is expected 

to benefit urban water demand in a more sustainable way than conventional water management 
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(Mastrorilli et al., 2018), whilst at the same time playing a crucial role in reducing carbon 

emissions and the social costs from deforestation and forest degradation (Phan et al., 2014). 

 

Quantifying the economic benefits of the hydrological functions performed by forested 

watersheds is crucial to inform policy and decision-making related to the implementation of 

green and grey water infrastructure, and the optimal mixture of the two. Research in this area 

is emerging, but still somewhat limited. Existing forestry economics studies have focused on 

economic valuation of water services provided by forests in the context of forest conservation 

(e.g., Ojea and Martin-Ortega, 2015), or on substituting grey infrastructure with green 

infrastructure by either minimizing the total costs of water supply or maximizing the 

effectiveness of water supply provision (e.g., Honey-Rosés et al., 2013; Lopes et al., 2019; Das 

et al., 2019). Here, we introduce a new optimal control modelling framework where a safe 

drinking water standard can be reached using both grey and green infrastructure, and the 

objective function consists of a cost minimization function. The baseline model is extended to 

account for some of the key characteristics related to the implementation of green infrastructure 

and associated positive and negative externalities. We investigate how these influence the 

outcome of the optimization model. 

 

First of all, there exists considerable uncertainty related to the effectiveness of relying on 

(more) forests to protect drinking water sources. Due to the limited amount of control over 

influencing environmental variables (e.g., weather conditions), the hydrological impacts of 

forests are hard to quantify precisely (Fischbach et al., 2015). Counting entirely on forests to 

treat water may increase the risk of failing water safety standards. Secondly, the time it takes 

for water protection to become effective may differ between grey and green infrastructure. In 

the case of afforestation, water quality may take years to become notable (Waters and Jenkins, 

1992). Hence, afforestation may be a future investment instead of a real-time solution, and 

therefore a less favourable solution for urgent water demands. Third, besides positive 

externalities such as carbon sequestration and biodiversity conservation, green infrastructure 

is also associated with a possible negative externality, namely the risk of forest fires. Fire 
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prevention and the potential wildfire damage costs, in particular the impact of a forest fire on 

water quality in the watershed, will have to be taken into account in policy and decision-making 

(Jones et al., 2017). The extra forest protection costs will make the green forest-based solution 

furthermore more costly. 

 

The main objective of this paper is to develop a theoretical economic model that informs the 

investment decision in green and grey infrastructure to secure safe water supply in an 

urbanized watershed, taking into account the hydrological impacts of forested land as a 

nature-based solution on water supply security. The investment decision is presented as a 

cost minimization problem to meet society’s demand for safe and clean drinking water. 

Following the development of a simple static baseline optimal control model, the constraints 

listed above will be incorporated one by one in an extended version of the model, accounting 

for (1) the uncertainty surrounding the effectiveness of forested watersheds in water supply 

security, (2) the time it takes for forests to maximize water supply security in a dynamic 

version of the baseline model, (3) the risks of wildfires, and (4) the co-benefits of sustainable 

management of forested watersheds on climate change. Differences between the different 

models will be illustrated using numerical simulation. 

2.2 Baseline model 

 

In this section, first, the baseline model is presented where a social planner 

(e.g., government) is responsible for delivering treated water at a certain quality 

standard. The social planner aims to minimize the cost of delivering that 

quality standard. For water supply, there are two main investment decisions 

that the social planner can make, that is, adopting green or grey infrastructure, 

or a combination of the two. These will be referred to as 𝐶 for green and 𝐷 

for grey infrastructure. We furthermore categorize infrastructure costs into 

three major components: construction costs, operation costs, and depreciation 

costs. The social planner will identify the optimal levels of green and grey 



 

10 

infrastructure at the starting point of each investment decision. Construction 

costs (Ccon) are assumed to be linear in the infrastructure (capital) levels: 

𝐶𝑐𝑜𝑛 = 𝜅𝑐𝐶 + 𝜅𝑑𝐷                        (1) 

 

where 𝜅𝑐  and 𝜅𝑑 describe the marginal construction costs. For simplicity sake, we initially assume 

that the construction of the infrastructure takes no time in the baseline model. That means that 

the green and grey capital stocks will be available to treat water instantly. In reality, the 

construction time between green and grey infrastructure will be different. We will relax this 

assumption later in the paper.     

 

After construction, water will be treated during the rest of the time period until a new 

investment decision is needed. For each treatment period, the social planner will need to cover 

the operation and depreciation costs of each type of capital. The operation cost (Cop), which 

will guarantee that the infrastructure works properly, for each time period is: 

 

𝐶𝑜𝑝 = 𝛽
𝑐
𝐶 + 𝛽

𝑑
𝐷                           (2) 

 

where 𝛽𝑐  and 𝛽𝑑 are a constant fraction of the capital costs. The depreciation rate is a common 

feature of both types of infrastructure that influences the effectiveness of the capital stock to 

deliver water quality. At the end of each treatment period, we assume that the grey 

infrastructure has depreciated, while the green infrastructure has not. Existing studies on green 

infrastructure indicate that green infrastructure has a longer lifespan than grey infrastructure 

(e.g. Vincent, 1997). Furthermore, green infrastructure typically has a natural regeneration 

feature that may help to maintain the capital stock (Filoso et al., 2017). Taking these aspects 

into account, the depreciation rate of grey infrastructure is assumed to be larger than that of 

green infrastructure. The depreciation cost (Cdep) in each time period is hence: 

 

𝐶𝑑𝑒𝑝 = 𝛾𝑑𝐷                        (3) 
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where 𝛾𝑑 are a constant fraction of the total capital costs. Fully accounting for these depreciation 

costs will ensure that the stock of grey infrastructure and hence its water quality service level 

will not change between periods. The total cost (TC) over time can be written in its present 

value form as follows: 

 

 𝑇𝐶 = 𝐶𝑐𝑜𝑛 + 𝐶𝑜𝑝 + 𝐶𝑑𝑒𝑝 =
1

1−𝜁
∗ (𝛽

𝑐
𝐶 + 𝛽

𝑑
𝐷 + 𝛾

𝑑
𝐷) + 𝜅𝑐𝐶 + 𝜅𝑑𝐷                     (4) 

 

where 𝜁 is the discount factor (equal to 
1

1+𝑟
) and 𝑟 is the discount rate. Here we assume that 

both types of capital have the same discount factor. 

 

We use Q to represent the quality of the treated water. Instead of a given constant number, we 

assume that water quality Q is represented by a probability distribution function to reflect the 

fact that the delivery of the water quality standard faces some degree of uncertainty. A Normal 

distribution is assumed to underly the water quality parameter Q with the following mean and 

variance:  

 

𝑄~𝑁(𝐶𝛼  𝐷1−𝛼, 𝐶2𝜌𝑐𝐷2𝜌𝑑)                           (5) 

 

where the mean of the distribution is a Cobb-Douglas constant returns to scale production 

function, following Malmsten and Lekkas (2010), including the two types of infrastructure C 

and D, 𝛼 is the constant marginal productivity of green infrastructure and 𝜌 is the variance 

parameter associated with green and grey infrastructure, reflecting the degree of uncertainty in 

delivering water quality. Contrary to Borsuk et al. (2002), who assume a constant level of 

delivery, we quantify the risk associated with the treatment process through the variance of the 

distribution, and  assume that 𝛼 >
1

2
 , 𝛼 > 𝜌𝑐 ,  1 − 𝛼 > 𝜌𝑑  and  

𝜌𝑐

𝛼
>

𝜌𝑑

1−𝛼
 . 𝛼 >

1

2
 reflects that 

green infrastructure is more effective in treating water, while 
𝜌𝑐

𝛼
>

𝜌𝑑

1−𝛼
  states that green 

infrastructure faces at the same time a higher degree of uncertainty than grey infrastructure in 

achieving the water quality standard. Even if a social planner adopts 𝐶 and 𝐷 such that their 
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marginal productivity in treating water quality is the same, the risk of not being able to meet 

the water quality standard due to the use of green infrastructure is still larger than that related 

to grey infrastructure. 

 

Turning to the demand side, consumers ask for safe drinking water. The water quality standard 

reflects societal demand for safe drinking water quality, including general consensus about the 

societal acceptance of the risk of not reaching this quality standard. The water quality standard 

𝑄̅ is set exogenously based on, for example, global health standards provided by the World 

Health Organization. However, since the supply of water quality is surrounded by some degree 

of uncertainty, it is assumed to follow a random distribution. In other words, there is no 𝑄̅ such 

that  𝑄(𝐶, 𝐷) > 𝑄̅ with 100% probability. Hence, society is expected to define a probability 𝑝 

such that 𝑄(𝐶, 𝐷) > 𝑄̅. In practice, water quality assessment methods are based on sampling 

procedures where a water treatment facility will pass the test once, for example, 95% or more 

of the samples taken to satisfy the required quality standard (Smith et al., 2001). This testing 

procedure is identical to what we propose here for modelling the likelihood of achieving the 

water quality standard:  

 

Pr(𝑄(𝐶, 𝐷) ≥  𝑄̅ ) ≥  𝑝                          (6) 

 

Equation (6) is the standard constraint that the water treatment plant as a supplier of safe 

drinking water needs to achieve, where 𝑝 reflects the risk-averness of society. If a society is 

more risk-averseness, 𝑝 will be greater. Hence, the larger 𝑝, the less risky the investment 

decision in water infrastructure ought to be that society is demanding.  

 

From the social planner’s perspective, the main goal is to meet consumer demand for access 

to clean and safe drinking water. We assume that the consumer has no incentive to demand 

water that is of better quality than the global health standard for safe drinking water quality. 

The social planner will, therefore, also not have an incentive to treat water more or better than 

the water quality standard. Hence, among all the potential water treatment infrastructure 
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options that meet the water quality standard, the least cost option(s) will be the preferred by 

the social planner. Combining these assertions, the social planner’s objective function looks as 

follows: 

 

min
𝐶 𝐷

1

1−𝜁
(𝛽

𝑐
𝐶 + 𝛽

𝑑
𝐷 + 𝛾

𝑑
𝐷) + 𝜅𝑐𝐶 + 𝜅𝑑𝐷                                                                                      (7) 

𝑠. 𝑡.  𝑃𝑟(𝑄(𝐶, 𝐷) ≥ 𝑄̅) ≥  𝑝 

 

The standard constraint is equivalent to1 

 

𝑄 = 𝐶𝛼  𝐷1−𝛼 − 𝑞 ∗ 𝐶𝜌𝑐𝐷𝜌𝑑 ≥ 𝑄̅               

(8) 

 

where 𝑞 equals Φ−1(𝑝). Φ is the cumulative normal probability distribution function, and 𝑞 is 

the quantile of the distribution satisfying the constraint that the probability of water quality 

standard failure cannot exceed a certain threshold. In other words, if 𝑝 is the accepted chance 

of failure, the associated quantile 𝑞 is the minimum point in the distribution function that 

satisfies this condition. Once the quantile q exceeds the established target value, society is 

satisfied with the treated water quality. From equation (8), we see that the quantile value for q 

increases as more green and/or grey infrastructure is implemented. 

 

The optimal level of investment in green and grey infrastructure is the set of 𝐶  and 𝐷, where 

the ratio of the marginal productivity between green and grey infrastructure equals their 

marginal cost ratio2: 

 

𝛼 𝐶𝛼−1𝐷1−𝛼−𝑞𝜌𝑐𝐶𝜌𝑐−1𝐷𝜌𝑑

(1−𝛼)𝐶𝛼𝐷−𝛼−𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1 =

1

1+𝜁
𝛽𝑐+𝜅𝑐

1

1+𝜁
(𝛽𝑑+𝛾𝑑)+𝜅𝑑

                                 (9) 

 
1 Appendix Lemma 1.  

2 Appendix Theorem 1. 
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On the left-hand side of equation (9), the ratio illustrates the marginal rate of substitution 

between green and grey infrastructure. The term reflects the additional amount of green 

infrastructure that needs to be invested in exchange for one unit of grey infrastructure to keep 

the level of water supply constant at the lowest cost possible. The right-hand side gives the 

marginal cost ratio between the two types of infrastructure. In the optimal situation where the 

water quality standard is met, the marginal cost of green infrastructure is equal to the marginal 

cost of grey infrastructure. In that case, there is no incentive for the social planner to make 

further adjustments to the green and grey infrastructure investment portfolio since this would 

only make the provision of safe drinking water more costly than in the optimum. 

 

A further transformation of equation (9) leads to: 

 

𝛼 𝐶𝛼−1𝐷1−𝛼

1

1+𝜁
𝛽𝑐+𝜅𝑐

−
𝑞𝜌𝑐 𝐶𝜌𝑐−1𝐷𝜌𝑑

1

1+𝜁
𝛽𝑐+𝜅𝑐

=
(1−𝛼)𝐶𝛼𝐷−𝛼

1

1+𝜁
(𝛽𝑑+𝛾𝑑)+𝜅𝑑

−
𝑞𝜌𝑑 𝐶𝜌𝑐𝐷𝜌𝑑−1

1

1+𝜁
(𝛽𝑑+𝛾𝑑)+𝜅𝑑

               (10) 

 

The two terms on the left-hand side of equation (10) reflect the marginal net benefit of the 

green infrastructure, and the terms on the right-hand side quantify the same marginal benefits 

of grey infrastructure. Equation (10) states that the performance of grey and green 

infrastructure at the margin should be the same in the optimum.  

 

The first term on the left-hand side can also be interpreted as quantifying the marginal cost-

effectiveness of the green infrastructure, while the second term on the left-hand side reflects 

the marginal risk premium of green infrastructure. The same applies to the terms on the right-

hand side for grey infrastructure. This risk premium is the amount of money that the social 

planner is willing to sacrifice to avoid the risk. If the variance of the treated water quality 

distribution goes up, the risk premium will be larger. In the optimum, the risk premium is a 

cost that deters a social planner from adopting, for example, a vast proportion of green 

infrastructure for water treatment. For green infrastructure, the marginal cost-effectiveness is 

believed to be higher than for grey infrastructure. Hence, at the same level of C and D, the first 
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term on the left-hand side is higher than the same term on the right-hand side. However, due 

to the larger degree of uncertainty surrounding water quality supply from green infrastructure, 

the green infrastructure risk premium (the second term on the left-hand side) is higher than for 

grey infrastructure (the second term on the right-hand side). The optimal investment decision 

will be based on both aspects of the performance of green and grey infrastructure.  

 

An exogenous change in the parameters will change the optimal allocation between green and 

grey infrastructure. Suppose 𝛽𝑐  increases, meaning that the cost-effectiveness of grey 

infrastructure will improve compared to that of green infrastructure. Ceteris paribus, the 

marginal net benefit of grey infrastructure will hence also be larger than that of green 

infrastructure. In other words, the social planner will be incentivized to allocate more of the 

original investment from green to grey infrastructure3. 

 

Similarly, if the probability of meeting the water quality standard 𝑝 , reflecting the risk-

averseness of society as a whole, increases, this implies that society demands more certainty 

that water quality meets the existing global health standard, and hence green infrastructure as 

a more uncertain choice will become less attractive. In that case, the risk premiums of both 

green and grey infrastructure will go up too since 𝑞 goes up. If we furthermore assume that the 

marginal cost-effectiveness of green infrastructure is larger than that of grey infrastructure, the 

increase of the green marginal risk premium will be larger than that of grey infrastructure. This, 

too, is then expected to result in a choice more in favour of grey infrastructure due to the 

increase in its relative marginal net benefit. The social planner will consequently be less willing 

to spend a large portion of the funding on green infrastructure4. 

 

Hence, for a society that prioritizes drinking water safety, the optimal allocation between green 

and grey infrastructure will be influenced by the four terms in equation (10). Despite its more 

favourable outcome in terms of cost-effectiveness, the productivity of green infrastructure is 

 
3 Appendix Theorem 2. 

4 Appendix Theorem 3. 
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surrounded by more uncertainty, increasing the risk of failing existing water quality standards. 

The alternative choice, grey infrastructure, will in that case be more attractive for a risk-averse 

social planner, even if the cost-effectiveness of this grey infrastructure is relatively weaker. 

Grey infrastructure is believed to be more controllable. Due to, among others, unpredictable 

weather conditions, green infrastructure is expected to introduce significant uncertainty to 

public water supply, which comes at a price that is reflected in a relatively higher risk premium.  

 

2.3 Dynamic Model 

 

In this section, the baseline model is expanded by examining the hydrological effects of forest 

growth over the years. Older forests have been found to provide more developed hydrological 

functions than younger forests (Filoso et al., 2017; Walters and Jenkins, 1992). Therefore, 

planting forests for water treatment now will notably benefit the future, and is expected to play 

only a limited role in the short term. A social planner hence faces the challenge of finding a 

balance between the future sustainable return from forests and current drinking water demand. 

Based on the static-comparative baseline model, we will include a dynamic component to 

evaluate the cost-effectiveness of forest growth over an infinite time horizon.  

 

To this end, we divide green infrastructure into two categories, 𝐶𝑦 and 𝐶𝑜. 𝐶𝑦 denotes young 

forests or regrowth forests, and 𝐶𝑜 means old forests or old-growth forests. The investment 

strategy will be determined at the beginning of each treatment period and can only be made in 

relation to the level of 𝐶𝑦 and 𝐷. As in the baseline model, the social planner in the dynamic 

model faces the same water standard constraint. For each period, the treated water should pass 

the standard, and the social planner will need to find the optimal allocation of 𝐶𝑦 and 𝐷 to 

minimize the total water treatment costs. Compared to the baseline model, there are a number 

of important differences in this new dynamic model. 
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The first difference is the infrastructure stock change between periods. The technical lifetime 

of a typical water treatment facility is around 60 years (Bonton et al., 2012), after which the 

facility may be demolished. Forests older than 60 years still provide water services like water 

treatment (e.g. Waters and Jenkins, 1992; Sookhdeo and Druckenbrod, 2012). Adopting 

similar principles, we assume that after one period all 𝐷 will be demolished, while for forests 

𝐶𝑦 will partially (𝑖 percent) grow in that period and become 𝐶𝑜  and a proportion of 𝐶𝑜 (𝑙 

percent) from the previous period is expected to die off. As a result, the hydrological function 

of forests is rewritten as follows. For each period, if the current level of forest and grey 

infrastructure is 𝐶𝑦, 𝐶𝑜 and 𝐷, the treated water quality in achieving the water standard now is: 

𝑁((𝜃𝐶𝑜 + 𝐶𝑦)
𝛼

𝐷1−𝛼, (𝐶𝑜 + 𝐶𝑦)
2𝜌𝑐

𝐷2𝜌𝑑). 𝜃 is a new variable capturing the age effect of old 

forests and is assumed to be larger than 1, indicating that the marginal effectiveness of older 

forest in providing water services is higher than that of younger forest (Filoso et al., 2017). 

 

The second difference is the simplification of the cost structure. Construction costs are not 

discussed in this section because grey infrastructure construction and operation are happening 

in the same period. For green infrastructure, we use 𝛽𝑐
𝑦

 and 𝛽𝑐
𝑜 to reflect the construction and 

operating cost. 𝛽𝑐
𝑦

> 𝛽𝑐
𝑜 > 0 since it is mainly young forest that will trigger construction costs, 

not so much old forest. Furthermore, depreciation costs for green and grey infrastructure are 

eliminated in the dynamic model. The young forest supplements the old forest and the share 

of the old forest that ultimately dies off. For simplicity reasons, we also assume that the social 

planner does not need to invest extra to facilitate the transition between time periods. The same 

forest capital stock will be maintained between periods, while the grey infrastructure is 

demolished and rebuilt. We merge these costs therefore also into a single infrastructure 

operation cost 𝛽𝑑.  

 

For each period t, the dynamic problem can now be expressed as follows:  

min
𝐶𝑡

𝑦
𝐷𝑡

∑  𝜁𝑡−1(𝛽𝑐
𝑜𝐶𝑡

𝑜 + 𝛽𝑐
𝑦𝐶𝑡

𝑦  + 𝛽𝑑𝐷𝑡)∞
𝑡=1                      (11) 

𝑠. 𝑡. (𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼
𝐷𝑡

1−𝛼  − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐
𝐷𝑡

𝜌𝑑 ≥  𝑄̅   
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𝐶𝑡
𝑜 = 𝑖 ∗ 𝐶𝑡−1

𝑦
+ (1 − 𝑙)𝐶𝑡−1

𝑜  

𝐶0
𝑜 ≥ 0 

As specified in equation 11, the social planner at each discrete time t can modify the current 

investment in young forest or grey infrastructure. The state variable of the dynamic 

optimization problem is the old forest level that is still alive. 

 

If we write this dynamic problem into the Hamiltonian, we get:  

 

ℋ =  −(𝛽𝑐
𝑜𝐶𝑡

𝑜 + 𝛽𝑐
𝑦

𝐶𝑡
𝑦

 + 𝛽𝑑𝐷𝑡) + 𝜇𝑡((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼
 𝐷𝑡

1−𝛼 − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐
𝐷𝑡

𝜌𝑑 − 𝑄̅) +

𝜁𝜆𝑡+1(𝑖 ∗ 𝐶𝑡
𝑦

− 𝑙 ∗ 𝐶𝑡
𝑜)                      (12) 

 

𝜆𝑡 reflects the shadow price of forest in each period. This parameter indicates the scarcity of 

forest as its future water treatment benefit. 𝜇𝑡 is the Lagrangian multiplier, and 𝜁 is as before 

the discount factor. 

 

The marginal condition of the Hamiltonian has several components. The marginal effects of 

the grey and green infrastructure control variables 𝐷𝑡 and 𝐶𝑡
𝑦

 are set equal to zero. This gives 

us equations (13) and (15):  

 

𝑑ℋ

𝑑𝐷𝑡
 = −𝛽𝑑  + 𝜇𝑡((𝜃 𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝛼

 𝐷𝑡
−𝛼 ∗ (1 − 𝛼) − 𝑞 ∗ (𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝜌𝑐

𝐷𝑡
𝜌𝑑−1

∗ (𝜌𝑑)) = 0  

(13) 

 

which leads to equation (14) 

 

𝜇𝑡 =
𝛽𝑑

(𝜃 𝐶𝑡
𝑜+𝐶𝑡

𝑦
)

𝛼
𝐷𝑡

−𝛼∗(1−𝛼)−𝑞∗(𝐶𝑡
𝑜+𝐶𝑡

𝑦
)

𝜌𝑐
𝐷𝑡

𝜌𝑑−1
∗(𝜌𝑑)

                                                            (14) 
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𝑑ℋ

𝑑𝐶𝑡
𝑦 = −𝛽𝑐

𝑦
 + 𝜇𝑡 ((𝜃 𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝛼−1

 𝐷𝑡
1−𝛼 ∗ (𝛼) − 𝑞 ∗ (𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝜌𝑐−1

𝐷𝑡
𝜌𝑑 ∗ 𝜌𝑐) + 𝜆𝑡+1 ∗ 𝜁

∗ 𝑖 

= 0                       (15) 

 

which can be rewritten as equation (16)  

 

𝜆𝑡+1 = 1/(𝑖𝜁) ∗ (𝛽𝑐
𝑦

− 𝜇𝑡((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
 𝐷𝑡

1−𝛼 ∗ (𝛼) − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
𝐷𝑡

𝜌𝑑 ∗ 𝜌𝑐)) (16) 

 

The marginal conditions above signify that the marginal net benefits for either further forest 

planting or grey infrastructure construction are zero in the optimum. Hence, any extra benefits 

due to the expansion of either type of infrastructure just offset the accompanying costs.  

 

The marginal condition concerning grey infrastructure maps the Lagrangian multiplier 𝜆𝑡+1 

towards the current marginal effectiveness and marginal cost. 𝜇  is the shadow price of 

changing the water standard. If the water quality standard goes up, 𝜇 indicates the additional 

amount of money it will cost to meet the new standard. In other words, if a social planner wants 

to change the hydrological service provided by either type of infrastructure, the shadow price 

converts the effect this has on reaching the water quality standard into a monetary value. 

 

The second component of the Hamiltonian is the marginal condition concerning the state 

variable 𝐶𝑡
𝑜: 

 

𝑑ℋ

𝑑 𝐶𝑡
𝑜 = −𝛽𝑐

𝑜  + 𝜇𝑡 ((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
  𝐷𝑡

1−𝛼 ∗ 𝛼 ∗ 𝜃 − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
𝐷𝑡

𝜌𝑑 ∗ 𝜌𝑐) − 𝜆𝑡+1 ∗

𝜁 ∗ 𝑙 = 𝜆𝑡 − 𝜆𝑡+1 ∗ 𝜁                                (17) 

 

This can be rewritten as: 
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𝜆𝑡 = 𝜇𝑡(𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
 𝐷𝑡

1−𝛼 ∗ 𝛼 ∗ 𝜃 − 𝛽𝑐
𝑜 − 𝜇𝑡 ∗ 𝑞 ∗ (𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝜌𝑐−1

𝐷𝑡
𝜌𝑑 ∗ 𝜌𝑐) + 𝜆𝑡+1 ∗ 𝜁 ∗

(1 − 𝑙)                                        (18) 

 

Here, 𝜆𝑡 reflects the current value of 𝐶𝑡
𝑜. This value contains four important components that 

a social planner should take into account. The first term is the water treatment benefit. As more 

infrastructure is implemented, water quality will improve. The second term refers to the current 

operating cost. As more forests are planted and managed, the social planner will need to pay 

more operation costs. The third term can be considered a risk premium. In the baseline model, 

we already found that as more green infrastructure is implemented, the uncertainty of reaching 

the standard will increase. The final term refers to the expected net benefit for the future that 

is transferred by the remaining old-growth forest. The net benefit of the current forest stock 

hence consists of the current water treatment benefit and the future net benefit (i.e. minus the 

operation cost of green infrastructure) and the risk premium. 

 

The final component is the transversality condition. Since we assume an infinite time horizon 

for this investment decision, there is no restriction on how much green and grey infrastructure 

can be implemented. The transversality condition then is: 

 

lim
𝑡→∞

𝜆𝑡 = 0                                                                                             (19) 

 

To find the optimal investment strategy, we can use the following condition and combine this 

with equations (16) and (18): 

 

𝜆𝑡 = 1/(𝑖𝜁) ∗ (𝛽𝑐
𝑦

− 𝜇𝑡−1((𝜃 𝐶𝑡−1
𝑜 + 𝐶𝑡−1

𝑦
)

𝛼−1
 𝐷𝑡−1

1−𝛼 ∗ (𝛼) − 𝑞 ∗ (𝐶𝑡−1
𝑜 + 𝐶𝑡−1

𝑦
)

𝜌𝑐−1
𝐷𝑡−1

𝜌𝑑 ∗

𝜌𝑐))                                            (20) 

Combined, this yields:  
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   (𝛽𝑐
𝑦

− 𝜇𝑡−1 ((𝜃 𝐶𝑡−1
𝑜 + 𝐶𝑡−1

𝑦
)

𝛼−1
 𝐷𝑡−1

1−𝛼 ∗ (𝛼) − 𝑞 ∗ (𝐶𝑡−1
𝑜 + 𝐶𝑡−1

𝑦
)

𝜌𝑐−1
𝐷𝑡−1

𝜌𝑑 ∗ 𝜌𝑐)) = 𝑖𝜁 ∗

(𝜇𝑡(𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
 𝐷𝑡

1−𝛼 ∗ 𝛼 ∗ 𝜃 − 𝛽𝑐
𝑜 − 𝜇𝑡 ∗ 𝑞 ∗ (𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝜌𝑐−1

𝐷𝑡
𝜌𝑑 ∗ 𝜌𝑐) + 𝜁 ∗ (1 − 𝑙) ∗

1/(𝑖𝜁) ∗ (𝛽𝑐
𝑦

− 𝜇𝑡((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
 𝐷𝑡

1−𝛼 ∗ (𝛼) − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
𝐷𝑡

𝜌𝑑 ∗ 𝜌𝑐)))               (21) 

 

 The left-hand side reflects the net benefits resulting from the last period’s young forest, while 

the right-hand side projects the present value of the net benefits for the next period. In the 

optimum, the net benefits from the current level of young forest are equal to the net discounted 

benefits in the future.  

 

We can reorder the terms in equation (21) to get: 

 

−(𝛽𝑐
𝑦

+ 𝑖𝜁𝛽𝑐
𝑜) + {𝜇𝑡−1(𝜃 𝐶𝑡−1

𝑜 + 𝐶𝑡−1
𝑦

)
𝛼−1

 𝐷𝑡−1
1−𝛼 ∗ (𝛼) + 𝑖𝜁𝜇𝑡(𝜃 𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝛼−1

 𝐷𝑡
1−𝛼 ∗ 𝛼 ∗

𝜃} − {𝜇𝑡−1𝑞 ∗ (𝐶𝑡−1
𝑜 + 𝐶𝑡−1

𝑦
)

𝜌𝑐−1
𝐷𝑡−1

𝜌𝑑 ∗ 𝜌𝑐 + 𝑖𝜁𝜇𝑡 ∗ 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
𝐷𝑡

𝜌𝑑 ∗ 𝜌𝑐} + 1/𝑖 ∗

(1 − 𝑙) ∗ (𝛽𝑐
𝑦

− 𝜇𝑡((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
 𝐷𝑡

1−𝛼 ∗ (𝛼) − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
𝐷𝑡

𝜌𝑑 ∗ 𝜌𝑐))) = 0                     

(22) 

 

The first term is the present value of the total operating cost. The second term is the 

intertemporal marginal water treatment benefit received from the forest investment, while the 

third term is the present value of the two-state sum of the risk premium. The final term projects 

the future net benefits of the remaining forest. The intertemporal net marginal benefit should 

be zero to minimize the total treatment cost. The above equation (22) hence gives social 

planners a guide to allocate the available funding.  

 

Green infrastructure is in this section the sum of young and old forests. Compared with the 

baseline model, the future increase in water treatment benefits incentivizes investment 

decisions in current young forest. This future benefit induces the social planner to allocate a 

larger proportion of the available budget to green infrastructure. If the social planner values 
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the future, the level of green infrastructure in the new dynamic model presented here will be 

larger than in the baseline model, holding other parameters and conditions constant. 

 

Despite the future benefit of green infrastructure, having old forest may discourage investments 

in young forest. Suppose a social planner has a considerable amount of old forest already in 

the infrastructure portfolio. This might discourage investing more in young forest since the 

marginal benefit of these young trees is relatively low. The second term in equation (22) can 

explain this behaviour. The current marginal benefit of green infrastructure is small, while the 

intertemporal marginal risk premium (the third term) is at the same time increasing. This 

discourages a social planner to invest in more young forest and instead choose to invest more 

in grey infrastructure. Due to the increasing risk of potential loss of water services (i.e. not 

reaching the water quality standard) in the distant future associated with increasing green 

infrastructure, the social planner may face a high total cost in the future. The potential risk of 

having an abundance of forest may, in that case, offset the benefits of green infrastructure in 

terms of being relatively speaking more cost-effective than grey infrastructure.   

 

Another interesting observation from the dynamic model is the composite effect of 𝜁 and 𝜃. 

As mentioned, future benefits are an important consideration in the social planner’s decision 

making. However, the discount factor 𝜁 may reduce the present value of any future advantage. 

𝜁  reflects how impatient a social planner is. If the social planner's  𝜁  is small, (s)he will 

undervalue future outcomes. This is not implausible since studies in this field indicate that the 

time horizon is around 60 years. In other words, if 𝜁 is close to zero, then this would make the 

cost minimization problem focus on the current period mainly. Hence, unless the future 

benefits from forest infrastructure offset the time preferences of a social planner, there might 

not be enough incentive for a social planner to invest in green infrastructure. The young forest 

survival rate, 𝑖, may furthermore reinforce the effect of discounting future benefits. Under 

increasing probabilities of young forest dying off, for example, due to wildfires, a social 

planner may be reluctant to invest more in green infrastructure if this adds to future outcome 

uncertainty. We discuss the expected impact of wildfires in the next section. 
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2.4 The Impact of Wildfires 

Due to climate change, the frequency and intensity of extreme weather events are expected to 

increase (e.g., Cornwall, 2016). In the case of extremely dry weather conditions, the probability 

of wildfires increases (e.g., Flannigan et al., 2009). These wildfires can have significant 

detrimental effects on green infrastructure and the water services they provide (e.g., Emmerton 

et al., 2020). In this section, we extend the dynamic model to include the risk of a potential 

wildfire that will deplete part of the forest and hence harm the hydrological services provided 

by the forest in the watershed.  

 

As before, the social planner faces the same standard constraint. In this new model, we 

distinguish between two possible periods: without or with wildfires. The regular period 

represents a period without a wildfire. This period is identical to the dynamic model in which 

𝐶𝑡
𝑦

,  𝐶𝑡
𝑜 and 𝐷𝑡

𝑟 solve the water quality standard constraint, and the model follows a similar 

trajectory through time as the dynamic model. The social planner determines the optimal level 

of investment in young forest 𝐶𝑡
𝑦

 and grey infrastructure 𝐷𝑡
𝑟  each period given the current 

amount of old-growth forest. During a wildfire period, the wildfire will destroy part of the 

forest. We assume that the destruction is a linear function of 𝐶 and the age of the forest. Only 

𝜏𝑦 amount of young forest and 𝜏𝑜 amount of old forest will be left after the fire. Given the fact 

that old-growth forest may have a higher burn intensity, it is expected to be more depleted after 

a wildfire (Parisien et al., 2020), and we therefore assume 𝜏𝑦 > 𝜏𝑜. Since society will still 

demand the same water quality, the social planner needs to invest extra in grey infrastructure 

to meet the standard, both to replace the lost water services from green infrastructure and treat 

the extra polluted water after a wildfire (Burton et al., 2016). In addition, given the replanting 

challenges after a wildfire (Jones et al., 2017), we assume that a central planner also faces 

higher reforestation cost, where 𝑅(𝐶𝑡+1
𝑦

) reflects the forest volume loss. As before in the 

previous section, the depreciation cost of grey infrastructure are included in the operation costs. 

Hence, 𝜏𝑦𝐶𝑦 + 𝜏𝑜𝐶𝑜, 𝐷𝑓 and 𝑅(𝐶𝑡+1
𝑦

) will solve the objective function of cost minimization 

under the water quality constraint. 
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The forest fire rate is a function of the level of unprotected green infrastructure. Protected green 

infrastructure refers to the forest that is treated to reduce the risk of wildfires or mitigate 

wildfire damage costs. Protecting green infrastructure costs money, and is also referred to as 

fuel treatment costs (Jones, 2017). The proportion of forest that is unprotected will be denoted 

here as 𝜂(𝐶𝑦 + 𝑧𝐶𝑜). The parameter 𝑧, which is larger than 1, reflects the higher probability of 

old-growth forest catching fire (Parisien et al.,2020). 𝜂 has a value between 0 and 1, where 0 

implies that the whole forest is protected and 1 that none of the forest is protected. We assume 

that the protection cost is 𝑇(𝜂)(𝐶𝑦 + 𝐶𝑜). This protection cost function is decreasing with 

respect to 𝜂, where 𝑇(1) is zero and 𝑇(0) approaches infinity.  

 

The goal of the social planner for this wildfire model is identical to the dynamic one, namely 

minimizing the total costs of water treatment, taking into account the potential wildfire risk. 

As before, the water treatment process needs to meet the standard. Once we combine all 

assumptions and conditions, the dynamic model with the wildfire extension looks as follows: 

 

min
𝐶𝑡,𝐷𝑡

𝑟,𝐷𝑡
𝑓

,𝜂𝑡

𝑓(𝑥) = ∑  𝜁𝑡−1∞

𝑡=1
(𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) (𝛽𝑐
𝑦

𝜏𝑦𝐶𝑡
𝑦

 + 𝛽𝑐
𝑜𝜏𝑜𝐶𝑡

𝑜 + 𝛽𝑑𝐷𝑡
𝑓

+

𝑇(𝜂𝑡)(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜) + 𝑅(𝐶𝑡+1

𝑦
)) + (1 − 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)))(𝛽𝑐
𝑦

𝐶𝑡
𝑦

 + 𝛽𝑐
𝑜𝐶𝑡

𝑜 + 𝛽𝑑𝐷𝑡
𝑟 +

𝑇(𝜂𝑡)(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜)))         

 𝑠. 𝑡. (𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼
(𝐷𝑡

𝑟)1−𝛼  − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐(𝐷𝑡
𝑟)𝜌𝑑    ≥  𝑄̅   

        (𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼
(𝐷𝑡

𝑓
)

1−𝛼
 − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 + 𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐

(𝐷𝑡
𝑓

)
𝜌𝑑

   ≥  𝑄̅ 

        𝐶𝑡+1
𝑜 = (1 − 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜))) ∗ (𝐶𝑡
𝑦

∗ 𝑖 + (1 − 𝑙)𝐶𝑡
𝑜) + 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ (𝜏𝑦𝐶𝑡
𝑦

∗ 𝑖 + 𝜏𝑜(1 − 𝑙)𝐶𝑡
𝑜) 

       𝐶0
𝑜 ≥ 0                     (23) 

 

This extension characterizes wildfire risk and associated costs separately in the objective 

function instead of incorporating the risk in the variance of the green infrastructure production 
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function or in a separate forest transition function. Compared to the dynamic model, this 

extended model describes a pathway where during a wildfire period, the social planner will 

incur extra costs. These damage costs consist of two main categories: direct capital loss and 

indirect treatment loss. For the capital loss, the social planner will incur additional reforestation 

costs at the beginning of the next period. The treatment loss is offset by the implemented 

additional grey infrastructure.  

 

Fire prevention makes green infrastructure more expensive. Compared to the dynamic model, 

the optimal 𝐶𝑡
𝑦

 considering wildfires should hence be less than in the dynamic model. 

Considering that the chance of wildfire increases with extra green infrastructure, also the 

uncertainty surrounding the effectiveness of green infrastructure in reaching the water quality 

standard increases. In this wildfire model, green infrastructure is, therefore, less preferred than 

in the baseline or dynamic model. 

 

We can transform the model into the following Hamiltonian:  

 

ℋ
𝐶𝑡,𝐷𝑡

𝑟,𝐷𝑡
𝑓

,𝜂𝑡

= − (𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (𝛽𝑐

𝑦
𝜏𝑦𝐶𝑡

𝑦
 + 𝛽𝑐

𝑜𝜏𝑜𝐶𝑡
𝑜 + 𝛽𝑑𝐷𝑡

𝑓
+ 𝑇(𝜂𝑡)(𝐶𝑡

𝑦
+ 𝐶𝑡

𝑜)) +

(1 − 𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜))) (𝛽𝑐

𝑦
𝐶𝑡

𝑦
 + 𝛽𝑐

𝑜𝐶𝑡
𝑜 + 𝛽𝑑𝐷𝑡

𝑟 + 𝑇(𝜂𝑡)(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜) + 𝑅(𝐶𝑡+1

𝑦
)) +

𝜇1((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼
(𝐷𝑡

𝑟)1−𝛼  − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐(𝐷𝑡
𝑟)𝜌𝑑 − 𝑄̅) + 𝜇2 ((𝜃 𝜏𝑜𝐶𝑡

𝑜 +

𝜏𝑦𝐶𝑡
𝑦

)
𝛼

(𝐷𝑡
𝑓

)
1−𝛼

 − 𝑞 ∗ (𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝜌𝑐
(𝐷𝑡

𝑓
)

𝜌𝑑
− 𝑄̅) + 𝜁𝜆𝑡+1(𝐶𝑡

𝑦
∗ 𝑖 ∗ (1 − 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+

𝑧𝐶𝑡
𝑜)) (1 − 𝜏𝑦)) − 𝐶𝑡

𝑜(𝑙 + 𝑃(𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ (1 − 𝜏𝑜)(1 − 𝑙)))               (24) 

 

Similar to the previous dynamic model description, the first-order conditions underlying 

equation (24) yield equations (25) and (27): 
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𝑑ℋ

𝑑𝐶𝑡
𝑦 =  − {(𝛽𝑐

𝑦
+ 𝑇(𝜂)) ∗ (1 − 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜))) + (𝛽𝑐
𝑦

𝜏𝑦 + 𝑇(𝜂))

∗ 𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜))} − 𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝜂𝑡

∗ (𝛽𝑑(𝐷𝑡
𝑓

− 𝐷𝑡
𝑟) − 𝛽𝑐

𝑦
𝐶𝑡

𝑦
(1 − 𝜏𝑦) − 𝛽𝑐

𝑜𝐶𝑡
𝑜(1 − 𝜏𝑜))

+ 𝜇1 ((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑟)1−𝛼 ∗ 𝛼 − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
(𝐷𝑡

𝑟)𝜌𝑑 ∗ 𝜌𝑐)

+ 𝜇2 ((𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑓
)

1−𝛼
∗ 𝛼𝜏𝑦  − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 + 𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐−1

(𝐷𝑡
𝑓

)
𝜌𝑑

∗ 𝜌𝑐𝜏𝑦) + 𝜁𝜆𝑡+1 (𝑖 ∗ (1 − 𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (1 − 𝜏𝑦)))

− 𝜁𝜆𝑡+1 (𝑖 ∗ (𝑃′ (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ 𝜂𝑡(1 − 𝜏𝑦))) = 0 

                   (25) 

 

Equation (25) highlights some new aspects of young forest compared to equation (15). First of 

all, due to the potential wildfire threat, the current hydrological benefits are reduced. Moreover, 

the extra costs related to forest protection reduce the cost-effectiveness of green infrastructure 

and consequently the incentive for the social planner to invest in more young forest. Secondly, 

the long term benefit of having more forest also becomes more uncertain because of potential 

future wildfire depletion. Both the expected depletion and the effect of wildfires on the young 

forest's survival rate 𝑖, specified in the previous section, will negatively impact the long-term 

benefits. Besides the reduction in cost-effectiveness, having a larger stock of forest will also 

influence the future fire probability, as can be seen in the last term of equation (25). Together, 

these modifications make green infrastructure a less preferable alternative for drinking water 

treatment. We can reorder equation (25) into: 

 

𝜆𝑡+1 = (− {(𝛽𝑐
𝑦

+ 𝑇(𝜂)) ∗ (1 − 𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜))) + (𝛽𝑐

𝑦
𝜏𝑦 + 𝑇(𝜂)) ∗ 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+

𝑧𝐶𝑡
𝑜))} − 𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝜂𝑡 ∗ (𝛽𝑑(𝐷𝑡
𝑓

− 𝐷𝑡
𝑟) + 𝑅(𝐶𝑡+1

𝑦
) − 𝛽𝑐

𝑦
𝐶𝑡

𝑦
(1 − 𝜏𝑦) −
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𝛽𝑐
𝑜𝐶𝑡

𝑜(1 − 𝜏𝑜)) + 𝜇1 ((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑟)1−𝛼 ∗ 𝛼 − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
(𝐷𝑡

𝑟)𝜌𝑑 ∗ 𝜌𝑐) +

𝜇2 ((𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑓
)

1−𝛼
∗ 𝛼𝜏𝑦  − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 + 𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐−1

(𝐷𝑡
𝑓

)
𝜌𝑑

∗ 𝜌𝑐𝜏𝑦)) ∗

(−
1

𝜁
∗

1

𝑖∗(1−𝑃(𝜂𝑡(𝐶𝑡
𝑦

+𝑧𝐶𝑡
𝑜))(1−𝜏𝑦))−𝑖∗(𝑃′(𝜂𝑡(𝐶𝑡

𝑦
+𝑧𝐶𝑡

𝑜))∗𝜂𝑡(1−𝜏𝑦))
)                                     (26) 

 

For equation (26), the shadow price of the next period old forests should match with the current 

net benefit of young forests. The current net benefit includes the expected operation cost, the 

hydrological benefit and the risk premium similar to the previous extension. 

 

The first-order condition of the state variable gives: 

𝑑ℋ

𝑑𝐶𝑡
𝑜 =  − {(𝛽𝑐

𝑜 + 𝑇(𝜂)) ∗ (1 − 𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜))) + (𝛽𝑐

𝑜𝜏𝑜 + 𝑇(𝜂)) ∗ 𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+

𝑧𝐶𝑡
𝑜))} − 𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝜂𝑡 ∗ 𝑧 ∗ (𝛽𝑑(𝐷𝑡
𝑓

− 𝐷𝑡
𝑟) + 𝑅(𝐶𝑡+1

𝑦
) − 𝛽𝑐

𝑦
𝐶𝑡

𝑦
(1 − 𝜏𝑦) −

𝛽𝑐
𝑜𝐶𝑡

𝑜(1 − 𝜏𝑜)) + 𝜇1 ((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑟)1−𝛼 ∗ 𝛼 ∗ 𝜃 − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
(𝐷𝑡

𝑟)𝜌𝑑 ∗

𝜌𝑐) + 𝜇2 ((𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑓
)

1−𝛼
∗ 𝛼𝜏𝑜𝜃 − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 + 𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐−1

(𝐷𝑡
𝑓

)
𝜌𝑑

∗

𝜌𝑐𝜏𝑜) − 𝜁𝜆𝑡+1 (𝑙 + (𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (1 − 𝜏𝑜) ∗ (1 − 𝑙))) − 𝜁𝜆𝑡+1 ((𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+

𝑧𝐶𝑡
𝑜)) ∗ 𝜂𝑡 ∗ 𝑧 ∗ (1 − 𝑙)(1 − 𝜏𝑜))) = 𝜆𝑡 − 𝜁𝜆𝑡+1                             (27) 

 

This can be reformulated as follows: 

 

𝜆𝑡 =  − {(𝛽𝑐
𝑜 + 𝑇(𝜂)) ∗ (1 − 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜))) + (𝛽𝑐
𝑜𝜏𝑜 + 𝑇(𝜂)) ∗ 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜))} −

𝑃′ (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ 𝜂𝑡 ∗ 𝑧 ∗ (𝛽𝑑(𝐷𝑡

𝑓
− 𝐷𝑡

𝑟) + 𝑅(𝐶𝑡+1
𝑦

) − 𝛽𝑐
𝑦

𝐶𝑡
𝑦

(1 − 𝜏𝑦) − 𝛽𝑐
𝑜𝐶𝑡

𝑜(1 −

𝜏𝑜)) + 𝜇1 ((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑟)1−𝛼 ∗ 𝛼 ∗ 𝜃 − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
(𝐷𝑡

𝑟)𝜌𝑑 ∗ 𝜌𝑐) +

𝜇2 ((𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑓
)

1−𝛼
∗ 𝛼𝜏𝑜𝜃 − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 + 𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐−1

(𝐷𝑡
𝑓

)
𝜌𝑑

∗ 𝜌𝑐𝜏𝑜) +
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𝜁𝜆𝑡+1 (1 − 𝑙 − (𝑃 (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (1 − 𝜏𝑜) ∗ (1 − 𝑙))) − 𝜁𝜆𝑡+1 ((𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗

𝜂𝑡 ∗ 𝑧 ∗ (1 − 𝑙)(1 − 𝜏𝑜)))                                                                                                (28) 

 

Equation (28) states that in the optimum the shadow price of the current stock of old-growth 

forest equals its current and next period hydrological benefits minus the aggregate costs of 

providing these benefits. These costs include operation costs, potential wildfire damage costs, 

and the extra potential wildfire costs caused by higher levels of forests. Given the higher chance 

of wildfires and the risk associated with old-growth forest, a social planner with a higher stock 

of (old-growth) green infrastructure is less likely to expand the existing green infrastructure.  

 

Another control variable that the social planner can apply is the proportion of forest receiving 

protection. The optimal level of protection should satisfy the following condition: 

𝑑ℋ

𝑑𝜂
= −(𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) (𝑇′(𝜂𝑡)(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜)) + (1 − 𝑃 (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)))(𝑇′(𝜂𝑡)(𝐶𝑡
𝑦

+

𝐶𝑡
𝑜)) − 𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) (𝛽𝑐
𝑦

(𝜏𝑦−1)𝐶𝑡
𝑦

 + 𝑅(𝐶𝑡+1
𝑦

) + 𝛽𝑐
𝑜(𝜏𝑜 − 1)𝐶𝑡

𝑜 + 𝛽𝑑(𝐷𝑡
𝑓

− 𝐷𝑡
𝑟)) ∗

(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜) + 𝜁𝜆𝑡+1(𝐶𝑡

𝑦
∗ 𝑖 ∗ (−𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) (1 − 𝜏𝑦) ∗ (𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) −

𝐶𝑡
𝑜(𝑃′ (𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ (1 − 𝜏𝑜)(1 − 𝑙) ∗ (𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜))) = 0                    (29) 

 

The above equation can be rewritten as:  

 

𝑃′ (𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ((𝛽𝑐

𝑦
(𝜏𝑦−1)𝐶𝑡

𝑦
 + 𝛽𝑐

𝑜(𝜏𝑜 − 1)𝐶𝑡
𝑜 + 𝑅(𝐶𝑡+1

𝑦
) + 𝛽𝑑(𝐷𝑡

𝑓
− 𝐷𝑡

𝑟)) +

𝜁𝜆𝑡+1(𝐶𝑡
𝑦

∗ 𝑖 ∗ (1 − 𝜏𝑦) + 𝐶𝑡
𝑜 ∗ (1 − 𝜏𝑜)(1 − 𝑙))) * (𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)  =  (𝑇′(𝜂𝑡)(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜)  

                (30)                                                                                                                      

 

The left-hand side of equation (30) represents the marginal cost difference between the period 

without and with a wildfire. This includes the extra water treatment costs for the current period 
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and the loss of green infrastructure for future water treatment. Having a smaller 𝜂 can reduce 

the probability of a wildfire, which can then further reduce the expected damage costs. Since 

old forest may trigger a higher chance of wildfire and causes more damage, the existing level 

of old-growth forest will alter the optimal level of 𝜂. Suppose there is a substantial stock of old 

forest to treat water at the start of the decision period, then the wildfire risk factor z will increase 

the potential damage under the current situation. The potential damage cost of the current 

situation will hence be higher than a situation with a relatively lower stock of old forest. This 

will incentivize the social planner to adopt a lower level of 𝜂 to reduce the chance of a wildfire. 

The term on the right-hand side refers to the expected cost increase if the social planner 

demands a lower 𝜂. Having a relatively high 𝜂 is risky for society, whilst spending too much 

on fire prevention will be less cost-effective. Equation (30) indicates, as expected, that the 

optimal level of 𝜂 is found where the marginal cost of wildfire protection equals the marginal 

net benefits of reducing the risk of having a wildfire on water treatment.  

 

2.5 The Impact of Long-term Climate Change 

 

Global warming will increase the probability of extreme weather events like droughts, and 

droughts impact the risk of wildfires. Hence, once we include climate change into our model, 

the wildfire probability will increase over time, and it will become more likely for social 

planners to face a wildfire in the future. This will change various aspects of the dynamic model. 

At the same time, green infrastructure contributes significantly to carbon sequestration. In a 

global context, forests’ carbon sequestration capacity reduces the speed of climate change 

(Law et al., 2018; Smyth et al., 2018). Thus, investing in green infrastructure and increasing 

the forest area is expected to slow down the pace of global warming and reduce the potential 

risk of future wildfires compared to relatively low levels of green infrastructure.  

From equation (30), we can see that an increasing probability of wildfires will have an 

influence on the optimal level of 𝜂. Increasing the level of forest protection, in turn, reduces 

the potential wildfire probability and at the same time better-protected forest or green 
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infrastructure has a positive effect on wildfire risk. Put differently, if forest wildfire prevention 

becomes more effective under increasing drought conditions, then the social planner will be 

incentivized to adopt more fire prevention measures. Combined with the moderating effect of 

green infrastructure on global warming, this will reduce the risk of wildfires due to extreme 

weather events. The extension of the model presented in the previous section would, therefore, 

consist of the potential wildfire risk reduction effect of forest investments due to their impact 

on climate change. Although it may be hard to demonstrate that the potential effect of slowing 

down climate change will reduce wildfire risks in the short run, there may be a long-run benefit 

to mitigate the negative impacts of climate change on increasing drought conditions and 

enhance forest safety. 

 

In order to reflect this long-term climate change effect, we define a drought variable 𝑑(𝐶𝑡−1
𝑦

), 

which will become effective one period after the social planner decides about the water 

treatment infrastructure portfolio. It has been argued that young forest has a higher carbon 

sequestration capability than old-growth forest (Pugh et al., 2019). We simplify this finding in 

the literature by assuming that only the stock of young forest in the previous period has a 

moderating effect on droughts and hence wildfire risk in the current period. 𝑑(𝐶𝑡−1
𝑦

) is a 

decreasing function, reflecting the negative correlation between future drought conditions and 

the current stock of young forest. In this section, the probability of a potential wildfire thus 

will be 𝑃(𝑑(𝐶𝑡−1
𝑦

) ∗ 𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)), meaning that a future drought will increase the wildfire 

rate. Integrating this new feature into the dynamic model, we obtain the following objective 

function:  

 

min
𝐶𝑡,𝐷𝑡

𝑟,𝐷𝑡
𝑓

,𝜂𝑡

𝑓(𝑥) = ∑  

∞

𝑡=1

(𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (𝛽𝑐

𝑦
𝜏𝑦𝐶𝑡

𝑦
 + 𝛽𝑐

𝑜𝜏𝑜𝐶𝑡
𝑜 + 𝛽𝑑𝐷𝑡

𝑓
+ 𝑇(𝜂𝑡)(𝐶𝑡

𝑦

+ 𝐶𝑡
𝑜) + 𝑅(𝐶𝑡+1

𝑦
)) + (1

− 𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)))(𝛽𝑐

𝑦
𝐶𝑡

𝑦
 + 𝛽𝑐

𝑜𝐶𝑡
𝑜 + 𝛽𝑑𝐷𝑡

𝑟 + 𝑇(𝜂𝑡)(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜)))    
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                                                                     (31) 

 𝑠. 𝑡. (𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼
(𝐷𝑡

𝑟)1−𝛼  − 𝑞 ∗ (𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐(𝐷𝑡
𝑟)𝜌𝑑    ≥  𝑄̅   

        (𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼
(𝐷𝑡

𝑓
)

1−𝛼
 − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 + 𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐

(𝐷𝑡
𝑓

)
𝜌𝑑

   ≥  𝑄̅ 

        𝐶𝑡+1
𝑜 = (1 − 𝑃 (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜))) ∗ (𝐶𝑡
𝑦

∗ 𝑖 + (1 − 𝑙)𝐶𝑡
𝑜)

+ 𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ (𝜏𝑦𝐶𝑡

𝑦
∗ 𝑖 + 𝜏𝑜(1 − 𝑙)𝐶𝑡

𝑜) 

       𝐶0
𝑜 ≥ 0 

 

The Hamiltonian of the cost minimization problem is: 

ℋ
𝐶𝑡,𝐷𝑡

𝑟,𝐷𝑡
𝑓

,𝜂𝑡

= − (𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (𝛽𝑐

𝑦
𝜏𝑦𝐶𝑡

𝑦
 + 𝛽𝑐

𝑜𝜏𝑜𝐶𝑡
𝑜 + 𝛽𝑑𝐷𝑡

𝑓
+ 𝑇(𝜂𝑡)(𝐶𝑡

𝑦
+

𝐶𝑡
𝑜) + 𝑅(𝐶𝑡+1

𝑦
)) + (1 − 𝑃 (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)))(𝛽𝑐
𝑦

𝐶𝑡
𝑦

 + 𝛽𝑐
𝑜𝐶𝑡

𝑜 + 𝛽𝑑𝐷𝑡
𝑟 + 𝑇(𝜂𝑡)(𝐶𝑡

𝑦
+

𝐶𝑡
𝑜))) + 𝜇1((𝜃 𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝛼

(𝐷𝑡
𝑟)1−𝛼  − 𝑞 ∗ (𝐶𝑡

𝑜 + 𝐶𝑡
𝑦

)
𝜌𝑐(𝐷𝑡

𝑟)𝜌𝑑 − 𝑄̅) + 𝜇2 ((𝜃 𝜏𝑜𝐶𝑡
𝑜 +

𝜏𝑦𝐶𝑡
𝑦

)
𝛼

(𝐷𝑡
𝑓

)
1−𝛼

 − 𝑞 ∗ (𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝜌𝑐
(𝐷𝑡

𝑓
)

𝜌𝑑
− 𝑄̅) + 𝜁𝜆𝑡+1(𝐶𝑡

𝑦
∗ 𝑖 ∗ (1 −

𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (1 − 𝜏𝑦)) − 𝐶𝑡

𝑜(𝑙 + 𝑃(𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ (1 − 𝜏𝑜)(1 −

𝑙))) + 𝜁𝜊𝑡+1(𝐶𝑡
𝑦

− 𝐶𝑡−1
𝑦

)                    (32) 

 

The first order condition with respect to the stock of young forest then becomes: 

𝑑ℋ

𝑑𝐶𝑡
𝑦 =  − {(𝛽𝑐

𝑦
+ 𝑇(𝜂)) ∗ (1 − 𝑃 (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜))) + (𝛽𝑐
𝑦

𝜏𝑦 + 𝑇(𝜂)) ∗

𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜))} − 𝑃′ (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝜂𝑡 ∗ (𝛽𝑑(𝐷𝑡
𝑓

− 𝐷𝑡
𝑟) +

𝑅(𝐶𝑡+1
𝑦

) − 𝛽𝑐
𝑦

𝐶𝑡
𝑦

(1 − 𝜏𝑦) − 𝛽𝑐
𝑜𝐶𝑡

𝑜(1 − 𝜏𝑜)) + 𝜇1 ((𝜃 𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑟)1−𝛼 ∗ 𝛼 − 𝑞 ∗

(𝐶𝑡
𝑜 + 𝐶𝑡

𝑦
)

𝜌𝑐−1
(𝐷𝑡

𝑟)𝜌𝑑 ∗ 𝜌𝑐) + 𝜇2 ((𝜃 𝜏𝑜𝐶𝑡
𝑜 + 𝜏𝑦𝐶𝑡

𝑦
)

𝛼−1
(𝐷𝑡

𝑓
)

1−𝛼
∗ 𝛼𝜏𝑦  − 𝑞 ∗ (𝜏𝑜𝐶𝑡

𝑜 +
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𝜏𝑦𝐶𝑡
𝑦

)
𝜌𝑐−1

(𝐷𝑡
𝑓

)
𝜌𝑑

∗ 𝜌𝑐𝜏𝑦) + 𝜁𝜆𝑡+1 (𝑖 ∗ (1 − 𝑃 (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) (1 − 𝜏𝑦))) −

𝜁𝜆𝑡+1 (𝑖 ∗ (𝑃′ (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ 𝜂𝑡(1 − 𝜏𝑦))) + 𝜁𝜊𝑡+1 = 0       (33) 

 

                                                                                                                                  

The result presented in equation (33) is similar to equation (25) in the previous section. The 

climate change mitigation effect in the next period from the investment in young forest in the 

current period, 𝜁𝜊𝑡+1, is included as an additional benefit that a social planner will take into 

account. The shadow price of this climate change mitigation effect is  𝜊𝑡+1. To find the exact 

value of the Hamiltonian multiplier, we examine the first-order condition with respect to the 

state variable 𝐶𝑡−1
𝑦

 : 

 

𝑑ℋ

𝑑𝐶𝑡−1
𝑦 = −𝑃′ (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝑑′(𝐶𝑡−1
𝑦

) ∗ 𝜂𝑡 ∗ (𝛽𝑑(𝐷𝑡
𝑓

− 𝐷𝑡
𝑟) + 𝑅(𝐶𝑡+1

𝑦
) −

𝛽𝑐
𝑦

𝐶𝑡
𝑦

(1 − 𝜏𝑦) − 𝛽𝑐
𝑜𝐶𝑡

𝑜(1 − 𝜏𝑜)) − 𝜁𝜆𝑡+1 (𝐶𝑡
𝑦

𝑖(1 − 𝜏𝑦) ∗ 𝑃′ (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗

𝑑′(𝐶𝑡−1
𝑦

) − 𝐶𝑡
𝑜(1 − 𝜏𝑜)(1 − 𝑙) ∗ 𝑃′ (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝑑′(𝐶𝑡−1
𝑦

)) − 𝜁𝜊𝑡+1 = 𝜊𝑡 −

𝜁𝜊𝑡+1                (34) 

 

which we can reorder into: 

𝜊𝑡 = −𝑃′ (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗ 𝑑′(𝐶𝑡−1

𝑦
) ∗ 𝜂𝑡 ∗ (𝛽𝑑(𝐷𝑡

𝑓
− 𝐷𝑡

𝑟) + 𝑅(𝐶𝑡+1
𝑦

) −

𝛽𝑐
𝑦

𝐶𝑡
𝑦

(1 − 𝜏𝑦) − 𝛽𝑐
𝑜𝐶𝑡

𝑜(1 − 𝜏𝑜)) − 𝜁𝜆𝑡+1 (𝐶𝑡
𝑦

𝑖(1 − 𝜏𝑦) ∗ 𝑃′ (𝑑(𝐶𝑡−1
𝑦

)𝜂𝑡(𝐶𝑡
𝑦

+ 𝑧𝐶𝑡
𝑜)) ∗

𝑑′(𝐶𝑡−1
𝑦

) − 𝐶𝑡
𝑜(1 − 𝜏𝑜)(1 − 𝑙) ∗ 𝑃′ (𝑑(𝐶𝑡−1

𝑦
)𝜂𝑡(𝐶𝑡

𝑦
+ 𝑧𝐶𝑡

𝑜)) ∗ 𝑑′(𝐶𝑡−1
𝑦

))       (35) 

 

The shadow price of the marginal effect of climate change mitigation includes several benefits 

generated by the young forest in the previous period. First, having more young forest, carbon 

sequestration reduces the probability of having a wildfire one period later. As the first term of 
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equation (35) indicates, if we assume that having a wildfire triggers additional operation costs, 

the cost difference between a period without and with a wildfire can be considered as the 

avoided cost of not having a wildfire. Thus, the additional young forest can reduce the expected 

operation cost in an indirect way other than described in the section with the dynamic model. 

By reducing the risk of wildfire, the stock of forest that will remain intact will continue to 

generate further long-term benefits. In that sense, the additional benefit of investing in green 

infrastructure under these conditions is the sum of wildfire mitigation and long-term water 

treatment. 

 

If we compare equation (33) with the solution without the modelled climate change effect, as 

in equation (25), the drought mitigation effect is expected to encourage the social planner to 

expand the stock of young forest to reduce future wildfire risks. Investment behaviour in green 

infrastructure now will influence the future benefits obtained from a change in wildfire 

probability. This future benefit is different from the one we observed in the dynamic model. 

Instead of a direct impact on the provided water service, moderating climate change will 

mainly alter the probability of a wildfire. However, many of the dynamic model interpretations 

continue to hold for this extended model. For instance, the discount factor applied by the social 

planner will affect the allocation between green and grey infrastructure. A positive discount 

factor will play down any potential future risk. For a social planner with a high discount factor, 

the drought mitigation effect may not be significant. Under such conditions, it will not be 

optimal to invest in green infrastructure now to protect benefits in the future. 

 

The drought effect 𝑑(𝐶𝑡−1
𝑦

) influences future outcomes. If society values the future and invests 

in green infrastructure, the risks of droughts and wildfires will reduce. This behaviour may 

potentially reduce future water treatment costs and the loss of water services as indicated in 

equation (35). Based on the additional benefits provided by forests as a green solution to slow 

down climate change, the optimal level of green infrastructure should increase compared to 

the investment decision in the dynamic model without climate change. However, increasing 

the stock of forest at the same time increases the cost of current forest management as this will 
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increase the probability of wildfires. In other words, investing more in forests now will transfer 

part of the future climate change risks to the present. A social planner will need to find a 

balance between these two risks. Finally, our model only captures the damage related to the 

provision of safe drinking water. Once we include additional social welfare losses associated 

with wildfires, like public unrest, social and economic disruptions, society may become more 

inclined to avoid them. In that case, the social planner is expected to be willing to incur more 

costs for fire prevention.  

 

2.6 Simulation results 

In this section, we numerically simulate the optimal investment levels across the three 

previously presented models, measured as the total costs of green and grey infrastructure, based 

on different assumptions related to initial levels of old forests in the software R. The starting 

values for the key parameters in the numerical simulation are presented in Table 2.1. The 

parameter values follow the assumptions described in the previous sections. In order to 

increase the level of realism, we change the infrastructures’ stocks and flows over time, and 

impose a restriction on space. We assume that the average lifetime of a water treatment plant 

is about 60 years (Bonton, 2012), and the forests in our study mature in around 20-30 years 

(Asbjornsen et al., 2017). To keep things simple, we define the time it takes for young forests 

to grow into a mature forest to be 30 years. We define discrete investment decision periods to 

last 30 years and grey infrastructure hence to last for two discrete periods, while young forest 

grows old and then partially dies off in one discrete period. The total time horizon for the 

simulation is set to be 300 years. Thus, a social planner is expected to decide 10 times at the 

beginning of each investment period how to choose between grey and green infrastructure. The 

discount factor for costs and benefits occurring over time is less than one. Due to spatial 

limitations, we assume that there exists a physical maximum to implement green infrastructure, 

and we indicate this as a percentage, where 100% means that green infrastructure has reached 

its full capacity. 
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The operating cost parameters follow the following ranking: 𝛽𝑐
𝑜 < 𝛽𝑐

𝑦
< 𝛽𝑑. In the model with 

wildfire risk, we assume that the reforestation cost is higher than these three operating costs. 

Thus, facing a risk of wildfire is expected to negatively influence decision-making for green 

infrastructure due to the significant recovery cost. Due to the assumption that grey 

infrastructure provides a flow of water services over two time periods, we identify a separate 

grey infrastructure construction cost that the social planner incurs when deciding to invest more 

in the current stock of grey infrastructure. Green infrastructure provides hydrological services 

over a longer period of time unless the forest dies off or is destroyed due to a wildfire. For the 

overall water treatment performance of grey and green infrastructure, the green infrastructure 

is as before more cost-effective but riskier. The Cobb-Douglas parameter for green 

infrastructure’s treatment capacity α is greater than the variance parameters 𝜌𝑐  and 𝜌𝑑  in 

securing a unique solution. The water quality standard and safety threshold value are both 

positive, reflecting a risk-averse society as defined in the baseline model. 

 

Table 2-1 Starting Values for Parameters Used in the Simulation 

Parameter Description Value 

𝛽𝑐
𝑦

 Operation cost of young forests 200 

𝛽𝑐
𝑜 Operation cost of old forests 100 

𝛽𝑑 Operation cost of grey infrastructure 300 

Κ𝑑   Construction cost of grey infrastructure 100 

𝑅(𝐶) Recovery cost after a wildfire 400 ∗ 𝐶 

𝑄̅ Water quality standard  100 

𝑞 Water safety threshold 1.96 

𝑖 Young forest survival rate 0.9 

𝑙 Old forest death rate 0.2 

𝛼 Green infrastructure water treatment effectiveness 0.7 

𝜃 Old forest water treatment ageing effect 1.2 

𝜌𝑐 Green infrastructure risk parameter 0.3 

𝜌𝑑 Grey infrastructure risk parameter 0.2 
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𝜏𝑦 Residual young forest post-fire ratio 0.6 

𝜏𝑜 Residual old forest post-fire ratio 0.4 

𝑧 Old forest fire risk factor 1.2 

𝑃(𝐶) Wildfire probability function tanh ((1 − 𝜂)C/1000) 

𝑇(𝜂)C Fuel treatment cost function 10∗ 𝜂(𝐶𝑡
𝑦

+ 𝐶𝑡
𝑜)

2
 

𝑑(𝐶𝑡−1
𝑦

) Carbon sequestration effect of green infrastructure 

(young forest) 

1

𝐶𝑡−1
𝑦

∗ 0.5 + 1
 

𝑇 Time horizon 300 years 

C0
o Initial old forest (green infrastructure capacity) 0-100% 

𝜁 Discount factor 0.9 

 

 

A key parameter in the simulation presented here is the initial stock of old forest reflecting 

different baseline scenarios across a continuum of forest abundance, from an abundance of 

forest to a complete lack of forest. Depending on the presence of different degrees of old forest 

at the start of the decision-making period, the social planner may exhibit different decision-

making behaviour with regards to investing in young forests. The set of parameters that focus 

on the characteristics and age composition of forests is aligned with our assumptions in the 

dynamic model described in section 3. The survival rate of old forest (1 − 𝑙) is higher than the 

survival rate i for young forest (Lorimer et al., 2001). Similarly, the ageing effect of old forest 

on water treatment is larger than one, implying that old forest provides higher hydrological 

benefits than young forest. For the sake of simplicity, we do not account for forest management 

practices that involve thinning forests to reduce forest levels. Therefore, under the specification 

of the dynamic model, tree death is the only way to reduce the current level of forests.  

 

The fire damage ratio 𝜏 also includes risk differences between young and old forests. The 

probability function for wildfire is specified as a hyperbolic tangent function, where 

𝑡𝑎𝑛ℎ(0) = 0, lim
𝑥→∞

tanh (𝑥) = 1, and the function is differentiable when 𝑥 > 0. This means 

that unlike a linear probability function, a large stock of initial old forest is almost certainly 

facing a wildfire. This specification of the probability function is used to better represent the 
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increasing wildfire risk of having an abundance of green infrastructure, which may deter a 

social planner from further investing in or maintaining this stock of old forest. A quadratic fuel 

treatment cost function is furthermore applied to reflect the disproportional marginal cost 

increase as the share of unprotected forest drops. In other words, it will be increasingly costly 

for the social planner to fully protect the forest and achieve 0% unprotected forest (Jones et al., 

2017). 

 

Finally, the amount of carbon sequestration that is expected to affect climate change and hence 

the risk of wildfires relies on the investment in young forest in the last period. When there is 

no investment in green infrastructure, we assume that the risk of wildfire will not change. An 

alternative specification of the wildfire probability would be an increasing function over time 

if no further investments were to be made in young forest.  

 

Figure 2.1 presents the simulation results for investment decisions in green and grey 

infrastructure based on the three models presented before in sections 3, 4, and 5. Each line 

reflects the optimal path that minimizes the total costs, whilst guaranteeing that the water 

quality standard is met. Each dot on each line represents a different starting point for the initial 

stock of green infrastructure. The black line in Figure 2.1 is the dynamic model that triggers 

the least cost without wildfire risk. The convex shape of the line indicates that an optimal initial 

level of green infrastructure exists where the water quality standard is achieved at least total 

cost. The total costs steeply increase as the initial green infrastructure capacity increases to 

deliver the required water quality levels because the central planner’s decision space becomes 

increasingly limited up to the point where investing in more costly grey infrastructure becomes 

the only option.  
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Figure 2-1 The simulated present value of the total investment and operating costs of green and 

grey infrastructure under the three models 

 

Since the green infrastructure level can only be reduced if old trees die, starting at a higher 

percentage of green infrastructure may actually turn out to be a burden to provide clean 

drinking water. This is illustrated by the fact that the social planner may be willing to accept 

forest damage due to wildfires (the red line in Figure 2.1) to approach the optimal level of 

green infrastructure in the trajectory where the black line is higher than the red line (beyond 

approximately 70%). The same dynamic model including the risk of wildfires is expected to 

result in higher total costs because of increasing protection and damage costs. Figure 2.1 shows 

that this is indeed the case, but up to the point where the initial level of old forest is around 

70%. Beyond this point the total water treatment costs accounting for wildfires are lower. 

Hence the reason that a central planner is expected to be willing to incur wildfire risks, also as 

a means to manage the forest as a green solution, and increase the available water treatment 

options in the planner’s choice set. Extending the dynamic model with the risk of wildfires,that 

is, accounting for potential wildfire damage, fuel treatment and recovery costs, shifts the 

optimal pathway as expected substantially upwards. The slightly U-shaped line of the wildfire 

model has its lowest point at a higher proportion of green infrastructure compared to the 

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

P
re

se
n

t 
va

lu
e 

to
ta

l c
o

st
s 

($
1

0
6
)

Initial stock of (old-growth) green infrastructure (%)

Dynamic model

Dynamic model
with wildfire risk

Dynamic model
with climate change



 

39 

dynamic model. Due to the wildfire damage, a social planner needs more green and grey 

infrastructure to offset the damaging impacts on water treatment. Therefore, the social planner 

is looking for more old forest initially. 

 

If we also include the longer-term benefits of green infrastructure to sequestrate carbon and 

lower the risk of wildfires, this lowers the present value of the total costs (the green line in 

Figure 2.1). The moderating impacts of carbon sequestration on climate change and wildfire 

risk means that the green line is located between the black and red line. Carbon sequestration 

reduces forest wildfire damage costs and results in savings on forest protection costs. The 

lowest point of the green curve is found between the dynamic model and its extension with 

wildfire risk. Since carbon sequestration is most effective when planting young forest, a lower 

initial level of old forest encourages the social planner to invest more in young forest green 

infrastructure. This then further reduces the risk of wildfire, wildfire damage, and recovery 

costs. However, as the initial stock of old forest is larger, the amount of young forest that can 

be planted diminishes and hence the risk of wildfires increases. Consequently, the cost start 

increasing. As the risk of old forest accumulates, the social planner is discouraged to further 

invest in young forests. In response, the green line starts to converge with the red line as the 

moderating effect of carbon sequestration on wildfire risks diminishes. Approaching full 

capacity levels for green infrastructure, the total costs estimated under the model with wildfire 

risks and climate change become more or less the same.  

 

The amount of green over grey infrastructure over the simulated time period under the three 

models is further illustrated in Figure 2.2. As expected, the ratio declines as the share of 

initially available green infrastructure increases. The existence of the old forest reduces the 

marginal hydrological benefit of young forest investments. In other words, the social planner 

is discouraged to further invest in young trees given a higher stock of old forest. Extending the 

dynamic model with wildfire risk, the social planner has the same incentive to invest in green 

infrastructure when there is no or hardly any green infrastructure available at the start of the 

decision-making period. The risk of wildfires is relatively low given the limited amount of 
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green infrastructure, and due to its cost-effective features, the planner has an incentive to invest 

in more green infrastructure. The red line representing the model with wildfire risk is located 

above the black line representing the dynamic model because there is an incentive to invest 

more in young forest when facing wildfire risks to offset wildfire damages and the reduction 

in treatment capacity. 

 

 

Figure 2-2 The ratio of green (young forest) and grey infrastructure over the simulated time 

period under the three models 

 

The ratio is highest for the dynamic model including climate change (green line). Carbon 

sequestration increases the social planner’s incentive to implement more green infrastructure 

because of the longer-term benefits involved. Carbon sequestration reduces the long-term 

wildfire risks and hence enhances the social planner’s willingness to invest more in planting 

young forest as a more cost-effective water treatment method than grey infrastructure.  

 

2.7 Conclusion 

This paper explored the role of forested watersheds as a green, nature-based solution in 

investment decisions related to clean and safe drinking water provision, one of the United 

0

3

6

9

12

15

0 10 20 30 40 50 60 70 80 90 100

R
at

io
 y

o
u

n
g 

fo
re

st
/g

re
y 

in
fr

as
tr

u
ct

u
re

Initial stock of old-growth forest (%)

Dynamic model

Dynamic model
with wildfire risk

Dynamic model
with climate change



 

41 

Nation’s Sustainable Development Goals. A simple baseline model was developed 

incorporating key features of forests’ capacity to provide valuable hydrological services to 

society, as increasingly demonstrated in the scientific literature, accounting for the uncertainty 

associated with the delivery of the required water quality standards by green infrastructure. 

Despite the increase in payments schemes for forest watershed services and empirical studies 

analyzing their environmental and socio-economic impacts, no overarching theoretical 

framework exists to analyze the economic efficiency of such payment schemes. This is to our 

knowledge the first study to present an economic-theoretical framework to analyze optimum 

water treatment decision-making under risk and uncertainty based on the expected costs and 

benefits of green infrastructure vis-à-vis conventional grey infrastructure in increasingly 

urbanized watersheds worldwide. The static baseline model was modified to include forest 

growth dynamics and we discussed the consequences of this for the provision of the water 

treatment benefits and investment decision-making. This dynamic model was subsequently 

extended to include additional costs associated with forests as a cost-effective green solution 

to water treatment, in particular the risk of wildfires and associated damage and recovery costs. 

Forest protection costs were included to assess their role in finding the economic optimal level 

of green infrastructure, weighing the increasing protection costs due to wildfire risks against 

the avoided damage and recovery costs. Finally, the co-benefits of afforestation and 

reforestation in the form of carbon sequestration were added to the dynamic model to assess 

their impact on investment decisions in green and grey infrastructure to treat water and meet 

water quality standards. Carbon sequestration is expected to slow down climate change and as 

a consequence reduce the risk of wildfires, increasing decision-makers’ incentive to invest 

more in green infrastructure. Differences between the dynamic versions of the model were 

further illustrated in a hypothetical numerical simulation. 

 

We identified a number of key factors driving investment behavior in green infrastructure. 

Society may be less inclined to invest vastly in green infrastructure due to the uncertainties 

surrounding their cost-effectiveness. This is picked up in a risk premium that decision-makers 

may be willing to pay to avoid the risk associated with green infrastructure. Although there 
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exists a variety of real-world risks with both types of infrastructure, all else being equal the 

higher the uncertainty surrounding the performance of green infrastructure, the higher society’s 

willingness to pay this risk premiums, discouraging investments in green infrastructure.  

 

Wildfire risks also play an important role. Besides the destruction of valuable water treatment 

capital, there is increasing evidence that wildfires have disastrous long-lasting impacts on 

water quality provision, resulting in high clean-up and treatment costs. Increasing protection 

costs may offset some of these costs incurred during the aftermath of a wildfire, but these 

protection costs make green infrastructure a less attractive solution compared to conventional 

grey infrastructure where furthermore much more control can be exercised over the water 

quality outcome.  

 

The moderating impact of carbon sequestration co-benefits of forest conservation and 

afforestation on wildfire risks are rather uncertain, especially at local or regional level. A large-

scale global transition to green water treatment infrastructure will be needed for this to have a 

real impact in the long term and reduce future risks of wildfires. The age composition of forests 

was shown to play a key role here too, especially the stock of old-growth forest available at 

the start of new investment decisions, and society’s time preferences. The older the forest, the 

lower overall the carbon sequestration benefit and at the same time also the lower the survival 

rate in case of a wildfire, discouraging decision-makers from investing in new-growth forest. 

Given the long time horizon of the investment decisions involved over periods of 30 to 60 

years, discounting of future benefits, besides risk attitudes towards green infrastructure’s 

outcome uncertainty, profoundly influences the present value of future outcomes, which is 

expected to make forest protection and afforestation in urbanized watersheds less attractive 

than grey infrastructure.   

In conclusion, although green infrastructure has gained significant interest worldwide for 

source water protection, some of the key factors we discussed in this paper may deter a social 

planner to fully embrace this option in practice. These factors will need to be taken into 

consideration when deciding to invest in green water treatment infrastructure.  
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Chapter 3 

The Impact of Green Infrastructure on Water Rates and Drinking Water 

Incidents: A Spatial Instrumental Variable Regression Model 

Zehua Pan, Roy Brouwer and Monica B. Emelko 

 

Abstract 

There is increasing interest in the cost-effectiveness and economic benefits of replacing traditional 

engineering-based ‘grey’ infrastructure with nature-based ‘green’ infrastructure in the water sector. This 

study builds on the emerging literature in this field and sets itself apart in several ways. New in this study 

is the focus on the interrelationship between green infrastructure, water treatment costs proxied by drinking 

water rates, and drinking water safety. The latter refers to adverse treated water quality incidents (AWQIs) 

such as unsatisfactory bacteriological test results that may lead to drinking water advisories when 

sufficiently severe. A new modelling framework is furthermore developed, accounting simultaneously for 

possible spatial spill-over effects due to watershed land cover and potential endogeneity embedded in the 

relationship between water treatment costs, drinking water billing, and the occurrence of AWQIs. Data 

from the water- and forest-abundant and densely populated Canadian province of Ontario were used and 

significant negative correlations between forested land area and both drinking water rates and AWQIs are 

observed. While causality underlying these relationships needs further investigation, these results indicate 

support for the use of techno-ecological nature-based solutions in drinking water risk management.  

 

 

 

Key words: green infrastructure; ecosystem services; safe drinking water; water rates, nature-

based solutions   
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3.1 Introduction 

Drinking water treatment resilience and treated water safety are emerging as new environmental, 

social, and economic challenges as a result of global increases in the severity of climate change-

exacerbated landscape disturbances such as wildfires and extreme precipitation events (Delpla et 

al., 2009; Emelko et al., 2011; Valdivia-Garcia et al., 2019). Safe drinking water is crucial for 

human health. Almost one in ten people around the world do not have access to clean drinking 

water (WHO, 2017). The World Health Organization (WHO) reported in 2019 that an estimated 

829 thousand people died due to drinking-water-related diarrhea, of which 297 thousand were 

children under the age of six (UN Water, 2019). Even in countries such as the U.S., water rates 

increased more than 41% between 2010 and 2017, and more than a third of all households were 

estimated to be unable to afford water services on a full cost recovery basis at that rate of change 

in the future (Mack and Wrase, 2017), with the brunt of the impact being borne by low-income 

customers (Swain et al. 2020). In the long run, exposure to insufficiently treated drinking water 

increases public health costs and increasingly harm human capital in the labour market (Graff 

Zivin and Neidell, 2013). 

 

Alternative nature-based (green) solutions for drinking water treatment are increasingly explored 

to supplement or even replace existing engineering-based (grey) treatment facilities (Pu-mei et al., 

2001; Biao et al., 2010). A framework for advancing on the promises of techno-ecological nature-

based solutions in water supply and treatment underscores that no such solutions are universal 

(Blackburn et al. 2021). Notably, however, in the provision of safe drinking water, conservation 

and source water protection have always played an important role that is complementary to 

treatment (Emelko et al., 2011; Mapulanga and Naito, 2019; Sing et al., 2017). Various authors 

have evaluated nature-based solutions in a watershed or river basin context and compared these 
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green solutions in terms of their effectiveness with downstream grey treatment facilities (e.g., 

Bastrup-Birk & Gundersen, 2004; Warziniack, et al., 2017).  

 

Among the various upstream land protection options, forested land plays a rather unique role in 

the provision of ecosystem services. Through its roots structure, healthy forest land provides 

natural filtration, retains and stores nutrients and other contaminants in the soil, and as such 

maintains or improves receiving water quality (Clark et al., 2000; Guo et al., 2001; Tong and Chen, 

2002; Jussy et al., 2002; Bastrup-Birk and Gundersen, 2004; Schelker et al., 2012). Healthy forests 

also regulate hydrology through various processes including increased infiltration, which increases 

soil moisture, recharges aquifers, and often leads to gradual release of water throughout the year  

 (Mastrorilli et al., 2018). By accounting these forest ecosystem services into integrated watershed 

management planning, policy and decision-makers can evaluate the costs and benefits of both grey 

and green infrastructure, which will be essential for future investment (Pan and Brouwer, 2021). 

 

There is an emerging body of literature focusing on the interrelationship between healthy forested 

watershed area, the costs of drinking water treatment (e.g. Ernst et al., 2004; Abildtrup et al., 2013; 

Honey-Rosés et al., 2013; Lopes et al., 2018; Das et al., 2019; Westling et al., 2020), and the non-

market valuation of the ecohydrological functions of forests (e.g. Ojea and Martin-Ortega, 2015). 

Understanding of the complicated causal relationships between green infrastructure and local 

water contamination problems and their economic implications is still rather limited (Ovando and 

Brouwer, 2019). This study provides new insights into the interrelationship between land cover 

and water treatment costs proxied by water rates and adverse treated drinking water quality 

incidents (AWQIs). Spatial regression models are estimated, accounting for potential endogeneity 
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between AWQIs and the water rates paid by households. Depending on the type and number of 

AWQI, this may lead to increased efforts to improve drinking water treatment to ensure treated 

water quality and public health protection. In some cases, this may in turn result in higher water 

rates over the longer termand reduce the occurrence of AWQIs. Here, we use geo-referenced 

drinking water data from a drinking water survey conducted in the most densely populated 

province in Canada (Ontario)  and link this to provincial land cover maps. Ontario is densely 

populated along its southern borders with the U.S., but also rich in water and forest, especially in 

the areas upstream of the more urbanized parts in the south of the province. First, we examine the 

relationship between land cover and water rates as a proxy for treatment costs and show that the 

share of forested land is significantly correlated with water rates when we account for potential 

spatial spillover effects in spatial lag and spatial error regression models. Secondly, we regress 

land cover on AWQIs, accounting for possible endogeneity between the AWQI and the water rate 

by including the latter as an instrumented variable and find that the share of forested land cover is 

also significantly associated with the reported incidence rates. 

 

The remainder of this paper is organized as follows. Section 2 first describes the econometric 

modelling framework. This is then followed by a presentation of the collected data in this study to 

estimate the econometric models in Section 3. Results are presented in Section 4, and conclusions 

are drawn in the final Section 5. 

 

3.2 Econometric modeling framework 

The modelling framework developed in this study builds upon Abildtrup et al. (2013), who 

regressed available water rates on a combination of water treatment characteristics Xi and land 
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cover characteristics Zi in the watersheds where the water treatment facilities’ sources for drinking 

water are located. A similar spatial econometric model is used here, where we test and account for 

spatial lags and/or spatially correlated errors, due to possible spatial spillover effects from areas 

neighboring the specific location where the water treatment takes place. The first null hypothesis 

we test in this study is that a significant negative correlation can be found between the share of 

forested land cover Zi in the treatment unit i and the water rate Pi: 

 

𝐻0
1 : 

𝜕𝑍

𝜕𝑃
< 0           (1) 

 

A higher degree forested watershed area that serves as green, natural resource-based water 

treatment infrastructure was expected to correspond to lower treatment costs that are reflected in 

water rates. 

 

New in this study is that we estimate the relationship between the water rate, treatment 

characteristics (e.g. source water intake types) and land cover characteristics as a first stage model 

and then relate this to the number of AWQIs in the same water treatment areas in a second stage 

model, accounting for potential reverse causation between water rates and drinking water 

incidence rates. A higher water rate implies a higher probability of treatment capacity that is able 

to effectively reduce the number of incidence rates, while vice versa a higher incidence rate may 

result in higher treatment costs, for example due to additional treatment effort, which in turn is 

expected to increase water rates. For this reason, the water rate explained in the first stage model 

is included as an instrumented variable in the second stage model to explain variations in AWQIs 

across treatment areas. The second hypothesis tested in this study is that a significant negative 
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correlation also exists between the share of forested land cover Zi in the treatment unit i and 

AWQIs Ii: 

 

𝐻0
2 : 

𝜕𝑍

𝜕𝐼
< 0           (2) 

 

A higher forested watershed area  can be considered analogous to green water treatment 

infrastructure (Ernst et al., 2004)5. Thus, it is also expected to reduce the number of AWQIs in a 

treatment unit due to the provision of natural pre-treatment that results in water quality 

improvement, widely understood in the water and forest management industry (Emelko and Sham, 

2014) and demonstrated in practice (e.g., Ernst et al., 2004; Westling et al., 2020). 

 

We furthermore extend the initial cross-sectional data analysis to a panel or cross-sectional 

longitudinal data analysis by also considering reported drinking water incidents in the past as 

possible drivers behind current water rates and incidence rates. The econometric modelling 

framework is visualized in Figure 1. 

 

 
5 Ernst et al. (2004) also suggest a non-linearity between forest land covers and water treatment cost. The results 

highlight that once reaching a potential cut-off point, the further forest land covers no longer reduce water treatment 

costs significantly. 
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Figure 3-1 Visualization of the econometric modelling framework 

 

The associated modeling structure, estimated in two steps, can be specified as shown below. In a 

first step, we define the first stage model:  

 

log (𝑃𝑖) = 𝑊𝑗
𝛼𝛼 + 𝑋𝑖𝛽 + 𝑍𝑖𝛾 + 𝛿𝐼𝑖,𝑡−1 + 𝜖       (3) 

 

where Pi is the water rate in treatment unit i, Wα is the spatial lag term, accounting for spatial 

spillover effects in the dependent variable from neighboring treatment units j, Xi represents the 

treatment characteristics (e.g. source water intake types) in unit i, Zi the land cover characteristics 

in unit i, and It-1 the number of AWQIs in the previous year. 𝛼, 𝛽, 𝛾 and 𝛿 are the coefficient 

estimates associated with W, X, Z and It-1, respectively. Note that the number of AWQIs in the past 

It-1 is assumed to be an independent exogenous factor influencing the water rate in year t by 

increasing the water treatment costs, but not the number of AWQIs in the next year, thereby 

satisfying the restriction condition in the instrumental variable regression analysis. For this, we 

use the number of lead-related incidents, which are associated with treated water distribution 

system pipes (i.e., from leaded-brass fixtures, solder used to join pipes prior to 1990, and pipes in 
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homes built before the mid-1950s) that corrode and breakdown, leading to lead (Pb) release to 

treated drinking water. Thus, lead-related AWQIs have no relationship to watershed land cover. 

An important assumption is that further water treatment efforts will be translated into higher 

drinking water rate increments and affect treated water quality in the same year. This assumption 

is perhaps too strong if the water treatment improvement requires substantial modifications in the 

treatment infrastructure instead of treatment operation only. Moreover, annual water rates are 

usually fixed administratively following laws and regulations, and hence less flexible to capture 

changes in treatment costs as assumed here. In our model specification, we assume that the water 

rate serves as a proxy for treatment costs and we test to what extent the water rate in a particular 

year influences the AWQI rate in that same year.  

 

The spatial error term 𝜖  accounts for unobservable spatial spillover effects from neighboring 

treatment units and is defined as: 

 

𝜖 = 𝑊𝑗
𝜆𝜆 + 𝑢, with 𝑢~𝑖𝑖𝑑(0, 𝜎2)       (4) 

 

where lambda is the coefficient on the spatially correlated errors and u the residual error, assumed 

to be independent and identically distributed with a mean value of zero and variance equal to sigma 

squared.  

 

In a second step, we define the incidence rate model, where the dependent variable P from the first 

step (water rate) is the instrumented variable: 
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Ii,t = 𝑊𝑗
𝛼𝛼 + 𝑋𝑖,𝑡𝛽 + 𝑍𝑖,𝑡𝛾 + 𝑃𝑖,𝑡𝜑 + 𝜏      (5) 

 

In equation (5), Ii,t is the number of drinking water incidents (AWQIs) in a specific year t in 

treatment unit i, Wα is as before the spatial lag term, X represents the water treatment 

characteristics, and Z the land cover characteristics. 𝛼, 𝛽, 𝛾 and 𝜑 are the coefficient estimates 

associated with W, X, Z and P respectively. The spatial error term 𝜏 accounts for unobservable 

spatial spillover effects from neighboring treatment units and is defined as before in equation (4): 

 

𝜏 = 𝑊𝑗
𝜆𝜆 + 𝑣, with 𝑣~𝑖𝑖𝑑(0, 𝜎2)      (6) 

 

For both models, the Moran eigenvector method is used in the software package R to estimate the 

vector of eigenvalues 𝜆 in the error term (Dray et al., 2006; Griffith & Peres-Neto, 2006). The 

Moran’s eigenvector minimizes the Moran’s index, indicating spatial autocorrelation, and these 

eigenvectors are included in both models to filter out spatial spillover effects and identify the 

appropriate spatial regression model for our analysis. The spatial lag across neighboring treatment 

units is based on their common boundaries, after which variables are created describing the 

proportions of different land cover and land usages for all neighboring treatment units. Water rates 

and all other independent factors except the land cover variables (which are expressed as shares in 

each treatment unit) are converted into their natural logarithm to improve the model fit in an OLS 

regression model in the first stage, whereas the number of drinking water incidents in the second 

stage are assumed to follow a Poisson distribution in a count data regression model. 
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3.3 Data 

The data used to estimate the spatial econometric models originate from multiple sources. The 

most important data source is the 2017-2018 Ontario Drinking Water Quality and Enforcement 

database (Ministry of the Environment, Conservation and Parks Ontario, 2019). In line with its 

monitoring responsibility and to ensure compliance with Ontario's drinking water laws, the 

provincial Ministry of the Environment, Conservation and Parks publishes this database every year 

online. The dataset contains records of all AWQI events that occurred in the province of Ontario 

in a particular fiscal year, in this case from 1 April 2017 until and including 31 March 2018 

(n=6,698). Only one year was chosen because changes in land cover are only available every 10 

years in Ontario. AWQI events are recorded when water samples submitted by the water treatment 

system owners fail existing water quality standards. For each record, the dataset indicates (1) the 

location and municipality where the event took place, (2) the type of water treatment facility, (3) 

the start and end date of the reported AWQI, and (4) the cause and type of AWQI. Here, we only 

examine incidents that might be linked to surrounding land cover (e.g. forest, water) and land cover 

such as agriculture, rrecently disturbed land or urban residential areas, and that are associated with 

a municipal water treatment facility. The latter criterion ensures that the reported AWQI in a 

municipality can be directly linked to the municipal treatment facility. Reported AWQI in 

municipalities that buy their drinking water from treatment facilities in other municipalities 

(n=207) are therefore excluded from the analysis here6. Lead-associated AWQIs comprised the 

majority (> 60%) of reported incidents (n=4,080). They were excluded from the analysis, as were 

 
6 Information about which municipalities have and which municipalities do not have their own treatment plants in 

Ontario is retrieved from online municipal websites. If a municipality does not have its own treatment facility, it 

typically purchases its drinking water from water providers in other municipalities. 
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operational failures like loss of power or pressure (n=451). AWQIs related to well supplies were 

also excluded (n=981) because groundwater does not typically require treatment beyond 

disinfection unless there are specific sources of natural (typically geologic) or anthropogenic 

contamination. The removal of these 5,719 observations from the 2017-2018 Ontario Drinking 

Water Quality and Enforcement database results in a much smaller dataset containing 979 

observations only. The types of incidents remaining in the database and constituting the dependent 

variable in the second stage model (equation (5) in the previous section) are defined in the appendix 

to this paper. A map of the study areas, called census sub-divisions by Statistics Canada, in the 

province Ontario for which the number of incidents were reported over the period 2017-2018 is 

presented in Figure 2. Census sub-divisions (CSD’s) are defined by Statistics Canada as the highest 

spatial resolution areas, usually corresponding to a municipality, at which census data and 

population statistics are available. 

 

It should be noted that school boards are disproportionately represented in the data set because of 

concerns regarding lead. Since 2017-2018, Ontario school boards are obliged to submit water 

samples. During the fiscal year 2017-2018 all Ontario childcare and public schools were requested 

to submit their water samples for further testing. This increased the database’s sample size 

substantially compared to previous years. The overall number of incidents more than doubled from 

around 2,000 in the fiscal year 2016-2017 to more than 5,000 in 2017-2018. In our analysis, we 

will also use the number of incidents reported in the fiscal year 2016-2017, but we expect that 

some degree of selection bias may have played a role in previous years before the new mandatory 

reporting rule was enforced. Without the new mandatory reporting rule, municipalities with a 
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higher water safety awareness are expected to be more likely to conduct a water quality test and 

report incidents.  
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Figure 3-2 Map of the census sub-division study areas in the province Ontario in Canada included in the dataset with their total number 

of drinking water incidents (left-hand side) and average water rates (right-hand side) in the fiscal year 2017-2018 
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A second important information source is the Ontario Financial Information Return (FIR) database 

(Ministry of Municipal Affairs and Housing Ontario, 2018). The FIR is a tool used by the 

provincial Ministry of Municipal Affairs and Housing to collect financial and statistical 

information from municipalities. It is a standard annual reporting requirement. For the fiscal year 

2017-2018, the number of households within the municipalities and the total length of the drinking 

water transmission pipes in each municipality were extracted from the database. However, data 

about the latter are not provided for all municipalities and the municipalities with missing values 

(less than 10%) for this variable are dropped from the analysis. 

 

The average annual water rate per household in each municipality was also collected. Under the 

2001 Ontario Municipal Act, municipalities can impose fees and charges for different public 

services, including municipal water supply. Water rate information is publicly available online, 

while a telephone survey was used to follow up with municipalities for which the relevant 

information was missing. In this telephone survey, municipalities were asked for information about 

the water rate structure in their townships for the 2017-2018 fiscal year. Due to differences in the 

structure of water rates, where some municipalities relied on a flat rate instead of a metered 

volumetric rate, the latter was converted into a total water bill based on available information about 

average household water consumption (Statistics Canada, 2019). 

 

Finally, the data above were linked to the publicly available 2016 Ontario Land Cover Compilation 

v.2.0 Geographical Information System (GIS) published online by the Land Information Ontario 

(2016). This spatial database includes 26 land cover classes and has a spatial pixel resolution of 
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15 meters. Based on this dataset, we computed (1) the size of each municipality (in km2) and (2) 

the share (%) of land in each municipality covered by (a) forest, (b) shrub, (c) agriculture, (d) urban 

area, (e) open water, (f) heath, and (g) forest that was recently harvested (referred to as disturbed). 

All these information are calculated by the summarize within function from the ArcGIS pro.  

 

The summary statistics for the main variables in the model estimation are presented in Table 1. All 

the data presented in Table 1 refer to the fiscal year 2017-2018. The total number of observations 

is 154, meaning that we were able to extract data points for 154 CSD’s for which we have full 

information to estimate the presented econometric models in Section 2. Some rural regions are 

excluded from the analysis, given the fact that they are importing water from neighboring regions. 

After excluding these systems, the average municipal area was 374 km2. While it is recognized 

that utilization of catchment area rather than municipal boundaries would be preferable, the water 

treatment plant intake location data that would be required for this analysis were not available, 

thereby precluding it. 

 

Table 3-1 Summary statistics for the municipalities (census sub-divisions) included in the data set 

over the fiscal year 2017-2018 

Variable Mean St. Dev. Min Max N 

Municipal area (km2) 534.58 686.01 1.77 3,621.89 154 

Transmission Pipe Length(km) 353.4 989.46 4 8386 154 

Number of households (103) 30.95 111.55 0.17 1,193.73 154 

Annual household drinking water 

rate (Canadian Dollars) 

638.86 232.12 214.20 1,560.00 154 

Share using only surface water (%) 0.604 - 0 1 154 

Total number of AWQIs per 

municipality1 

6.35 15.71 1.00 130.00 154 

Microbiological AWQIs per 

municipality 

 3.56

  

10.66 0.00 119.00 154 
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1 All incidents as defined in the appendix of the paper.  
2 Land that was deforested over the last 10 years, either through land burning or cutting. 

 

The average number of all different types of AWQIs per municipality as reported in the appendix 

to this paper was 6, varying from once per year to as many as 130 incidents across one municipality 

in one single year. Inorganic and organic drinking water contamination incidents were 

considerably lower compared to other incidents and microbiological incidents. The former include 

turbidity incidents which make up only 1% of all AWQIs. Average annual water rates also vary 

considerably across municipalities, with an average of 639 Canadian dollars per household over 

the year 2017-2018. The ten most expensive water rates were typically found in remote rural 

regions of Ontario; they ranged between $1,040 and $1,560 per household per year. Excluding 

these highest water rates, the adjusted mean was substantially lower at $598 per household per 

year. 

 

Inorganic chemical AWQIs per 

municipality 

0.03 0.32 0.00 4.00 154 

Organic chemical AWQIs per 

municipality 

0.10 0.49 0.00 4.00 154 

Other AWQIs per municipality 2.66 8.59 0.00 98.00 154 

Previous year number of lead 

incidents per municipality 
4.75 13.08 0 119 154 

Urban land area (%) 0.106 0.182 0.000 0.913 154 

Cultivated land area (%) 0.272 0.280 0.000 0.885 154 

Forested land area (%) 0.383 0.256 0.012 0.876 154 

Shrub land area (%) 0.083 0.079 0.000 0.326 154 

Disturbed land area (%)  0.012 0.031 0 0.140 154 

Open water area (%) 0.069 0.088 0.000 0.626 154 
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3.4 Results 

3.4.1 First Stage Model 

The results from the first-stage model are presented in Table 2. Five different models are presented 

to explain the observed variation in drinking water rates across 154 municipalities in Ontario. A 

simple OLS regression model was used and then gradually extended to account for possible spatial 

autocorrelation surrounding drinking water rates and previous incidents with drinking water 

quality. The changes in goodness of fit between the estimated models are evaluated using an F-

test, except for the first two models for which this could not be done due to the different number 

of observations. The test results help to assess to what extent spatial autocorrelation either in the 

deterministic or stochastic component of the estimated models and previous drinking water 

incidents help improve the first-stage OLS model. The OLS model was first extended with a spatial 

error term to capture unobserved spatial autocorrelation between neighboring water treatment units 

(municipalities) in Model II, then with a spatial lag term and converted to a spatial autoregressive 

Model III, and with both a spatial error and spatial lag term in the fourth model (Model IV). The 

number of lead-related drinking water incidents in the previous year was then added into the fifth 

model (Model V), combined with the spatial lag and spatial error. The last model (Model VI) tests 

nonlinearity associated with forested land cover by adding a quadratic term for this key variable 

in surrounding land cover of the treatment unit self and in the spatial lag terms. In every model we 

test the first hypothesis in this study, i.e. whether or not forested land cover significantly affects 

the observed variation in water rates, and if so, in which direction and by how much. The number 

of observations drops from 154 to 123 when including the spatial lag term in the baseline OLS 

model because this term can only be created for the 123 municipalities that share a border with 

each other. The spatial lags are calculated based on neighboring land cover, using a queen 
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contiguity weighting matrix. This weighting matrix was considered most appropriate for the 

models presented here because it describes the relationship between locations using edge and 

corner contiguity (Anselin and Rey, 2014). If location i is adjacent and directly tangent to the 

location j, the matrix element (wi,j) in the spatial lag term W in equation (3) has the value 1, if this 

is not the case, the element has the value 0.  
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Table 3-2 Estimated first-stage models explaining annual drinking water rates across the province of Ontario, Canadaa 

 Model I Model II Model III Model IV Model V Model VI 

Explanatory factors 
OLS 

 
Spatial Lag (SL) Spatial Error (SE) 

SL and SE 

 

SL and SE and 

previous incidents  

SL and SE and 

previous incidents and 

quadratic forest cover 

Constant 6.595*** 6.728*** 6.658*** 6.635*** 6.606*** 6.592*** 

 (0.096) (0.190) (0.119) (0.194) (0.196) (0.119) 

       

Area size (km2) 0.087** 0.124*** 0.101** 0.108** 0.105** 0.128*** 

 (0.040) (0.046) (0.044) (0.046) (0.046) (0.047) 

       

Number of households 

(1000’s) 
-0.091*** -0.110*** -0.083*** -0.088*** -0.074*** -0.107*** 

 (0.017) (0.022) (0.024) (0.025) (0.028) (0.027) 

       

Surface water intake (dummy 

1=surface water, 0= 

groundwater) 

0.022 

(0.055) 

-0.036 

(0.065) 

-0.037 

(0.062) 

-0.046 

(0.065) 

-0.040 

(0.065) 

-0.024 

(0.067) 

       

Surrounding land cover       

Share built area (%) -0.004** -0.004** -0.004* -0.005** -0.005** -0.005** 

 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

       

Share forest land (%) -0.002 -0.004** -0.003** -0.004** -0.004** -1.407** 

 (0.001) (0.002) (0.002) (0.002) (0.002) (0.559) 

       

Square of share forest land 

(%) 
     

0.363 

(0.470) 

       

       

Share shrub land (%) 0.003 0.0001 0.003 0.001 0.001 -0.0005 

 (0.004) (0.005) (0.004) (0.005) (0.005) (0.005) 

       

Share open water (%) 0.001 -0.0002 0.0002 0.001 0.001 0.001 

 (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) 
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Share disturbed land (%) 0.005 0.013 0.005 0.010 0.010 0.015 

 (0.009) (0.010) (0.009) (0.010) (0.010) (0.010) 

     

Spatial lags (influence of adjacent neighboring treatment units) 

 
 

 
 

 

Share built area (%)  -0.003  -0.002 -0.001 -0.003 

  (0.005)  (0.005) (0.005) (0.005) 

       

Share forest land (%)  -0.0001  0.001 0.001 -0.138 

  (0.002)  (0.002) (0.002) (0.561) 

       

Square of share forest land 

(%) 
     

-0.403 

(0.437) 

       

       

Share shrub land (%)  0.009  0.011* 0.011* 0.007 

  (0.006)  (0.006) (0.006) (0.006) 

       

Share open water (%)  -0.005  -0.005 -0.005 -0.006 

  (0.004)  (0.004) (0.004) (0.004) 

       

Share disturbed land (%)  -0.001  -0.003 -0.003 -0.003 

  (0.011)  (0.011) (0.011) (0.011) 

Model characteristics       

Spatial lag No Yes No Yes Yes Yes 

Spatial error No No Yes Yes Yes Yes 

Previous incidents No No No No Yes Yes 

Summary statistics       

R2 0.214 0.282 0.270 0.309 0.315 0.300 

Model’s own F-test statistic 4.949***  3.286***  4.137***  3.190***  3.051*** 2.645***  

Degrees of freedom (k;n-k) (8; 145) (13; 109) (10; 112) (15; 107) (16; 106) (17:105) 

F-test statistic between 

modelsa 
 -b 0.60 1.22 0.97 

0.626 

Number of observations 154 123 123 123 123 123 
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Notes: both the dependent and independent variables are converted into their natural logarithmic form except the land cover variables for ease of interpretation. Standard errors are 

presented between parentheses. Degrees of freedom: k refers to the number of parameters and n the number of observations.  
a The F-test statistic between models refers to the difference between the model in whose column the test is reported and the model in the previous column.  
b 

The F-test statistic cannot be calculated due to different numbers of observations between columns. 
*p<0.1; **p<0.05; ***p<0.01 



 

64 

The model fit gradually improves when we account for spatial correlation captured in the stochastic 

and deterministic parts of the models and additionally include control for the effect of drinking 

water incidents in the past, as indicated by increasing coefficient of determination (R2) in Table 2. 

However, none of the improvements were statistically significant, as indicated by the F test 

statistics between models. The last model in which we account for AWQIs in the previous year 

has the highest explanatory power and is therefore considered the best fit model in the first stage 

of analysis. This model explains most of the variation in drinking water rates. The inclusion of a 

higher order of forest land cover to test for possible turning points does not yield any significant 

results and does also not improve the model’s goodness of fit. 

 

The constant terms are highly significant in all 6 models and consistently exhibit similar coefficient 

estimates. Interestingly, the first null hypothesis is confirmed in every spatial regression model in 

Table 2, but not in the first OLS model, and the coefficient estimate for the share of forested land 

is fairly constant across all first five models, varying between -0.003 and -0.004. The differences 

in coefficient estimates between the models are not statistically significant. Agricultural land cover 

is the baseline category for the different types of land cover. The coefficient estimates therefore 

have to be interpreted as compared to agricultural land. Accounting for the semi-logarithmic 

functional form of the estimated models, the negative coefficient estimates for forest cover imply 

that if the share of forest cover increases by 1 percent in a municipality in Ontario compared to 

agricultural land, the average drinking water rate per household is reduced by 0.3% to 0.4% per 

year. Compared to the sample’s average annual water rate of $639 per year, this seems negligible. 
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However, multiplied over all households in Ontario in 2016 with access to municipal water 

sources7, this amounts to a reduction of around $9 to 12 million on an annual basis.  

 

Except for the share of urban land cover, none of the other land cover variables significantly 

influences the average water rates. The negative sign for urban land cover is in line with the 

negative sign for the number of households served in the treatment units, and suggests significant 

economies of scale in urban areas with higher population densities, as commonly recognized in 

the water industry. Examining the influence of land cover in neighboring areas, only a spatial 

spillover effect can be detected for the share of shrub lands in the last two models at the 10% 

significance level. The positive sign suggests that a higher share of shrub lands in neighboring 

areas results in a higher water rate, all else being equal. The same positive effect is found for the 

share of shrub lands inside the water treatment unit, but this direct effect of shrub lands on the 

water rate in one and the same treatment area is not statistically significant. In their study covering 

95 departments in France, Fiquepron, Garcia, and Stenger (2013) found that shrubland has a 

significant impact on water quality and indirectly also on water prices. Also the share of disturbed 

land and the area of open water does not influence the water rates. The spatial lag term for land 

disturbance is not significant either. Previous research by Futter et al. (2016) highlights that 

treatment costs can go up considerably due to the increased discharge of nutrients and other 

chemicals after forest logging. The share of disturbed land has, as expected, a positive effect on 

the water rate, but the effect never becomes statistically significant in any of the estimated models. 

 

 
7 The total number of households in Ontario in 2016 was 5,169,000 (Government of Ontario, 2021), of which 89 

percent is connected to municipal water sources (Statistics Canada, 2017). 
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Turning to the characteristics of the treatment unit, i.e. the size of the service area, the number of 

households served, and the source water types, only the first two play a significant role in 

explaining the variation in water rates. Although water treatment costs are generally expected to 

be lower if groundwater is used as the source of drinking water, no significant effect of the water 

source on the water rate can be detected in any of the estimated models. The area size has a 

relatively small positive effect on the water rates, most likely because of the increasing water 

infrastructure and supply costs when covering a larger service area, whereas the number of 

households has, as mentioned, a significant negative effect and suggests economies of scale. The 

number of households refers to the households living in each municipality and proxy the number 

of households served by water treatment plants. Information was also available about the length 

of the pipes to distribute the water to the households, but this variable was highly correlated with 

the area size and the number of households, and therefore omitted from the regression analysis 

here to avoid multicollinearity. Moreover, rural regions tend to have more frequent hybrid water 

systems, where households also have their own water well, but no data are available to account for 

this.  

 

3.4.2 Second stage model 

The results of the second-stage model are presented in Table 3. The second-stage model is a 

Poisson count model that is estimated using maximum likelihood regression techniques, where the 

dependent variable is the number of AWQIs as defined in the appendix to this paper that are 

expected to be related to land cover across the same 154 municipalities in Ontario. As before, 

different model specifications are used to statistically test the role of spatial autocorrelation and 

the incremental explanatory power of the instrumental variable model in the last column. First, the 
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maximum likelihood estimated (MLE) Model VII is converted into a spatial lag model (Model 

VIII), followed by the spatial error Model IX. The number of observations for the spatial error 

model drops, as before, because of the omission of study areas that are not spatially connected. 

Model X is a combined spatial lag and spatial error model, and finally Model XI is the instrumental 

variable (IV) spatial lag-spatial error model, while Model XII is the same IV model including also 

quadratic terms for forest land cover to account for possible nonlinearity in the relationship 

between forest cover and AWQIs. 
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Table 3-3 Estimated second-stage Poisson regression models explaining the incidence rate of adverse drinking water events across the 

province of Ontario, Canadaa  

 Model VII Model VIII Model IX Model X Model XI Model XII 

Explanatory factors 

Maximum 

Likelihood 

Estimation (MLE) 

 

MLE 

Spatial Lag (SL) 

MLE 

Spatial Error 

(SE) 

MLE 

SL-SE 

Instrumental 

variable 

(IV)MLE 

SL-SE 

IV-MLE 

SL-SE-and quadratic 

land cover 

Constant 0.985 0.940 -0.252 0.382 6.677** 7.227*** 

 (0.956) (1.074) (1.062) (1.118) (2.819) (2.782) 

       

Annual water rate 0.009 0.025 0.176 0.116 -0.814** -0.880** 

($/household/year) (0.139) (0.152) (0.154) (0.159) (0.415) (0.410) 

       

Area size (km2) 0.023 0.085* -0.018 0.065 0.141** 0.085 

 (0.045) (0.049) (0.048) (0.050) (0.060) (0.062) 

       

Number of households 

(1000’s) 
0.561*** 0.600*** 0.586*** 0.573*** 0.513*** 0.547*** 

 (0.027) (0.031) (0.034) (0.034) (0.039) (0.039) 

       

Surface water intake (dummy 

1=surface water, 0= 

groundwater) 

-0.086 

(0.085) 

0.039 

(0.096) 

-0.103 

(0.096) 

0.055 

(0.099) 

0.009 

(0.101) 

0.003 

(0.100) 

       

Surrounding land cover  

Share built area (%) -0.021*** -0.020*** -0.020*** -0.018*** -0.022*** -0.022*** 

 (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) 

       

Share forest land (%) -0.012*** -0.011*** -0.010*** -0.010*** -0.013*** -0.014*** 

 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 

       

Square of share forest land (%)      -2.463*** 
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       (0.650) 

       

Share shrub land (%) -0.020*** -0.013** -0.021*** -0.014** -0.012* -0.017** 

 (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) 

       

Share open water (%) 
-0.0004 -0.002 -0.004 -0.004 -0.005 -0.010 

 (0.005) (0.006) (0.006) (0.006) (0.006) (0.007) 

       

Share disturbed land (%) 0.003 -0.025* 0.006 -0.021 -0.013 -0.036** 

 (0.013) (0.015) (0.013) (0.015) (0.014) (0.016) 

Spatial lags (influence of adjacent neighboring treatment units)     

Share built area (%)   
-0.044*** 

(0.007) 
 

-0.040*** 

(0.008) 

-0.048*** 

(0.008) 

-0.050*** 

(0.008) 

       

Share forest land (%)  -0.007**  -0.007** -0.008** -0.010*** 

  (0.003)  (0.003) (0.003) (0.003) 

       

Square of share forest land (%)      -0.347 

      (0.699) 

       

Share shrub land (%)  
-0.013 

(0.009) 
 

-0.016* 

(0.009) 

-0.019* 

(0.010) 

-0.021** 

(0.010) 

       

Share open water (%)  0.009  0.012** 0.012** 0.018*** 

  (0.006)  (0.006) (0.006) (0.006) 

       

Share disturbed land (%)  0.089***  0.067*** 0.067*** 0.074*** 

  (0.014)  (0.016) (0.016) (0.016) 
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Model characteristics       

Spatial lag No Yes No Yes Yes Yes 

Spatial error No No Yes Yes Yes Yes 

Previous incidents No No No No Yes Yes 

Summary statistics       

Log Likelihood -475.128 -366.595 -389.025 -361.961 -360.350 -353.025 

LR testa  -c 44.86*** 54.13*** 3.224*** 17.023*** 

AIC 972.256 765.190 804.051 759.923 756.699 744.051 

Number of observations 154 123 123 123 123 123 
Notes: Standard errors are presented between parentheses. MLE is the maximum likelihood estimator, AIC is the Akaike Information Criterion and LR is the 

Likelihood Ratio test statistic. 
a The list with incidence categories used in the regression analysis is presented in the appendix. 
b The LR test statistic refers to the difference between the model in whose column the test is reported and the model in the previous column. The degrees of 

freedom for the 3 LR test statistics are the same as in Table 2.  
c 

The LR test statistic cannot be calculated due to different numbers of observations between columns. 
*p<0.1; **p<0.05; ***p<0.01 
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The instrumented variable in Model X is the annual household drinking water rate from the 

first stage-model. This variable is included as an independent regressor in Models VII-X and 

is estimated simultaneously using two-stage least squares (2SLS) regression in Model XI and 

XII. The coefficient estimate is only negative and statistically significant in the IV models XI 

and XII. This confirms our a priori expectation: the drinking water rate influences the number 

of AWQIs, where municipalities with higher water rates face significantly lower incidence 

rates. Examining the explanatory power of the spatial econometric models in Table 3, both the 

AIC and log-likelihood function show that model XII with the instrumented water rate and 

quadratic term for forest cover has the highest explanatory power. Although the differences in 

the log-likelihood function between models VIII, X, XI and XII are small, the LR test results 

show that they are statistically significant. The quadratic term in the last model is significant 

at the 1 percent level and negative, like the significant linear term, reinforcing that the effect is 

not constant and levels off as the share of forest cover increases. A higher forest cover 

compared to agriculture (the baseline category) results all else equal in a reduction in drinking 

water incidence rates, confirming the second hypothesis, but the extent to which this is the case 

depends on the amount of forest cover. 

 

The spatial error model IX has a considerably lower fit than the other three spatial econometric 

models, including the IV models XI and XII. This is due to the inclusion of the spatial lag 

terms in the other models. These spatial lags are, somewhat contrary to the results in Table 2,  

highly significant for most of the land cover variables across all model specifications. The 

coefficient estimates are furthermore in most cases not significantly different from each other 



 

72 

 

across the model specifications, indicating that they are robust. The share of forest cover has a 

significant negative effect in all models, as well as the share of shrubland and urban area. In 

view of the fact that a Poisson regression models the log of the expected count as a function of 

the predictor variables, a 1 percent increase in forest land results, all else being constant, 

compared to agricultural land cover in an almost equal reduction of 1 percent (0.99%) in the 

likelihood of an adverse drinking water event based on the linear model specifications in Table 

3. 

 

Although the share of disturbed land in neighboring areas consistently has, as expected, a 

significant positive influence on the number of AWQIs, the share of disturbed land in the 

treatment area self is significant and negative in two of the four models including spatial lags 

(models XIII and XII). Hence, compared to agricultural land cover, disturbed land is associated 

with fewer drinking water incidents in the treatment area self, whereas the reverse relationship 

is found in neighboring treatment units. The negative coefficient for the impact of land 

disturbance in the treatment area is half the size of the same coefficient in the surrounding area, 

suggesting that land disturbance in adjacent regions may outweigh the negative effect on 

AWQIs in the treatment area self. Also the share of open water in neighboring areas has a 

positive effect on the number of AWQIs compared to agricultural land. The coefficient 

estimates for the share of open water in the treatment area self are all negative, but not 

significant. The share of forest and shrubland cover and built area in neighboring treatment 
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units all have a significant negative effect on the number of incidents. No significant quadratic 

effect exists for forest cover in neighboring areas. 

 

Following Lopes et al. (2019), the land cover variables were also interacted with the source of 

water intake for drinking water (surface or groundwater), but these interaction terms did not 

yield any significant results and are therefore not included in the models shown in Table 3. As 

in Table 2, the water source is not statistically significant in any of the estimated models.  

Finally, the area size of the treatment unit is only significant and positive in the spatial lag and 

IV models (VIII and XI), while the number of households served in the treatment units is 

consistently significant and positive across all model specifications. These findings are as 

expected. The larger the area size and the more households served, the higher the risk of an 

adverse event, all else constant. 

3.5 Conclusion 

There is growing interest in the role of nature-based solutions such as forested watersheds in 

water supply security under increasing pressures such as climate change. In this paper, we tried 

to assess whether such a relationship can be established using existing public data sources 

between the water rates households pay as a proxy for water treatment costs and the land cover 

surrounding drinking water intake across 154 different municipalities in Ontario, Canada. 

Ontario has an abundance of 71 million hectares of forest, 17 percent of all the country’s forest 

land. On average, there are 6.5 hectares of forest for every citizen of the province (Ministry of 

Natural Resources and Forestry, 2021). Besides being one of the first applications in Canada, 
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new in this study is the modelling framework in which we combine a spatial econometric and 

instrumental variable model to account for possible spatial spillover effects of neighbouring 

land cover and drinking water rates and potential reverse causation between drinking water 

rates and drinking water incidences. The focus on drinking water incidence rates is also new. 

By gradually extending and step-wise testing the first-stage and second-stage models to 

account for these challenges, we show that this new modelling framework fits the collected 

data well. Whilst controlling for a limited number of treatment characteristics such as the size 

of the service area and the source of water supply, the share of forest cover systematically 

influences both drinking water rates and incidence rates in a negative way. Hence, the first 

hypothesis of a negative relationship between the share of forest cover and drinking water rates 

is confirmed, as well as the second hypothesis of a negative relationship between the share of 

forested land and drinking water incidence rates. As the share of forest cover increases by 1 

percent in a municipality with its own drinking water supply system, the average drinking 

water rate per household is reduced by around 0.4 percent per year. Aggregated over all 

households in Ontario, this implies a waterbill reduction of approximately 12 million Canadian 

dollars per year.  The same 1 percent increase in forest cover was furthermore associated with 

a similar 1 percent  decrease in the likelihood of experiencing a drinking water incident. In this 

latter case, we detected a nonlinear relationship where the effect seems to wear off as the share 

of forest cover increases. Such a nonlinear effect could not be found in the first stage model. 
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These results have to be interpreted with caution for a number of reasons. First of all, the 

collected data was only available at the level of administrative census sub-divisions across 

Ontario. Although the analysis was restricted to neighbouring geographical units, and 

accounted for spatial spillover effects between these neighbouring units, and many of these 

geographical areas share the same watershed, it was not possible to factor in upstream-

downstream relationships within watersheds between land cover upstream and water and 

incidence rates downstream. This would have required a more detailed spatial analysis with 

more detailed geo-referenced data. The currently available data are not suitable for such a 

spatial analysis at watershed scale. 

 

Secondly, key assumptions underlying the data analysis presented here are that there exists a 

positive correlation between forest cover and water quality, a negative correlation between 

water quality and water treatment costs, and a positive correlation between water treatment 

costs and drinking water rates. The latter assumption seems reasonable given that drinking 

water pricing policies in Ontario since 2015 dictate that municipalities should fully fund the 

costs of their water treatment operations through the revenues obtained from customers paying 

their water bills (Kitchen, 2017). However, the other  assumptions could not be verified in this 

study. Using water treatment cost data across Canada, Price et al. (2017) showed that turbidity 

is a significant determinant of water treatment costs, increasing treatment costs by 0.1 percent 

if the nephelometric turbidity units (NTU) increase by 1 percent (i.e. water quality 

deteriorates). In the study presented here, we were unable to detect a significant relationship 
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between the share of disturbed land, typically resulting in an increase in water turbidity, and 

water rates, and only a significant positive relationship could be found between the share of 

disturbed land in neighboring areas and drinking water incidence rates. Drinking water 

treatment costs are confidential and not publicly available in Canada. Follow-up studies will 

need to show if the same relationships are found when using confidential water treatment costs 

instead of water rates. 

 

Finally, ideally the same analysis would have been performed on longer-term data about land 

cover, drinking water rates, and incidence rates to test the robustness of the results over time. 

Given that land cover data are only updated every 10 years in Ontario, such a time series 

analysis may be challenging. The effects of land-use changes on incidence rates, water 

treatment costs and drinking water rates may only show up after a number of years. Although 

we included information about drinking water incidences reported the year before, one year 

may not have been sufficient to control and manage incidences in the future. 
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Chapter 4 

Economics benefit of the green infrastructure 

4.1 Introduction 

Forests provide essential natural services in watersheds to secure water supply and improve 

water quality (e.g. Creed et al., 2016). In particular, forests can store chemical pollutants and 

thus reduce the total amount of chemical residuals entering water bodies (Emelko et al., 2011; 

Mapulanga and Naito, 2019; Sing et al., 2017). This specific natural function plays a critical 

role in integrated water management (Blackburn et al., 2021). Water treatment facilities have 

been shown to save on water treatment costs costs when located downstream of a forested 

watershed (e.g. Bastrup-Birk & Gundersen, 2004; Warziniack et al., 2017). The water 

provision function of forests furthermore eases water shortages under drought spells, because 

of the ecosystem’s ability to store and recharge water back into the water system. These 

ecosystem functions and processes stabilize the water treatment process for treatment plants 

that directly depend on surface water sources. 

 

There is increasing interest in assessing these natural processes and functions provided by 

forests and their societal and economic benefits (Ojea and Martin-Ortega, 2015; Ovando and 
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Brouwer, 2019), especially the impact of watershed degradation on water treatment costs 

(McDonald et al., 2016). Abildtrup et al. (2013) identified, for example, significant water rate 

reductions related to increasing forest land cover across French municipalities. Water rates 

were used in this study as a proxy for water treatment costs. The latter are generally much 

harder to obtain than the former, especially at individual plant level (Pan et al., 2021). In the 

few existing case studies where land cover could be linked to drinking water costs, treatment 

chemical costs have been observed to be negatively correlated with forests near water treatment 

plants, both in the developed and developing world.  

 

For example, based on data from 37 treatment plants in different ecoregions in the US, 

Warziniack et al. (2017) first examine the effect of changes in land cover on water quality 

through an ecological production function, and then examine the effect of changes in water 

quality on the cost of treatment through an economic benefits function. They show that a 1% 

increase in turbidity increases water treatment costs by 0.19%, and 1% increase in Total 

Organic Carbon increases water treatment costs by 0.46%. Mulatu et al. (2020) skip the first 

step in Warziniack et al. (2017) and link forest cover directly to treatment chemical costs for 8 

urban treatment plants in Ethiopia over a 13 year time period (2002-2014), yielding 104 

observations. Compared to non-forest cover, forest cover contributes significantly to a 

reduction of these costs, but this contribution declines as the buffer distance increases (from 

2.5 to 30 km).  
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The only study in Canada by Price et al. (2017) found a significant impact of turbidity of water 

intake on overall treatment costs, but did not relate turbidity directly to changes in land cover 

or land disturbance. Their results suggested that a landscape disturbance resulting in a 50% 

increase in median turbidity (NTU) would increase short-term treatment cost by 4.95% in the 

average treatment facility based on 944 water treatment facilities across Canada. Land 

disturbance such as severe wildfires in Fort McMurray in northern Alberta, Canada in 2016, 

destroying almost 600 thousand hectares of land, have been shown to result in a significant 

increase of the water treatment chemical costs of 50% or higher (Thruton, 2017). 

 

In this study, we aim to add to the empirical evidence base of studies that try to make a direct 

link between land cover and drinking water treatment costs. We do this based on the Canadian 

Survey of Drinking Water Plants, the same one as used as in Price et al. (2017), but for 2015 

instead of 2011, and focusing not so much on the relationship between water intake quality 

and total treatment costs, but land cover around the individual water treatment facilities using 

different buffers, varying between 1 and 10 km, and different variable and fixed cost 

categories, whilst accounting for the possible influencing effects of the drainage basins in 

which the treatment plants are located, available key characteristics of the treatment facilities, 

including treatment technology, and the served population. Surrounding forest cover as green 

infrastructure is expected to influence both the capital costs in grey infrastructure to treat water 

and chemical treatment costs. The latter relationship has been investigated in the literature 

before, but not the former. Another novelty of this study is the use of spatial econometric 



 

80 

 

models to account for observed and unobserved spatial spillover effects between neighboring 

treatment facilities. 

 

Canada is considered a very suitable case study country here in view of the fact that it is one 

of the most forest and water abundant regions in the world. At the same time, the total drinking 

water treatment costs in 2015 serving over 26 million inhabitants were around 5.3 billion 

Canadian dollars (CAD) (Statistics Canada, 2015). Canada is covered by 347 million hectares 

of forest, which is equivalent to approximately 10% of all forests on the planet (FAO, 2018). 

Lakes and rivers cover about 12% of the country’s surface area (Statistics Canada, 2016). 

These lakes and rivers are under increasing pressure from surrounding land intensification 

including agriculture, mining, industrialization and urbanization. The municipal drinking water 

system in Canada relies almost entirely on surrounding surface waters. Around 88% of all 

potable water is from surface water sources (Statistics Canada, 2021). There is therefore a lot 

of interest in gaining a better understanding of the influence of the surrounding land cover on 

water treatment costs and possible cost savings as a result of land cover change. 

 

4.2 Model 

Different fixed effects models will be presented in this chapter, focusing on the role of land 

cover in explaining (1) the total drinking water treatment costs, and (2) different treatment 

categories making up the total costs, in particular the fixed capital expenditures related to water 

treatment and their variable labour, materials and energy costs. Following previous research 
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(Mulatu et al., 2021), different spatial scales will be used to assess the role of land cover, i.e. 

1, 2, 5 and 10 km radius around the location of the water treatment facility. A key assumption 

here is that the source water used in each treatment facility is located within these radius in 

view of the fact that only the geographical coordinates of the treatment facilities are available 

from the Canadian Survey of Drinking Water Plants (SDWP) (see section 3), not the exact 

location of the source waters feeding the treatment facilities. The models will initially be 

specified using simple Ordinary Least Squares (OLS) regression analysis, and then extended 

to also account for possible spatial spillover effects from landcovers surrounding neighboring 

treatment facilities in a spatial error model (e.g. Abildtrup et al., 2013). All the models 

furthermore account for the fact that the drinking water treatment facilities are located in 

different drainage basins across Canada. These drainage basins represent the network of 

connected rivers and lakes in a particular part of the country that are typically characterized as 

homogeneous in terms of climate, precipitation levels and hydrogeology. We therefore adopt 

a drainage basin fixed-effects model for all models. There are 25 drainage basins across 

Canada, as can be seen in Figure 1 in the next section. 

 

The OLS models specify the relationship between forest land cover and total water treatment 

costs per capita, whilst controlling for a number of additional influencing factors. These other 

covariates are based on key factors identified in previous research (e.g. Abildtrup etc., 2013; 

Price et al., 2017; Mulatu etc., 2021). The inclusion of these additional covariates is meant to 

isolate as much as possible the impact of forest land cover on the water treatment costs so as 
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to minimize omitted variable bias insofar possible based on the available data. The additional 

factors hence aim to explain as much as possible the variation in water treatment costs across 

treatment facilities and include the main characteristics of the water treatment plants such their 

size, capacity and source water type, but also the implemented treatment technologies, and the 

characteristics of their customers. This is specified in model 1, where we assume that these 

factors will linearly influence the natural logarithm of the total water treatment costs per capita: 

 

NatLog(𝑐𝑜𝑠𝑡𝑠 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎𝑖𝑗) = 𝑓𝑜𝑟𝑒𝑠𝑡 𝑐𝑜𝑣𝑒𝑟𝑖𝑗 ∗ 𝛽1 + 𝑜𝑡ℎ𝑒𝑟  𝑙𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟𝑖𝑗 ∗ 𝛽2 +

𝑤𝑎𝑡𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑗 ∗ 𝛽3 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠𝑖𝑗 ∗ 𝛽4 +

 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑐ℎ𝑎𝑟𝑎𝑡𝑐𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖𝑗 ∗ 𝛽5 + 𝜖𝑖𝑗       (1) 

 

The β’s refer to the marginal effects to be estimated for each of the various explanatory factors, 

and the subscript  ij to each individual treatment plant i located in one of the 25 Canadian 

drainage basins j. The error term 𝜖𝑖𝑗 is assumed to be an independent and identically distributed 

(iid) random variable. In the extended spatial error model, this error term accounts for 

unobservable spatial spillover effects from neighbouring treatment facilities and is specified 

as follows: 

 

𝜖𝑖𝑗 = 𝑊𝑖𝑗
𝜆 + 𝑢𝑖𝑗  with 𝑢~𝑖𝑖𝑑(0, 𝜎2)       (2) 
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where W is a sptial weighting matrix, λ the coefficient on the spatially correlated errors and u 

the residual error, assumed to be independent and identically distributed (iid) with a mean 

value of zero and variance equal to 𝜎2. The Moran eigenvector method is used in the software 

package R to estimate the vector of eigenvalues 𝜆 in the error term (Dray et al., 2006; Griffith 

& Peres-Neto, 2006). The Moran’s eigenvector minimizes the Moran’s index, indicating 

spatial autocorrelation, and these eigenvectors are included in the spatial error model to filter 

out spatial spillover effects and identify the appropriate spatial regression model in the 

analysis. 

 

4.3 Data 

The primary data source for this study comes from Statistics Canada’s confidential Survey of 

Drinking Water Plants (SDWP) (Statistics Canada, 2017b). Statistics Canada requires all 

municipal water treatment plants serving more than 300 residents to participate in this survey 

biennially. This setup excludes private water treatment systems and systems serving First 

Nations. The 2015 SDWP was the last year that data were collected at individual treatment 

plant level. The surveys after 2015, i.e. in 2017 and 2019, are collected at the level of 

municipalities. Municipalities that operate more than one plant can aggregate information, like 

costs and amount of water processed, and the summation of responses will therefore make the 

link between surrounding land cover and water treatment costs weaker. Therefore, we decide 

to adopt the 2015 version for this research. The main characteristics of the treatment facilities 

are included in Table 1. The top and center part of Table 1 refers to data that is directly based 
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on Statistic Canada’s confidential 2015 SDWP, while the bottom part refers to publicly 

available Government of Canada’s 2015 Land Cover of Canada8. The ArcGIS land cover 

dataset has a 30m spatial resolution and uses observations from Operational Land Imager (OLI) 

Landsat sensor. An accuracy assessment based on 806 randomly distributed samples shows 

that land cover data produced with this approach achieved an almost 80 percent accuracy.  

 

It is important to point out that access to the 2015 SDWP was preceded by an extensive 

Statistics Canada application and training procedure, including oath-taking by both the PhD 

student and his supervisor to not share any of the confidential data with anyone else. Data 

access was only granted on Statsitics Canada computers whilst being on Statistics Canada 

premises in Ottawa during office hours. All data requests had to be submitted beforehand, no 

data could be downloaded or taken home, all the analyses presented in this paper were 

conducted on-site during a one-week stay at Statsitics Canada, and the release of the results 

had to be approved before they could be used in this paper. Due to the specific confidentiality 

requirement that no individual treatment plants can be identified and publishable aggregated 

data have to include a minimum of at least 10 observations, much information cannot be 

directly released in the tables presented in this chapter. The 2015 SDWP contains 1,613 

observations, 240 of which did not disclose the location of water treatment plants. These 240 

observations were therefore excluded from further analysis, resulting in a total number of 1,373 

water treatment plant observations across the whole country. Due to the strict confidential 

 
8 https://open.canada.ca/data/en/dataset/4e615eae-b90c-420b-adee-2ca35896caf6. 
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requirements from Statistics Canada, we cannot present the summary statistics for the 240 

plants that were dropped from the database, but no obvious systematic patterns (e.g. related to 

their key characteristics) could be detected in this group of treatment plants. The summary 

statistics of the 1,373 treatment facilities is presented in Table 1. Note that all of the variables 

that are expressed as a percentage in Table 1 do not add up to 1, because the baseline group is 

omitted from the summary statistics Table. This setup aligns with the confidentiality 

requirement from Statistics Canada. 

Table 4-1 Summary statistics of the collected 2015 survey data across drinking water treatment 

facility 

Variable Mean St. Dev. Median N 

Treatment facility characteristics     

Total share where source is surface water1 (%) 40.15 48.46 0.00 1,373 

Total share where source is groundwater (%) 53.11 48.92 100.00 1,373 

Average number of days per year operating at 

more than 90% treatment capacity 

16.51 66.82 0.00 1,373 

Number of facilities having at least 1 day 

operating at more than 90% treatment capacity 241 - - 

 

1,373 

Number of facilities operating more than 1 plant 331 - - 1,373 

Average amount of treated water (m3/year) 3,073,527 16,226,950 270,323 1,373 

Number of facilities with pre-treatment 398 - - 1,373 

Number of facilities applying coagulation 428 - - 1,373 

Number of facilities with filtration 657 - - 1,373 

Customers     

Total share residential (%) 67.919 21.47 70.00 1,373 

Total share industry and commercial (%) 18.73 15.33 15.00 1,373 

Total share water loss (%) 9.93 10.81 6.00 1,373 

Average population served (number of people) 19,140 95,437 1,600 1,373 

Costs per capita (CAD/year) by category     

Average capital expenditures 85.79 368.94 4.90 1,373 
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Average chemical costs 25.59 37.06 14.50 1,373 

Average labour costs 52.04 67.15 31.70 1,373 

Average energy costs 22.03 29.61 14.80 1,373 

Average other costs 16.84 43.63 3.60 1,373 

Average total costs 202.28 308.84 121.10 1,373 

Source water quality     

E-Coli (most probable number per 100 milliliter) 67.08 219.89 4.58 467 

Turbidity(nephelometric turbidity units) 20.67 51.54 4.33 530 

Land cover and land cover around facility     

Average share urban within 1 km (%) 32.3 22.6 30.0 1,373 

Average share forest within 1 km (%) 24.1 24.0 20.0 1,373 

Average share urban within 2 km (%) 20.8 17.5 20.0 1,373 

Average share forest within 2 km (%) 28.8 24.5 20.0 1,373 

Average share urban within 5 km (%) 11.2 12.7 10.0 1,373 

Average share forest within 5 km (%) 34.6 25.4 40.0 1,373 

Average share urban within 10 km (%) 7.7 10.2 10.0 1,373 

Average share forest within 10 km (%) 37.9 26.1 40.0 1,373 

 

Note: 1. There are three sources of drinking water intakes, denoting ground, surface, and ground under the 

influence of surface. Groundwater under influence of surface water is the omitted baseline in this Table. 2. 

There are four types of water uses, denoting residential, commercial, losses, and wholesale. The latter category 

is the omitted baseline in the Table. 3. Other Costs including all other variable costs other than chemical, labour, 

energy. For example, acquisition of water, disposing of waste, or contractors costs. 

 

Within the survey, a significant portion elaborates the financial costs that the treatment plants 

incur in the past year. This includes capital expenditures, costs for materials, labour, energy, 

and other costs. In contrast to past literature (e.g. Warziniack et al., 2017), this explicit cost 

information gives a unique opportunity to test the effect of surrounding land cover, in particular 

of forests, on different water treatment costs. Fixed costs like capital expenditures are more 

associated with the design and capacity of the plants and make up 42 percent of the total costs, 

while variable costs like materials (chemicals), energy and labour are more related to the 

plants’ operation and management, constituting 13, 11 and 26 percent of the total costs, 
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respectively. Land cover may have a different influence on fixed or variable costs, while abrupt 

disturbances in the landscape such as forest harvesting or wildfires are expected to significantly 

influence especially the operational treatment costs (e.g. extra use of chemicals to treat polluted 

water) (Emelko et al., 2015). The average total water treatment costs per capita served across 

the 25 main drainage basins in Canada are presented in Figure 1. Note that in Figure 1 many 

rural regions have less than ten observations. In line with the confidentiality requirements, the 

summary statistics are therefore not direct visible in the map. 

 

Besides these financial aspects, a variety of plant design and operation characteristics are 

available from the SDWP. This includes information about the drinking water source, such as 

the share of ground and surface water intake, the total amount of treated water, and water loss. 

Water treatment amounts were available on a monthly basis and hence allowed us to also 

calculate seasonal variation in monthly water processing. We use natural logarithm of the 

standard deviation of the monthly water quantities being processed to reflect any seasonal 

effects. If a water treatment plant has a large standard deviation, i.e. the volume changes 

dramatically between months, this is used as a strong indicator for seasonal effects and 

fluctuations. Also the population served by the treatment plants is included in the analysis, and 

the breakdown in different customer groups (share residential, industry and commercial). 
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Figure 4-1 Total Costs per capita  across the 25 drainage basins in Canada (2015 CAD) 

 

The scale of operation and the use of the available treatment capacity have been shown to affect 

the operation costs (e.g. Plappally & Lienhard, 2012), and the share of the operating scale over 

the design capacity may at the same time influence the cost-effectiveness of the treatment 

system. The operation may trigger more costs if the plant operating scheme is close to its design 

capacity most of the time. In reflecting this pattern, we used the responses to the question 

asking treatment plants for the number of days that the plant is operating at more than 90 

percent of its capacity. In addition to the total number of days, we also created a dummy for 

those plants that have more than one day operating at more than 90 percent of their capacity. 

This novel setup compared to previous studies is meant to create a regression by discontinuity 

where the cutoff point is zero days. Following Plappally & Lienhard (2012), there is a potential 
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cluster difference between the group of treatment plants with zero days of water treatment 

beyond 90 percent capacity and water treatment plants that bypass the threshold. Therefore, 

the coefficient of days operating at more than 90 percent capacity should be interpreted as the 

log value changes regarding total water treatment costs within the group of plants with at least 

one day operating more than 90% capacity in this setup.  

 

The survey also includes questions related to source water quality. Monthly parameter values 

for Escherichia coli (E-Coli), temperature, and water turbidity are asked and provided. 

However, these variables have a lot of missing values and are subject to strict confidentiality 

requirements from Statistics Canada. The latter (confidentiality) reinforces the former (more 

missing values) in some cases. That is, due to limited numbers of observations in some of the 

drainage basins, they violate confidentiality rules and therefore had to be removed from further 

analysis, adding to the already large number of missing observations. Therefore, only the 

average E-Coli and turbidity values are reported in Table 1 with the summary statistics. The 

monthly data are used to compute the annual means for these water quality parameters for each 

plant, and these are subsequently aggregated and summarized across all treatment plants. The 

number of observations for these source water quality parameters drops to just over a third to 

40 percent of the total number of observations for all treatment plants. In view of the fact that 

water quality information is missing for most of the water treatment plants, they were not 

included in the regression analysis presented in the Results section.  
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A final group of water treatment plant characteristics are the different technologies they use 

during the treatment process. The different categories identified in the SDWP are listed in the 

annex to this paper. They are clustered here into three categories: pre-treatment, coagulation 

and filtering. Coagulation and filtereing are the two main water treatment processes in Canada 

(Statistics Canada, 2017b). As stated by Statistics Canada, around 73% of the total processed 

water in quantity has been treated with aluminum-based coagulation. However, only 428 out 

of the 1,373 plants reported they use at least one coagulation technology specified in the list of 

the appendix (Statistics Canada, 2017b). This pattern holds similarly for filtration technology, 

while 74.4% of the total quantity of water has been reported to be filtered by granular media, 

while only a little more than one-half of respondents indicate that they have filtering 

technology involved for the water treatment process. Therefore, there is a potential difference 

between water treatment plants that claim to have filtration and coagulation technology with 

the rest that do not. The created dummy variable intends to reflect the difference. The pre-

treatment process is believed to increase the overall water treatment process significantly, 

while keeping other factors constant (Hackney & Weisner, 1996). Therefore, we included also 

this step  in the regression analysis to test its impact on the variation in costs. 

 

We also include further data sources into consideration. The land cover covariates are 

generated from the Canadian Land Cover 2015 and integrate the urban and forest land cover, 

based on the plants’ GIS coordinates in the original dataset. The land usage shares are 

computed using the QGIS buffer function in percentage values for a 1km radius circle around 
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the plants’ address. Here, all tree species are aggregated into one class. The literature suggests 

that the quality and species of forests may have an effect on the quality of source water(Babur 

et al., 2021; Voss, 2018), but this is not something we are able to pick up in this study due to 

a lack of more detailed information about these variables. 

 

In the results section, we will present a sensitivity analysis by using different proximities, 

ranging from 1k to 2km to 10km. One of the limitations may also arise. As mentioned, some 

plants may have intake spots away from the plant. The dataset does not provide the location of 

source water intake, and there is a potential measurement error for the land cover information, 

given the land cover of water treatment plants and intake spots vary. However, we argue that 

there is not a clear trend that this measurement error is correlated with any independent 

variables. Therefore, we assume that this measurement error is random. Agriculture land cover 

together with wetlands and shrublands are treated as the baseline land cover, and hence the 𝛽1 

coefficient in equation 1 and 2 is therefore interpreted as the change in the log cost per capita 

as a result of a 1 percent change in forest land cover compared to this combined land cover. 

Agricultural land cover tends to discharge nutrients into water bodies, which in turn increases 

the total water treatment costs (Abildtrup et al., 2013). Changing the baseline category to 

another land cover did not change the results in this study. We used urban and forests land 

share to best represent the major land usages that influence the total costs, as also indicated in 

past research (Abildtrup, et al., 2016; Warziniack, et al., 2017).  
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4.4 Results 

4.4.1 Explaining the variation in total drinking water treatment cost 

 

First the regression results focusing on the total treatment costs per capita are presented, both 

using OLS and a spatial error model to account for possible spatial spillover effects. Table 2 

presents the OLS regression results,  where the four columns specify the relationship between 

total costs per capita and land cover across the four different spatial resolutions (distances) 

around each treatment facility. The other covariates are identical across the four columns. Only 

the land cover variables are generated based on different proximity radius, ranging from 1km 

to 10km. This setup aims to test whether land cover impacts total treatment costs under 

different spatial resolutions or distances from the treatment facility. The R2 and F-test statistics 

are the same across all 4 model specifications, which suggests that the explanatory power of 

the four specifications is the same. Although the estimated models are highly significant, their 

explanatory power is not very high. Only around 35 percent of the variation in the total costs 

per capita is explained by the model specification. 

 

The coefficient estimates for all explanatory factors are very similar. The major changes can 

be noticed from the land cover variables. First, the forest land cover is only weakly significant 

at the 10 percent level at a 1km radius, while it is not statistically significant for the other three. 

This suggests that potential land cover impacts decay as proximity to the water treatment plant 

increases. The negative sign on the coefficient indicates that the total treatment costs are 

reduced as the share of forest cover increases in a radius of 1 km around the water treatment 
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facility compared to the baseline land cover of agriculture, wetlands and shrubs. A one percent 

increase in forest cover in a radius of 1 km around a water treatment facility results all else 

equal in a proportionate reduction (0.99%) in total treatment costs per capita.  

 

Second, urban land cover illustrates a different trend, other than forests land cover. A 

significant positive relationship exists between urban land cover and total water treatment 

costs, but this relationship is only statistically significant when the radius is enlarged to 5 or 

10 km. The total costs per capita are on average and ceteris paribus 1.03 percent higher if the 

share of urban land cover increases by 1 percent within a 5 or 10 km radius. These results are 

in line with previous studies that show that the costs may increase due to increasing human 

activity and associated pollution levels (Price & Heberling, 2020).  

 

Table 4-2 Annual drinking water treatment costs OLS regression results with drainage basins 

fixed effects and using four proximity specifications for land cover 

 Dependent variable: 

 Log(Total Cost Per Capita) 

 1km 2km 5km 10km 

Land cover/use     

Forests (%) -0.012* -0.009 -0.005 -0.009 
 

(0.006) (0.006) (0.006) (0.006) 

Urban (%) 0.002 0.012 0.030** 0.028* 
 

(0.007) (0.010) (0.014) (0.017) 
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Treatment facility characteristics     

Source: share of ground water (%) -0.010*** -0.010*** -0.010*** -0.010*** 
 

(0.004) (0.004) (0.004) (0.004) 

Nat. Log total amount of water treated (m3/year) 1.454*** 1.482*** 1.525*** 1.547*** 
 

(0.294) (0.294) (0.294) (0.294) 

Seasonality (natural log of standard deviation in 

m3/year) 
0.152 0.135 0.113 0.108 

 
(0.147) (0.146) (0.146) (0.146) 

Operating More than One plant (dummy) 0.851*** 0.837*** 0.872*** 0.869*** 
 

(0.300) (0.300) (0.301) (0.301) 

Has at least one day operating at more than 90% 

capacity (dummy) 
0.187 0.182 0.183 0.176 

 
(0.575) (0.575) (0.575) (0.575) 

Number of Days operating at more than 90% 

capacity 
-0.297* -0.301* -0.305* -0.305** 

 
(0.156) (0.156) (0.155) (0.155) 

Pretreatment (dummy) 0.409 0.411 0.398 0.385 

 (0.302) (0.302) (0.302) (0.302) 

     

Application of coagulation (dummy) 0.942** 0.927** 0.939** 0.926** 

 (0.424) (0.425) (0.424) (0.424) 

     

Filtration (dummy) 2.169*** 2.167*** 2.166*** 2.183*** 

 (0.353) (0.353) (0.353) (0.353) 
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Customers     

Nat. Log Population Served -3.240*** -3.315*** -3.413*** -3.389*** 

 (0.265) (0.270) (0.277) (0.276) 

     

Water Use: Share Residential (%) 0.010 0.010 0.009 0.009 
 

(0.009) (0.009) (0.010) (0.010) 

Water Use: Share Commercial and Industry(%) 0.002 0.002 0.001 0.002 
 

(0.011) (0.011) (0.011) (0.011) 

Water Use: Share Water Loss (%) 0.013 0.012 0.011 0.012 

 (0.014) (0.014) (0.014) (0.014) 

Constant 19.676*** 19.858*** 20.122*** 19.962*** 

 (2.084) (2.105) (2.135) (2.111) 

Number of observations 1,373 1,373 1,373 1,373 

R2 0.371 0.371 0.371 0.371 

Adjusted R2 0.353 0.353 0.353 0.353 

Residual Std. Error (dof = 1334) 4.687 4.687 4.686 4.686 

F Statistic (dof = 38; 1334) 20.710*** 20.699*** 20.720*** 20.718*** 

* p < 0.10; ** p<0.05; ***p<0.01 

 

Interestingly, almost the same results are found for the land cover variables when accounting 

for possible unobserved spatial spillover effects between neighbouring treatment facilities (see 

Table 3). This spatial correlation is statistically significant, as can be seen from the outcome 
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of the LR test statistic, comparing the log likelihood values for the unrestricted (with 

unobserved spatial correlation) and restricted model (without unobserved spatial correlation). 

In addition to finding the same significant negative coefficient estimate within a 1 km radius 

for forest cover, now also the coefficient estimate within a radius of 10km is statistically 

significant at the 10 percent level and, as expected, negative. The same positive coefficient 

estimate is found for urban cover, but this coefficient estimate is only statistically significant 

within a radius of 5 km. Hence, the estimated OLS model results are robust when also taking 

the unobserved spatial correlation between neighbouring treatment plants into consideration. 

In view of the fact that the OLS and spatial error model results are the same, we will discuss 

them here together.  

 

Turning to the other covariates, we notice that the total costs per capita are positively correlated 

with the total amount of water that has been processed during the year. The significant positive 

coefficient estimate demonstrates that, as expected, the drinking water treatment costs increase 

as the amount of treated water increases. Treatment plants are facing higher costs in meeting 

higher demands from customers. The standard deviation of the average amount of treated 

water, used as an indicator here to reflect seasonal changes in drinking water demand and 

supply, does not have a statistically significant impact. One potential explanation is that the 

seasonality has already been accounted for during the plants’ design process. Whilst 

controlling for the amount of treated water, the population size coefficient is expected to 

exhibit a negative coefficient, reflecting economies of scale. Keeping the amount of treated 
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water constant, as the number of people served by the treatment plants increases, the total 

treatment costs per capita go down, indicating that water treatment plants serving more people 

are more likely to operate in a cost-efficient manner. A 1 percent increase in the number of 

customers results ceteris paribus (and as a result of the double-log functional form) in a 3.2 to 

3.4 percent decrease in total water treatment costs per capita in both the OLS and spatial error 

regression models. Note that the specification of the customers (and their shares in total water 

supplied) does not have any influence on the total treatment costs. 

 

From the regression Tables, it can be seen that managing multiple water treatment plants results 

in increasing treatment costs, whereas a higher share of groundwater as source water reduces 

the total water treatment costs significantly, as expected. Water underground is better protected 

and the soils have a natural cleansing capacity, reducing pollution risks in source water and 

reducing total treatment costs.  

 

Although the dummy variable representing a continuity break is not statistically significant, 

the number of days the plant operates at more than 90% of its capacity is significantly 

negatively related to the total treatment costs. Total costs seem to reduce as plants are managed 

more days near the limit of their treatment capacity. However, the potential cost reduction shall 

also come with further risk. The risk of not meeting the drinking water demand of customers 

may force water specialists in charge of extra costs, e.g. transfer water from other 

municipalities. This risk aspect cannot be plotted due to the limitation of the survey. 
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Finally, different technologies were also included in the regression models. Contrary to prior 

expectations (Hackney & Weisner, 1996), pre-treating the source water before it enters the 

treatment plant does not affect the total treatment costs. However, the dummy variables 

indicating if the treatment system includes coagulation and filtering significantly increase the 

total treatment costs per capita compared to the other technologies listed in the appendix to this 

chapter. This statistical difference also iterates that water treatment cost dynamics may vary 

significantly between plants that adopt these two technologies or not. The decision for one or 

the other technology is caused by demand, source water quality etc. One of the key assumptions 

we have in this paper is that all plant officers will adopt the most cost-efficient solution for 

water treatment plants, accounting for the aggregate demand and source water quality. Noting 

that less than half of the treatment plants indicate they adopt filtration and coagulation 

procedure within the water treatment process, while these plants account for more than 74% 

of total water being treated in quantity, it is obvious that water treatment plants that are serving 

larger population are more likely to adopt these two technologies. Therefore, including these 

two variables will also give a robust estimation of the effect of households and water quantity 

being processed.   

 

Table 4-3 Annual drinking water treatment costs spatial error regression model results with  

drainage basins fixed effects and using four proximity specifications for land cover 

 Dependent variable: 

 TotalCost 
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 1km 2km 5km 10km 

Land cover 

Land Cover: Forests (%) -0.012* -0.008 -0.006 -0.011* 
 

(0.006) (0.006) (0.006) (0.006) 

Land Cover: Urban (%) 0.004 0.013 0.027** 0.024 
 (0.006) (0.009) (0.013) (0.015) 

Treatment facility characteristics     

Source: Ground Water (%) -0.010*** -0.010*** -0.010*** -0.010*** 
 

(0.004) (0.004) (0.004) (0.004) 

Log Total Annual Water Processed (Cubic 

Meters) 
1.410*** 1.437*** 1.478*** 1.505*** 

 
(0.293) (0.292) (0.292) (0.293) 

Dummy: Operating More than One plant 0.887*** 0.878*** 0.909*** 0.910*** 
 

(0.290) (0.290) (0.290) (0.291) 

Seasonality 0.136 0.115 0.093 0.086 
 

(0.158) (0.158) (0.158) (0.158) 

Number of Days operating more than 90% 

capacity 
-0.396*** -0.395*** -0.396*** -0.396*** 

 
(0.153) (0.153) (0.153) (0.153) 

Dummy: Has at least one day operating more than 

90% capacity 
0.510 0.493 0.485 0.469 

 (0.564) (0.564) (0.564) (0.564) 

Dummy: Has at least one machine listed as 

pretreatment 
0.367 0.368 0.357 0.339 

 (0.292) (0.292) (0.292) (0.292) 

     

Dummy: Has at least one machine listed as 

coagulation 
0.893**

 0.879**
 0.895**

 0.895**
 

 (0.408) (0.408) (0.408) (0.408) 

     

Dummy: Has at least one machine listed as 

filtration 
2.064***

 2.060***
 2.061***

 2.075***
 

 (0.345) (0.345) (0.345) (0.344) 
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Customers     

Log Population Served -3.237***
 -3.307***

 -3.388***
 -3.369***

 

 (0.258) (0.262) (0.268) (0.268) 

     

Water Use: Residential(%) 0.004 0.004 0.003 0.004 
 

(0.009) (0.009) (0.009) (0.009) 

Water Use: Commercial and Industry(%) 0.0002 -0.0001 -0.001 0.0001 
 

(0.011) (0.011) (0.011) (0.011) 

Water Use: Losses(%) 0.008 0.007 0.007 0.008 
 (0.013) (0.013) (0.013) (0.013) 

Constant 21.102*** 21.299*** 21.586*** 21.476*** 
 (2.019) (2.037) (2.067) (2.046) 

Observations 1,373 1,373 1,373 1,373 

Log Likelihood -3,891.195 -3,891.438 -3,891.349 -3,891.141 

σ2 16.938 16.945 16.944 16.941 

Akaike Inf. Crit. 7,872.389 7,872.875 7,872.698 7,872.281 

Wald Test (df = 1) 2.274 2.008 1.815 1.534 

LR Test (df = 1) 2.136 1.887 1.699 1.439 

* p < 0.10; ** p<0.05; ***p<0.01 

 

4.4.2 Explaining the variation in fixed and variable costs 

We also include different costs by categories as the dependent variable, see Table 4. The 

objective in this section is to utilize the categorical cost differences to explore the heterogeneity 

of variables, which may influence types of costs differently. As shown  in the regression 

analysis in the previous section, the differences in explanatory power using different 

proximities to the treatment facilities are minimal. We were able to show that forest cover 

signifacntly reduces the total costs per capita, but only  when adopting a smaller radius around 
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the water treatment plants. Thus, we use the same 1km radius  in the model specifications to 

explain variations across different cost categories (see Table 4), where the  capital expenditures 

are used as a proxy for the total annual fixed costs, while other cost items are variable costs. 

Only the OLS regression model results are presented in this section. As before, the 25 drainage 

basins are included as a fixed effect in each of the model specifications, and the dependent 

variable is converted into its natural logarithmic form to improve the goodness of fit of the 

estimated regression models.  

 

Table 4-4 Variable and fixed annual drinking water treatment costs OLS regression results 

with drainage basin fixed effects 

 Variable Cost Fixed Cost 

 Labour 

Cost 

Chemical 

Cost 

Energy 

Cost 
Capital Expenditure 

Land cover 

Land Cover: Forests (%) -0.0010 -0.0017 -0.0010 -0.0053* 
 

(0.0013) (0.0015) (0.0013) (0.003) 

Land Cover: Urban (%) -0.00050 -0.0012 -0.00049 0.0069** 

 (0.0014) (0.0016) (0.0014) (0.0033) 

Treatment facility characteristics     

Source: Ground Water (%) -0.002*** -0.006*** -0.002*** -0.003* 
 

(0.001) (0.001) (0.001) (0.001) 

Log Total Annual Water Processed 

(Cubic Meters) 
0.450*** 0.347*** 0.450*** 0.015 

 

(0.060) (0.069) (0.060) (0.143) 
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Dummy: Operating More than One 

plant 
0.028 0.049 0.028 0.142 

 

(0.061) (0.070) (0.061) (0.145) 

Seasonality -0.024 -0.007 -0.024 0.105 
 

(0.030) (0.034) (0.030) (0.071) 

Number of Days operating more 

than 90% capacity 
-0.012 -0.025 -0.012 -0.105 

 

(0.032) (0.036) (0.032) (0.076) 

Dummy: Has at least one day 

operating more than 90% capacity 
-0.146 0.095 -0.146 0.322 

 (0.117) (0.135) (0.117) (0.280) 

Customers     

Log Population Served -0.649*** -0.593*** -0.649*** -0.217* 

 (0.054) (0.062) (0.054) (0.129) 

     

Water Use: Residential(%) -0.001 -0.001 -0.001 -0.003 
 

(0.002) (0.002) (0.002) (0.005) 

Water Use: Commercial and 

Industry(%) 
-0.002 -0.0004 -0.002 -0.002 

 

(0.002) (0.003) (0.002) (0.006) 

Water Use: Losses(%) 0.0003 -0.002 0.0003 0.006 

 (0.003) (0.003) (0.003) (0.007) 

Constant 1.985*** 2.914*** 1.985*** 2.953*** 

 (0.424) (0.488) (0.424) (1.016) 

Observations 1,373 1373 1,373 1,373 

R2 0.252 0.261 0.252 0.081 
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Adjusted R2 0.232 0.241 0.232 0.057 

Residual Std. Error (df = 1337) 0.955 1.100 0.955 2.289 

F Statistic (df = 35; 1337) 12.866*** 13.477*** 12.866*** 3.353*** 

* p < 0.10; ** p<0.05; ***p<0.01 

 

The overall goodness of fit of the estimated OLS models is lower when breaking up the total 

costs in different subcategories. The fixed costs model has the lowest explanatory power with 

no more than 10 percent, while the three other models explain approximately 25 percent of the 

variation in the variable costs.  

 

Starting with forest land cover, this appears to have different impacts across the cost categories. 

The capital expenditure model is the only model where forest cover is statistically significant 

at the 10 percent level and negative (as expected) compared to the basleine category 

(agriculture, wetlands and shrubland). Considering fixed costs related to grey infrastructure 

and ‘green’ forest infrastructure (measured through the share of forest cover within a radius of 

1 km of each drinking water treatment plant) as two different mechanisms to deliver safe 

drinking water as discussed in Pan and Brouwer (2021) is not possible here, but the significant 

negative relationship in Table 4 does suggest that investing more in green infrastructure would 

reduce the grey infrastructure watrer treatment costs. Interestingly, the urban land cover is also 

only statistically significant in the fixed cost model and and as before positive. The coefficient 

estimates are, however, considerably smaller in Table 5 than they were in Tables 3 and 4.  
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The chemical costs are particularly of interest here (e.g. Mulatu et al., 2020), but contrary to 

prior expectations none of the land cover variables are significantly of influence. Interestingly 

though, the share of groundwater intake has a much bigger (three times higher) negative impact 

on the chemical costs than the other two cost categories. The difference in coefficient estimates 

is statistically significant at the 1 percent level. This is in line with what is stated by 

Environmental and Climate Change Canada (2013), namely that the quality of groundwater 

sources is more stable, which reduces the excess demand of chemical inputs. The correlation 

between groundwater intake and fixed costs is also lower and only significant at the 10 percent 

level.  

 

As for the total treatment costs, a significant positive relationship is found between the amount 

of treated water and variable costs, but not for fixed costs. The amount of treated water during 

the year has moreover a 22 percent lower impact on the chemical costs than on the variable 

labour and energy costs. No significant effect can be found for the number of plants to treat 

the drinking water.  

 

Similarly, significant economies of scale are detected for the number of people served by the 

treatment plants, keeping the amount of treated water constant, but this effect is much smaller 

and less significant for the fixed costs than the variable costs. This is as expected, as the fixed 

costs are literally ‘fixed’ and are not expected to change as a result of higher treatment 

quantities or a higher number of people served. 
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As for the total costs, the type of customers does not significantly influence the variable or 

fixed costs, and also no seasonal effect can be detected for any of the cost categories. This 

time, also no significant capacity limit effect can be found, neither for the dummy variable or 

the number of days that a plant operates at more than 90 percent of its capacity. Note that 

contrary to the total costs per capita no control is included in the regression models for the type 

of technologies used to treat the water or whether the source water was treated before it was 

treated in the treatment plant.  

 

4.5 Discussion and Conclusion 

This is one of the first studies in Canada focusing on the relationship between forested land 

and drinking water treatment costs. Based on Statsitics Canada’s 2015 SDWP, we are able to 

demonstrate that forest land cover significantly reduces the total costs per capita in Canada, 

albeit at a relatively lower significance level (10%) and in a model that only explains around 

35 percent of all the variation in the observed drinking water treatment costs. Increasing forest 

cover in the direct surroundings of the drinking water treatment plant within a radius of 1 km 

by one percent results in a more less proportionate decrease in the total drinking water 

treatment costs of one percemt. This estimation is higher than the previous evaluation of the 

role of forests, in Europe (Abildtrup et al., 2016) and North America (Warziniack et al., 2017). 

For Ontario, the previous chapter showed that a similar increase in forest cover reduces the 

average water rate by 0.4 percent.  
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Simultaneously, tree planting is expensive. Suppose a tree plant will cost $0.2 while 1500 trees 

roughly take 2.5 acres of land, estimated by Nottawasaga Valley Conservation Authority in 

Ontario (2021), the total planting costs around $0.13 billion by increasing forest land cover by 

1% for all land use 1km near water treatment plants, disregarding the proceeding costs like 

management costs. This amount exceeds the aggregate use benefit evaluated above. This seems 

to align with Price and Heberling (2018), which indicates that the drinking water use benefit 

tends to be less than the cost of source water protection programs. However, the non-use value, 

denoting economic benefits that residents near watersheds receive, is also another crucial 

component for project evaluations. Price and Heberling (2018) argue that the sum of drinking 

water use values and the non-use value may bring a positive net benefit for forest expansion 

projects. We cannot exploit the accurate sum in this paper, given the limitation of this research. 

 

The categorical regression comparison may give a new direction in understanding the 

economic benefit of drinking water treatment. Fixed costs, reflected by capital expenditure, is 

relatively lower for the forest-abundant region. This pattern confirms the substitution effect 

between green and grey infrastructure, identified by Pan and Brouwer (2021). The chemical 

costs and other variable portions are not statistically significantly related to forest land cover 

amount. However, the boundary definition may still not fully reflect the land disturbances 

within the watershed. Thus, these results may not fully exclude the potential significant 

relationship between forests and variable costs. 
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Given the spatial dispersal, we do not find variations between non-spatial and spatial models. 

This pattern may not hold if we can cluster the data on a spatial scale. However, this lower 

scale analysis, e.g. based on drainage region, cannot be performed due to the confidential 

requirement of the data source. While the lower scale may result in a potential leakage of data, 

this analysis cannot be presented in this research. 

 

One of our key assumptions suggests the water treatment function is only related to forest 

amount, while it is not totally valid empirically. The healthiness and species may alter the 

expected treatability. This research cannot include further heterogeneous discussion due to the 

limitation of data.  

 

The water quality information is crucial in understanding the challenges that water treatment 

plants are facing. On top of source water quality, it will be essential to enlarge the focus on the 

variation of parameters across the year. The high fluctuation can increase the difficulties in 

drinking water treatment while increasing the total cost as a response. This feature is partially 

explored while analyzing the source water types. From the results, we can observe that 

groundwater sources, which are believed to provide more source water protection, cost less for 

the water treatment, either variable or fixed.  
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One last limitation of this research is the lack of inter-temporal variations. This study only 

focuses on the costs of water treatment facilities in 2015. Given the lifetime variation between 

plants, it is likewise that the temporal variation of plant usages may also shake the robustness 

of this result. For instance, old plants may require further maintenance and updates, which our 

data inputs cannot directly adjudicate.  
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Chapter 5 Conclusions 

 

5.1 Contribution to the current literature 

 

This thesis has contributed multiple aspects to the current research field and explored some 

novel relationships that have not been analyzed before. 

 

First, this thesis first plotted the theoretical framework in understanding the policy makers’ 

responses toward green and grey infrastructure for the water treatment services. Inspired by 

multiple historical research(Abildtrup et al., 2013; Mulatu et al., 2021;Warzniack et al., 

2017), water treatment is modelled as a public service that social planners are responsible for 

securing drinking water safety and minimizing the total treatment cost. This framework is 

first modelled explicitly in the economic context. On top of the baseline scenarios, wildfire, 

tree growth, and climate change effects are expressed explicitly to different submodels and 

extensions. These further expressions enrich the existing framework and plot multiple 

essential concerns within the policy makers’ decision-making lists. 

 

The third chapter inherited the basic setup from the historical research(Abildtrup et al., 

2013). The key objective is aiming to investigate and discuss the correlation between forest 

land cover and water treatment costs proxied by water rate. This study has been widely 

conducted globally(Abildtrup et al., 2013; Mulatu et al., 2021; Warzniack et al., 2017). 
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However, it has not been conducted in Canada before. The closest one is Price et al. (2017), 

where the relationship is drawn from source water parameters and water treatment costs 

instead of modelling land cover information within the analysis. Building upon the existing 

model, there are still multiple innovative structures that the new model within chapter three 

added. Firstly, it addresses the relationship between adverse water quality incidents(AWQI) 

and forest land covers. This variable has not been analyzed before in this setup before. 

Furthermore, the model provides a robust estimation while accounting for the endogeneity 

effect between drinking water rate and AWQI. Water rates tend to go higher, as a response to 

historical AWQI. This negative correlation between AWQI and drinking water rates will 

leave a biased estimation. The instrumented model in chapter three firstly provides an 

unbiased estimation method that can solve both the endogeneity, and the spatial spillover 

effect once the model includes the spatial error and lag specifications. The results clearly 

state that there exists a negative correlation between drinking water rate and forest land 

cover. Furthermore, further forest land cover and higher drinking water rates are both 

pointing to a lower AWQI rate. These findings align with existing international research, thus 

providing the first economic benefit analysis of drinking water treatment given further forest 

land cover in Canada.  

 

The fourth chapter attempts to narrow the existing gap between water treatment rate and 

water treatment costs. The Federation of Canadian Municipalities stated in the third edition 

of the National Guide of Sustainable Municipal Infrastructure(FCM, 2006); the drinking 
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water rate should satisfy the cost recovery standard. However, the drinking water rate usually 

takes years to be designed while relying mainly on the historical information with estimation 

to the future treatment. This setup makes a potential lag between drinking water rate and 

costs, which shakes the robustness of the third chapter estimations. In solving this specific 

concern, the fourth chapter is analyzed by using confidential survey data from Statistics 

Canada. The new dataset also granted novel findings in comparison with historical research. 

The fourth chapter analysis sub-cost components that contribute to the total cost factors. 

Beyond the chemical or material costs that have been studied historically(Mulatu et al., 

2021), the fourth chapter also expands the scope onto the fixed costs – capital expenditures. 

The statistically significant negative correlation between capital expenditures and forest land 

covers echoes the main findings in Chapter two, where there is a potential substitution effect 

between green and grey infrastructure that can be expressed in monetary terms. Furthermore, 

this study compares fixed and variable costs components to understand better the potential 

heterogeneity effect of forest land on water treatment costs. These findings are firstly 

explored on a site level among the existing literature. 

 

These three papers also provide internal linkages through findings and models. The first 

chapter provides a theoretical framework that is transformed into the empirical specifications 

in the latter two chapters. Meanwhile, as stated above, the green and grey substitution effect 

is firstly noticed in the fourth chapter, which confirms the theoretical findings of the second 

chapter. Finally, the third and fourth chapters can be considered as the comparison of 
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modelling drinking water treatment benefits by costs and rates. The drinking water rate, the 

dependent variable in chapter three, faces the designed lag issue. This limitation is 

encountered in the fourth chapter, once the cost component is included in the analysis. From 

findings, capital expenditure, which will be transformed into future drinking water rate, is 

negatively correlated with forest land cover. This finding is robust while controlling spatial 

errors and drainage basin fixed effects. Therefore, all three chapters complement each other 

and provide a systematic analysis of the relationship between drinking water treatment costs 

and forest land covers. 

 

5.2 Limitation and future works 

 

However, this paper still possesses multiple limitations that can be exploited by future 

research. Within the second chapter, the social planner is believed to make the best 

investment decision given the parameters associated with water treatments. Results are 

simulated, given the expected return of initial investment decisions. The parameter selection 

is one of the potential scenarios. However, it will be more robust if more scientific research is 

available in suggesting more robust parameters that should be considered. This update will 

make the result more policy-relevant. 

 

Second of all, the empirical analyses are based on the administrative boundaries of census 

subdivisions, the highest spatial resolution more or less equal to municipalities in Canada, at 

which water and incidence rate data are publicly available. The influence of forested land 
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cover on water treatability is typically measured within the hydrological boundaries of 

watersheds. Agreements exist, in several places around the world (e.g. Wunder et al., 2018), 

for example, between upstream landowners and land users and downstream water utilities to 

manage the land in such a way so as to minimize any disturbance to the water services 

provided by the watershed, such as erosion or pollution. The spatial regression models 

employed in this PhD thesis are hence based on the administrative boundaries of 

neighbouring census subdivisions (CSD’s), not spatial relationships between upstream land 

cover and downstream water or incidence rates, for example. In the second study, it was 

impossible to create or restore watershed boundaries based on the spatial delineation of 

CSD’s. Typically, a watershed consists of multiple CSD’s. Land cover shares in the CSD’s 

were used in the second paper, without knowing where the water intake sources were located 

exactly in each CSD. The main selection criterion of the CSD’s was that each one had at least 

one drinking water plant. However, where they received their water from was unknown. It 

could therefore be the case, especially in the southern part of Ontario in urban areas along the 

shores of Lake Ontario, that these areas received their water from different areas than where 

the CSD’s are located. This is an important caveat in the presented analysis here. In the third 

study, analyzing the water treatment data at watershed level was not allowed due to the 

breaching of data confidentiality. Here, the only scale at which the analysis was allowed was 

at the level of the 25 drainage basins in Canada. These were included as fixed effects in the 

spatial regression models. Hence, although the water treatment costs were based on the exact 

location of the drinking water treatment facilities, concentric circles were used around these 
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drinking water plants to calculate surrounding land cover and land use, and hence also here 

the observed and unobserved spatial correlation between forest cover and water treatment 

costs has to be interpreted with the necessary care. The spatial relationships captured in the 

spatial regression models are also in this second empirical study not based on the 

hydrological boundaries of the watersheds in which the drinking water treatment plants are 

located; or without knowledge of where exactly these water treatment plants get their intake 

water from, from within the watershed in which they are located or from outside that 

watershed. In none of the two studies was a direct causal relationship established between (1) 

forest cover and water quality (based on available water quality monitoring data), (2) water 

quality of the drinking water intake sources and water treatment costs. The estimated 

relationships in this PhD thesis skipped these two important causal relationships and directly 

investigated the impact of forest cover on treatment costs (or water rates or incidence rates) 

without knowing exactly how forest cover affects water quality in the sources used by the 

drinking water plants that were surveyed in the 2015 Survey of Drinking Water Plants. A key 

assumption therefore is that the forest cover information used in the two empirical studies in 

this PhD thesis include the relevant water intake sources for the drinking water plants 

involved. 

 

The limitation described above will also alter the policy scenarios as well. The empirical 

studies of chapter three adopt a municipalities level for all analyses. Therefore, potential 

investment recommendations will be assigned to the municipality level, while watershed 
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catchment conditions will be ignored. However, if analysis can be conducted with watershed 

boundary information included, then coordination between plants in the same watershed will 

be more efficient. Unlike investment to the plant level, systematic changes and improvements 

will be captured for all water treatment plants in the same watershed. With that being said, 

the overall cost-effectiveness will be further improved.  

 

The heterogeneity of forest species and forest qualities are not examined in both papers. 

Within chapter 2, the model only demonstrates the age difference between forests, while it 

assumes it has no water treatment implications. For chapters 3 and 4 on the empirical aspects, 

forest land cover is computed as a sum of all tree species, disregarding the type and 

condition. It has been noticed that these attributes will influence the final drinking water 

delivery outcomes, by United States Trust for Public Lands and American Water Works 

Association (2003) and World Bank and WWF Alliance for Forest Conservation and 

Sustainable Use (2003). Within their reports, it is noted that forest expansion, disregarding 

tree species and forest conditions, will not reach an ideal solution for water treatment 

purposes. Future research should explicitly model forest land cover by species. This change 

will provide a clear picture for policymakers. The ideal investment is never planting more 

trees near the water treatment plants but to restore the forest system near the water sources. 

 

The financial aspects of water treatment plants are examined limited. On top of water 

treatment costs or water rates, the water plants' debt and investment represent the stagnations 
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and potentialities of water treatment plant management. The drinking water rate and costs 

only reflect part of the financial aspects of water treatment facilities. Drinking water rates are 

usually designed for years in a row in recovering the annual water treatment costs. This cost 

refers to both actual treatment cost and debt in the past. However, it is still unclear to what 

percentage are treatment projects are in debt. The financial condition will alter the long-term 

investment that social planners are willing to make. For instance, the limited funding sources 

may limit the updating incentives of social planners, and in turn, the future water treatment 

cost is expecting to increase.  

 

This limitation may also draw severe policy implications. Within chapters three and four, 

water rates and water costs are compared between municipalities and plants. Therefore, we 

are assuming the monetary variables, either rates or costs, are directly comparables with 

observed variables in the regression specification. In other words, the financial condition, i.e. 

cost-recovery capability that is not included in the model, is assumed the same across all 

plants. With this assumption, one of the policy suggestions will be adopting adequate 

infrastructure/technology with Federal investment to municipalities that want to improve the 

drinking water condition. However, if there exists a negative correlation between cost-

recovery capability and water treatment costs, this policy will further enlarge the aggregate 

future water treatment costs, which will be transformed into water bills according to the cost-

recovery scheme by the Federation of Canadian Municipalities’ guide(FCM, 2006). 

Therefore, there is an urgent demand to examine the relationship between these two factors. 
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This limitation may also provide a future research potentiality as well. Green infrastructure, 

with an adequate balance of grey infrastructure, will improve the cost-effectiveness of the 

water treatment, as drawn for the conclusion of Chapter two. Therefore, it will be more 

important to examine the relationship between forest land cover and the cost-recovery 

capability of water treatment plants over time. Suppose a positive relationship exists between 

forest land cover and financial recovery factors. In that case, we shall conclude that there are 

potentialities that expanding green infrastructure can enhance cost-efficiency in Canada. 

With that being said, then the policy implication will be proposed as investing in general 

green infrastructure to enhance the overall water treatment cost-efficiency, which will benefit 

the financial capability of water treatment plants. 

 

There is a factor that is not included in the empirical research, while it has been discussed in 

the model, denoting climate change. Climate change is one of the founding reasons that 

researchers and policymakers are expanding the research and investment toward green 

infrastructure. According to US EPA(2021), challenges in water treatment due to climate 

change include 1. Water supply shortage, 2. Water supply uncertainties, 3. Source water 

quality changes, 4. Source water quality uncertainties, etc. Together with wildfire risk, these 

factors impose a costly water treatment barrier to the current system. Most importantly, as 

discussed in chapter two, grey infrastructure has zero climate change resilience in severe 

climate change scenarios. Therefore, in chapters three and four, the cost reduction is assumed 
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to be held of the environmental condition remain the same. However, for the severe climate 

change cases, grey infrastructure will not operate as efficiently as right now, and the cost 

reduction evaluation will significantly underestimate the cost reduction function, given the 

omitted climate change mitigation function.  

 

It is noteworthy to include the climate change mitigation function and climate resiliency 

factors into account with the climate change discussion. Concrete policy recommendations 

should be drawn from the results, including the worst scenario simulation of climate changes. 

More scientific results should be plotted to describe the operation and financial condition of 

the extrema cases to provide a systematic policy recommendation in that sense. 

 

Alongside the climate change factors, another variable not included in all models is the water 

treatment system difference between private, public, and First Nation. In this thesis, the 

baseline group is targeted toward large public residential water treatment plants, i.e. serving 

more than 300 residents in chapter 4. The water treatment infrastructure is not adequate for 

Canada's current First Nation population, reported by Indigenous Canada(2021). As a result 

of land cover changes, the source water quality dispersion may cause more damage to the 

First Nation indeed. Recalling results from the third chapter, a positive correlation is 

observed between land disturbance and AWQI. This relationship will be even stronger for the 

First Nation, ceteris paribus. Therefore, separate research is required to understand the 

economic dynamic among the First Nation water treatments.  
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Therefore, it will also be highly suitable to conduct a financial variations panel regression 

model. This model can better exclude the unobserved plantwise effect. The dynamic of plant 

financial condition over the years can be explicitly spelled out. This robust result will give 

precise policy recommendations given modelling over the financial condition changes over 

the years. However, it is still hard to achieve given Statistics Canada’s inconsistent census 

setups. Over the past five versions of the Survey of the drinking water plants(DKWP), 

Statistics Canada has changed the data resolution from plants to municipalities, making 

observation tracking impossible. Therefore, a consistent data structure is demanded to 

achieve the research requirement proposed. 

 

As a concluding remark, the green infrastructure is providing essential economic function 

toward drinking water services. It reduces the total adverse drinking water incidents while 

improving the total water treatment cost efficiencies. The risk associated with wildfire 

damage is inevitable. This risk will impose further fuel treatment costs, which alter the 

willingness to invest; the simulation demonstrates that in the second chapter. This paper tries 

to explicitly understand forest as a new type of infrastructure that may provide similar 

functions as well-establish grey infrastructure in that sense. It setups several basic concerns 

and model frameworks that indicate the future research direction in understanding the norm 

of forests and green infrastructure. 
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Appendix A 

 

Proof 

 

 

Lemma 1: The standard constraint is equivalent to 𝐶𝛼𝐷1−𝛼 − 𝑞(𝐶𝜌𝑐𝐷𝜌𝑑) ≥  𝑄̅ such that 𝑞 =

Φ−1(𝑝) and Φ is the normal cumulative distribution. 

Proof: For 𝐶, 𝐷 that fulfill the standard constraint, 

𝑃𝑟{𝑄(𝐶, 𝐷) ≥ 𝑄̅} ≥  𝑝 

Denote 𝐹 = 𝑄(𝐶, 𝐷), 𝑄(𝐶, 𝐷) ∼  𝑁(𝐶𝛼𝐷1−𝛼, 𝐶2𝜌𝑐𝐷2𝜌𝑑). We then get 

1 − (𝑃𝑟{𝑄(𝐶, 𝐷) ≥ 𝑄̅}) ≤  (1 − 𝑝) 

𝑃𝑟{𝑄(𝐶, 𝐷) ≤ 𝑄̅} ≤  (1 − 𝑝) 

𝐹−1(𝑃𝑟{𝑄(𝐶, 𝐷) ≤ 𝑄̅}) ≤  𝐹−1(1 − 𝑝) 

𝑄̅ ≤  𝐶𝛼𝐷1−𝛼 + Φ−1(1 − 𝑝)(𝐶𝜌𝑐𝐷𝜌𝑑) 

𝑄̅ ≤ 𝐶𝛼𝐷1−𝛼 − Φ−1(𝑝)(𝐶𝜌𝑐𝐷𝜌𝑑) 

𝑄̅ ≤  𝐶𝛼𝐷1−𝛼 − 𝑞(𝐶𝜌𝑐𝐷𝜌𝑑) 

 

Lemma 2: The function 𝑔(𝐶, 𝐷) = 𝐶𝛼𝐷1−𝛼 − 𝑞 ∗ 𝐶𝜌𝑐𝐷𝜌𝑑 is a strictly increasing concave 

function with respect to 𝐶 and 𝐷 at the given domains of 𝐶 and 𝐷. 

Proof: 
𝑑𝑔

𝑑𝐶
= 𝛼𝐶𝛼−1𝐷1−𝛼 − 𝜌𝑐 𝑞 ∗ 𝐶𝜌𝑐−1𝐷𝜌𝑑  

Since we assumed 𝛼 > 𝜌𝑐 and 1 − 𝛼 > 𝜌𝑑, that means for 
𝑑𝑔

𝑑𝐶
, ∃𝐶̅, 𝐷̅, such that ∀𝐶 and 𝐷, 

𝐶 ≥ 𝐶̅ 𝐷 ≥ 𝐷̅, the derivative is positive. In that domain, the function is increasing. 

𝑑2𝑔

𝑑𝐶2
= 𝛼 (𝛼 − 1)𝐶𝛼−2𝐷1−𝛼 − 𝜌𝑐  (𝜌𝑐 − 1) 𝑞 ∗ 𝐶𝜌𝑐−2𝐷𝜌𝑑 
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𝛼 − 1 and 𝜌𝑐  − 1 are negative. Since 𝛼 > 𝜌𝑐, 1 − 𝛼 > 𝜌𝑑, that means for 
𝑑2𝑔

𝑑𝐶2
, ∃𝐶̅′, 𝐷̅′, such 

that ∀ 𝐶 and  𝐷, 𝐶 ≥ 𝐶̅′𝐷 ≥ 𝐷̅′, the second derivative is negative. In that domain, the 

function is concave. 

Then, denote 𝐶̅′′ = 𝑚𝑎𝑥{𝐶̅′, 𝐶̅} and 𝐷̅′′ = 𝑚𝑎𝑥{𝐷̅, 𝐷̅′}. Then ∀ 𝐶 ≥ 𝐶̅′′ and ∀ 𝐷 ≥ 𝐷̅′′, the 

function 𝑔(𝐶, 𝐷) is an increasing concave function with respect to 𝐶. It is the same to prove 

this function is an increasing concave function with respect to 𝐷. \\ 

 

Corollary 1: For the production function 𝑔(𝐶, 𝐷) = 𝐶𝛼𝐷1−𝛼 − 𝑞 ∗ 𝐶𝜌𝑐𝐷𝜌𝑑 , the isoquant 

function is strictly convex. 

Theorem 1: For 𝑔(𝐶, 𝐷) = 𝐶𝛼𝐷1−𝛼 − 𝑞 ∗ 𝐶𝜌𝑐𝐷𝜌𝑑, given for some 𝑄̅ and 𝑝, there is a unique 

𝐶, 𝐷 such that 𝑔(𝐶, 𝐷) = 𝑄̅ and  

𝛼 𝐶𝛼−1𝐷1−𝛼 − 𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1 − 𝛼)𝐶𝛼𝐷−𝛼 − 𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1
=

1
1 + 𝜁 𝛽𝑐 + 𝜅𝑐

1
1 + 𝜁 (𝛽𝑑 + 𝛾𝑑) + 𝜅𝑑

 

Proof: Given a 𝑄̅ that is large enough, there is an isoquant curve for 𝑔(𝐶, 𝐷) = 𝑄̅. According 

to corollary 1, this isoquant curve is convex. The marginal rate of technical substitution is 

𝑑𝑔

𝑑𝐶
𝑑𝑔

𝑑𝐷

=
𝛼 𝐶𝛼−1𝐷1−𝛼−𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1−𝛼)𝐶𝛼𝐷−𝛼−𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1 . Due to the strict convexity, for any constant b, there exists 

unique 𝐶 and 𝐷 such that the marginal rate of technical substitution equals to 𝑏. Denote 𝑏 =

1

1+𝜁
𝛽𝑐+𝜅𝑐

1

1+𝜁
(𝛽𝑑+𝛾𝑑)+𝜅𝑑

. There exists a unique combination 𝐶 and 𝐷 such that  

𝛼 𝐶𝛼−1𝐷1−𝛼 − 𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1 − 𝛼)𝐶𝛼𝐷−𝛼 − 𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1
=

1
1 + 𝜁 𝛽𝑐 + 𝜅𝑐

1
1 + 𝜁 (𝛽𝑑 + 𝛾𝑑) + 𝜅𝑑

 

 

Theorem 2:  For 𝐶1, 𝐷1 and 𝐶2, 𝐷2 that are solutions of 𝛽1 and 𝛽2 the following equation, while 𝛽1 >

𝛽2 
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𝛼 𝐶𝛼−1𝐷1−𝛼 − 𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1 − 𝛼)𝐶𝛼𝐷−𝛼 − 𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1
=

1
1 + 𝜁 𝛽𝑐 + 𝜅𝑐

1
1 + 𝜁 (𝛽𝑑 + 𝛾𝑑) + 𝜅𝑑

 

Then either 𝐶1 < 𝐶2 or 𝐷1 > 𝐷2 

Proof: Denote 𝐾(𝐶, 𝐷) =  
𝛼 𝐶𝛼−1𝐷1−𝛼−𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1−𝛼)𝐶𝛼𝐷−𝛼−𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1  

Since 𝛽1 > 𝛽2, while 𝐶1, 𝐷1 and 𝐶2, 𝐷2 are solutions for the above equations. 

Then we have: 

𝐾(𝐶1, 𝐷1) > 𝐾(𝐶2, 𝐷2)  

In that sense, we will get either: 

either 

𝛼 𝐶1
𝛼−1𝐷1

1−𝛼 − 𝑞𝜌𝑐𝐶1
(𝜌𝑐−1)

𝐷1
𝜌𝑑 > 𝛼 𝐶2

𝛼−1𝐷2
1−𝛼 − 𝑞𝜌𝑐𝐶2

(𝜌𝑐−1)
𝐷2

𝜌𝑑 

Or: 

(1 − 𝛼)𝐶1
𝛼𝐷1

−𝛼 − 𝑞𝜌𝑑𝐶1
𝜌𝑐𝐷1

𝜌𝑑−1
< (1 − 𝛼)𝐶2

𝛼𝐷2
−𝛼 − 𝑞𝜌𝑑𝐶2

𝜌𝑐𝐷2
𝜌𝑑−1

 

Combining the above equation with Lemma 2, where g(C,D) is increasing in both C and D, 

we will get either 𝐶1 < 𝐶2 or 𝐷1 > 𝐷2 

 

 

Theorem 3:  For 𝐶1, 𝐷1 and 𝐶2, 𝐷2 that are solutions of 𝑞1 and 𝑞2 in the following equation, while 

𝑞1 > 𝑞2 

𝛼 𝐶𝛼−1𝐷1−𝛼 − 𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1 − 𝛼)𝐶𝛼𝐷−𝛼 − 𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1
=

1
1 + 𝜁 𝛽𝑐 + 𝜅𝑐

1
1 + 𝜁 (𝛽𝑑 + 𝛾𝑑) + 𝜅𝑑

 

Then either 𝐶1 < 𝐶2 or 𝐷1 > 𝐷2 

Proof: Denote ℎ(𝐶, 𝐷, 𝑞) =
𝛼 𝐶𝛼−1𝐷1−𝛼−𝑞𝜌𝑐𝐶(𝜌𝑐−1)𝐷𝜌𝑑

(1−𝛼)𝐶𝛼𝐷−𝛼−𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1  

Then, 
𝑑ℎ

𝑑𝑞
=

(𝛼∗𝜌𝑑−(1−𝛼)∗𝜌𝑐)∗𝐶𝛼+𝜌𝑐−1∗𝐷𝜌𝑑−𝛼

((1−𝛼)𝐶𝛼𝐷−𝛼−𝑞𝜌𝑑𝐶𝜌𝑐𝐷𝜌𝑑−1)
2  

Since 
𝛼

𝜌𝑐
>

1−𝛼

𝜌𝑑
 ,  𝛼 ∗ 𝜌𝑑 > (1 − 𝛼) ∗ 𝜌𝑐 
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Therefore, 
𝑑ℎ

𝑑𝑞
> 0 

That means, ℎ(𝐶1, 𝐷1, 𝑞1) > ℎ(𝐶1, 𝐷1, 𝑞2) 

Given that ℎ(𝐶1, 𝐷1, 𝑞1) = ℎ(𝐶2, 𝐷2, 𝑞2), then either:  

𝛼 𝐶1
𝛼−1𝐷1

1−𝛼 − 𝑞2𝜌𝑐𝐶1
(𝜌𝑐−1)

𝐷1
𝜌𝑑 < 𝛼 𝐶2

𝛼−1𝐷2
1−𝛼 − 𝑞2𝜌𝑐𝐶2

(𝜌𝑐−1)
𝐷2

𝜌𝑑  

Or:  

(1 − 𝛼)𝐶1
𝛼𝐷1

−𝛼 − 𝑞2𝜌𝑑𝐶1
𝜌𝑐𝐷1

𝜌𝑑−1
> (1 − 𝛼)𝐶2

𝛼𝐷2
−𝛼 − 𝑞2𝜌𝑑𝐶2

𝜌𝑐𝐷2
𝜌𝑑−1

 

Once we combine this with Lemma 2, we will get either 𝐶1 < 𝐶2 or 𝐷1 > 𝐷2 
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Appendix B 

Types of incidents included in the database for the second-stage 

regression model(Chapter three) 

Inorganic Chemical: 

Chlorite, Nitrate (As Nitrogen) 

Organic Chemical: 

Dichloromethane, Trihalomethane, Atrazine  

Management Incidents: 

Turbidity violates the standard, Low UV dosage, Colour violates the standard, Combined 

Chlorine Residual, Free Chlorine Residual, Ph violates the standard, Low Chlorine, High 

Chlorine, Boiling Water Advisory, Loss Of Process 

Micro-biological: 

Total Coliform, Escherichia Coli 
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Appendix C  

Types of incidents that are not included in the database for the 

second-stage regression model(Chapter three) 

 

Inorganic Chemicals:  

Arsenic, Cadmium, Chloride, Chromium, Fluoride, Lead, Mercury, Sodium 

Organic Chemicals:  

Naphthalene 

Other Incidents:  

Equipment Malfunction, Loss Of Power, Loss Of Pressure, Water Main Break 
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Appendix D 

 

Water treatment infrastructure by categories 

Pretreatment: 

Microscreening, Other Pre-treatment 

Disinfection/oxidation:  

Chlorination, Chlorine Dioxide, Chloramination, Ultraviolet Irradiation, Ozonation, 

Potassium Permanganate, Other Reagents 

Chemical treatment or addition: 

Fluoridation, Alkalinity Adjustment - Process control, pH Adjustment - Process 

control, pH Adjustment - Corrosion control, Alkalinity Adjustment - Corrosion 

control, Corrosion Inhibitors 

Coagulation/flocculation and filter aid: 

Aluminum-based Coagulation, Ferric-based Coagulation, Other Coagulant, Enhanced 

Coagulation, Flocculation 

Clarification/sedimentation:  

Sedimentation, Dissolved Air Flotation, Other Clarification 

Filtration: 
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Granular Media, Granular Activated Carbon - Filter media, Granular Activated 

Carbon - Separate process, Microfiltration, Ultrafiltration, Cartridge/Bag, Slow Sand 

Other processes: 

Aeration, Air Stripping, Lime Softening, Activated Alumina, Ion Exchange, Sequestering, 

Greensand Filtration, Powdered Activated Carbon, Reverse Osmosis or Nano Filtration, 

Other Processes 


