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Abstract. We prove that given a non-wandering point of a Sobolev-(1, p) homeomor-
phism we can create closed trajectories by making arbitrarily small perturbations. As
an application, in the planar case, we obtain that generically the closed trajectories are
dense in the non-wandering set.
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1. Introduction

A paramount result on dynamical systems, which goes back to Poincaré in the turn
of the nineteenth century into the twentieth, is the well known Closing Lemma. In brief
terms, we intend to close, in a sense that we transform into a periodic orbit, a given
recurrent or non-wandering orbit by making a small perturbation on the original system.
Poincaré believed that such a closing could be performed in quite general situations.
However, until now, there are satisfactory answers to this problem if the perturbations
are with respect to coarse topologies like e.g., C0, Sobolev-(1, p) and C1. Even for the C2

case the problem can get very difficult and a global approach, and no longer a local one,
is needed (see e.g. [17]). Nevertheless, in the C∞ topology we have Herman’s C∞-robust
impressive example of Hamiltonians displaying an interval of energy levels without any
closed orbit [11]. Furthermore, and as a consequence of a C∞ closing lemma for Reeb
flows on closed contact three-manifolds, recently Asaoka and Irie were able to obtain a
surprising C∞ closing lemma for Hamiltonian diffeomorphisms of closed surfaces [2].

Despite the fact that the C0 closing lemma is a quite simple exercise except perhaps for
the geodesic flows (see [19]), the C1 statement reveals several difficulties. The C1 closing
lemma for non-conservative dynamics was first established by Pugh [15] in the late 1960’s.
For conservative dynamics the closing lemma was proved in the early 1980’s by Pugh and
Robinson [18]. Recently, in [8], was presented a non-conservative version of the closing
lemma for the Sobolev-(1, p) topology. These type of maps gained interest in recent times
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(see [3, 7, 8, 10, 13]). In this paper we present a simpler and different proof of the Sobolev
closing lemma (see Theorem A) which also works in the conservative case.

The general density theorem is presumably the most important upshot coming out from
the closing lemma. It asserts that, from the generic viewpoint, the closure of the set of
periodic orbits is the set where the dynamics is truly relevant: in the non-conservative
case this set is the non-wandering set and in the conservative case this set is the whole
manifold. The general density theorem has been proved in several different contexts and
there is now a vast literature on the subject (see [1, 2, 4, 5, 6, 9, 16, 21]).

Remarkably, the general density theorem turns out to be easier in the C1 case (see [16])
when compared to the C0 one ([6]). The main difficulty lies in the stability of the periodic
points which in the differentiable case can be expressed through hyperbolicity but in the
topological case is much more trickier. Within Sobolev homeomorphisms those issues
concerning permanence of periodic points will have to be overcome using a well balanced
twofold approach: in one hand we use hyperbolicity which is robust under C1 perturbations
and on the other hand we use Brouwer index which is robust under C0 perturbations.
In order to have hyperbolicity we had to demand for differentiability at least for a map
arbitrarily close from the Sobolev point of view. This bypass through a differentiable map
is very hard to obtain. Indeed, regularization of Sobolev-(1, p) homeomorphisms is known
only for planar domains (see [13, 10]). Moreover, some C0 perturbation results which turn
out to be quite simple for homeomorphisms, like e.g. the creation of periodic sinks from
periodic points, are much more delicate for Sobolev-(1, p) maps (see Proposition 4.3). In
overall, we were able to obtain the planar general density theorem for Sobolev-(1, p) maps
(see Theorem B).

2. Preliminaries on Sobolev-(1, p) maps

We denote the Euclidean norm in Rn by | · | and the Lebesgue measure on Rn by λ.

2.1. Sobolev maps. Let U be an open bounded subset of Rn with Lipschitz boundary
(that is, the boundary is locally the graph of a Lipschitz map from an open set of Rn−1

to R) and let 1 ≤ p, q ≤ ∞.
Recall that a measurable map f = (f1, . . . , fn) : U → Rn is in the Sobolev class

W 1,p(U,Rn) if, for all i = 1, . . . , n, fi and all its distributional partial derivatives ∂fi/∂xj
are in Lp(U).

We endow W 1,p(U,Rn) with the norm defined by

∀f ∈ W 1,p(U,Rn), ‖f‖1,p = ‖f‖p + ‖Df‖p,

where ‖f‖p = maxi ‖fi‖p and ‖Df‖p = maxi,j

∥∥∥ ∂fi∂xj

∥∥∥
p
.
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We shall be interested only on Sobolev maps that are continuous up to the boundary.
More precisely, we will consider the space

W 1,p(U,Rn) ∩ C0(U,Rn) .

The (natural) norm in this space is equivalent to the one defined by

‖f‖∞,p := ‖f‖∞ + ‖Df‖p ,

since C0(U,R) is compactly included in Lp(U).
Finally we define the Sobolev spaces we are going to work with.

Definition 2.1. (Sobolev homeomorphisms) We define W1,p(U) as the set of all homeo-
morphisms f : U → U such that f ∈ W 1,p(U,Rn) ∩ C0(U,Rn).

In this space we consider the natural metric defined by

d∞,p(f, g) = ‖f − g‖∞ + ‖D(f − g)‖p .

We also define W1,p
λ (U) as the subspace of all volume preserving elements in W1,p(U).

Definition 2.2. (Bi-Sobolev homeomorphisms) We define W1,p,q(U) as the set of all
elements in W1,p(U) whose inverse is in W1,q(U). In this space we consider the natural
metric defined by (f, g) 7→ d∞,p(f, g) + d∞,q(f

−1, g−1).

We also define W1,p,q
λ (U) as the subspace of all volume preserving elements in W1,p,q(U).

Since the space of homeomorphisms and the space of volume preserving homeomor-
phisms are topologically complete (see [14]) and the space W 1,p(U,Rn) ∩ C0(U,Rn) is
complete, we have the following.

Proposition 2.3. The spaces W1,p(U), W1,p
λ (U), W1,p,q(U) and W1,p,q

λ (U) satisfy the Baire
property.

Finally, one can define similar spaces for smooth manifolds.

3. The Sobolev-(1, p) closing lemma

Let f : U → U be a homeomorphism. A point x ∈ U is said to be a periodic point of
period n for f if fn(x) = x and f i(x) 6= x for all i = 1, . . . , n− 1. A point x ∈ U is said to
be a non-wandering point for f if for any neighbourhood V of x there exists n ∈ N such
that fn(V )∩ V 6= ∅. We denote by Per(f) the set of periodic points and by Ω(f) the set
of non-wandering points for f .
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Theorem A (Sobolev-(1, p) closing lemma). Let n ≥ 2. Consider X to be any of the

spaces W1,p(U), W1,p
λ (U), W1,p,q(U), W1,p,q

λ (U), where p, q ∈ [1,∞[. Let f ∈ X and

z ∈ Ω(f). Then, for all ε > 0 there exists yε ∈ U and hε ∈ X such that lim
ε→0
|yε − z| = 0,

lim
ε→0
‖hε − f‖X = 0 and yε ∈ Per(hε).

Remark 3.1. The Sobolev closing lemma also holds for the space W 1,p(U,Rn)∩C0(U,Rn)

with the additional hypothesis that λ(f−1(z)) = 0.

In the proof of the Sobolev closing lemma we will use an auxiliary result proved in [3].

We include the proof of this result for completeness. For a ≥ b > 0 we denote by Σa,b the

ellipsoid

Σa,b =

{
x ∈ Rn :

(x1

a

)2

+
n∑
i=2

(xi
b

)2

≤ 1

}
.

Lemma 3.2 ([3]). Given a ≥ b > 0 and 0 < µ < 1, there exists a C∞ volume preserving

diffeomorphism of Rn, F , that is equal to the identity in Rn \Σa,b and F (x1, x2, . . . , xn) =

(−x1,−x2, x3, . . . , xn) in Σ(1−µ)a,(1−µ)b.

In addition, there exists C > 0 independent of a, b, µ, such that all partial derivatives

of F and F−1 are bounded by a
b
· C
µ

.

Proof. Consider a C∞ function h1 : R→ R that is strictly decreasing in ]0, 1[, is constant

equal to zero in [1,+∞[ and constant equal to one in ]−∞, 0]. Let hµ : R→ R be defined

by hµ(t) = h1( 1
µ
(t− (1− µ))). Notice that ‖h′µ‖∞ ≤

‖h′1‖∞
µ

.

Consider now the function F = (F1, F2, . . . , Fn) from Rn to Rn defined by

F (x) =
(
x1 cos(α(x))− a

b
x2 sin(α(x)), b

a
x1 sin(α(x)) + x2 cos(α(x)), x̄

)
where x̄ = (x3, . . . , xn) and α : Rn −→ Rn .

x 7→ hµ

(√(
x1
a

)2
+
∑n

i=2

(
xi
b

)2
)

Note that
∣∣∣ ∂α∂x1 ∣∣∣ ≤ ‖h′1‖∞

µa
and

∣∣∣ ∂α∂xi ∣∣∣ ≤ ‖h′1‖∞
µ b

, if i ≥ 2.

The function F preserves the volume because the determinant of its Jacobian matrix

is equal to the determinant of the Jacobian matrix of (F1, F2), which can easily be seen

to be equal to 1.

The conditions on the partial derivatives of Fa,b,µ are simply a consequence of the

hypotheses on a, b, µ and of the inequalities | cos(α(x))|, | sin(α(x))| ≤ 1, |x1| ≤ a, |xi| ≤ b,

for i ≥ 2.

To conclude just notice that F−1 is obtained by replacing α(x) by −α(x) in F . �
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Proof. (of Theorem A) Using Lemma (of Pugh) (see [8, Lemma 2.3.] and [15]) consider,

for ε > 0, yε ∈ B(z, ε) and k ∈ N such that fk(yε) ∈ B(z, ε) and

f j(yε) 6∈ B(yε,
3
4
ρ) ∪B(fk(yε),

3
4
ρ), for j = 1, . . . , k − 1

where ρ = |yε − fk(yε)|.
Without loss of generality we can suppose that yε = −(ρ

2
, 0, . . . , 0) and fk(yε) =

(ρ
2
, 0, . . . , 0). Let F (= Fε) be the function given by Lemma 3.2 for a = 5

4
ρ, b =

√
5

4
ρ

and µ = 1
2
.

Notice that Σa,b ⊆ B(yε,
3
4
ρ) ∪ B(fk(yε),

3
4
ρ) ⊆ B(z, 4 ε) (Figure 1). In fact, if x =

(x1, . . . , xn) ∈ Σa,b with x1 ≥ 0 for example, then

(x1 − ρ
2
)2 +

n∑
i=2

x2
i < (x1 − ρ

2
)2 + 5ρ2

16

(
1− 16x21

25 ρ2

)
= 4

5
x1(x1 − 5ρ

4
) +

(
3ρ
4

)2 ≤
(

3ρ
4

)2
.

Figure 1. Illustration on the perturbative argument.

Let hε = Fε ◦ f and notice that (Fε ◦ f)j (yε) = (Fε ◦ f j) (yε), for j = 1, . . . , k, as

f j(yε) 6∈ Σa,b. Therefore, hkε(yε) =
(
Fε ◦ fk

)
(yε) = Fε

(
fk(yε)

)
= yε, since yε and fk(yε)

belong to Σa
2
,
b
2

.

As ‖hε − f‖∞ ≤ diam(Σa,b), we have that limε→0 ‖hε − f‖∞ = 0.

On the other hand, by Lemma 3.2, we have that∣∣∣∣∂(hε)i
∂xj

(x)

∣∣∣∣ ≤ 2
√

5C
n∑
k=1

∣∣∣∣∂fk∂xj
(x)

∣∣∣∣ , i, j = 1, . . . , n ,

and then∥∥∥∥∂(hε − f)i
∂xj

∥∥∥∥
Lp(U)

=

∥∥∥∥∂(hε − f)i
∂xj

∥∥∥∥
Lp(f−1(Σa,b))

≤ (2
√

5C + 1)
n∑
k=1

∥∥∥∥∂fk∂xj

∥∥∥∥
Lp(f−1(Σa,b))

.
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As lim
ε→0

λ
(
f−1 (B(z, 4 ε))

)
= λ

(⋂
ε>0

f−1 (B(z, 4 ε))

)
= λ({f−1(z)}) = 0 then lim

ε→0
λ(f−1 (Σa,b)) =

0. Since ∂fk
∂xj
∈ Lp(U), then limε→0

∥∥∥∂fk∂xj

∥∥∥
Lp(f−1(Σa,b))

= 0. Hence, lim
ε→0

∥∥∥∥∂(hε − f)i
∂xj

∥∥∥∥
Lp(U)

=

0.

For the bi-Sobolev case, first notice that∣∣∣∣∂(h−1
ε )i

∂xj
(x)

∣∣∣∣ ≤ 2
√

5C
n∑
k=1

∣∣∣∣∂(f−1)i
∂xk

(F−1
ε (x))

∣∣∣∣ , i, j = 1, . . . , n .

Therefore, we just need to prove that

lim
ε→0

∫
Σa,b

∣∣∣∣∂(f−1)i
∂xk

(
F−1
ε (x)

)∣∣∣∣q dx = 0 .

This follows as before because lim
ε→0

λ (Σa,b) = 0, ∂(f−1)k
∂xj

∈ Lq(U) and∫
Σa,b

∣∣∣∣∂(f−1)i
∂xk

(
F−1
ε (x)

)∣∣∣∣q dx =

∫
Σa,b

∣∣∣∣∂(f−1)i
∂xk

(y)

∣∣∣∣q |detJFε(y)| dy

≤n! (2
√

5C)n
∫

Σa,b

∣∣∣∣∂(f−1)i
∂xk

(y)

∣∣∣∣q dy .
On the other hand, we have that limε→0 ‖h−1

ε − f−1‖∞ = 0, since h−1
ε (x) = f−1(x)

outside Σa,b and it is controlled by the continuity of f−1 in Σa,b.

Finally, we observe that when f is volume preserving, then hε is also volume preserving.

�

Remark 3.3. We notice that the Sobolev closing lemma also holds in smooth manifolds.

Indeed, since we only perform a single local perturbation, we can define an Fε type function

on the manifold.

4. The Sobolev-(1, p) general density theorem on planar sets

In this section we prove the following result.

Theorem B (Sobolev-(1, p) general density theorem). There exists a W1,p-residual subset

R ⊂W1,p(U) such that if f ∈ R, then Per(f) = Ω(f).

Unless otherwise stated we assume that U ⊂ R2. First we give a synopsis of the strategy

of the proof of Theorem B.
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(i) Since the proof uses a topological fixed point index argument, in §4.1, we begin

by presenting some definitions;

(ii) In §4.2 we obtain a result (Lemma 4.1) which assures the existence of a W1,p-

residual R where the periodic orbits are permanent1. This guarantees that the

map P defined by P(f) = Per(f) for f ∈ W1,p(U) is lower semicontinuous in R.

In particular, the continuity points of P|R form a residual subset of R;

(iii) Lastly, a continuity argument using (ii), the Sobolev-(1, p) closing lemma (Theo-

rem A) and a key perturbation result on the creation of sinks (Proposition 4.3)

will complete the proof of Theorem B.

4.1. Brouwer fixed point index. Given a continuous map f on U ⊂ R2, we recall the

fixed point index used in [6]. Let B be an open ball on U . If f has no fixed points in ∂B

then the fixed point index ιf (B) is defined as follows: ιf (B) = deg(γ), otherwise, where

deg(γ) denotes the Hopf degree of the map γ : ∂B ' S1 → S1 which is defined (after a

change of coordinates) by:

γ(x) =
f(x)− x
‖f(x)− x‖

.

It follows from the definition that ιf (B) = 0, if f(B) ∩B = ∅. This notion is constant in

a small C0 neighbourhood of f (see e.g. [12]).

4.2. Permanence of periodic orbits. We recall the notion of permanence from topo-

logical dynamics. We say that a periodic point x of a map f ∈ W1,p(U) is permanent if

for any g ∈ W1,p(U), W1,p-arbitrarily close to f , the map g has a periodic point near x.

Let P(f) denote the set of all permanent periodic points of f . Before proving Lemma 4.1

we recall two important facts that will play a crucial role along its proof.

• Every homeomorphism between planar open sets that belongs to W1,p(U), 1 ≤
p < ∞, can be approximated by C∞ smooth diffeomorphisms (see [13] for p > 1

and [10] for p = 1).

• Let Diff1(U) be the space of C1 diffeomorphisms f : U → U endowed with the

C1 topology. As a direct consequence of the Kupka-Smale theorem for diffeomor-

phisms [20] we have that there exists a C1-residual subset R̃ ⊂ Diff1(U) such that

if f ∈ R̃, then the periodic points of f are all hyperbolic2. Therefore, and since

Diff1(U) is a Baire space, R̃ is C1-dense in Diff1(U).

1 This is why we only prove our result in surfaces. We make use of an approximation result ([13, 10])
available only for planar domains.

2 A periodic point p of period n for f ∈ Diff1(U) is said to be hyperbolic if the eigenvalues of Dfn
p do

not intersect S1.
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Lemma 4.1. There exists a W1,p-residual subset R of W1,p(U) such that Per(f) = P(f),

for any f ∈ R. Moreover, the residual subset R contains R̃.

Proof. Since Diff1(U) is W1,p-dense in W1,p(U) (see [10, 13]) then we conclude that R̃ is

W1,p-dense in W1,p(U). In particular there exists a W1,p-dense set of maps in W1,p(U)

such that all periodic orbits are permanent.

We proceed to prove that there exists a W1,p-residual R ⊂ W1,p(U) such that any

periodic orbit of a map in R is permanent. We begin by taking a countable base for the

topology {Bi}i∈N of U consisting of open balls.

The index of periodic orbits will play a crucial role along the proof since, in rough terms,

the existence of non-zero index on a set allows to conclude the existence of a periodic

orbit that intersects that set and, moreover, displaying non-zero index persists under C0

perturbations (thus W1,p perturbations) of the map. We define, for every i, n ∈ N, the

following subsets Fi,n,Ii,n of W1,p(U) in the following way:

(i) f ∈ Fi,n if fn(x) 6= x for all x ∈ Bi;
(ii) f ∈ Ii,n if there exists Bj with diam(Bj) < diam(Bi), Bi ∩ Bj 6= ∅ and such that

fn(x) 6= x for all x ∈ ∂Bj and ιfn(Bj) 6= 0.

The sets Fi,n and Ii,n are C0-open subsets of W1,p(U) (thus W1,p-open subsets of W1,p(U)).

We claim that R̃ ⊂ Fi,n ∪Ii,n and, in particular, Fi,n ∪Ii,n is a W1,p-open and dense

subset of W1,p(U) for all i, n ≥ 1. Indeed, given i, n ≥ 1 fixed and f ∈ R̃ either there

are no periodic points with period n in Bi (in which case f ∈ Fi,n) or there are periodic

points with period n in Bi. In the later case, since the periodic orbits are hyperbolic,

hence isolated, we have that f ∈ Ii,n.

Now we claim that the W1,p-residual subset

R :=
⋂
i,n≥1

[Fi,n ∪Ii,n] ⊂W1,p(U)

satisfies the requirements of the lemma. Take f ∈ R and let us show that Per(f) = P(f).

Let p ∈ Per(f) of period n and any Bi containing p. Since f ∈ Fi,n ∪ Ii,n and p ∈ Bi
then f /∈ Fi,n. Hence, there exists Bj with diam(Bj) < diam(Bi), such that fn(x) 6= x for

all x in the boundary of Bj, and the corresponding index ιfn(Bj) is non-zero. We are left

to see that ιgn(Bj) is also non-zero for a small W1,p perturbation g of the original map.

This follows from the continuity of the composition, whenever defined, of the inclusion of

W1,p(U) in C0(U,R2), the n-composition map in C0(U,R2) and the function defined by

the index relatively to Bj. This clearly shows that p is permanent. �
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4.3. Finishing the proof of Theorem B. Let U? be the set of compact subsets of U

endowed with the Hausdorff topology. We need the following semicontinuity result.

Lemma 4.2. Let W1,p(U) be endowed with the W1,p topology. Then the map

P : W1,p(U) → U?

f 7→ Per(f)

is lower semicontinuous on the residual R given by Lemma 4.1.

Proof. We must prove that for any f ∈ R, and any ε > 0 there exists a neighbourhood

V ⊂ W1,p(U) of f such that P(f) ⊆ Bε(P(g)) for all g ∈ V , or in other words there are

no implosions of the set of periodic points when we W1,p perturb f . But Lemma 4.1 says

that Per(f) = P(f) and the proof follows immediately from the definition of permanent

periodic points. �

We will also need the following perturbation result. We recall that a periodic point p of

period k is a sink of f if there exists a small disk D containing p such that
⋂
j≥0 f

jk(D) =

{p}.

Proposition 4.3. Let f ∈ W1,p(U), p a periodic point of f and ε > 0. There exists

g ∈W1,p(U), ε-W1,p-close to f such that p is a sink of g.

The proof of this proposition follows immediately from the following two lemmas. We

remark that Lemma 4.5 holds for U in Rn, n ≥ 2.

Lemma 4.4. (Regularization lemma) Let f ∈W1,p(U), p a periodic point of f with period

k and ε > 0. There exists a C∞ map g ∈ W1,p(U) such that ‖g − f‖∞,p ≤ ε and p is a

periodic point of g with period k.

Proof. Let δ > 0 such that the balls B(f i(p), δ), for i = 0, . . . , k − 1, are disjoint and

contained in U .

For η ≤ δ
4

let hη be a C∞ homeomorphism such that ‖f −hη‖∞,p ≤ η (see [13, 10]). We

can also assume that ‖f i − hiη‖∞ ≤ η for all i = 1, . . . , k. Let qη be the middle point of p

and hkη(p). Without lost of generality we can suppose that qη = 0. Consider the function

Fη given by Lemma 3.2 for a = b = 2η and µ = 1
2
. Notice that the partial derivatives of

Fη are bounded independently of η.
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Take the function Fη ◦ hη. We have that p is a periodic point of this function with

period k and

‖Fη ◦ hη − f‖∞,p ≤ ‖Fη ◦ hη − hη‖∞,p + ‖hη − f‖∞,p
≤ ‖Fη ◦ hη − hη‖∞ + ‖D(Fη ◦ hη − hη)‖p + ‖hη − f‖∞,p
≤ 4η + ‖D(Fη ◦ hη − hη)‖Lp(h−1

η (B(qη ,2η))) + η

≤ 5η + ‖D(Fη ◦ hη − hη)‖Lp(f−1(B(p,4η))) .

As in the proof of Theorem A, we have that

‖D(Fη ◦ hη − hη)‖Lp(f−1(B(p,4η))) ≤ C ‖Dhη‖Lp(f−1(B(p,4η)))

≤ C
(
‖Df‖Lp(f−1(B(p,4η))) + η

)
,

and the conclusion follows making η goes to 0. �

Lemma 4.5. Let f be a C1 map in W1,p(U), p a periodic point of f and ε > 0. There

exists g ∈W1,p(U), ε-W1,p-close to f such that p is a sink of g.

Proof. Let δ0 > 0 be such that f(p), . . . , fk−1(p) /∈ B(p, 2δ0). Let α < 1 to be chosen

later. We define, for δ < δ0, the function ϕ = ϕδ : R2 → R2 by

ϕ(x) =


α(x− p) + p if |x− p| ≤ δ

[(2− α)(|x− p| − δ) + αδ] x−p
|x−p| + p if δ ≤ |x− p| ≤ 2δ

x if |x− p| ≥ 2δ .

Notice that

• ϕ is an homeomorphism which is C∞ in {x ∈ R2 : |x− p| 6= δ, 2δ};
• all partial derivatives of ϕ are bounded by α in {x ∈ R2 : |x− p| < δ} and by 6 in

{x ∈ R2 : |x− p| > δ}. Consider the function g = ϕ ◦ f .

We have that g ∈ W1,p(U). Moreover, in a neighbourhood of p, gk = ϕ ◦ fk and gk is

C1. Consequently,

(1) p is a periodic point of g of period k;

(2) p is a sink of g as∣∣∣∣∂(gk)i
∂xj

(p)

∣∣∣∣ =

∣∣∣∣∂ϕi∂x1

(p)
∂(fk)1

∂xj
(p) +

∂ϕi
∂x2

(p)
∂(fk)2

∂xj
(p)

∣∣∣∣
≤ α

(∣∣∣∣∂(fk)1

∂xj
(p)

∣∣∣∣+

∣∣∣∣∂(fk)2

∂xj
(p)

∣∣∣∣) ,

which is less than 1 for a convenient choice of α;
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(3) for δ small enough, g is ε-W1,p-close to f , as

‖g − f‖∞,p = ‖g − f‖∞ + ‖D(g − f)‖p
≤ 2δ + ‖D(g − f)‖Lp(f−1(B(p,2δ))

≤ 2δ + ‖Dg‖Lp(f−1(B(p,2δ)) + ‖Df‖Lp(f−1(B(p,2δ)) .

�

Remark 4.6. We observe that, in Lemma 4.5, the approximating function g, which is a

contraction, can be chosen with arbitrarily small contraction rate.

We are now in a position to prove Theorem B. Since the map P : W1,p(U)→ U? defined

by P(f) = Per(f) is lower semicontinuous on R (by Lemma 4.2) then the continuity points

of P|R form a residual subset R1 ⊂ R. Thus, to prove Theorem B it is enough to show

that Ω(f) = Per(f) for every map f ∈ R1. Assume, by contradiction, that there exists

a map f ∈ R1 such that Ω(f) \ Per(f) 6= ∅ and take p ∈ Ω(f) \ Per(f). Theorem A

guarantees that f can be W1,p approximated by a map g1 ∈W1,p(U) with a periodic point

p̃ arbitrarily close to p.

Due to Proposition 4.3, we can perform an extra W1,p small perturbation of g1 so that

the resulting map g2 ∈W1,p(U) has p̃ as a periodic sink.

As W1,p(U) is a Baire space we get that R is W1,p-dense in W1,p(U). Therefore, g2 can

be arbitrarily W1,p approximated by some map g3 ∈ R with a periodic point p arbitrarily

close to p̃. This is in contradiction to the fact that f is a continuity point of P |R .
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