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ABSTRACT This paper proposes a flexible methodology to improve the definition of each distinct trip
carried out in a transport system, integrating the information provided by stop-level events from its automated
vehicle location and fare collection systems, and scheduling subsystem information at the initial stop of
planned trips. The data are structured; and then corrected and completed utilizing several criteria, including a
probabilistic approach based on the distributions of travel and dwell times, aiming tominimize the distortions
that appear due to the nature of the available sources. The case study data encompass one year of records
from the automated vehicle location, fare collection, and scheduling subsystems in Santander City, Spain.
The results are discussed with captures from an interactive web visualization tool that has been developed
for this work.

HIGHLIGHTS
• Trips that have taken place are recognized, providing for each call arrival and departure times, as well
as identifying the raw data sources that were utilized to make the determination.

• Each cluster of ticketing events is assigned to the corresponding visit of a vehicle.
• Distinction between trips that are part of the planned timetable, and those that respond to operational
decisions.

• Detection and treatment of instances where the id of a vehicle changes during a trip.
• Robustness against missing and erroneous data.
• Specific treatment for particularly problematic termini.

INDEX TERMS Data integration, public transportation, smart cards.

I. INTRODUCTION
Multiple opportunities for research and development stem
from the analysis of the current implementations and future
possibilities of intelligent public transportation systems
(IPTSs), being the integration of data from different sub-
systems to create better models one of them [1], [2]. However,
a series of common problems arise: some related to each
separate source, others to the fusion process. These include
missing, redundant or erroneous entries; fragmentation of the
sequences of stops that are part of a single trip; clocks of
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different devices not synchronized; or inconsistent ids for the
same elements along different tables.

One of the most relevant features for the analysis of a
public transit network is the characterization of the trips
as they are carried out during day-to-day operations. Each
of these can usually be defined by one of a previously
established set of routes, and the arrival and departure times
from each of the pre-defined stop locations. The datasets
which are useful to build this transportation offer model may,
in most cases, be obtained from the IPTSs.

The method described in this work originated from
the necessity to create a representation of the public
transportation supply using boardings-only automated fare
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control (AFC) and automated vehicle location (AVL) stop-
level data, and the planned (and sometimes recorded) starting
times of the trips from an IPTSs where the aforementioned
problems made the available dataset initially too fragmented,
incomplete, and inaccurate for its intended uses (user
behavior modeling, inference of bus load profiles, and
obtaining transit origin-destination matrices).

The case of Santander (Spain, 173 957 inhabitants) is
studied; utilizing data that encompass the AVL and AFC
events of one year, and the schedule of where and when each
planned trip begins.

This methodology can be synthesized in these steps:
preprocess AVL and AFC input data, obtaining tables where
each visit of a vehicle is represented by a single entry; identify
the sequences of bus stops that completely carried out,
perfectly recorded trips of each route must follow; classify
AVL information in fragments of these sequences; choose
travel and dwell times models for each route; build tables that
describe when each bus trip visits each stop, combining AVL
and AFC entries; detect and treat instances where the id of a
vehicle changes mid-trip; link trips to planned starts, making
use of the extra information to improve their characterization;
attribute ticketing events to the proper visit of a bus during a
trip; and finally filter out trips not supported by enough IPTS
evidence.

The procedure described in this paper aims to be suitable in
situations with different information availability, complete-
ness and reliability. Particularly, scheduled trip beginnings
may be known or not, optionally including which vehicle
had been initially assigned to the task. Available AVL, AFC,
and planning subsystem data are combined to create a better
and more useful characterization of the trips that have taken
place in a transportation system: arrival and departure of the
vehicles and their corresponding cluster of ticketing events
for each stop of each trip; and distinction between those trips
that materialize the planned timetable and those that occur
due to operational decisions.

An interactive web-based visualization tool has been
developed to show the improved definition of the trips carried
out in the transport system, based on the Bokeh Python
library. It has been utilized to illustrate the methodology (figs.
5, 6, 8 and 9) proposed in this work, and its application to
the case study (figs. 12 to 14). It signifies the data source
that has been used to deduce each visit of a vehicle, and the
search ranges computed to complete each trip; and allows to
dynamically choose which vehicles to show, and to vary the
temporal span being represented.

II. LITERATURE REVIEW
Stop-level records, which can be stored in a IPTS at a
fairly low incremental cost, have allowed to better estimate
previously utilized performance indicators and usage metrics
(e.g. travel times) [3], and also to assess previously nigh
impossible to quantify attributes due to data scarcity,
such as those related to service reliability [4]. However,
they may require a significant effort to attain meaningful

conclusions [5]. Also, adequate visualization tools are needed
to be able to comprehend the vast amount of output that can
be generated [6].

Setting aside those cases where fixed timetables are
not available (e.g. bus routes in Jinan, China, with high
uncertainty in travel times, multiple agencies, and a departure
schedule that changes according to on-site observed demand,
where a study employed artificial neural networks for
improved real-time bus arrival estimation based on AFC
and historical vehicle location information [7]), the data
that describe transit services (i.e. routes, their schedules,
and where the stops are) are published in advance. The
most widespread tool to do so is the static component of
the general transit feed specification (GTFS) [8]. However,
even though an extension has been proposed [9], this format
cannot yet represent some real-time changes, such as defining
additional trips. Also, transportation agencies may not keep
a compilation of these files through time, though in some
cases they can be obtained from a third party (for example
OVapi [10], Transitland [11], or OpenMobilityData [12]).

Besides other applications such as identifying headway
irregularities [13], implementing more intelligent vehicle
priority strategies [14], and fleet management and opera-
tions [15]; global navigation satellite system (GNSS) location
information is used to initially estimate and finally identify
the arrival of the vehicle to each point of interest. Typically,
it offers a 5m precision under open sky, though several factors
can worsen its accuracy [16].

Since requiring to register a state where the bus is
completely still next to a stop to assert that a visit is happening
could require too frequent updates, with their associated
network traffic; the actual arrival event is usually equatedwith
the vehicle being detected inside a relatively small region
that encloses the stop, while its velocity is lower than a
threshold [17]. This event is stored in the AVL database,
including besides its timestamp and bus stop identifier other
possibly useful information obtained from on-board sensors:
dwell time, route identification, door opening and close
times, etc.

On the other hand, AFC systems have as main purpose
to improve the revenue collection process, but they also
provide valuable data, especially when enriched with the user
tracking and characterization possibilities of smart card (SC)
technology.

AFC information can be useful at the operational, tac-
tical, and strategic levels of public transport management,
with multiple applications [18] such as passenger behavior
modeling [19]–[21], event-based multi agent simulation [22],
vehicle load profiles [23], quality of service assessment [24],
constructing transit origin-destination matrices [25], [26],
or estimation of passengers’ excess journey time [27].
Obstacles to fully benefit from this source of information
are the reluctance of farebox manufacturers to ease com-
munications with other on-board devices to prevent fraud,
the disinclination of the operator to share business-sensitive
details [28], and that a validation may not be required to exit
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the system (‘‘tap-in’’ only configuration). For instance, in a
study with data from Guangzhou (China) [29] researchers
decided to develop a methodology to extract bus boarding
and alighting information from access-only raw SC data that
does not identify the stop where it happened, combining
the identification of trip direction, boarding cluster, boarding
stop, and alighting stop (utilizing a series of criteria that
build upon the trip chaining theory [30]). Another example
is the use of data from a ‘‘tap-in, tap-out’’ public transport
network in Singapore [31] where researchers explore the
reasons why AFC may provide incorrect information, and
propose how to identify these erroneous entries and their
source. Recently, scientists from Brisbane (Australia) and
Hong Kong (China) have published a review in the field
of transit OD estimation [32] where AFC data cleansing is
identified as its first component, identifying sources and types
of errors, and classifying boarding stop estimation problems
based on which features are available in the SC data.

Each trip performed by a bus can be conceptualized as a
path that starts at a first stop, continues as the bus calls at
midway stops, and ends at a final one. From a spatiotemporal
perspective, it can be regarded as a concatenation of
sections [33], where each of them encompasses the time
between arrivals at two (non-necessarily consecutive) stops;
or as a series of calls at consecutive stops and traveling
the links between them [34]. In the latter case, dwelling
time at each stop depends on the number and characteristics
(special needs and payment mode) of alighting and boarding
passengers, how long door operations take, etc. [35]; while
link travel times are affected by the available infrastructure,
service management, traffic flows, driver behavior, weather,
etc. [36].

Several probability distributions are proposed in the
existing literature to characterize the variability of link
travel times [34] such as shifted log-normal, log-normal,
normal [36], gamma, Weibull, Burr Type XII [37], gener-
alized extreme value [38], etc. Numerous real-life studies
[34], [39]–[41] choose the former, which shows a probability
density of zero when the value of the random variable falls
below a threshold (which would be the free-flow link travel
time) and can adequately fit asymmetric, positively-skewed
data; and that for many links is the function that most likely
describes how travel times are distributed. A 2017 study
conducted on global positioning system (GPS) data from
taxis during the morning peaks of 5 weekdays in Wuhan
(China) [42] found that link travel times may be best
represented by log-normal, gamma or normal distributions
(on 50%, 30%, and 20% of the analyzed links, respectively)
and opted, to avoid computationally intractable calculations,
to assume that travel times along a path can be approximated
by normal distributions.

Regarding dwell times, the majority of works suggest
that, due to their non-negative nature and possible skewness,
the log-normal distribution is likely to be the best alternative
(e.g. a study of 18 months of data from a bus route
in New Jersey, USA [43]; 6000 records from a one-day

study in Changzhou, China; or an analysis of 1-month data
from public buses in Jinan, China [44]). Other possible
distributions are normal, used by commercial traffic micro-
simulation software such as Aimsun [45] or Vissim [46],
and also chosen in some scientific work (e.g. to characterize
1-day data from a bus stop in Chennai City, India [47]);
Wakeby, which outperformed the log-normal distribution in
a study with 3 months of data from 4 stops in Auckland,
New Zealand [48]; or Erlang, proposed in a study that
analyzed 435 records from 12 bus stops in Shanghai,
China [49].

The subsystems that contribute to an IPTS often fail to
properly capture information that would be useful for later
analysis, because they usually have other goals: to support
tactical planning and emergency response in the case of AVL,
and to manage concessions for AFC. Consequently, a series
of issues commonly arise, related to internal problems of each
dataset or inconsistencies between them. Those within the
scope of this work are [50]:
• Erroneous AFC records, which can be caused by
malfunctions, atypical traveler behavior, emergency
route detours or mishandling of the equipment by drivers
and operators [2].

• Wrong AVL entries due to system failures, incorrect
driver operations or termini-specific issues.

• Multiple records for the same AVL event, possibly
with different attributes (timestamp, vehicle or route
identification).

• Lost AVL or AFC events.
• Missing or wrong information to match passenger rides
with materialized and planned trips.

• Uncertainty regarding whether a programmed trip
actually took place.

In some cases, these problems can be so severe that
researchers have developed methodologies that model public
transport features indirectly, instead of using a more imme-
diate, but error-prone alternative (e.g., utilizing AVL instead
of AFC or automated passenger counter records to estimate
public transport demand [51].

There are many published examples of the combined
application of multiple automated collection data systems
on the different aspects of urban transit management and
planning. Among those that utilize AVL and AFC data, some
noteworthy examples are:
• Space-temporal load profiles of urban transit vehicles
during a month in The Hague (Netherlands), fully
integrating GTFS records as a third data source with
AVL and AFC check-in and check-out information [50].

• Offline processing of automated train tracking and
magnetic trip card-based fare collection systems in San
Francisco Bay Area (USA) [52].

• Estimation of origin-destination (OD) matrices and path
choice models for rail passengers of the Chicago Transit
Authority [4].

• Multi-modal trip purpose modeling and enhanced OD
estimation in Queensland (Australia) [30].
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• Metro and bus OD matrices, speed profiles of vehicles
and quality service indicators, etc. for the Transantiago
public transport system in Santiago de Chile [53].

• ‘‘Driver assisted bus interviews’’: if SC records are cor-
rectly linked with AVL information, they can function as
revealed preference surveys [54].

• Tracking SCs along metro and bus to identify transfer
behavior in Shenzhen (China), making use of bus AFC
records that only show card id and sweeping time [55].

However, to the best of our knowledge there is room for
improvement in the methodologies to apply in situations
where AFC, AVL, and schedule data are available, but they
are particularly challenging to fully make use of: information
of varying reliability to differentiate trips within each of the
3 subsystems, but no direct way to identify entries of different
subsystems that describe the same trip; missing of wrong
AVL entries, AFC with wrong state information, or failing
to correctly identify the current stop; only the planned (and
sometimes, the detected) starts of the trips available from
the scheduling subsystem, which may be stipulated at a stop
‘downstream’ the initial terminus of the route; users not
requiring to check-out when leaving a vehicle; or unplanned
trips that respond to daily operational decisions and are not
shown in the schedule of the system. We are hopeful this
work will be useful to other researchers and transportation
engineers during their activities such as auditing, obtain-
ing transit origin-destination matrices and travel patterns,
user behavior modeling, or estimation of vehicle load
profiles.

III. METHODOLOGY
This section begins specifying the sources and expected struc-
ture of the input data. Then, it details the preprocessing steps
that are applied to AVL, AFC, and planning information;
representing each visit of a bus to a stop as a single event
from each source. This is followed by the analysis of AVL
data as sequences that are broken down in fragments of their
respective routes, and the implementation of link travel times
and dwell times distribution models. After that, the initial
characterization of the performed trips takes place, which
may be improved if necessary by detecting vehicle id changes
mid-trip. Next, scheduled beginnings are linked to identify
planned and extra trips, distinguishing in the first case if the
intended vehicle was used or not; and to improve the fidelity
of the recreation. Then, AFC events are assigned to bus calls.
Finally, those trips supported by enough IPTS information
will be accepted. Figure 1 shows an overall summary of the
whole process.

A. INPUT DATA
Table 1 contains a summary of the required bus stops,
AFC, AVL, travel times lower bounds, schedule, and route-
level data. It is worth noting that the ids of bus stops,
routes, and vehicles need to be consistent throughout all the
subsystems. The group columns in the AFC and AVL data
should contain a unique identifier for each set of values from

FIGURE 1. Methodology outline.

other columns present in their particular subsystems that can
help to differentiate between runs of a vehicle.

Regarding the schedule, the methodology is designed to
work even when it is incomplete, or to detect unplanned trips.
This section will assume that the three columns with temporal
information may be available in at least part of the dataset.

1) BUS STOPS
The location and name of the bus stops are needed. Ξ is
defined as a set composed by tuples ξi, which represent
each of these entries, differentiated by a unique id mi (other
variables not shown):

Ξ =
{
ξi = (mi, . . .)

}
i : unique row id i ∈ Z
m : bus stop id (bus stops info) m ∈ Z (1)

2) TRAVEL TIMES LOWER BOUNDS
AVL events that imply impossible vehicle movements will be
recognized and filtered out with a table of lower bounds for
the travel times between stops.

3) AFC
The methodology makes use of the ticketing system records:
when did each transaction take place; which vehicle was
boarded at which stop; and, if available, other non-temporal
columns which can help to tell entries from different visits
apart.
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TABLE 1. Methodology input data.

4) AVL
A registry of the visits of the buses to the stops is needed,
including fields that provide temporal information, and
that help differentiate the different runs of each offered
route.

5) SCHEDULE
This methodology utilizes the planned beginnings of trips
along each route, characterized by which vehicle was going

to be used, and where and when they start. Two other
timestamps may be recorded by the IPTS, corresponding to
the detected arrival and departure of the bus to the first stop
of the new trip.

6) ROUTE-LEVEL INFORMATION
Several aspects that describe each route as a whole are also
used (eq. 2):
• Whether the timestamps of AVL and AFC events at the
termini (locations where the problems described in the
literature are usually more prominent) are particularly
unreliable (y).

• If there is a systematic time deviation between the
events recorded in the scheduling and AVL subsystems,
the earlier can be corrected by the appropriate constant
value z. This may happen for instance if the AVL stores
when the doors of the buses close, while the scheduling
subsystem registers the moment vehicles cross certain
geofence.

• An upper bound of the headway between trips during
normal operations, s.

• An upper bound e of how long a trip leg connecting
consecutive stops may last.

• A lower bound d of how much time a vehicle needs to
come back to a stop after traveling the whole route.

y : termini are unreliable boolean

z : trip start detection lag time

s : headway upper bound time

e : trip leg upper bound time

d : round trip lower bound time (2)

B. PREPROCESSING
In this section new tables are created for the AFC (æ)
and AVL (æ) datasets, synthesizing in a single entry the
information that each raw source provides regarding a bus
call. Also, lower travel time bounds are used to filter out
unreliable AVL data.
Finally, the columns available from the scheduling subsys-

tem for each planned trip beginning are analyzed, extracting
the most specific arrival and departure times available; and a
time buffer to search for its matching trip (æ).

1) AFC
It is assumed that there are no duplicate rows in the raw AFC
information, since due to the monetary repercussions of the
data, ticketing information is managed in a very careful way.
SC andmanual payment operations are atomic: they are either
completed successfully or do not happen.
As will be explained in detail in section III-E, AFC

information (which provides one data point per validation)
is used to deal with the limitations of the AVL data (ideally,
one datum per bus visit). Thus, the objective is to classify as a
single boarding event all the validations that happen each time
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TABLE 2. Raw AFC preprocessing procedure. Vehicle, route, and group UID remain constant through this example.

a bus calls at a stop. The first and last ticketing events of these
‘‘boarding groups’’ can be used as an approximation of when
the bus arrived and left the stop. To create them, a three-part
process is carried out:

• For each vehicle, route, and group; identify as a ‘‘stop
group’’ each set of consecutive AFC events (æ).

• Some stop groups may contain payments or validations
from unrelated events (for example two tap-ins of the
same stop group may happen too far apart from each
other, or the AVL data could have registered a call
at another stop in between them). Two criteria are
used to identify these instances, splitting stop groups in
boarding groups (æ).

• Gather the results in the table boarding_groups (æ).

The rest of this section details and exemplifies each of these
steps.

a: CREATE STOP GROUPS
The AFC records pertaining each bus are analyzed, distin-
guishing stop groups of consecutive entries referring to the
same stop id.

This procedure relies on the fact that, as is represented on
table 2, for a set (i.c. the raw AFC entries linked to a single
vehicle) where a relation (i.c. ‘happened before’) can be used
to establish rankings over the whole set (column ‘rank over
set’) and also over the different subsets defined by a partition
(i.c. entries with the same vehicle, route, group, and bus stop
id ; column ‘rank over subset’), the difference between the
rank over the whole set and over a particular subset (column
‘classif. variable’) provides a distinct value for the members
of that subset that appear consecutively when ranking all
elements of the whole set (i.c. the stop group, shown in

column ‘stop grp.’). The meaning of the rest of the columns
of table 2 and the coloring of the cells will be explained as it
is mentioned thorough the rest of this description of the AFC
preprocessing.

The process is explained as three consecutive tasks:
Task 1: partition by vehicle, rank over each set
AFC entries are grouped by vehicle, and then ranked

chronologically, starting from the superset Ω that contains
all entries from the raw_afc table:

Ω =
{
ωi = (ti, vi, ai, αi, bi, . . .)

}
(3)

Each element ωi is a tuple that represents one row of
raw_afc:

i : unique row id i ∈ Z
t : validation instant full date (time)

v : vehicle id v ∈ Z
a : route id a ∈ Z
b : bus stop id b ∈ Z
α : AFC group UID α ∈ Z (4)

Then, a partitionΣ ofΩ is established, where each subset
Xvi contains the entries from raw_afc of the bus vi:

Σ =

{
Xvi ⊂ Ω | Xvi =

{(
xvi
)
j

}
= {ωk | vk = vi}

}
(5)

Equation (6) defines a binary relation Θvi (‘happened
after’) over each Xvi (also known as an endorelation):

Θvi =

{ ((
xvi
)
l ,
(
xvi
)
m

)
| tl > tm

}
(6)
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Θvi creates a total preorder over Xvi , allowing to assign a
rank

(
γvi
)
n to each of its elements (some may be tied with

each other). For each Xvi there will be a set Γvi of ranks,
as many as distinct timestamps:

Γvi =
{ (
γvi
)
j

}
=
[
1 . . .

∣∣Γvi ∣∣ ] (7)

Finally, eq. (6) establishes the functions βvi that link each
element

(
xvi
)
j of each subset Xvi to its rank within it. Thus,

column ‘rank over set’ of table 2 contains the rank βvi (ωi) of
each raw_afc entry within the subset of all the rows related
to vehicle vi.

βvi : Xvi → Γvi; ∀
(
xvi
)
j ,
(
xvi
)
k :

βvi

((
xvi
)
j

)
> βvi

((
xvi
)
k

)
⇔
(
xvi
)
j Θvi

(
xvi
)
k

βvi

((
xvi
)
j

)
< βvi

((
xvi
)
k

)
⇔
(
xvi
)
k Θvi

(
xvi
)
j

βvi

((
xvi
)
j

)
= βvi

((
xvi
)
k

)
⇔ tj = tk

(8)

Task 2: partition by vehicle, route, group, and bus stop; rank
over each subset

AFC entries are classified by vehicle, route, group, and bus
stop; and ranked chronologically. These four columns of the
raw_afc table remain constant during all the validations of a
particular boarding event. The process is analogous to what
has already been described in the first task. The family Φ
partitionsΩ in several Yvi,ai,ui,αi,bi subsets. Each one contains
the entries from raw_afc that show in their columns vehicle,
route, group, and bus stop the values defined by the tuple
(vi, ai, αi, bi):

Φ =

{
Yvi,ai,αi,bi ⊂ Xvi

∣∣∣ Yvi,ai,αi,bi
=
{ (
yvi,ai,αi,bi

)
j

}
=
{(
xvi
)
k | ak = ai ∧ αk = αi ∧ bk = bi

} }
(9)

The binary relation Λvi,ai,αi,bi (again, ‘happened after’) is
characterized over each Yvi,ai,αi,bi subset
in eq. (10):

Λvi,ai,αi,bi =

{ ((
yvi,ai,αi,bi

)
l ,
(
yvi,ai,αi,bi

)
m

)
| tl > tm

}
(10)

Each element of Yvi,ai,αi,bi can be mapped to a rank
value

(
δvi,ai,αi,bi

)
n thanks to the total preorder established

by Λvi,ai,αi,bi over it. The set ∆vi,ai,αi,bi of all ranks of the
elements of subset Yvi,ai,αi,bi within it is:

∆vi,ai,αi,bi =

{ (
δvi,ai,αi,bi

)
j

}
=
[
1 . . .

∣∣∆vi,ai,αi,bi

∣∣ ] (11)

Lastly, (12) shows how functions εvi,ai,αi,bi link each
element

(
yvi,ai,αi,bi

)
j of each subset Yvi,ai,αi,bi to its rank

within it. Thus, column ‘rank over subset’ of table 2 contains
the rank εvi,ai,αi,bi (ωi) of each raw_afc entry within the

subset of all the rows that share its vehicle, route, group, and
bus stop values.

εvi,ai,αi,bi : Yvi,ai,αi,bi → ∆vi,ai,αi,bi;

∀
( (
yvi,ai,αi,bi

)
j ,
(
yvi,ai,αi,bi

)
k

)
:

εvi,ai,αi,bi
( (
yvi,ai,αi,bi

)
j

)
> εvi,ai,αi,bi

((
yvi,ai,αi,bi

)
k

)
⇔
(
yvi,ai,αi,bi

)
j Λvi,ai,αi,bi

(
yvi,ai,αi,bi

)
k

εvi,ai,αi,bi
( (
yvi,ai,αi,bi

)
j

)
< εvi,ai,αi,bi

((
yvi,ai,αi,bi

)
k

)
⇔
(
yvi,ai,αi,bi

)
k Λvi,ai,αi,bi

(
yvi,ai,αi,bi

)
j

εvi,ai,αi,bi
( (
yvi,ai,αi,bi

)
j

)
= εvi,ai,αi,bi

((
yvi,ai,αi,bi

)
k

)
⇔ tj = tk

(12)

Task 3: create stop groups
The difference between βvi (ωi) from eq. (8) and

εvi,ai,αi,bi (ωi) returns the ‘classif. parameter’ of element
ωi (ζ (ωi), shown in table 2). This value, if one ranks
chronologically all entries of set Xvi (the ones related to
bus vi), remains the same and is unique for each group of
rows from its subset Yvi,ai,αi,bi (those that report bus, line,
group, and bus stop values of vi, ai, αi, and bi) that appear
consecutively.

ζ (ωi) = βvi (ωi)− εvi,ai,αi,bi (ωi) ;

∀
(
ωi, ωj

)
:

vi = vj ∧ ai = aj ∧ αi = αj ∧ bi = bj
∧ ζ (ωi) = ζ

(
ωj
)
⇐⇒ ωi and ωj belong to

the same stop group.
Otherwise ⇐⇒ ωi and ωj belong to

different stop groups.

(13)

The column ‘stop grp.’ of table 2 shows the outcome of
this first approximation to the objective of identifying the
boarding groups; displaying a single letter for all consecutive
raw_avl entries with the same vi, ai, αi, bi, and ζ (ωi) values.
The coloring of columns ‘stop id,’ ‘classif. variable,’ and ‘stop
group’ illustrates the classification process and its result.
For instance, rows pertaining to calls to bus stop D are
gathered in two stop groups, differentiated by ζ (ωi) values
of 2 and 45 .

Away to verify how this first task has performed is to study
the ‘time gap’ (table 2) between consecutive rows of the same
stop group, 1 ti (eq. 14), noting that if ωi−1 does not belong
to Yvi,ai,αi,bi , εvi,ai,αi,bi is not defined, so neither is 1 ti:

1ti = ti − ti−1 if εvi,ai,αi,bi (ωi−1)

= εvi,ai,αi,bi (ωi)− 1 (14)

As this gap increases, it is more likely that the latter
entry took place during a different visit of the bus (with no
intermediate entries due to no validations being recorded until
the bus came back). The next section studies this situation.
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b: SPLIT STOP GROUPS IN BOARDING GROUPS
The question regarding excessive time gaps between some of
the entries that are part of the same stop group, is addressed
with the following assumptions:

• In some cities, it is not uncommon for the driver to
allow passengers to wait for the start of a trip inside
the bus, especially if the weather is bad. However, if the
separation between two consecutive entries of the same
stop group is greater than the maximum headway s,
their group will be split between them. This happens in
the next to last row of table 2: the time elapsed since
the previous validation is extremely long (represented
with the symbol ‘7’ in column ‘below upper limit’),
so one can be certain that this row is describing a
different boarding event and the group is split, as has
been portrayed with the change in color from orange to

red . An adequate value for this parameter will depend
on the particularities of the case under analysis.

• For all other pairs of consecutive entries of the same
stop group, if table avl_coalesced (defined later during
the description of the pre-processing of the AVL data
æ) shows that the bus visited another stop between
their timestamps, they belong to different boarding
groups. An example of this situation can be found in
the row with ‘rank over set’ = 12 of table 2, where the
5-entries stop group (G, 8) it is part of is split in

two boarding groups ( 993 and 994 ); because, as the
symbol 7 of column ‘@ AVL entry’ denotes, between
its timestamp (14:11:11) and the one from the previous
entry (13:53:04) a lookup through the rawAVL data (not
represented) has concluded that the bus called at bus stop
K at 14:01:51.

These premises are utilized to define η, (eq. (15), column
‘board. grp. change’ of table 2), a value that will equal 1 if a
row is the first of a boarding group, and 0 in other cases. σj
represents an entry of table avl_coalesced (æ), while hj and
pj are its vehicle id and arrival time, respectively:

η (ωi) =


0 if 1ti ≤ s

∧ @σj
∣∣∣ hj = vi

∧ ti −1ti ≤ pj ≤ ti
1 otherwise

(15)

An index θ is then defined over Ω , sorting its rows
by vehicle, chronological rank within the entries of their
vehicle (ascending), bus stop (ascending), and boarding
group change (descending). The relative ordering of entries
ωi, ωj with vi = vj, βvi (ωi) = βvj

(
ωj
)
, bi = bj, and η (ωi) =

η
(
ωj
)
= 0 is inconsequential. When ordered with this index,

the elements of Ω will appear consecutively if they are part
of a boarding group, with a value of group change of 1 for the
first entry and 0 for the others up until its end. In other words,
group change will equal one when a stop group commences
(since a boarding group also will also begin) or when a stop

group is split due to one of the two previous criteria (æ).

θ : Ω →
{
1 . . . |Ω|

}
;

θ (ωi) > θ
(
ωj
)
⇐⇒ vi > vj

∨ vi = vj ∧ βvi (ωi) > βvj
(
ωj
)

∨ vi = vj ∧ βvi (ωi) = βvj
(
ωj
)
∧ bi > bj

∨ vi = vj ∧ βvi (ωi) = βvj
(
ωj
)
∧ bi = bj

∧ η (ωi) ≤ η
(
ωj
)

(16)

The boarding group id, o (ωi), of each row ωi is the sum of
all η

(
ωj
)
values from rows ωj such that θ

(
ωj
)
≤ θ (ωi):

o (ωi) =
∑

j|θ(ωj)≤θ(ωi)

η
(
ωj
)

(17)

Going back to Table 2, the content and colors of the cells of
columns ‘time gap,’ ‘below upper limit,’ ‘@ intermediate AVL
entry,’ ‘boarding group change,’ and ‘boarding group id’ have
been chosen to describe how stop groups are split in boarding
groups:

• If an entry is the first of its stop group (‘time gap’ =
〈null〉), a new boarding group should also begin (rows
with ‘rank over set’ ∈ {1, 2, 3, 5, 6, 8, 9, 45, 46, 47,
49}). ‘group change’ equals 1, and there is no need to
check columns ‘below upper limit’ or ‘@ intermediate
AVL entry.’ For each of these rows, the columns involved
in the identification of their stop group and boarding
group are filled with the same color, different from their
respective predecessors.

• If the lapse between two successive validations of the
same stop group is too long, they are the end and
beginning of two different boarding groups. The latter
row shows the symbol 7 at ‘below upper limit,’ while its
column ‘@ intermediate AVL entry’ is not needed, and
‘group change’ is 1. It also depicts its whole decision
process, utilizing one color for ‘stop id,’ ‘grouping
parameter,’ and ‘stop group’; and another for ‘below
upper limit’ and ‘boarding group id,’ showing how each
stop group is split in boarding groups.

• For the remaining pairs of consecutive rows that
share the same stop group, the symbol of column ‘@
intermediate AVL entry’ will indicate whether they
belong to the same boarding group:

7: The vehicle related to both entries has moved
to another stop (and eventually back) at a time
between their timestamps, so they belong to dif-
ferent boarding groups. Again, ‘group change’ =
1, and colors illustrate the reasoning behind this
decision: one color for ‘stop group’ and the first
boarding group, and a different one for the second
boarding group created by the split.

X: There is no evidence that the vehicle has moved
between the timestamps of both entries, so it is
concluded that they belong to the same boarding
group: ‘group change’ = 0. The columns of the
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FIGURE 2. Splitting stop groups in boarding groups.

latter row that decide its stop group and boarding
group show the same colors as in the former.

Alternatively, fig. 2 illustrates how stop groups are
separated in boarding groups with a flow diagram.

Finally, for each boarding group ox , the instants of its first
ϑ (ox) and last ι (ox) validations are computed, as well as how
long it lasted κ (ox):

ϑ (ox) = min
({
ti | o (ωi) = ox

})
ι (ox) = max

({
ti | o (ωi) = ox

})
κ (ox) = ι (ox)− ϑ (ox) (18)

Boarding groups that last longer than the maximum
headway for their route (s) will be considered to originate
from unreliable data and won’t be utilized to infer missing
visits to stops not recorded by the AVL.

c: OUTPUT
The results of the AFC pre-processing are gathered in the
table boarding_groups, structured as shown in table 3, while

TABLE 3. AFC pre-processing output: boarding_groups.

FIGURE 3. Transition from individual ticketing events to encompassing
boarding groups.

fig. 3 depicts an example transition from 15 individual
ticketing events to 4 encompassing boarding groups at
different stops.

2) AVL
The procedures detailed in this section aim to characterize the
movement of the vehicles with a single record for each stop
of each trip.

a: FILTER OUT DUPLICATE ROWS
The first action is to identify and filter out duplicate entries,
creating the multiset Θ of all raw_avl rows, defined over the
setΛ of distinct AVL records λi; and the multiplicity function
ζ that returns howmany times each λi appears in the rawAVL
dataset:

Θ = 〈Λ, ζ 〉 =
{
ϑi = λi

ζ (λi)
}

Λ =
{
λi = (ti, vi, ai, bi, βi, ϑi)

}
ζ : Λ→ Z≥1 (19)

Each λi is a tuple with the fields described in eq. (20):

i : unique row id i ∈ Z
t : instant full date (time)

v : vehicle id v ∈ Z
a : route id a ∈ Z
b : bus stop id b ∈ Z
β : AVL group id β ∈ Z
ϑ : stop duration time (20)

b: REMOVE ROWS NOT LINKED TO A REAL BUS STOP
It is assumed that entries with a bus stop id not found in set
4 (defined in eq. 1) are caused by exceptional events that do
not happen consistently as the buses travel their routes, and
are not linked to a position change. Equation (21) establishes
Ψ , a subset of Λ after these have been filtered out:

Ψ =
{
ψi = λj | ∃ξk : bj = mk

}
(21)
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TABLE 4. How entries of a trajectory linked to a single visit are identified.

c: IDENTIFY TRAJECTORIES
The next step is to utilize the columns from the AVL data
to differentiate between the runs that constitute the public
transportation supply. To this end, in this work a ‘trajectory’
is defined as consecutive AVL records that share the same
vehicle, route, and group. The relation R maps each element
ofΨ with distinct values of h, f , and β to a different trajectory
id (r):

R (ψi) = ri ∈ Z; ∀
(
ψi, ψj

)
:{

ri = rj ⇔ ai = aj ∧ vi = vj ∧ βi = βj
⇔ ψi and ψj belong to the same trajectory.

(22)

d: DETERMINE VISIT GROUPS
Table 4 depicts how each trajectory is examined to tell apart
those occasions when more than one row is added to the
dataset for the same call at a stop (for example, when the
doors are re-opened to let a late passenger in the bus).
The procedure to identify these ‘visit groups’ (calculate each
entry’s ranks over its trajectory, and among those records
with the same trajectory and stop values; and then evaluate
each element’s classification variable as their subtraction)
is similar to the one that has already been described and
implemented in page 128255 to find stop groups in the AFC
data. Its result is a relation M (eq. (23)) which assigns the
same visit group id (µi) to consecutive entries of a trajectory
that happen in the same bus stop:

M (ψi) = µi ∈ Z; ∀
(
ψi, ψj

)
:

µi = µj ⇐⇒ ψi and ψj are part of the same
visit group.

µi 6= µj ⇐⇒ ψi and ψj are part of different
visit groups.

(23)

e: MERGE ENTRIES OF EACH VISIT GROUP
The set Σ summarizes the information pertaining the visit
groups. Its elements contain the fields shown in eq. (24), and
are stored in the table avl_coalesced (table 6b):

Σ =
{
σµi =

(
rµi , bµi , nµi , pµi

) }
(24)

Each of its elements σµi is a tuple with the characteristics
of the visit group µi (table 5 outlines this process):
• Its unique id visit group id (µi).
• Its trajectory rµi : The characteristics that define it (route,
vehicle, and group UID) will be referred to as rµi , vµi ,
and βµi .

TABLE 5. Treatment of multiple AVL entries from the same visit to a stop.

• Its bus stop bµi .
• The moment nµi the bus arrived at the stop, defined as
the minimum instant (w) from all elements of Ψ that are
part of this visit group:

nµi = min
( {
wj | ψj : M

(
ψj
)
= µi

} )
(25)

• The instant pµi when the bus left the stop defined as the
maximum of these two values:

–
(
pµi
)
1: The maximum of the addition of the instant(

wj
)
and the duration

(
ϑj
)
for those elements ψj of

the visit group where stop duration is defined.
–
(
pµi
)
2: The maximum of the instant

(
wj
)
for those

elements ψk of the visit group that do not report a
stop duration value (pk = 〈null〉).(

pµi
)
1 = max

( {
wj + ϑj | ψj : M

(
ψj
)
= µi ∧ ∃pj

} )(
pµi
)
2 = max

( {
wk | ψk : M (ψk) = µi ∧ @pj

} )
pµi = max

((
pµi
)
1 ,
(
pµi
)
2

)
(26)

f: IDENTIFY AND REMOVE UNFEASIBLE OR UNREALISTIC
TRIP LEGS
Regarding each trajectory as a series of trip legs between its
visit groups, those shorter than the free flow time between the
involved stops are not possible. Two possible situations arise:

• Moving backwards the departure time in the former stop,
thus increasing the leg length, solves the issue. This
amounts to assuming that the information regarding how
long the bus stayed in the initial stop of the leg is not
reliable.

• Not even setting the dwell time in the former stop to zero
leaves enough time to travel to the latter. In this case,
both visit groups will be considered as unreliable and
removed.

Also, those trip legs longer than the upper bound e for their
route will be used to split their trajectories. Thus, AVL entries
that present the same vehicle, route, and group, but separated
by a trip leg too long to have occurred during a single trip,
will be considered separately.

g: OUTPUT
Table 6 shows how the outcome of AVL preprocessing is
stored in tables trajectories and avl_coalesced.
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TABLE 6. AVL preprocessing output.

TABLE 7. Raw schedule preprocessing output: schedule.

3) SCHEDULE
Firstly, the events recorded in the scheduling subsystem
should be corrected by the appropriate value z, if defined for
the corresponding route.

Then, a time range n is created for each planned trip,
encompassing the arrival and departure times that can be
deducted from the most specific available columns, as long
as they provide coherent information (e.g.: departures cannot
happen before arrivals). Another time buffer q is also created
around its planned start time tp, with a semi-width equal to the
maximum headway s. It will be used in section III-G to match
each entry of the schedule to the trip that materializes it.
Equations (27) and (28) respectively enunciate the parameter
and variables, and detail the conditions just described; while
table 7 shows the structure of the planning information after
preprocessing.

tp : planned depart. t. full date (time)

td : recorded depart. t. full date (time)

ta : recorded arriv. t. full date (time)

n : visit range from sched. subsystem[
arrival time, departure time

]
q : trip search buffer

[
lower time bound,

upper time bound
]

(27)

n =


[ta, td ] if ta ≤ td[
tp, td

]
if (ta > td ∨ @ta) ∧ tp ≤ td

[td , td ] if (ta > td ∨ @ta) ∧ tp > td
〈null〉 otherwise

q = [td − s, td + s] (28)

TABLE 8. Analysis of the trajectories of a route for one of its template
sequences.

TABLE 9. AVL sequences analysis output.

C. ANALYZE AVL TRAJECTORIES AS SEQUENCES AND
FRAGMENTS OF ROUTES
AVL trajectories are analyzed as just ordered sequences of
stops, which will be the building blocks to assemble the
full trips that have occurred, defined by their ‘‘template
sequences.’’ Table 8 illustrates this process, and table 9
gathers the outputs of its three steps:

1) IDENTIFY DISTINCT AVL TRAJECTORY SEQUENCES
An id is assigned to each unique stops sequence extracted
from the trajectories of each route, as shown in tables 8a, 8b
and 9a. The field stops_sequence of the trajectories table (æ)
signifies this relation.

2) SINGLE OUT TEMPLATE SEQUENCES
This methodology assumes that each route can be split in a
series of ‘‘subroutes’’ that represent the trips that compose it
(for instance, the trips back and forth between the termini of
a linear route; or a single round-trip in the case of circular
routes). Each subroute is characterized by its ‘‘template
sequence’’ of stops table 8c) that a typical, completely carried
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out, perfectly recorded run of that subroute must follow.
They can be known beforehand, or ascertained through
the examination of the sequences of stops found during
their previous step and their relative frequencies, since the
templates will very likely be among those found most often.
They are stored as illustrated in tables 9b.

The elements of each of the template sequences of each
route can be uniquely identified by their ordinal (the ‘‘stop
number’’).

3) BREAK DOWN SEQUENCES IN TEMPLATE FRAGMENTS
As depicted in tables 8b to 8d, the sequences followed by the
trajectories can be split in:
• Continuous fragments of their route’s template
sequences (i.e., no elements missing between their
extremes), that represent parts of trips that the AVL
system managed to record correctly. They allow to view
each trajectory found in the AVL data as a series of
segments that fit in its template. table 9c how they are
stored.

• Incompatible portions (caused by erroneous entries in
the AVL subsystem; the vehicle carrying out other
subroute; or incorrect operations, e.g., not updating the
on-board computer to reflect that the bus is following a
different route).

D. CHOOSE LINK TRAVEL TIMES AND DWELL TIMES
DISTRIBUTION MODELS
These models are utilized as part of the criteria for identifying
AVL fragments or boarding groups that are part of the same
trip; to infer missing stop information; and to filter out
erroneous recorded trip starting times. For each route, link
travel times between consecutive stops, and dwell times for
all of them but the last one, will be needed.

They should consider known factors that modify travel and
dwell times in the area of study, such as the time, whether it
is a working day or not, or seasonal mobility changes.

E. ASSEMBLE TRIPS
Trips are constructed starting from a ‘‘seed’’ that is completed
backwards and forward in time, looking for AVL segments
and boarding groups events part of the same subroute and
with the same vehicle id as the seed that, according to the
instant of the furthermost known data point in the current
growth direction and the probability distributions of the
duration of unknown intermediate trip legs and calls at stops,
fall within theirminimum-amplitude prediction interval of
probability g.

‘g’ is a parameter of this methodology (eq. 29). The closer
it is to one, the wider and more computer-intensive the search
needs to be, and the risk of considering invalid or unrelated
events as part of the current trips increases. If set too low
however, events that really were part of the trip that is being
characterized may be ignored.

g : probability of the prediction intervals g ∈ [0, 1] (29)

For each subroute and direction (backwards or forward
in time), the seeds are selected following two consecutive
iterative process. Firstly, by looping over the AVL fragments
with a length of at least c, from longer to shorter. ‘c’
is the parameter ‘minimum AVL seed length’ (eq. 30).
This decision stems from the hypothesis that longer AVL
trajectory fragments are more likely to be reliable, while
shorter ones may be caused by clock, GPS, or operation
errors. After that, those boarding groups not filtered out will
be also used as seeds. The algorithm will skip those seeds
contained in the tables of events to be ignored (explained later
æ).

c : min. AVL seed length c ∈ N− {0} (30)

Once a seed has been established, it ‘‘grows’’ both back and
forward in time, following a procedure that bears similarity
to dead reckoning: starting from the furthest known point in
a direction (the initial fix), minimum-amplitude prediction
intervals of probability g for the departures or arrivals (if
traversing backwards or forward, respectively) of the calls to
consecutively farther away stops are computed as the sum of
the involved travel and dwell times from intermediate stops,
until one of following conditions is reached (checked in this
order) and a new fix is selected:

• The prediction interval intersects the avl_range of at
least a record from table avl_coalesced. In this case,
the closest to the most likely arrival and departure times
range is chosen, and a portion of its encompassing
fragment is identified and added to growing new trip,
from said record up to what comes first between:

– The next-to-last or second stop of the route, while
growing forward or backwards, respectively.

– The end of its fragment in the current growth
direction.

This distinction aims to on one hand to save computer
time, by adding in a single step several calls of the
vehicle; and it also makes sure that a feasibility range is
always calculated at the termini. Besides being used as
part of the current process, to filter out unrealistic IPTS
entries at those stops; they will be used to decide the
best way to include the information available from the
schedule.

• The prediction interval intersects the boarding_range of
at least a compatible boarding group. The closest to the
most likely arrival and departure times range is chosen.

• If the stop under scrutiny is a terminus, the most likely
arrival (or departure, if growing the trip backwards) and
dwell time are chosen.

In the first or second conditions, ‘‘compatible’’ means that
it refers to the same route and vehicle as the seed; and is
not in the table of events to be ignored (explained later æ).
Also, if more than one possibility appears, the most likely
one according to the utilized link travel time and dwell time
distributions is selected.
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In all three instances, once the new fix has been selected,
the set of most likely values for link travel times and dwell
times will be used to infer the arrival and departure times at
missing intermediate stops.

After reaching a terminus, growth in the current direction
ends. For those routes where data at the termini have been
deemed particularly unreliable (y = true), if the call at
the closest stop is backed by AVL or AFC data, arrival and
departure times will always be inferred.

Once a seed has grown to encompass a full trip,
as described by its template; a buffer encompassing it is
created, extending backwards and forwards in time from
each call’s respective arrival and departure, adding the round-
trip time lower bound for the corresponding route (d). AVL
segments and boarding groups that overlap it are added to
the tables of elements to ignore during the reminder of the
trip assembly process. This procedure serves two purposes:
to enforce that no event is utilized as part of more than one
trip, and that vehicles follow feasible itineraries (enough time
passes before they return to the same stop, as part of another
trip).

Figure 4 displays a flowchart of the first part of this
process, which utilizes segments of AVL data as seeds.
The second part is completely analogous, but for the fact that
only the remaining AFC information is utilized.

Figure 5 shows a complete example. Its main steps are:

1 The initial seed is an AVL segment that goes from the
arrival at :20:13 at AB, to the departure at :22:41 from
AE.

2 It grows backwards, utilizing the search range [:18:51,
:19:53] at the terminus AA. It has been defined setting
the arrival at AB as a fixed point, and calculating the
prediction interval of probability g for the presence of
the vehicle at AA.

• A single compatible overlapping AVL event is found
(3a ), with arrival and departure times :18:31 and :18:55,
respectively:

– If the readings at the termini for this route have been
deemed as reliable as in other stops (y = false),
3a will be accepted as the call of the bus at the
initial terminus.

– Otherwise, since the fix for the search is in the stop
next to the terminus (3c ), the inferred visit 3b , from
:19:15 to :19:46, will be preferred.

Since this is one of the route’s termini, the growth
backwards ends.

4 Growing forward, the search range to be used at AF is
computed, utilizing as a fixed reference the departure
time from AE (:22:41). The result is the prediction
interval of probability g of the presence of the bus at AF:
[:23:04, :24:05], which intersects no compatible entry
from the AVL or AFC subsystems.

5 The script keeps searching forward. At AG, another
prediction interval of probability g is created for the
arrival of the bus. This time, the sum of the individual

FIGURE 4. Trip inference process from AVL seeds.

distributions of travel times from AE to AF, and from
AF to AG; and of the dwell time at AF will be needed.
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TABLE 10. Trips characterization.

The ensuing range ([:23:17, :24:57]) overlaps with a
boarding group ([:23:55, :23:59]). Its earliest and latest
ticketing events will be used as an approximation of the
arrival and departure at AG.

6 Considering now the gap of 1m14s between the bus
leaving AE at :22:41 and arriving at AG at :23:55;
the most likely combination of the travel times from
AE to AF and from AF to AG; and of dwell time at
AF that add up to it is, according to their respective
probabilistic distributions, 45s, 26s, and 3s; respec-
tively. Thus, arrival and departure times at AF are
set to [:23:26, :23:29].

7 Again, the search takes place at stop H, finding a
compatible AVL entry. This one, and other three from
the same fragment are added to the trip.

8 Several intermediate stops had to be inferred between
the departure from AK and the arrival and AR. Missing
arrival and departure times will be set to their most
probable values, according to the 7 travel time and
6 dwell time distributions involved.

9 Finally, the other terminus of the route is reached. Since
no compatible AVL or AFC is found, the arrival at
this stop; as well as arrivals and departures at others
downstream the last known departure, if any; are set to
their mean values.

The output after all AVL and AFC data have been utilized
(table 10) is the result of this methodology, and consists of
three tables:
• trips, which synthesizes each of the trips that have been
detected by this methodology.

• visits_to_stops, that characterizes each trip.
• search_ranges, where the prediction intervals utilized
during the creation of the trips are saved.

F. (OPTIONAL) DETECT AND MERGE INSTANCES WHERE
A VEHICLE CHANGED ITS ID MID-TRIP
Due to the way operations are handled by the IPTS, some
vehicles may change their id mid-trip, as it happens in the
case study analyzed in this paper. They can be detected in
this methodology as two extremely close in time ‘‘former’’
and ‘‘latter’’ trips, where a single vehicle could have provided
all non-inferred visits_to_stops. This section follows the
nomenclature described in (31).

φ, λ : formr, lattr trip ids φ, λ ∈ Z
C : ‘‘should be merged’’ relation

C =
{
(φ, λ) | φ, λ are the same trip

}
T : instants possible full dates (time)

R : time ranges R =
{
(ρ[0], ρ[1]) ∈ T 2

| ρ[0] ≤ ρ[1]
}

&& : ‘‘overlap’’ relation && =
{ (
ρi, ρj

)
|

ρj[0] ≤ ρi[1] ≤ ρj[1]

∨ρj[0] ≤ ρi[0] ≤ ρj[1]

∨ρi[0] < ρj[0] ∧ ρi[1] > ρj[1]
}

σi : trip i range σ = (start, end) ∈ R

υi,j : visit range for trip i at stop j

υ = (arrivl, depart.) ∈ R

εi,j : search range for trip i at stop j

ε = (lower bound, upper bound) ∈ R

τ : stop number τ ∈ N
µi : lower bound of travel t. from stop i

to i+ 1 time (31)

To correct this problem, the authors propose the following
procedure to be carried out for each template sequence:

1) IDENTIFY PAIRS OF TRIPS THAT SHOULD BE COMBINED
• To save computational time, only those trips that present
overlap between their corresponding trip_rangeswill be
considered:

φ C λ H⇒ σφ && σλ (32)

• Also, for each call of each trip to a stop, a time buffer is
created, as the smallest one that includes its visit_range
and, if exists, its search_range. Two trips happen closely
enough to be viable candidates when their time buffers
overlap.

φ C λ⇒ ∃τ | υφ,τ && υλ,τ ∨ εφ,τ && υλ,τ

∨ υφ,τ && ελ,τ ∨ εφ,τ && ελ,τ (33)

• Finally it must be possible, taking into account the lower
bounds of the travel times between stops, for a single
bus to perform all visits_to_stops entries from both trips
that stem from the IPTS data. How this condition is
met depends on the highest stop_number for which the
‘‘former’’ trip presents a non-inferred visits_to_stops
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FIGURE 5. Trip inference process.

entry (τφ); and, correspondingly, on the lowest one from
the ‘‘latter’’ (τλ):
– If τφ = τλ = τ , they both represent the same stop,

where the IPTS has records with both the old and
the new vehicle ids. The following time ranges are
computed at said stop:
∗ A ‘‘feasibility range’’ ζφ,λ that delimits the

time span in which it is possible for the bus
to have arrived after departing from the (τ −
1)th stop, as described in the ‘‘former’’ trip φ,
and still make it to the (τ + 1)th from the
‘‘latter’’ λ, considering the minimum bounds of
the durations of the involved travel legs:

ζφ,λ ∈ R; ζφ,λ =
(
υφ,(τ−1)[1]+ µ(τ−1),

υλ,(τ+1)[0]− µ(τ )
)

(34)

∗ A ‘‘bus presence range’’ ηφ,λ, which is the
minimum-span range that encompasses those of
both the ‘‘former’’ and ‘‘latter’’ trips:

ηφ,λ ∈ R;

ηφ,λ =
(
min

(
υφ,τ [0], υλ,τ [0]

)
,

max
(
υφ,τ [1], υλ,τ [1]

) )
(35)

The condition is met if these two ranges overlap:

φ C λ ∧ τφ = τλ H⇒ ζφ,λ && ηφ,λ (36)

– If τφ < τλ, the time span between the former
trip’s recorded departure from stop τφ and the
latter’s registered arrival at τλ should be greater of
equal than the lower bound of the total travel time
between them.

– If τφ > τλ, the two candidate trips do not originate
from a single one that changed its id once.

Equation (37) summarizes these criteria:

φ C λ⇔


ζφ,λ && ηφ,λ if τφ = τλ
υλ,τλ [0]− υφ,τφ [1]

≤

∑τφ−1

τ=τλ
µi if τφ < τλ

(37)

2) UPDATE TRIPS CHARACTERIZATION TABLES
The trips that comply with eqs. (32), (33) and (37) are merged
in a new one. Arrival and departure times at any stop between
τφ and τλ will be chosen as the most likely ones, according to
dwell and travel time distributions; and the information to link
them is stored in the columns merged_trip and merged_trips.
Figure 6 illustrates an example, where the methodology will
detect that entries that were on a first approach used to assert
that two different trips of a route between stops AR and BJ
took place ( blue and orange ) are actually part of the same
one, and then re-evaluate unknown calls where this fact may
be used to improve arrival and departure estimations:

1 The two trips proposed by the section III-E of this
methodology comply with the conditions that identify
them as a single one, with an intermediate vehicle id
change:
• Their time buffers overlap in at least a stop, as can
be seen observing the parts colored blue and
orange .

• Considering only calls backed by IPTS entries,
the latest from one of the trips (visit of blue at
AY, 17:11:50, 1a ) happens in a stop prior to the
earliest from the other (visit of orange at BE,
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FIGURE 6. Merging of 2 trips (former blue , latter orange , modified visits green line ).

17:22:05, 1b ). The span between the departure
from the former and the arrival at the latter is
10m15s, while the sum of the lower bounds of the
trip legs involved is 2m23s, which means that a
single vehicle could be responsible for both.

2 Intermediate arrival and departure times between AY
and BE are re-calculated. Instead of their mean values
according to their respective distributions and the
departure from AY or the arrival at BE; they will adopt
the most likely combination of values that satisfy both
conditions at the same time.

G. ASCRIBE TRIPS TO SCHEDULED RUNS AND UPDATE
VISIT TIME SPANS
This part of the methodology has several goals: firstly,
to differentiate between planned trips that were materialized
or not; to identify non-scheduled, extra runs; and to remove
inferred visits to stops that did not actually take place,
for those trips that are successfully identified as starting
downstream the initial terminus stop.

After a trip has been linked to its scheduled beginning,
the additional information from the schedule table may be
used to further refine arrival and departure times. These are
the proposed steps, also shown as a flowchart in fig. 7:

• A loop is performed over all (scheduled beginning, trip)
pairs where the latter’s departure from the planned stop
falls within the former’s buffer q, considering those that
share the same vehicle id first, and then ordered by
the absolute value of the time span between the trip’s
departure and the scheduled start, ascending. Unless

either of them has already been linked, they become so
with each other.

• If a pairing was found, starting at the initial terminus of
the whole route, inferred visits to stops are consecutively
removed from the trip, until one that it backed by AFC
or AVL records is reached.

• If the planning subsystem registered the start of the
trip, the plausibility of its corresponding time range n
will be evaluated, utilizing the appropriate feasibility
range stored in the search_ranges table (if not available,
one is computed utilizing the closest downstream data-
supported call of the trip). If n is judged credible, two
situations may occur:

– If the initial call of the trip was previously deduced
from other IPTS data, the available information will
be combined to obtain the earlier and latest presence
of the bus at that stop.

– Otherwise, n will be used as the [arrival, departure]
range at the beginning of the trip.

• Downstream inferred visits, up to the first one sustained
by IPTS data, are improved to their new most likely
values, considering the total travel time between the
scheduled trip start and that first known data point, and
travel and dwell time distributions.

Figure 8 shows the first stops from an example trip:

1 Its initial estimation has been linked to a planned start at
stop AF, with a gap between their inferred and planned
departure times of 51s.

2 The stops upstream the planned start are not backed by
any IPTS records, and are erased.
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FIGURE 7. Associating scheduled and inferred trips.

3 In this case, the arrival and departure were logged by
the scheduling subsystem at 07:25:39 and 07:26:01,
respectively. Since these times falls within the search
range for that trip at stop AF ([07:23:39, 07:26:13]),
they are accepted as what really happened.

4 Visits to AG, AH, AI, and AJ are also recalculated,
taking into account the new information.

H. BOARDING GROUPS IMPUTATION
Once the calls of all possible trips have been defined and
refined, boarding groups will be firstly mapped to a trip, and
then to the stop where they took place.

For the first task, an imputation range
(
lightly marked for

the latter case in fig. 9 with this pattern:
)
is created

for each trip from the moment when the vehicle arrived to
its initial stop, minus the upper bound for the headway of

FIGURE 8. Improvement of arrival and departure times of a trip once its
likely planned beginning is identified. Final characterization blue ,
removed or modified entries orange .

the route (s, to make sure that all pertinent AFC events at
the initial terminus are identified, marked as 6a ); to the
moment it left its next-to-last stop (as no AFC events should
be assigned to the last stop of a trip), plus the parameter
o, which allows for some leeway between AVL and AFC
events, to cover cases such as validations after the vehicle
leaves the stop or minor clock desynchronizations, identified
as 6b .

o : AFC leeway time (38)

Each boarding group is treated in a two-step process:
• Firstly, it is assigned to the trip whose time range it
overlaps and that refers to the same vehicle and route.
If no trip is found, the route id sameness requirement
is dropped, to treat those cases where the ticketing
subsystem state did not reflect the route the vehicle was
really following. Any boarding group left will not be
linked to a trip.

• Then, the proper stop within the trip is identified,
considering all its calls but the last one:
– If the gap between the boarding_range and the
visit_range at the stop specified by the boarding
group is less or equal to themaximum leeway o, that
stop will be accepted as the one where the travelers
got on the bus (e.g., 3a in fig. 9).

– Otherwise, it will be assumed that the AFC did not
properly identify the id of the stop. The one from
the closest call of the vehicle will be chosen instead
(e.g., 3b in fig. 9, where the 3 boarding groups that
were recorded as happening at stops BJ, BK, and
BN are respectively assigned to BO, BP, and BS
instead).

I. SELECT TRIPS BACKED BY ENOUGH INFORMATION
The last step is to establish and apply criteria to accept or
reject each of the possible trips that have been identified
by this methodology. It is suggested to set boundaries that
consider these features (eq. 39):
• Whether or not a planned departure was mapped to the
trip (w). In the latter case, also consider if the id of the
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FIGURE 9. Imputation of boarding groups, and analysis of the IPTS data that sustain each of two consecutive potential trips of a vehicle.

vehicle is the same in both databases (p), and whether
the scheduling subsystem registered a compatible stating
time (ν).

• The total number h of boarding groups attributed to the
trip, as described in section III-H.

• How many visits of that trip stem from AVL
information (f ).

• The number of stops between the earliest and latest visits
supported by IPTS data (l).

w : trip was planned boolean

p : the planned vehicle was utilized boolean

ν : the scheduling subsystem registered

a valid starting time boolean

h : boarding groups count h ∈ N
f : visits backed by AVL data f ∈ N
l : longest range between stops

backed by IPTS data l ∈ N (39)

Figure 9 provides an example, analyzing two consecutive
possible trips of a vehicle, covering complementary subroutes
between AI and BF termini, both composed of 23 trip
legs. Only 2 consecutive entries from the avl_coalesced
table hint at the existence of the earlier ( 1 ); while the
latter is supported by a planned trip of that vehicle for
which the scheduling subsystem recorded the first call ( 2 ),
4 boarding groups (shown in 3a and 3b), 12 avl_coalesced
rows ( 4 ), and by the fact that the span between its
earliest ( 2 ) and latest ( 5 ) calls obtained from recorded
IPTS observations covers the whole route. The former
almost certainly did not happen, while the latter most
likely did.

FIGURE 10. Santander city [56], [57].

IV. CASE STUDY
The results of this methodology are illustrated utilizing the
AVL and AFC events, and scheduled trip beginnings from
the vehicles that, for 1 year, run route 1 in Santander, a city
on the northern coast of Spain (fig. 10).

It operates from approximately 07:00 to 23:00, with
headways of at most s = 20min. In approximately half
of the occasions, the scheduling subsystem records, with a
deviation of around z = 20 s, the arrival and departure of the
vehicle from the first stop of the trip. A complete round trip
requires at least d = 1 h, while a single trip leg, even in the
most unfavorable circumstances, should not take more than
e = 15min. While the IPTS is extremely helpful during day-
to-day operations, the exploitation of its data must overcome
several issues:
• Low AVL and AFC reliability at most trips’ beginnings
(y = true), due to how on-board computers are
sometimes operated and to the fact that when a bus is
empty as it approaches the end of the route, drivers often
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FIGURE 11. Bus stops of route 1.

findmore convenient to wait until their next run in a stop
upstream from the final one.

• Daily, each trip covering one of the 2 subroutes
sometimes cannot be reliably identifiedwith an id within
the AVL and AFC datasets: this field may show several
values within a single trip, or the same valuemay be used
for consecutive runs covering both subroutes. Also, this
id is not consistent between the AVL, AFC, and planning
information.

• Missing AVL entries.
• Wrong AVL and AFC events that stem from the
limitations of the IPTS, such as GPS signal loss,
communication failures, or on-board computer errors;
or from atypical or incorrect operations (e.g., setting
vehicle state parameters that mistakenly identify the task
being performed).

• The information regarding whether a planned trip finally
happened and when did it start is most of the times
accurate, but sometimes a normally performed trip fails
to register, or it does with highly inaccurate timestamps.

• The available vehicle ids are associated with each driver-
bus pair. Thus, those few daily occasions where workers
end their shifts mid-trip will present 2 values.

This implementation utilizes the procedural language
PL/pgSQL within a PostgresSQL 13.2 database for its core
tasks; and Python 3.8 and Bokeh 2.2 to show an interactive
representation of the results.

A. IMPLEMENTATION OF THE METHODOLOGY
1) INPUT DATA
a: BUS STOPS AND SUB-ROUTES
Santander has approximately 460 bus stops. The location of
the 75 ones that shape route 1, which is divided in two sub-
routes with one intermediate stop (‘Consuelo Berges 16’) and
both termini in common, is shown in fig. 11. These sub-routes
provide the templates which will be used to break down the
stop sequences found during the treatment of the AVL data.
This itinerary begins at the Pctcan science park in the

west, and traverses the city eastward through main arteries,
passing by many of its commercial, residential, touristic, and
administrative centers until it reaches La Península de La
Magdalena Park (one of its foremost leisure locations). Then,

it turns north-westward, and follows the coastline, providing
access to Santander’s most popular beaches. Finally it ends
in Valdenoja, a neighborhood that even though presents some
limited commercial use can be characterized as a dormitory
suburb.

During non-business days the activity at Pctcan greatly
diminishes, so buses do not visit the 3 easternmost stops.
Also, especially during working days, several planned but
not announced reinforcement trips begin downstream the first
stop, to make use of short free slots drivers have between
other assignments.

b: AFC
The dataset includes 2 586 600 raw AFC events. Almost all
(99.99%) correspond to real stops within the city, while the
rest have ids that do not refer to a physical stop.

c: AVL
There are 1 569 417 raw AVL events. All represent calls at
real stops of the city.

d: SCHEDULING INFORMATION
While the daily timetable that travelers consider when
planning their trips on route 1 specifies, depending on
whether it is a business day or not, around 100 or 80 places
and times where a trip begins, the transport authority
plans some extra actual vehicle runs, offering less-known
additional trips of the route, such as several starting at
Valdecilla hospital for staff that just ended their shifts,
or reinforcing the offer during known peak demand periods
when the distribution of available resources allows to do so.
In approximately 95% of occasions a detected trip start time
was logged. Extra vehicle runs not present in the scheduling
information may occur due to tactical decisions during day-
to-day operations.

2) PREPROCESSING
a: AFC
Following the methodology outlined in section III-B1,
719 971 stop groups have been found. Using a value of 20min
for the parameter s, the maximum headway for this route,
leads to splitting them in 724 550 boarding groups (0.6%
more events). Of these, 108 (0.01%) last more than s and
will not be considered. There is, on average, 1 boarding
group per 4 passenger boardings. Moreover, they provide
a first fallback estimation of arrival and departure times
at the stops, which will be utilized if no AVL records are
available.

b: AVL
As explained in section III-B2c, consecutive AVL events
that represent the same visit to a stop are merged, leaving
1 532 299 entries (2% less). Of these, 78 520 (5%) are deemed
unreliable because they are part of impossibly short trip
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legs. The remaining 1 453 779 entries, gathered in the table
avl_coalesced, are classified in 45 840 trajectories.

3) ANALYZE AVL TRAJECTORIES AS SEQUENCES
The 45 840 trajectories present 5800 different sequences
of stops. The two most frequent ones match the already
known itineraries of the subroutes under study (fig. 11),
accounting for around 30% of the trajectories. Others contain
in most cases one or several fragments compatible with one
of the subroutes (as described in table 8d), though sometimes
(2% of trajectories) the state of a vehicle did not change
between subroutes, so a single trajectory contains information
regarding more than one trip.

4) SPECIFY TRAVEL TIMES AND DWELL TIMES
DISTRIBUTION MODELS
Due to its computational advantages, two families of Normal
distributions (eq. 40) have been chosen to model leg travel
and dwell times. Considering the mobility cycles of the city,
each of these families provides a different function for each
subroute, stop, type of day (working, Saturdays, or Sundays
and holidays), period of year (summer or not), and time bin
(with a span of 30min, and approximately 16 daily hours
of trip, there are 32 possible time buckets: 07:00 to 07:30,
07:30 to 08:30, and so on).

pa,τ,γ,δ,ζ,η : trip leg travel time t ∈ T ;

t ∼ N
( (
µp
)
a,τ,γ,δ,ζ ,

((
σp
)
a,τ,γ,δ,ζ

)2 )
ua,τ,γ,δ,ζ,η : dwell time u ∈ T ;

u ∼ N
(
(µu)a,τ,γ,δ,ζ ,

(
(σu)a,τ,γ,δ,ζ

)2 )
a : route id From the methodology (æ)

τ : stop number From the methodology (æ).

For trip legs, their first stop.

γ : period of year γ ∈
{
‘summer’,

‘rest of the year’
}

δ : type of day δ ∈
{
‘working’,

‘Saturday’, ‘Sunday or holiday’
}

ζ : time of day bin ζ ∈ {1 . . . η}

η : time bins in a day η ∈ N (40)

Route 1’s leg travel times and dwell times have been
characterized at each stop by roughly 2 periods · 3 day types

period ·

32 distributions
day type = 192 distributions each. Their means

and standard deviations have been calculated utilizing the
pertinent entries from table avl_coalesced.

5) ASSEMBLE TRIPS
After applying the process described in section III-E, setting
its parameters to g = 0.998 and c = 2 stops, 42 319 possible
trips were found.

6) MERGE INSTANCES WHERE A VEHICLE CHANGED
ITS ID MID-TRIP
This refinement leads to the detection of around 2 daily
occurrences of this issue, reducing the number of candidate
trips to 41 641.

7) ASCRIBE TRIPS TO SCHEDULED RUNS AND UPDATE VISIT
TIME SPANS
40 352 trips have been mapped to a scheduled trip beginning
(111 utilizing a vehicle different from the planned one); while
the other 1289 were not. 86% of logged trip start times were
utilized to characterize the first call of their trips.

8) BOARDING GROUPS IMPUTATION
Applying the criteria described in section III-H, using anAFC
leeway of o = 1min, provides the following results:

• 94.7% of all boarding groups have been deemed to be
correctly reporting their route and bus stop.

• 5% have been assigned to other stop than the automati-
cally logged one.

• 0.3% were not linked to a trip. They likely represent
instances when the state of the vehicle incorrectly
reported that it was traveling route 1.

9) SELECT TRIPS BACKED BY ENOUGH INFORMATION
After considering the results from sections IV-A7 and IV-A8,
the following acceptance criteria have been chosen (utilizing
the nomenclature from eq. 39):

• For trips mapped to a scheduled beginning (w = True):

– Always accept if the planned vehicle was utilized
(p = True).

– If a bus other than the scheduled one was used (p =
False), require at least 3 boarding groups linked to
the trip (h ≥ 3).

• Unscheduled trips will require stronger evidence: at
least three ticketing events and no less than 12 total
entries (one third of the number of stops of a subroute)
endorsing its existence (h ≥ 3 ∧ h+ f ≥ 12)

Applying these thresholds, the methodology reports on
average 120 and 97 daily trips, depending on weather
analyzing a business day or not. In the former case, the 96.5%
of trips had previously been planned, and were materialized
with the intended vehicle; while 3% were planned, but
executed with a different vehicle; and 0.5% were unplanned
trips. During non-business days, the corresponding ratios are
99.2%, 0.5%, and 0.3%; which are consistent with weekends
and holidays being usually less demanding for the public
transport of the city, resulting in less deviations from the
schedule to react to the evolution of the traffic system.

Of all raw AVL data available, 92% was finally used to
provide information to re-create a call of a trip. The source
utilized to discern bus calls was AVL, statistical inference,
a trip beginning logged by the scheduling subsystem, and
AFC in 91%, 7%, 2%, and 1% of occasions.
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FIGURE 12. Characterization of a trip from fragmented and erroneous information.

B. DISCUSSION
1) TRIP DEFINITION
This section gathers several examples to illustrate how this
methodology has successfully improved the characterization
of trips that were registered in the IPTS in a way that impeded
their consideration.

a: RECONSTRUCTION OF A TRIP FROM FRAGMENTED AND
ERRONEOUS INFORMATION
Figure 12 shows the case chosen for this analysis. The
temporal horizontal axis has been broken in three regionswith
a shift between them for easier visualization:

• The central one, where the actual trip detected by
the methodology and the planned departure ( 5 ) are
depicted. Its temporal axis has been placed in the lower
part of the plot.

• The leftmost area, with its temporal axis located in the
upper part of the figure. It includes the relevant raw AVL
and AFC data, with a −20min shift:

– 4 AVL group UIDs:

1 : From ‘Arsenio Odriozola 16’ to ‘San Fernando
66,’ with a gap of almost 1 h between ‘Plaza de
Italia’ and ‘Luis Martínez’.

2 : From ‘San Martín’ to ‘Pctcan,’ overlapping with
1 along its first 9 stops, and missing data at
‘Avenida deValdecilla’ and ‘Torres Quevedo 22.’

3 : A single event, at ‘Plaza de Italia’.
4 : A single event, at ‘Pctcan’, the last stop of the

trip. It happens around half a minute before 2
ends.

– 19 AFC events, occurring between ‘Plaza de Italia’
and ‘José Ma Cossío 24.’

• The rightmost zone only contains the clearly unrelated
arrival and departure times logged by the planning
subsystem ( 6 ), with a −40min shift.

The proposed trip has been constructed making use of
the available information. The first part of trip 1 was
considered as 2 different fragments, discarding the earlier
( 1a , which was probably caused by an incorrect vehicle

state) and utilizing the latter ( 1b ). After the last entry from

1 , the call at ‘Avenida Valdecilla’ ( 7a ) is approximated

from a ticketing event ( 7b ); and the one at ‘Torres Quevedo
22’ ( 8 ) is inferred considering departure and arrival times
from the previous and next stop, respectively. Of the two
possible arrivals at the final terminus ( 9 ), the one from trip
4 , which happens 30 s earlier, is more likely according to
the departure time from ‘Albert Einstein 14’ and the travel
time distribution between these stops during the time period
[17:30-18:00] on a workday.

It is worth noticing that even though the trip was scheduled
to start at ‘San Martín,’ the methodology has successfully
detected that it actually began a few stops upstream (at ‘Plaza
de Italia,’ from trip 3 ). The search for previous events ( 10 )
did not return any match, so that is the stop where the trip
began.

b: VEHICLE ID MID-TRIP CHANGE
Figure 13 shows how the information regarding a trip of the
subroute from Pctcan to Arsenio Odriozola appears in the
IPTS, and its characterization by this methodology. Again,
the horizontal temporal axis has been divided in three zones:
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FIGURE 13. Characterization of a trip when its vehicle id changes while it happens.

• The rightmost area, which contains, with the temporal
axis on top, the two trips initially detected, how they
have been combined, and the planned start linked to
them.

• The middle and leftmost regions show, with shifts of
−40min and −20min and their temporal axes at the
bottom, the pertinent raw records.

Initially, step III-E had found two trips:
• One for vehicle 14 ( orange ), backed by a 4-stops
trajectory, and several ticketing events ( 1 ), being the
latest one at ‘Manuel Llano.’

• Another for vehicle 224 ( green ), inferred from 4 ticket-
ing events at 3 stops ( 2 , the earliest at ‘Luis Martínez’),
and any of the two raw AVL events with the same
timestamp at ‘Arsenio Odriozola 16’ terminus, which
are part of opposite trajectories which end ( 3 ) or begin
( 4 ) there.

These have been detected, as described in section III-F,
to be part of a single trip (displayed with a thicker blue
line). Its corresponding scheduling subsystem entry ( 5 ) only
detected the departure of the vehicle, a bit later than the
available AVL data at that stop. Since it falls within the
feasibility range from ‘Pctcan - 1,’ it is accepted and used
to update the departure time at ‘Pctcan,’ and to improve the
inferred call at the intermediate stop ‘Pctcan - 3.’

c: NO AVL DATA AND WRONG VEHICLE ID
Figure 14 shows a case that illustrates two situations that
happen in the use case: the AVL subsystem not recording any

entry, and a vehicle different from the planned one carrying
out the trip.

There is a shift of 10min between where the trip and the
scheduled departure are drawn (rightmost part, temporal axis
on top), and where the raw AFC data can be found (on the
left, temporal axis at the bottom). It can be seen ( 1 ) that,
since the scheduling subsystem did not register the beginning
of the trip, the calls and ‘Pctcan’ and ‘Pctcan - 3’ had to be
inferred using the arrival at ‘Pctcan - 1’ as the fix.

2) TREATMENT OF INITIAL TERMINI
The objective of this section is to study the benefit of the way
this methodology handles the data available at particularly
problematic termini, as it happens in this route. To this end,
the 25 466 trips which present recorded starting times from
the planning subsystem that, as described in section III-G,
have been accepted for their characterization, will be used as
the ground truth to be compared with the results obtained in
three scenarios where that information will not be considered:

A Follow the default methodology behavior for a route
when the scheduling subsystem did not record the start
of a trip (æ).

B If the data at the first stop is deemed feasible, utilize it
in the same way as any other stop.

C if the planned start of a trip falls within its corresponding
feasibility range (already stored in the search_ranges
table, or computed utilizing the closest downstream
data-supported call of the trip), it will be used as
departure, if it happens later than any available AFC
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FIGURE 14. Trip characterization from AFC data only. Actual vehicle not the planned one.

FIGURE 15. Distributions of abs. departure time errors per gap for scenarios A and C .

or AVL entries. This means assuming that schedule
adherence is high enough to trust the planned departure
times, unless they are impossible or very unlikely.

Figure 15 shows the distributions of the absolute error of
the trip departure time reported in scenarios A and C .
Trips have been classified according to their ‘‘gap’’: how far
away (measured in trip legs) are their earlier visits based on
AVL or AFC data from their scheduled beginnings. As can
be seen, the decision of relying on the inferred start time
rather than the planned one provides approximations with less
dispersion (standard deviations of 13 s and 17 s, respectively)
and a smaller mean absolute error (MAE), though as the
uncertainty increases (more unknown calls between the
start of the trip and the first data point) this benefit
lessens.

Scenarios A and B only differ for those trips where
compatible AVL or AFC data at the scheduled first stop can
be found (zero gap). Figure 16 shows their distributions of
absolute errors in this case. Again, scenario A infers the
missing data with less dispersion (std. devs. of 15 s and 17 s,
respectively) and MAE (11 s versus 13 s).

3) ROBUSTNESS AGAINST MISSING AND WRONG DATA
This section analyses how the methodology is affected
by missing and erroneous AVL information and trip start
detection (ticketing events are fully available in all scenarios).
The 16 863 trips where all calls were fully recorded by
the scheduling and AVL subsystems (49% of all) will be
used as the ground truth; and compared with the results of
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FIGURE 16. Distr. of abs. departure time errors when there is no gap for
scenarios A and B .

FIGURE 17. Distribution of the deviation from the ground truth for
different proportions of real and wrong data. Extremes at 1st and 99th

percentiles.

running this methodology utilizing only part of the recorded
raw AVL data and scheduling subsystem detections, chosen
through Bernoulli sampling; also adding different amounts
of synthetic AVL erroneous readings, which have been
randomly generated following these rules:

• bus_stop, vehicle, and group are chosen between all their
distinct values.

• instant happens between 07:00 and 23:00 of any day of
the year.

• Sampling from the distribution of durations is simulated
utilizing its percentiles and the Uniform Distribution.

In fig. 17, the percentages are relative to the raw AVL
entries and planned trips available in the dataset. For instance,
a scenario with 25% of real data and 100% of simulated errors
only reads the arrival and departure of the vehicles at the
initial stop recorded by the scheduling subsystem in 25%
of the scheduled trips, while its raw AVL input is created
combining a Bernoulli sample of the real information with
a probability 25% and 4 times as many bogus entries.

As more real data are available in a scenario, the more
accurately trips are characterized. For instance, with a
relatively small sample (25%), while the 99th percentile does

not significantly differ from not using AVL or detected trip
starts at all (slightly less than 7min), it can already be
appreciated that absolute error (AE) is quite more likely
to be smaller: lower quartile, median, and upper quartile
reduced from 4 s, 9 s, and 24 s to 0 s, 4 s, and 13 s, respectively
( A & B ).

It is also noticeable the strength of themethodology against
artificial incorrect entries, which grows as more true readings
are available in the scenario. Two examples are:

• With just 25% of real data, adding four times as many
wrong entries only increases the 99th percentile from
6m51s to 7m07s ( B & C ).

• If all real information is available, the methodology
successfully identifies the correct values as seeds,
and is able to completely ignore many false events
( D & E ).

V. CONCLUSION
The methodology described in this paper combines AFC,
AVL, and scheduling subsystem information to provide a
better characterization of the trips of the routes offered in
a public transport system; ameliorating the problems that
commonly occur when working with IPTS data: ambiguous
ids for some elements of the system; missing or multiple
entries related to the same AVL event; inconsistent trip ids
between the different subsystems, which impedes identifying
their respective records related to the same trip; AFC events
with wrong information; and uncertainty regarding whether a
programmed trip actually took place.

Events whose attributes wrongly classify them as part of
different trips are identified and treated, as also are those
unlikely to have really happened. Calls at each stop of
each trip are delimited considering the multiple sources of
data available in that particular instance, providing estimated
arrival and departure times instead if there is none. A way
to detect and handle those cases where the vehicle changes
its id mid-trip, leading to the misrepresentation of their load
profiles, is formulated. A trip and a stop are assigned to
each ticketing record, distinguishing those cases where the
AFC state information and timestamp are coherent with the
corresponding trip call, and those where their timestamp and
vehicle id will be utilized to infer the ticketing action that
really took place. Finally, this methodology is applicable to
situations with different scheduling information: none at all,
planned beginnings only, or scheduled and detected (but not
necessarily correct) start times; while the id of the originally
intended vehicle may be known or not. These improvements
help provide more accurate depictions of user rides and
vehicle trips.

A case study has been presented, where several examples
illustrate some of the issues this methodology solves:
fragmented and erroneous information, vehicle id change
mid-trip, and characterization of a trip utilizing AFC data
only, where a vehicle different from the planned one was
used.
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To evaluate how it fares characterizing calls at the termini,
those starting times recorded by the planning subsystem
deemed to be correct have been used as empirical evidence;
to compare with the outputs (without using that information)
of the chosen strategy of preferring to infer the initial call in
unreliable termini if the stop next to them is backed by real
data, and two alternatives that were considered while writing
this paper: treat termini as any other stop, and consider
planned trip start times if feasible. It can be seen how the
former consistently provides a better approximation of when
trips have begun. This improvement may be particularly
useful to better audit how closely the system adheres to
its timetable.

Also, to assess the impact of bad AVL records, as well as
missing AVL and detected trip beginning information, those
trips perfectly recorded in the original dataset (start logged
by the scheduling subsystem, and all other calls derived
from AVL) will be used as the ground truth, studying how
their characterization deviates with different amounts of real
and bogus simulated entries. The results show significant
improvements: with as little as 25% of real AVL and trip
start detection data, even when adding 4 times as many
wrong entries the results are significantly better than those
from applying the methodology using only AFC records. The
more real data is available, the closer the characterization
is to the trip that took place, and the more resistant it is to
incorrect values: for instance, if 100% of the real information
is utilized, the methodology can completely filter out twice
as many erroneous data.

As their next objective, the authors are currently working
on the application of the trip chains methodology with
the ticketing events and the trips characterized by this
methodology, to provide more accurate vehicle load profiles
and OD matrices. Other possible lines of investigation are
the utilization of other distributions to model dwell and travel
times, or the application of more detailed models to estimate
arrival and departure from ticketing events when no AVL
records are available.
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