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Abstract

Big scale, high performance and fault-tolerance, low-cost and graceful expandability are pursued features in
current datacenter networks (DCN). Although there have been many proposals for DCNs, most modern installations
are equipped with classical folded Clos networks. Recently, regular random topologies, as the Jellyfish, have been
proposed for DCNs. However, their completely unstructured nature entails serious design problems. In this paper
we propose Random Folded Clos (RFC) and Hydra networks in which the interconnection between certain switches
levels is made randomly. Both RFCs and Hydras preserve important properties of Clos networks that provide a
straightforward deadlock-free multi-path routing. The proposed networks leverage randomness to be gracefully
expandable, thereby allowing for fine grain upgrading. RFCs and Hydras are compared in the paper, in topological
and cost terms, against fat-trees, orthogonal fat-trees and random regular networks. Also, experiments are carried
out to simulate their performance under synthetic traffic patterns emulating common loads present in warehouse
scale computers. These theoretical and empirical studies reveal the interest of these topologies, concluding that
Hydra constitutes a practicable alternative to current datacenter networks since it appropriately balance all the
main design requirements. Moreover, Hydras perform better than the fat-trees, their natural competitor, being able
to connect the same or more computing nodes with significant lower cost and latency while exhibiting comparable
throughput.

1 Introduction

Datacenters are becoming critical components in modern industry and society. To be adequately supported, current
Internet services and cloud computing require extremely powerful datacenters. Computing and storage systems in
modern warehouse scale computers heavily rely on exploiting massive parallelism. Some recent installations contain
around 10,000 racks comprising tens of thousands servers [12]. Having to manage such amount of communicating
components, the datacenter network (DCN) plays a critical and pivotal role. In addition, according to [33], bandwidth
demands in the datacenter are doubling every 12–15 months. Thus, that work and many others in the field, have
highlighted the necessity of gracefully expandable topologies.

Although there have been many recent proposals for DCN topologies such as Dcell [19], BCube [18], HyperX [1],
Jellyfish [34], and Space Shuffle [40], the reality is that most modern datacenters are equipped with a folded Clos
network. Clos topologies [13] were proposed more than sixty years ago and have been extensively used in telephony and
high-performance computing (HPC). After the Leiserson’s work [27] and the Connection Machine commercialization
[28], a specific family of folded Clos networks has been known as fat-tree networks. Many current supercomputers on
the Top 500 list use fat-tree networks, or some of its variants [29]. Such non-blocking topologies can be built to an
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Table 1: Practical properties of the DCNs considered in this work.

Topology Routing Expandability Deployment
fat-tree very easy poor very easy

random graph hard extreme very hard
RFC easy extreme hard

Hydra easy enough easy

arbitrary scale using regular switches with affordable radices (number of ports). Nowadays, big companies build their
own fat-tree network fabrics, using general purpose merchant silicon instead of commercial switches [16]. This allows to
have custom packaging, wiring and networks protocols.

Topologies based on random regular graphs have been considered long time ago for interconnection networks. The
Jellyfish topology was recently proposed in [34] for DCN design. This network is based on building a random regular
graph (RRG) on top of the rack switch layer, aiming to facilitate graceful datacenter expansion. Compared to a fat-tree,
the Jellyfish can support 25% more servers at full bandwidth with the same switching equipment. The Jellyfish is a
direct network while indirect ones such as fat-trees are predominately used in the datacenter industry. Although very
interesting, the Jellyfish could be considered as a quite long and disruptive step forward in the design of networks.

A network without any structure and random links could greatly increase the complexity of cabling and routing
when deploying a large-scale DCN. In addition, direct topologies, as the Jellyfish, are deadlock prone as they embed
cycles and hence, must be equipped with an efficient deadlock-avoidance mechanism. This translates into higher cost
and complexity. In the case of lossy networks, deadlock and congestion management can imply more packet losses
and retransmissions which highly degrades performance. Although evolved network protocols, such as Shortest Path
Bridging (IEEE 802.1aq), allows these networks to contain cycles, their presence always imply higher complexity and
cost. On the contrary, one important advantage of fat-trees is their acyclic nature when using the standard up/down
routing. This easily avoids severe problems as packet deadlock and broadcast storms and allows for extremely simple
shortest multi-path routing.

For these reasons, this work explores an intermediate evolutive step based on the natural idea of randomizing the
interconnection pattern between switch layers of folded Clos topologies; we have denoted them as random folded Clos
networks (RFC) and they were announced in [10]. Similar and related structures have been known long ago, mainly
associated with the introduction of expander graphs [4, 36, 15]. In the same way that fat-trees, RFCs conserve a
structure based on different levels of switches which, under certain conditions studied in this paper, allows for the
existence of common ancestor switches for every pair of communicating servers (computing nodes or network terminals).
RFCs leverage this property for providing a simple deadlock-free shortest multi-path routing mechanism, identical
to the one employed in standard fat-trees. Moreover, this work also explores a more conservative evolution of RFCs,
denoted as Hydra, in which the random interconnection between some switches layers are substituted by traditional
ones, a la fat-tree. As it will be shown, RFCs and Hydras constitute a compromise among cost, performance, scalability
and expandability inside the class of the indirect topologies.

When looking for efficient DCNs, it is critically important to know in advance the expected traffic to achieve
judicious designs. There are some studies suggesting that in certain datacenters, traffic is mostly uniform, [33, 21].
For example, in [33] the authors show that in Google datacenters, a big proportion of traffic is uniform, with small
deviations. Specifically, [33] states “Recent work on alternate network topologies [...] deliver more efficient bandwidth
for uniform random communication patterns. However, to date, we have found that the benefits of these topologies do
not make up for the cabling, management, and routing challenges and complexity.” Thus, in those cases, the design of
DCNs should be driven by the most frequent uniform traffic scenario providing good enough performance for other
more rare traffic patterns. The RFC and Hydra networks proposed in this research follow this design principle. Table 1
summarizes how the datacenter topologies considered in this work balance their fundamental design requirements.

To show the benefits of RFCs and Hydras, they are deeply studied in this paper to bring to light their outstanding
properties, and to prove that they deserve to be considered for forthcoming DCNs. Summarizing, the main outcomes
of this research are:

• A unified definition for RFCs and Hydras.

• A characterization of the diameter, the bisection bandwidth and the scalability of such topologies.

• A comparison, in terms of cost, expandability and deployment, of Hydras against other topologies (including
random and non-random ones).

• An empirical performance evaluation of Hydras, comparing them against their natural competitor, i.e., fat-trees,
under different representative synthetic datacenter traffic patterns.
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The rest of the paper is organized as follows. Section 2 reviews the most related proposals appeared in the technical
literature. Section 3 defines folded Clos networks and reviews some of their topological properties. Section 4 defines
RFCs and Hydras, and provides sufficient conditions for equipping them with the standard up/down routing. Also,
a diameter, bandwidth and scalability characterization is done. Section 5 compares RFCs and Hydras with other
topologies such as fat-trees, orthogonal fat-trees and random regular graphs in terms of expansion. Next, in Section 6
the physical deployment of these networks is considered. In Section 7, RFC and Hydra performance is evaluated under
different synthetic traffic patterns. Finally, Section 8 concludes the paper summarizing its main findings.

2 Related Work

Although random graphs have been previously considered for interconnection networks, the recently proposed Jellyfish
topology [34] has motivated the current work. Ten years before the Jellyfish was introduced, Lakamraju et al. proposed
in [26] to randomly generate interconnection networks for parallel computers. Their idea was to generate many random
graphs and to choose the best ones in terms of low diameter, high fault-tolerance and good embeddability of common
applications.

Koibuchi et al. [25] put forward the use of random shortcuts in topologies for low-latency DCNs because they can
be implemented for any size and their suitability for faulty scenarios. Later, Fujiwara et al. [24, 17] complete this
research by adding random swaps between links. Although their methods and results mostly apply to direct topologies,
they provide a first approach to indirect networks, considering wiring permutation in Myrinet-Clos networks.

Space Shuffle is another topology proposed for datacenter networks [40]. It connects routers in several cycles
randomly, which allows for an easy non-minimal routing.

Scafida, a DCN architecture based on scale-free networks, reduces the average path lengths compared to other
topologies with the same servers [20]. Small-World is another recent topology for DCNs, where several random links
are added to ring, 2D torus, or 3D hexagon torus, while limiting the degree of each node [32]. These two architectures
both employ random links. However, they require to manage the correlation among links, which is unknown when the
networks expand.

Most of these studies focus on direct networks and much less attention has been paid to indirect networks.
Nevertheless, it must be noticed that proposals which randomize the wiring between levels of multistage interconnection
networks are not new. Around the 70’s of the past century there was a considerable effort devoted to this kind of graphs
with different applications. It seems that it was in [4] where random topologies for multistage networks appeared
first. The authors proposed a method based on randomization to asymptotically find optimum nonblocking switching
networks. That paper, although it seems to be almost unknown among the current interconnection network community,
has had a great impact on Graph Theory, since expander graphs appeared firstly there. A related construction was
considered independently by Upfal in [36], where splitter networks are defined to obtain low complexity deterministic
packet routing schemes. Moreover, the Hashnet interconnection scheme proposed in [15] can be seen as an unfolded
random Clos network. In that paper, its author already pointed out a possible application to parallel computer systems.

Related to expander graphs, an interesting novel result appeared in [37]. Their authors acknowledge that datacenters
with direct random topologies outperform more sophisticated designs, achieving near-optimal throughput and bisection
bandwidth, high resiliency to failures, incremental expandability, high cost efficiency, and more. Nevertheless, they
complain about their unstructured nature and look for equivalent structured deployments. Through a combination of
theoretical analyses and simulations, they conjecture that any expander topology comes with some of these benefits
(random graphs are just an example of the expander family).

3 Folded Clos Networks

Since the original article by Clos [13] many authors have dealt with such networks. This paper considers Definition 3.1,
which has been stated taken into account the original one given by Clos and also the one in the well-known book by
Dally and Towles [14]. Table 2 contains the notation used in this article when dealing with folded Clos networks.

Definition 3.1. A l-level folded Clos network is a topology in which switches are divided into l levels, where:

• Level 1 switches connect to compute nodes using down-links and to level 2 switches using up-links. These switches
are called leaf switches.

• Level i switches, 1 < i < l connect to level i− 1 switches using down-links and i+ 1 switches using up-links.

• Level l switches only connect to level l − 1 switches. These switches are called root switches.

A radix-regular folded Clos network is a folded Clos network in which all switches have radix R and i-level routers have
R/2 down-links and R/2 up-links for every 1 ≤ i < l.
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Table 2: Folded Clos Parameters, P.
Parameter Definition

T Number of compute nodes or terminals
R Switches radix (number of ports)
l Number of levels
Ni Number of switches at level i
ki Arity of the i-th level (as a tree)

Figure 1: The 2-ary 4-tree.

In this paper, we are going to compare random folded Clos topologies against the popular fat-tree. The name
fat-tree [27] originally made reference to a tree in which the edges closer to the root are ‘fatter’—using 2i parallel wires
to connect a i− 1 level switch to a i level switch. In most situations a root switch with so many ports is not feasible.
Thus, the networking community uses this name to refer to a realization of the fat-tree as a folded Clos network with
multiple roots. Next, the following recursive definition of fat-trees is considered, which has been taken slightly adapted
from the paper by Petrini and Vanneschi [31]. A remarkable introduction to fat-trees can be found in [6].

Definition 3.2. A l-level folded Clos network is called a fat-tree if the following recursive condition holds:

• there is a unique switch or,

• there is some integer kl > 1 such that the switches up to level l − 1 induce kl disjoint fat-trees. The number kl is
called the arity at level l.

If the recursive arities ki have the same value k then the fat-tree is called a k-ary l-tree.

A 2-ary 4-tree, equipping 16 servers with diameter 6, is depicted in Figure 1; from here onwards, in the figures,
boxes represent switches and circles represent servers or compute nodes. The fat-trees considered in [2] are another
interesting case. A R-commodity fat-tree (CFT) is a radix-regular fat-tree whose arities are all R/2 except kl = R.
Figure 2 represents a four levels CFT for switches of radix 4, servicing 32 compute nodes with diameter 6. Note that
the 4-level CFT connects twice number of computing nodes than the 2-ary 4-tree. Thus, for the same number of levels,
a CFT doubles the number of nodes of the k-ary l-tree.

One of the advantages of CFTs is the simplicity of their deadlock-free routing. A switch is an ancestor of another
one if it is possible to reach it by using only up-links. When two switches have a common ancestor, there is a path that
connects them beginning with up-links until achieving the ancestor, followed by only down-links. If this happens for
every pair of leaf switches, the folded Clos will be said to be up/down-connected. In such a case, its diameter D fulfills
D = 2(l − 1), which bounds maximum latencies.

Finally, let us introduce Orthogonal fat-trees (OFT) [38], which are fat-trees inspired in the projective plane. They
have recently deserved attention since they constitute a highly scalable cost-optimal topology for indirect networks [22].
Let q be a power of a prime number, then the l-level OFT of order q is a radix-regular fat-tree of radix R = 2(q+ 1) and
arities k1 = · · · = kl−1 = q2 + q + 1 and kl = 2(q2 + q + 1). The 2-level OFT is able to connect the maximum number
of compute nodes for a given radix. Figure 3 shows a 2-level OFT; it equips 42 servers with diameter 2 but using, in
this case, radix-6 switches. Minimal routes in the 2-level OFT are unique, which reduces worst-case performance.

As stated before, it is critical to know the expected traffic to achieve judicious network designs. There are evidences
suggesting that datacenter traffic is random uniform in a great proportion, but it is not clear up to what extent. In the

Figure 2: The 4-commodity fat-tree (CFT) or 4-port 4-tree.
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Figure 3: The 2-level orthogonal fat-tree (OFT).

HPC domain, however, there are many algorithms using some data permutations that must be routed at full rate to
obtain competitive performance. This scenario suggests the use of full-bisection networks; a network is said to be full
bisection bandwidth if its bisection bandwidth is enough to transmit all possible generated data in one of the halves to
the other. For this reason, a CFT, which is full-bisection bandwidth, is worthwhile in HPC as it courses traffic at full
rate regardless if it is uniform or any specific data permutation. Notwithstanding, there exist other networks (OFTs
included) that, even not being full bisection bandwidth, can route uniform traffic at full rate. This is the case, for
example, of dragonflies [23] which are gaining momentum in the HPC industry. Such networks manage adversarial
traffic patterns by using Valiant random routing [39], which allows to achieve half of their maximum performance.

Coming back to modern datacenters, it would be critical to know the proportion of non-uniform traffic for proposing
the more adequate network architecture. For example, if almost all the traffic were uniform, it could be considered to
switch from a CFT to an OFT, which would imply trading worst case performance for more scalability. OFTs manage
uniform random traffic at full rate, but are extremely poor dealing with data permutations. The RFCs and Hydras,
introduced next, constitute a much more sensible alternative. They course at full rate uniform traffic while adversarial
traffic can be routed with much more than 50% performance. This can be done even without using any randomization
mechanism, as needed in dragonflies, which reduces complexity, cost, latency and energy.

4 Random Folded Clos and Hydra Networks

Random graphs are widely known in the mathematical literature [8]. The direct interconnection networks based on
random graphs proposed in [26] and [34] select a randomly chosen graph among all the regular graphs with the same
number of nodes and degree. It is very hard to quickly generate with uniform probability random regular graphs; thus,
it is better to sacrifice uniformity a little bit. As far as we know, the best result for random graph generation is the one
by Steger and Wormald [35]. An example of a random regular network (RRN) of degree 4 obtained with this algorithm
can be seen in Figure 4; the degree of this graph is ∆ = 4,, the router radix R is 6 to accommodate 2 servers per switch
and its diameter is D = 4. It is known that a ∆-regular random graph with N vertices of diameter D can be obtained
with high probability if ∆D ≈ 2N lnN , [8]; thus, ∆ ≈ (2N lnN)1/D.

Our proposal, introduced in next definition, is to force the random interconnection network to be a folded Clos.

Definition 4.1. A random folded Clos (RFC) network with parameters P, as those listed in Table 2, is a topology
chosen randomly with uniform probability from all possible folded Clos networks with parameters P.

A random l-level folded Clos network can be generated using l − 1 random bipartite graphs. An algorithm to easily
generate such graphs can be found in [10]. There are some old network proposals that can be related to (or included
in) the previous definition. As an example, the Hashnet interconnect in [15] can be obtained by unfolding the RFC
of the previous definition but with the same number of switches in all the levels. Other examples are random k-ary
l-trees, which are really close to the definitions given in [4] and [36], although with more restrictions. For practical
reasons, in this paper our interest is focused on radix-regular RFCs. In Figure 5 a 4-level RFC with radix 4 connecting
48 computing nodes is shown. It is important to highlight that this RFC, although having the same radix and number
of levels as the CFT in Figure 2, it is able to connect 50% more computing nodes. It should be noted that a CFT
connecting 48 servers requires not just 4 levels but 5, thereby with higher cost and increased latency as its diameter
scales from 6 to 8.

4.1 Hydra Network

It can be argued that one of the most important drawbacks of a RFC would be its physical deployment due to the
random wiring between levels. Therefore, this subsection considers how to balance randomness, which is beneficial for
graceful expandability, while preserving some structure. As it will be shown, this will simplify its physical deployment,
and will have impact on its scalability and performance.

The Hydra network is a topology built by adding to a RFC several k-ary l-trees. Its name comes from its structure:
the RFC resembles the body of the Hydra while the multiple k-ary l-trees resemble the heads of the mythological
creature. Figure 6 represents a specific Hydra. It should be highlighted that Hydra architectures are specially suited
for a typical industrial deployment based on commodity pods or containers. The Hydra’s heads represent, in the figure,
such standard components. Next, the definition of these networks is given.
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Figure 4: A random regular network (RRN) with 16 routers of radix 6.

Figure 5: RFC of radix 4, N1 = 24 and 4 levels.

Definition 4.2. Let R be the router radix. A (R, lFT , H, lRAN )-Hydra (of radix R, 1 ≤ lFT fat-tree levels, H heads
and 2 ≤ lRAN random levels) is defined as an indirect folded Clos topology with l = lFT + lRAN − 1 levels. The number
of switches in each level Ni is the same as in a radix R folded Clos network:

• Ni = N , for levels 1 ≤ i ≤ l − 1,

• Nl = N/2,

where N = H(R2 )lFT−1. Each switch is labeled with a (i, j) pair, where 1 ≤ i ≤ l denotes the level and 1 ≤ j ≤ Ni
denotes the position in the row level. The adjacency between switches is done as follows:

• Switches of level l − 1 are connected with switches of level l as a random (R/2, R)-biregular bipartite graph.

• Switches of level i, for every lFT ≤ i ≤ l − 2, are connected with switches of level i+ 1 as a random R/2-regular
bipartite graph.

• Switches Hk = {(i, j) | 1 ≤ i ≤ lFT ,
N
H (k − 1) + 1 ≤ j ≤ N

H k} are connected as a R/2-ary lFT -tree, for every
1 ≤ k ≤ H.

Finally, every switch (1, j) has R/2 processing nodes connected, for 1 ≤ j ≤ N .

Example 4.3. The network in Figure 6 is a (4, 3, 8, 2)-Hydra of 4 levels, a small example trying to illustrate the
definition provided above. The topmost levels are randomly connected and the others are organized in 8 heads, each one
composed of a 2-ary 3-tree. Each head has 4× 3 switches and connects 8 computing nodes, which means that the whole
datacenter has 8× 8 = 64 computing nodes. Note that, this Hydra doubles the computing capacity of the CFT in Figure
2 with the same diameter (D = 6). A CFT accommodating 64 servers, requires one more level, hence D = 8.

A Hydra then, is seen as an indirect topology in which the interconnection in a number of the top levels is random
(like in the RFC) while the rest of the bottom levels are wired with the k-ary l-tree pattern. As it will be shown later,
Hydras allow for a practicable physical deployment with a wiring complexity comparable to CFTs. The proportion of
random and structured levels has implications in the performance and the scalability of the datacenter. In [10], it was
already proved that the CFT always provides (in most cases, at a higher cost) the same or better performance than
the RFC. Later in this paper, it will be proved that, the more the number of random levels a Hydra contains, the
better is its performance, being the RFC—that is, a Hydra with all its wiring levels done randomly—the one with best
performance. In terms of network size, the inverse relation is fulfilled; the more the number of fat-tree levels a Hydra
contains, the better is its scalability.
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Body of the Hydra: one bipartite random graph.

Heads of the Hydra: 2-ary 3-trees H1, . . . ,H8.

Figure 6: A (4, 3, 8, 2)-Hydra with radix R = 4, lFT = 3, 8 heads and lRAN = 2.

4.2 Existence of Common Ancestors and Routing

One important feature in a folded Clos network is being up/down-connected, which allows for the application of
a simple deadlock-free routing. The following theorem states the probabilistic condition for a RFC network to be
up/down-connected.

Theorem 4.4. If R
2 =

(
Nl(ln

(
N1

2

)
+ x)

) 1
2(l−1)

, then the probability of each pair of leaf switches to have, at least, a

common ancestor in a l-level R-radix regular random folded Clos network tends to e−e
−x

.

Sketch of the Proof. Let λ be the expected number of pairs of leaf switches with disjoint ancestors set. Next, it will
be shown some intermediate steps to prove that x equals lnλ in the limit (when Nl → ∞). Thus, the threshold is
obtained when λ = 1, that is, x = 0 or equivalently, when exactly one pair without common ancestors is expected.
This is sharp threshold, which means that the probability of having common ancestors, abruptly changes from 0 to 1,
except in a small region surrounding x = 0.

Next, the steps followed in the proof are summarized. Let ∆ = R/2. The number of ancestors of a given leaf is
∆l−1(1 + o(1)). First, it is shown that given two leaves a and b, the probability that they have disjoint set of ancestors
is

P (anc(a) ∩ anc(b) = ∅) =

(
Nl−|anc(a)|
|anc(b)|

)(
Nl

|anc(b)|
)

=

(
1− |anc(a)|

Nl

)|anc(b)|

(1 + o(1)).

Then, applying some technical lemmas, the logarithm of the expectation λ can be calculated as

lnλ = ln

(
N1

2

)
+ ln

(
1− |anc(a)|

Nl

)|anc(b)|

+ ln(1 + o(1))

= ln

(
N1

2

)
− ∆2(l−1)(1 + o(1))

Nl
+ o(1)

Thus, replacing ∆ by the expression in the statement it is obtained

lnλ = −x(1 + o(1)) + o(1).

Therefore, the expectation λ tends to e−x. The probability that every pair of leaf switches has at least a common

ancestor is the probability of having exactly 0 pairs with disjoint ancestors set, so it is (1− λ

(N1
2 )

)(
N1
2 ), which tends to

e−λ. �
Theorem 4.4 implies that 2(Nl ln

(
N1

2

)
)1/(2(l−1)) is a sharp threshold for finding a RFC network being up/down-

connected. For simplicity and resemblance with the direct random regular networks, we rewrite such a threshold as
2(N1 lnN1)1/(2(l−1)). Note that Nl(ln

(
N1

2

)
) ≈ N1(lnN1 − ln 2

2 ) and that D = 2(l − 1) would be the diameter in an

up/down-connected RFC. When x = 0, the equality R = 2(N1 lnN1)1/(2(l−1)) implies that the probability converges to
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Table 3: Probability of having common ancestors in 36- radix RFCs.

l D x e−e
−x

2 2 ≈ −17.88 ≈ 0
3 4 ≈ 0.95 ≈ 0.68
4 6 ≈ 6104.26 ≈ 1

Table 4: Probability of having common ancestors in Hydras.

lFT lRAN D x e−e
−x

2 2 4 ≈ −17.27 ≈ 0
3 2 6 ≈ 0.63 ≈ 0.58
2 3 6 ≈ −3.77 ≈ 0
3 3 8 ≈ 1093.88 ≈ 1
1 4 6 ≈ −8.16 ≈ 0
1 5 8 ≈ 1085.08 ≈ 1.

a constant; so it is easy—after a few random graph generations—to build an up/down-connected RFC. In this case,

e−e
−x

becomes 1/e which means that, in average, an up/down-connected RFC is obtained, more or less, every three
times the generating algorithm is executed [10]. Small positive or negative values of x quickly impact on the probability
of finding RFCs being up/down-connected. For example, if R = 2(N1 lnN1 + ln lnN1)1/(2(l−1)) then the probability of
having common ancestors tends to 1 and if R = 2(N1 lnN1 − ln lnN1)1/(2(l−1)), such probability tends to 0.

Example 4.5. Let us fix R = 36 and T = N1
R
2 = 200, 000 servers to illustrate Theorem 4.4 with a specific example.

The limit of the probability changes with the number of levels (or equivalently the diameter), as shown in Table 3. If
l = 2 there is no up/down-connected RFC for such a number of servers. If we increase the number of levels to l = 3
then, most of the times, the RFC is up/down-connected. Finally, for any number of levels greater than 3, the RFC is
always up/down-connected. Note that a CFT would require 4 levels for this number of servers.

As done previously for RFCs, Theorem 4.6 bellow, establishes a sufficient condition under which a Hydra is
up/down-connected.

Theorem 4.6. Let l = lFT + lRAN − 1. If R
2 =

(
Nl(ln

(
H
2

)
+ x)

) 1
2(l−1)

, then the probability of each pair of leaf switches

to have a common ancestor in a (R, lFT , H, lRAN )-Hydra network tends to e−e
−x

.

Example 4.7. Let us illustrate Theorem 4.6 using another example. As different configurations of random and
structured levels are needed, let us fix the radix R = 18 and the number of servers T = N1

R
2 ≈ 700, 000. In Table 4 it is

shown how the probability of being up/down-connected changes when the number of levels is varied. First, there is no
up/down-connected Hydra able to connect 700,000 computing nodes with just 3 levels. For 4 levels, only the Hydra
network with the maximum number of structured levels, that is lFT = 3, is up/down-connected with high probability.
Note that, when lFT = 1, the resulting Hydra is indeed a RFC. If the total number of levels is increased to 5, then, all
the configurations are up/down-connected, even the RFC. Note that a CFT would require 6 levels for this number of
servers.

It is important to note that, an up/down-connected Hydra can be built using a RFC which is not up/down-connected.
Consider a (18, 3, 960, 3)-Hydra included in the previous example; the contained 3-level RFC is not up/down-connected
although the whole Hydra does.

Later it will be seen that Hydra networks are more scalable as the number of fat-tree levels is greater. That is,
for some number of levels it is easy to find an up/down-connected Hydra but nearly impossible to find such a RFC.
Remember also that lRAN ≥ 2; trying to have no randomness would result (after some adjustments in the definition) in
a CFT, which is less scalable than a RFC.

4.3 Diameter and Bisection Bandwidth

As stated before, the diameter of a RFC or Hydra being up/down-connected is trivially upper bounded by 2(l − 1).
As a consequence of Theorems 4.4 and 4.6, the threshold in which the diameter changes is known. A RFC fulfilling
equation R = 2(N1 lnN1)1/(2(l−1)) is, with high probability, able to connect the maximum number of compute nodes
for a given diameter. The same happens if a Hydra network fulfills the equivalent expression in Theorem 4.6. For both
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networks, any other construction, not fulfilling these equalities, can be obtained by expanding the original network
without adding a new level, as it will be shown in Section 5. After further expansions, it is necessary to add a new level.
The expanded network can again connect the maximum number of compute nodes, but for the next possible diameter.

Figure 7 shows the diameter evolution of the topologies considered in this paper with R = 36. This value has been
chosen since it probably represents the most common degree in current commodity switches. The CFT and OFT can
connect only a certain number of processing nodes for a given diameter. Any CFT or OFT between these points can
be built using the one with one more level but depopulated. On the contrary, RRNs, RFCs and Hydra networks, with
a fixed diameter can be implemented for many other numbers of switches, which is represented by solid lines; note
that the marks in the solid lines are only used to distinguish them. RFC and Hydra networks are rather similar to
RRN with the major difference that the first ones can only have even diameters. The figure also indicates that random
topologies admit an amount of compute nodes between the CFT and the OFT.
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Figure 7: Diameter evolution for different networks with radix R = 36.
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Figure 8: Network scalability comparison of the different topologies considered in the paper.

As an example to illustrate the resemblance between direct and indirect random networks, consider diameter 4 and
radix 36. Theorem 4.4 indicates that the limit of a realizable RFC is slightly above N1 ≈ 11, 254, which implies about
202,554 compute nodes. In the case of RRNs, the radix shared between network ports, ∆, and server ports must be
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chosen a priori; let the degree be ∆ = 26 with 10 compute nodes per switch (optimized for an average distance around
26/10 = 2.6). In this case, the RRN can be built with N = 22, 773 switches (remember that ∆D ≈ 2N lnN), which
can connect 227,730 compute nodes, 12% above the RFC. The corresponding CFT of diameter 4, has 3 levels (as the
RFC) but it can only accommodate 11,664 computing nodes.

In respect to the bisection width, random regular graphs have been known to be good expanders for a long time [4],
[3]. This implies a good isoperimetric constant, or Cheeger constant, which in turn implies large bisection. Bollobás [7]
proved that the isoperimetric number of a ∆-regular random graph is at least ∆

2 −
√

∆ ln 2. As a consequence, a RRN
has a bisection width of, at least,

BWRRN ≥
N

2

(
∆

2
−
√

∆ ln 2

)
links between the two halves of any cut of the network into two parts of the same size.

For a RFC it is possible to calculate such a value using the previous expression. Let S and S̄ be the two halves
of the worst possible—with least bandwidth—cut of the nodes into two sets with the same size. Now, let us make
the following identification. For every switch of the upmost level, let us choose two switches in each level without
repetition, and generate the graph identifying them. This is a random regular multigraph with N1/2 vertices of degree
2(l − 1)R. Then, using the lower bound by Bollobás, the bisection width contains at least

BWRFC ≥
N1

4

(
(l − 1)R−

√
2(l − 1)R ln 2

)
links. Note that for the Hydra network, the expression is the same, but considering the number of random levels lRAN
instead of the total number of levels.

As an example, let us consider again networks with R = 36 and give their normalized bisection width, that is, the
bisection divided between the number of compute nodes in one of the halves times the average number of traversals of
the bisection. In CFTs, each path traverses the bisection at most once regardless the traffic pattern. However, it is
easy to see that in RFCs the average number of traversals is l− 1, equivalently lRAN − 1 in Hydra networks. The CFT
is full-bisection bandwidth and has normalized bisection 1. Bollobas’ bound for a RRN gives 0.88. For a 2-level RFC
this bound gives 0.80 and 0.86 for a 3-level RFC. Note that the bound gives the same value for (36, 2, H, 2)-Hydra than
for 2-RFC. These four topologies perform almost at full rate under uniform traffic. However, there are adverse traffic
patterns in which they perform slightly worse but, as it will be seen in Section 7, coursing such more rare traffic at a
very good rate.

4.4 Scalability, Latency and Cost

Current datacenters aim to reach large sizes but if a bound is imposed in their DCN diameter, they are limited by the
number of ports in their switches. Next, the term scalability is used as a measure of how many computing nodes can
be arranged in a network given a router radix and a diameter.

In [9], it was shown that, if all compute nodes inject at the same rate as network links, then T
N = ∆u

k̄
results in a

well balanced network, where k̄ is the average distance, ∆ is the graph degree and u is the average link utilization.
Since in RRGs k̄ is close to the diameter D and u is relatively large, which has been experimentally observed to be
about 0.7, this expression can be approximated by ∆/D compute nodes per switch. Thus, the number of ports per
router is R = ∆(1 + 1/D) and the total number of compute nodes is T = N∆/D. Now, it follows that

T =
∆D+1

2D lnN
=

(R/(1 + 1
D ))D+1

2D lnN
=

1

2D(1 + 1
D )D+1

RD+1

lnN
.

A RFC of radix R, with N1 leaf switches and l levels has diameter D = 2(l − 1) if ∆ satisfies ∆D ≈ N1 lnN1 (in
the case of indirect networks, ∆ = R/2). The number of compute nodes per leaf switch is ∆ and the total is T = N1∆.
Now, it follows that

T =
∆D+1

lnN1
=

(R/2)D+1

lnN1
=

1

2D+1

RD+1

lnN1
.

Analogously, a Hydra in the same conditions with H heads fulfills that

T =
1

2D+1

RD+1

lnH
.

As stated in Section 3, a R-radix CFT has T = 2(R2 )l compute nodes. Also, a l-level OFT of order a prime power q

has radix R = 2(q+ 1), N1 = 2(q2 + q+ 1)l−1 leaves and T = 2(q+ 1)(q2 + q+ 1)l−1 compute nodes, so T ≈ R
(
R
2

)2(l−1)
.

Figure 8 shows the scalability of the different topologies. In abscissas the switch radix is represented. In ordinates
the number of compute nodes in logarithmic scale is shown. There are three curves, one for each CFT with 2, 3 and
4 levels, with diameters 2, 4 and 6 respectively; there are other four curves for each RFC and Hydra with 2 and 3
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levels (diameters 2, 4) and two more curves for the corresponding RRGs. A first look at the figure shows that for the
same number of servers, in general, random topologies can be built with routers of much lower radices than the ones
employed in CFTs. Moreover, in many practical cases, indirect random topologies can service a much larger number of
terminals with less levels. This is exacerbated in the case of the OFT that shows the highest scalability but, as it will
be shown in the next section, its strict definition presents an important drawback that compromises its expandability.
Notwithstanding, it is noticeable that the 2-level OFT scales as the 3-level CFT, halving its diameter; OFTs with more
levels exhibit an impressive scalability difference over CFTs.

Concerning RFC and Hydra, they clearly scale much better than CFTs. It should be highlighted that the scalability
of indirect random networks is similar to the direct RRN with the same diameter, being the Hydra the one providing
the highest scalability among them. In order to extract other practical consequences from Figure 8, let us to concentrate
on 4-level (diameter 6) CFTs, which are quite common on large data center deployments. For the whole range of router
radices, there is always a 3-level (diameter 4) Hydra able to service much more computing nodes. This means lower
average and maximum latencies (up to 33% reduction in diameter), which also translates in lower energy consumption.
In addition, very simple counts reveal an important (2/7 = 28%) reduction in the number of switches and (1/3 = 33%)
reduction in the number of wires. Similar reasoning can be applied to RFCs although they are a little bit less scalable.

(a) (b)

(c) (d)

Figure 9: Expansion of (a) RRN, (b) CFT, (c) RFC and (d) Hydra networks.

5 Expandability

Different terms have been used to define the possibility of incrementally adding more compute nodes to a network. In
this paper, we use the term expandability as with the Jellyfish in [34]. Therefore, given a network with N switches of
radix R, a N ′-expansion is an upgrade of the current configuration to a network with N +N ′ switches and the same
radix R and diameter. Then, a network will be said to be expandable if there is a N ′ > 0 such that it is possible to
make a N ′-expansion.

The CFT is not expandable since its definition imposes to increase the number of levels to add new switches, which
implies increasing the diameter. It is also needed to rewire half of the wires on the top level. In the same way, the
OFT is not expandable. Its strict definition involves a huge amount of new switches although the rewiring is the same,
respect to its total number of links, than in the CFT.

However, RRN, RFC and Hydra are all of them expandable networks. Figure 9 tries to illustrate how these networks
are expanded; for every network a small example is done. In each example, a network is represented with thick lines,
its minimal expansion with thin lines, and with dashed lines the wires removed for it.

A ∆-RRN with N switches can be easily upgraded to a ∆-RRN with N +N ′ switches, where approximately ∆N ′/2
links must be rewired. For conserving the diameter D, it must maintain ∆ ≈ (2(N ′ +N) ln(N ′ +N))1/D. Hence, a
problem in the RRN expansion is the potential incorrect balance in the switches between ports for terminals and ports
for connecting to other switches. As mentioned in Subsection 4.4, the proper number of servers per switch is around
∆/D. Nevertheless, the number of computing nodes per switch must be kept constant along expansion, so there is a
single point along the expansion in which the network is well balanced and dimensioned.

RFCs, similarly to RRNs, are also expandable as new switches can be added without increasing the network levels.
In this case, minimal upgrades add two new switches in every level and only one on the top level. Thus, at each
incremental expansion it is possible to add R new compute nodes. This can be done till achieving the threshold in
Theorem 4.4. In other case, the up/down-connectedness is not guaranteed but this can be avoided by increasing the
number of levels as other tree-based networks do.
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Figure 11: Centralized layout of networks with radix R = 18 and T = 13.122 computing nodes: (a) 4-level CFT (b)
4-level RFC and (c) (18, 2, 162, 2)-Hydra.

Hydra networks are also expandable. In this case, every incremental expansion is done adding new heads and the
necessary switches in the random levels. The minimum number of heads to be added is determined by the number of
switches in each level a head has. If this number is even, then it is possible make an expansion in just one head. If it is
odd, it is necessary to add an even number of heads (at least two).

In Figure 10, network expandability against raw cost is shown. The number of computing nodes is represented in
abscissas. The ordinates represent the total number of ports, a coarse-grain measure of the network cost; note that the
number of network wires is half the number of network ports. As it can be observed, non-random topologies (CFT and
OFT) result in functions characterized by their great discontinuity. Each step means an upgrade by adding a new
level. Then, the continuous part of the function gives the number of compute nodes which is possible to add without
requiring a new level. Note that for the calculation only the necessary switches to connect the new computing nodes are
considered, since in these cases the network is built depopulated. All random topologies lead to almost linear functions,
which reinforces that they are really suitable for expansion, as it was already proved in previous papers for RRNs. The
small steps in the function for RFC correspond to the addition of a level to guarantee the up/down-connectedness, as
argued before. Note that the random topologies have more or less the same cost. Observe that, due to the logarithmic
scale in Figure 10, differences in raw cost can be really huge, always in favour to the random topologies. As it will be
shown next, even for specific configurations in which a CFT is fully populated, our networks clearly beat them in terms
of cost.

It is also worthwhile to note that, when upgrading random topologies, the rewiring needed is similar. For example,
if a RRN and a RFC with R = 36 and T ≈ 10, 000 are both increased by 180 compute nodes, then the required
rewiring in both topologies is approximately 1.8% of the total number of links. However, Hydra needs less rewiring,
proportionally to the number of random levels.
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Table 5: Maximum and total cable length for 13, 122 processing nodes and radix 18.
Switches Wires Tot. length Max. length

4-level CFT 5,103 39,366 879,000 44
4-level RFC 5,103 39,366 1,161,000 68

(18, 2, 162, 2)-Hydra 3,645 26,244 479,000 42

6 Deployment

In this section, the physical deployment of the topologies considered in the paper is analysed. For this study, let us
assume a typical centralized deployment, that is, all the non-leaf switches are contained in the racks of central rows,
similarly to [33]. Other options to deploy CFTs, such as [2], are not considered in this paper. In the remainder of the
section an example is used to illustrate the problem.

Let R = 18 be the switch radix and T = 13, 122 the number of processing nodes, which is the maximum in a 4-level
CFT. In Figure 11, the centralized deployment of three different networks is considered. Note that, for the sake of the
clarity, not all rows of racks and wires are represented. There are two types of rows, the ones devoted to leaf switches
and servers, and the ones in the central rectangle containing the remaining switches. In Figure 11(a), the deployment of
the 4-level CFT is shown. Assuming that racks have capacity for allocating 10 swithes/computing nodes, there are 40
racks in each row. In the 8 rows of the central rectangle, there are 40× 8 racks containing only non-leaf switches. The
remaining racks, 16 rows above and 16 rows down, contain servers and Top of the Rack (ToR) switches. As it can be
seen, due to the structure of the CFT, all the wires from ToR switches to the central racks can be handled in bundles.
However, if we consider RFCs, things are really different as shown in deployment in Figure 11(b) in which the layout of
the 4-level RFC is presented. In the figure it can be seen that the wires in the central racks, conveniently managed in
hoses, are the same than in the CFT. However, wires from/to ToR switches cannot be packaged into bundles, which is
clearly both the main drawback of RFCs and the main motivation behind Hydra networks. In layout in Figure 11(c), a
(18, 2, 162, 2)-Hydra is deployed, which is capable to connect also 13, 122 computing nodes but with one less level,
which translates into less rows of racks in the central rectangle (5 instead 8). It can be observed that, the wires from
ToRs in the Hydra can be bundled as in the CFT, concluding that the wiring complexity of both topologies is similar,
but with less and shorter wires in the case of the Hydra, as shown next.

Considering the previous physical organization, let us to compare CFT, RFC and Hydra in terms of total and
maximum cable length. Table 5 summarizes the differences among these specific configurations. Only wires between
switches are counted. It is assumed a square grid of racks using Manhattan distance. For the calculation of cable
length, it has been assumed that every cable uses 2m to connect endpoints, plus 1m per rack crossed, similarly to
[5]. As can be seen, since the Hydra network has less levels, it has less wires, switches and total and maximum wire
length. It should be noted that this comparison has been done for a number of servers which favours CFT, as it is
fully populated. Even in this case, the corresponding Hydra can be deployed with savings of 29% and 44% in switches
and wires, respectively. Any other number of servers leads to higher savings. For this and other radices, as R=36 in
Figure 10, huge savings can be achieved when dealing with a number of servers leading to partially populated CFTs.
Moreover, as it will be seen in Section 7, it comes with a noticeable latency improvement.

7 Performance Evaluation

In this section several experiments are shown to evaluate the different networks and to study the implications of adding
more/less random levels to a Hydra. These experiments are performance simulations under different synthetic traffic
patterns. Simulations have been done using INSEE (Interconnection Network Simulation and Evaluation Environment)
[30] with the parameters shown in Table 6. Each run consists of 10, 000 cycles for statistics, preceded by a network
warmup. At least 5 simulations are averaged for each point. The employed up/down routing is deadlock-free but
virtual lanes are used to reduce Head of Line (HoL) blocking.

All the experiments have been done using three synthetic traffic patterns, adapted from [11], which have been
selected to represent typical communication patterns. The traffics are:

• uniform: Each generated packet has as destination a random computing node selected uniformly.

• permutation: The set of computing nodes is initially divided into pairs in a random uniform way. Each compute
node generates packets with destination its paired compute node. This traffics pattern represents the case of a
random data permutation of the computing nodes.

• fixed random: At the beginning, each computing node selects a different computing node in a random uniform way.
During the simulation each node generates packets towards the selected computing node. Note that, since several
computing nodes could have selected the same destination, these preferred endpoints become light hotspots.
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Figure 12: Simulated throughput and latency of 3-level RFC, (36,2,309,2)-Hydra and 4-level CFT with radix 36 and
100,008 compute nodes.

In Figure 12, throughput and latencies for different networks are shown. In this case, the networks evaluated have
100K computing nodes. Both RFC and Hydra have 3 levels, but the CFT needs 4 levels to accommodate such number
of computing nodes. Hence, the CFT for these experiments is not a fully populated one. Note that results are shown
with normalized load, so 1 in the plots means that every computing node is injecting 1 phit per cycle. As it can be
observed, under uniform traffic both RFC and CFT exhibit the same performance, and the Hydra provides 11% less
maximum throughput than the CFT. However, both RFC and Hydra networks provide 20% better average latency
since they have less levels.

When considering permutation traffic, RFC provides 79% and Hydra 77% of the performance given by CFT. This
is not surprising since CFT is, by definition, a full bisection bandwidth network. Again, as a consequence of having less
number of levels, the average latency improvements of RFC and Hydra are around 15%. Finally, if we consider the
performance under fixed random traffic, all topologies have almost identical throughput, which translates on that all of
them tolerate equally well traffic generating hot spots. The average latency improvements of RFC and Hydra are again
in the surroundings of 15%. Moreover, as it was shown in Section 6, having less levels implies lower cost, power and

Table 6: Simulation parameters

Parameter Value
Simulated cycles 10,000
Virtual channels 4

Buffer size 4 packets
Flow control Virtual cut-throught

Injection mode shortest
Request mode up/down random

Arbiter random
Packet length 16 phits
Link latency 1 cycle

Arbitration iterations 1
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Figure 13: Maximum throughput in uniform traffic and radix 18.
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Figure 14: Maximum throughput in permutation traffic and radix 18.

energy.
Figures 13, 14 and 15 show the maximum throughput achieved for different networks for each traffic pattern. In

these experiments, the effect on performance of two different network upgrades is going to be studied. It will be
considered that networks can be expanded, up to a point, by widening them or, after that, by adding more levels. In
order to compare Hydra networks varying the amount of random levels, networks with more than three levels are also
considered. For all of these reasons, and for correctly illustrating a wide range of examples, the radix of the topologies
have been fixed to 18.

In each figure, in abscissas the number of compute nodes is represented in logarithmic scale. In ordinates, the
maximum throughput is shown. The number of computing nodes is divided into three different regions, which are
delimited by solid vertical lines. These lines correspond to the number of computing nodes of a CFT with 3, 4 and
5 levels, respectively. Results are normalized with respect to an ideal full bisection bandwidth network. In adition
to CFTs, five networks are evaluated: 3-RFC, 4-RFC, (18, 2, H, 2)-Hydra, (18, 3, H, 2)-Hydra and (18, 2, H, 3)-Hydra.
Note that the random networks that appear in each region have always one level less than the corresponding CFT.
This will be translated in latency reductions, as previously shown in Figure 12.

Inside every region, the expansion of the networks is done by adding computing nodes and switches, preserving
the number of levels. However, from the first region to the second one, the upgrade is made by adding a new level.
Therefore, 3-RFC is upgraded to 4-RFC. Also, the (18, 2, H, 2)-Hydra is upgraded to (18, 2, H, 3)-Hydra. Observe that
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Figure 15: Maximum throughput in fixed random traffic and radix 18.

the last region is not delimited since random topologies would be able to attach more than 500K computing nodes.
These points are not included since the simulations come with a very high computational cost.

As it can be observed in Figure 13, RFC always provides better performance under uniform traffic than any Hydra.
Moreover, more random levels implies better performance, as observed for the two 4-level Hydra networks. For any of
the topologies, fine grain expansions provide for small performance improvements. Most of the random topologies tend
to achieve the good behaviour of the CFT under uniform traffic. In permutation traffic, as it can be seen in Figure 14,
again more random levels implies a higher maximum throughput. In general, and opposite to uniform traffic, fine grain
expansions preserving the number of levels produces a small degradation of the network performance. However, the
upgrade by adding a new level involves an improvement of 30%. All the networks under fixed random traffic have
similar behaviour, as shown in Figure 15. Finally, as it can be observed, for very large datacenters (corresponding to
the last region results), Hydra comes with many benefits losing no significant throughput. While for moderate sized
datacenters, there is a more noticeable throughput loss. As it has been demonstrated in previous sections, Hydra
networks are more scalable, enough expandable and have a manageable deployment with less cost. The datacenter’s
designers should decide if the trade-off is advantageous enough for their purposes.

8 Conclusions

Random multistage topologies were proposed decades ago. In this paper, we have analyzed and characterized a specific
family of such networks, denoted as Random Folded Clos networks. Moreover, we have proposed Hydra, which differs
from Random Folded Clos networks on the possibility of combining random and non-random connectivity. This provides
a more practical solution when considering current technologies.

We have algebraically proved the topological conditions for implementing a deadlock-free multi-path routing on
such networks. They have been compared against three important counterparts: fat-tree (which is the standard indirect
topology), OFT (which is a cost-optimal highly scalable indirect topology) and random regular graphs. The comparison
has been made in terms of cost, scalability and expandability. Physical deployments for fat-trees, Random Folded Clos
and Hydra networks have been also compared.

As it has been shown, Random Folded Clos and Hydra networks are as scalable and expandable as random regular
graphs, but with the natural advantages of being a folded Clos topology. The presented theoretical analysis has been
confirmed by an exhaustive simulation-driven experimentation. Compared towards the standard fat-tree, Random
Folded Clos and Hydra networks are more scalable, allow for small incremental expansions and have comparable
performance under typical traffic patterns. Besides, these networks can be built with a quite big save of cost, as they
typically need a lower number of levels than fat-trees. This implies that our networks manage traffic with significant
latency and energy savings. Importantly, Hydra networks admit a standard layout similar to the one used by fat-trees.
In the light of all the results, it can be concluded that Hydra networks accomplish the requirements of nowadays
datacenters and thus, are a realistic and practicable alternative to commodity fat-trees.
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