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Abstract: 14 

Sea cage farming of seabream and seabass is the most important form of aquaculture production in the 15 

Mediterranean Sea. Despite the continuous global growth in aquaculture production and demand, the economic 16 

performance of seabream and seabass companies has not followed the same trend. In recent years, companies 17 

have faced successive periods of market instability, with high volatility in supply and market prices that has 18 

strongly affected their operational margins. Despite the regional importance of this industry, only a handful of 19 

studies have examined the economic performance of these farms. In this paper, we investigate the technical 20 

efficiency and scale effects of Mediterranean aquaculture farms. Furthermore, environmental impact in terms 21 

of nutrient emissions from the farms is examined and discussed. Technical efficiency effects are analysed using 22 

Data Envelopment Analysis (DEA), and the bootstrap procedure is used for bias correction. The results show 23 

that the mean technical efficiency could be improved by between 16% and 34%, and scale efficiency suggests 24 

that farms could improve their efficiency by operating at an optimal scale. Compared to measurements in 25 

previous studies, the environmental variables show that the emission of nutrients from the farms per kilo of 26 

fish produced has not changed over the past twenty years. Finally, policy implications suggest that more 27 

attention towards improving technical efficiency may help improve the robustness of the sector and that 28 

environmental regulation might be needed in order to improve the environmental performance of farms.  29 
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Introduction  32 

Intensive production of fish in sea cages is a relatively new industry, which started in the 1970s with 33 

salmon production in Norway (Asche 2008). At the beginning of the 1990s, industrial production of 34 

gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) started in different 35 

countries around the Mediterranean Sea (Llorente and Luna, 2014). During the 1990s, both industries 36 

experienced rapid growth in production volume. The salmon industry faced some turbulent times 37 

during the 1990s (Asche and Bjørndal 2011) caused by falling prices due to the increased supply. 38 

Nevertheless, the salmon industry managed to stay profitable through continuous productivity 39 

development and increasing demand, even though productivity growth levelled off towards the end 40 

of the 2000s (Asche, Guttormsen and Nielsen 2013; Roll, 2019: Rocha-Aponte and Tveteras, 2020). 41 

Similarly, the seabream and seabass industry faced several setbacks during the 2000s due to falling 42 

prices as a consequence of the rapid growth in supply (Llorente et al. 2020). However, the seabass 43 

and seabream industry has not been able to expand market demand to the same extent as the salmon 44 

industry (Asche et al., 2011). This has led to periods of market instability, with high volatility in 45 

supply and market prices that has strongly affected seabream and seabass companies’ operational 46 

margins (Llorente et al. 2020).  47 

When studying technical efficiency as a means to improve productivity in aquaculture, the focus has 48 

been on the farm level (Sharma and Leung 2003; Iliyasu et al. 2014), as this is the key element in a 49 

successful aquaculture industry. Technical efficiency can be seen as a performance measure. Thus, 50 

technically efficient farms are able to produce more outputs with a given set of inputs than less 51 

efficient farms. When industries experience rapid development, innovation and growth, there can be 52 

high variation among farmers in terms of the input used and output produced, leading to inefficient 53 

use of production inputs. This inefficiency can lead to negative environmental impacts if overuse of 54 

some inputs has environmentally damaging effects (Asche, Roll and Tveterås 2009). Technical 55 
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inefficiency can therefore be of interest for environmental regulators, as shown in the Norwegian 56 

salmon aquaculture industry (Asche, Roll and Tveterås 2009). 57 

Despite evidence for how important technical efficiency is for successful aquaculture industry 58 

development (Karagiannis et al., 2000a; Asche et al., 2009; Asche and Roll, 2013; Roll, 2019: Rocha-59 

Aponte and Tveteras, 2020) as a means to increase productivity growth (Asche et al., 2009; Asche 60 

and Roll, 2013), studies addressing this issue within seabream and seabass farming are scarce. The 61 

production and market data for seabream and seabass have shown several episodes of increasing 62 

production and falling market prices that reduce company margins (Llorente et al. 2020). Since 2017, 63 

the industry has experienced a new period of increasing supply and price drops, which has created 64 

uncertainty about the possible negative impact on the economic performance of the industry.  65 

Within the seabream and seabass industry, only a few studies on technical efficiency, productivity 66 

and profitability are available. Furthermore, they all have a country-level scope, and some date back 67 

more than twenty years. One of the main reasons is that seabass and seabream production has taken 68 

place in many different countries. Thus, there has not been a common system for data collection (as 69 

in Norway for salmon production), which has been a limitation when conducting research to provide 70 

policy advice for the sector. The studies conducted have centred on Greece and analysed technical 71 

efficiency and productivity at the farm and company levels (Karagiannis et al. 2000a; 2000b; 2002 72 

and Pantzios et al. 2011). The findings revealed that larger farm size and specialization on one of the 73 

two species positively affects technical efficiency and that feed and fingerling inputs showed the 74 

largest fluctuation of marginal productivity among the farms. Pantzios et al. (2011) concluded that 75 

there was considerable technical inefficiency, and the contribution from technical efficiency to the 76 

overall productivity growth was almost zero when examining a sample of Greek farms from 1995–77 

1999. Even though Turkey is the largest producer country today, studies focused there only look at 78 

economic performance (Kocak and Tatlidil 2004) and energy efficiency (Bozoglu and Ceyhan 2009) 79 

and give a general overview of the industry’s functioning (Rad and Köksal 2000; Rad 2007. Italian 80 
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studies (Di Trapani et al., 2014) look at economic performance of offshore and inshore production, 81 

concluded that offshore farming presents an opportunity to increase profitability and suggested that 82 

it is more environmentally sustainable because of the location being farther from land. In Spain, 83 

Sotorrío (2002) concluded that profitability of marine finfish farming could be explained by 84 

efficiency and the ability to learn (learning curve). Llorente and Luna (2012) analysed how biological, 85 

technical, environmental and economic factors affected profitability, showing that technical and 86 

biological aspects may lose importance as production processes are standardized, while the 87 

environmental and economic aspects increase in relevance. Finally, Llorente et al. (2020) analysed 88 

the economic performance of EU seabass and seabream companies from 2008-2016, concluding that 89 

profitability has improved in recent years and that larger companies are more profitable. During this 90 

period, the industry underwent a process of concentration and consolidation to overcome efficiency 91 

and profitability issues. However, on average, economic performance seems to be still rather poor. 92 

Given the negative effects of increased supply on the average market price, this highlights the need 93 

to improve production efficiency to enhance productivity and operating margins. 94 

The analyses performed within these studies focused on specific countries, making it difficult to draw 95 

conclusions for the sector because the results between countries cannot be compared due to the use 96 

of different methodologies, sources of data, and sample sizes. Furthermore, environmental variables 97 

were not integrated into any of the previous analyses on economic performance. The purpose of this 98 

study is to investigate the technical and scale efficiencies in Mediterranean aquaculture farms and the 99 

technical efficiency relationships with environmental variables in terms of nutrient emissions. For 100 

estimating technical efficiency, Data Envelopment Analysis (DEA) has been applied using the 101 

bootstrap procedure for bias correction of the technical efficiency scores from the basic model. 102 

Furthermore, Spearman’s correlation has been used to estimate the correlations between the 103 

efficiency scores obtained from the DEA model and environmental variables reported from the farms. 104 

This paper represents progress beyond the state of the art, being the first study to analyse the technical 105 
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efficiency of seabream and seabass farms in multiple countries that also considers environmental 106 

effects. 107 

The study is structured as follows. After this introduction, an overview of the seabream and seabass 108 

industry is provided. Then, the methods and materials used are outlined, followed by a presentation 109 

and discussion of the results. Finally, the paper is concluded. 110 

Seabream and seabass industry overview 111 

According to the FAO (FAO, 2020), the total aquaculture production of European seabass and 112 

gilthead seabream increased from just under 8 thousand tonnes in 1990 to 158 thousand tonnes in 113 

2000 and up to an impressive 464 thousand tonnes in 2018, valued at 2,247 million dollars. Over the 114 

same period, nominal prices decreased from over 16 dollars per kilo in 1990 to 4 dollars per kilo in 115 

2002, which initiated a deep crisis within the sector. Since prices reached an all-time low in 2002, 116 

they have been relatively stable, ranging between 5 and 6 dollars per kilo. However, they have shown 117 

a decreasing trend since 2011, reaching a price of 4.73 and 4.95 dollars per kilo for seabream and 118 

seabass, respectively, in 2018.   119 

 120 

Figure 1. Global aquaculture production of seabream and seabass (tonnes) and average price per kilo 
(USD) 1990-2018 

 
Source: FishStatJ - Software for Fishery and Aquaculture Statistical Time Series (FAO). 
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In 2018, 95% of seabream and seabass aquaculture production took place in the Mediterranean Sea. 121 

Leading production countries are Turkey and Greece, producing 42% and 22% of the total volume, 122 

respectively. The five countries with the largest seabass and seabream production (Turkey, Greece, 123 

Egypt, Spain, and Tunisia) produced more than 88% of the total volume in 2018. Turkey, Egypt and 124 

Tunisia have considerably increased their production volume since 2008, whereas Greece, Spain and 125 

Italy have increased production since 2014, but at a lower rate. Croatia is a new producer of seabass 126 

and seabream in this area, producing just over 11,000 tonnes (FAO, 2020). 127 

The production figures show a growing industry that since the crisis in the 2000s has exhibited growth 128 

in production volume, especially from 2016 to 2018. The latest data show how the increase in 129 

production during 2015 to 2018 has been accompanied by a new reduction in average prices. A greater 130 

market share of countries where the product has a lower average value, such as Egypt or Tunisia, may 131 

partly explain the fall in the average prices. At present, the increase in production in countries such 132 

as Egypt or Tunisia does not seem to have a major impact on the main European markets and trade 133 

relations among the rest of the producers, given that most of the fish produced are consumed locally 134 

(Cidad et al. 2019). 135 

Before 2012, Greece was the leading producer; however, Turkey has since taken over this role (FAO, 136 

2020). Thus, EU countries are no longer leading the industry. France, Italy and Spain have seen their 137 

production stagnate compared to that of countries outside the EU, where the industry is expanding 138 

fast. Nevertheless, the EU countries produce a higher-value product, which generates half of the total 139 

production value.  140 

The cost structure in the seabream and seabass industry corresponds to that of fish farming in intensive 141 

production systems, in which the main cost components are feed (46%) and fingerlings (14%) (see 142 

Figure 2). Other operational costs make up 19%, whereas labour costs in the intensive systems are of 143 

less importance but still make up 13% of the overall cost (STECF 2018). 144 

 145 
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 146 

Methods and materials 147 

DEA is used to estimate technical efficiency in the seabream and seabass sea cage industry in the 148 

Mediterranean Sea. Charnes, Coopers and Rhodes (1978, 1979) introduced the DEA technique, and 149 

a general introduction to DEA can be found in Cooper et al. (2000) and Coelli et al. (2005). The 150 

methodology has been widely applied to aquaculture, where most studies have focused on analysing 151 

technical, allocative and cost efficiencies and aimed to optimize aquaculture production at the farm 152 

level (Sharma and Leung 2003; Iliyasu et al. 2014; Long et al. 2020). 153 

In DEA, the distance between the best practice production (the estimated frontier), which represents 154 

technically efficient farms, and the actual production for an individual farm is estimated. In this study, 155 

an input-oriented and an output-oriented model are used. The input or output orientation should be 156 

selected according to which factors farmers have the most control over (Banker et al. 1984). 157 

Nevertheless, we report results from both input- and output-oriented models. Input-oriented technical 158 

efficiency measures the farm’s ability to use the smallest possible set of inputs to produce a given 159 

output, considering the available technology, whereas technical efficiency in an output-oriented 160 

model measures the farm’s ability to use a given set of inputs to produce the maximum set of outputs. 161 

In general, VRS is the most appropriate choice because constant returns to scale are only appropriate 162 

when farms are operating at an optimal scale (Coelli et al. 2005). Factors such as constraints on 163 

Figure 2. Cost distribution in seabass and seabream production in EU 

 
Source: STECF (2018). 
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finance or regulation may influence the individual farm’s ability to operate at an optimal level. When 164 

using an input- or output-oriented DEA model with VRS, pure technical efficiency (TE) is estimated. 165 

In the model, discretionary variables are used. Discretionary variables can be varied at the discretion 166 

of the individual farm manager, whereas a non-discretionary variable cannot be changed in the short 167 

term. The input-oriented VRS DEA model can formally be written as follows (Coelli et al. 2005):  168 

     𝜃𝜃  𝜃𝜃,𝜆𝜆
𝑀𝑀𝑀𝑀𝑀𝑀  st.:   (1) 169 

𝑌𝑌𝑓𝑓,𝑘𝑘 ≤ ∑ 𝜆𝜆𝑛𝑛  ∙ 𝑌𝑌𝑛𝑛,𝑘𝑘
𝐹𝐹
𝑛𝑛=1                      k = 1, …, K                                            (1.a) 170 

𝜃𝜃 ∙ 𝑋𝑋𝑓𝑓,𝑚𝑚 ≥  ∑ 𝜆𝜆𝑛𝑛𝐹𝐹
𝑛𝑛=1 𝑋𝑋𝑛𝑛,𝑚𝑚    m = 1, …, M                                          (1.b)   171 

𝜆𝜆𝑛𝑛 ≥ 0,    ∑ 𝜆𝜆𝑛𝑛𝐹𝐹
𝑛𝑛=1  = 1     n = 1, …, F                                             (1.c) 172 

The subscript f (f=1,…, F) represents the f’th farm, where F is the total number of farms. Yf,k is the 173 

k’th (k=1,…, K) output for the f’th farm, and Xf,m is the m’th (m=1,…, M) discretionary input for the 174 

f’th farm. The scalarθ measures the radial reduction in the discretionary input necessary to make the 175 

farm technically efficient and is between 0 and 1 in an input-oriented approach. If θ  equals 1, the 176 

farm is technically efficient. Finally, λ is a vector of F weights, or intensity variables, which identifies 177 

the extent to which the different observations are used to construct that part of the piecewise linear 178 

frontier approximation that envelops the f’th data point. 179 

The restrictions imposed by equations (1.a)–(1.b) ensure that the farm stays within the production 180 

possibility set for the sector when reducing the discretionary inputs X. The production possibility set 181 

is based on the assumption that it is impossible to produce more outputs than the observed ones, or a 182 

linear combination of these (equation 1.a), using less than their observed inputs or linear combinations 183 

of these (equation 1.b). VRSs are assumed by the inclusion of equation 1.c (an example of an output-184 

oriented model is shown in Appendix 1). 185 
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Scale efficiency (SE) can be measured by estimating both a CRS and a VRS DEA. The technical 186 

efficiency measures obtained under a CRS DEA contain both pure technical efficiency and scale 187 

efficiency. Scale efficiency can be deduced by dividing the technical efficiency score from the CRS 188 

DEA by the score obtained from the VRS DEA.   189 

  vrsfcrsff TETESE ,, /=   190 

The f’th farm is scale efficient if SE=1, where an SE<1 indicates scale inefficiency. 191 

A point of criticism of the DEA methodology is that it implicitly assumes that all distances from an 192 

observed point to the frontier reflect inefficiency. This may pose a problem because uncertainty and 193 

measurement errors are in most cases invariably present in data. To address this issue, the bootstrap 194 

technique, suggested by Simar and Wilson (1998, 1999, 2000a), is applied because this method can 195 

be used to analyse the sensitivity of nonparametric efficiency scores to sampling variation and thereby 196 

address the problem of measurement errors. The bootstrap technique allows for estimating confidence 197 

intervals for DEA scores. In this study, the bias-corrected technical efficiency scores in input- and 198 

output-oriented DEA models are used (Simar and Wilson 1998). The theoretical foundation for the 199 

bootstrap approach can be found in the extensive work by Simar and Wilson (1998, 1999, 2000a, 200 

2000b).  201 

The bootstrap approach is based on re-sampling with replacement from the original observed DEA 202 

efficiency scores. It is assumed that the probability distribution of the observed DEA efficiencies 203 

imitates the true, but unknown, distribution of the parent population of DEA efficiencies. Thus, if a 204 

sample is drawn with replacement from the observed DEA efficiencies, it will be similar to a sample 205 

drawn from the population itself. By repeatedly re-sampling from the observed DEA efficiencies, an 206 

empirical sampling distribution for DEA efficiencies can be constructed.  207 

Spearman’s correlation is applied to test the correlations of technical efficiency scores with the year 208 

of production and the environmental variables (Artusi et al. 2002). 209 
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 Data 210 

The data set contains information on production volumes and costs of inputs and outputs used in the 211 

production for individual years. The selected data cover 26 farms in 9 countries, over the period 2015 212 

- 2017 (Croatia, Cyprus, Egypt, France, Greece, Italy, Spain, Tunisia, and Turkey). Data were 213 

collected in the context of the Mediterranean Aquaculture Integrated Development (MedAID)1 214 

project during 2018. However, for some of the farms, the variables chosen for the analysis were not 215 

reported. To overcome this issue, missing responses were replaced with values calculated as the mean 216 

values from the obtained valid responses from the total data set and then related to the individual 217 

farm’s volume of output produced following Lien et al. (2006) and Flaten et al. (2005). In this way, 218 

a data set containing all variables used for the following analysis has been produced. To test the 219 

sensitivity of the different models, the analysis described in the methods section has been run with 220 

different variables and for a limited data set containing 14 farms without any constructed variables 221 

and an extended data set containing 29 farms, including three farms with more than one constructed 222 

variable.   223 

Table 1 presents summary statistics of the data collected. Output is the volume of seabream and 224 

seabass produced in tonnes. The input variables are the volume of fingerlings and feed used for 225 

production in tonnes, and labour is measured as the number of persons involved in the production. 226 

The numbers in brackets are the sample sizes of the data originally reported by the farmers. 227 

Table 1: Descriptive data for output and input variables selected for the analysis 228 

 Average Minimum Maximum Std. deviation 
Output     
Harvest in tonnes (26) 646 25 1.984 548 
Input     
Fingerling in tonnes (23) 19 1 52 14 
Feed in tonnes (23) 1.623 55 4.852 1.297 
Labour in persons (18) 45 6 76 23 

Source: MEDAID WP1 data collection 229 

                                                           
1 MedAID (Mediterranean Aquaculture Integrated Development) is funded by the European Union under Horizon 2020 
grant agreement number 727315. The goal of MedAID is to increase the overall competitiveness and sustainability of the 
Mediterranean marine fish-farming sector, throughout the whole value chain.  
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 230 

To explore the environmental impact of the sea cage farms, the farmers were asked to report data on 231 

the emissions of nitrogen, phosphorus and organic material originating from production. As there 232 

were no measurements of these effects on the farms, the effects were estimated by the farmers using 233 

the input of feed as a proxy for emissions. The descriptive statistics of environmental variables are 234 

reported in Table 2. 235 

Table 2: Descriptive data for environmental effects from the production  236 

Environmental variables Average Minimum Maximum Std. deviation 
Average per 

kilo of output 
Nitrogen (22)* 85 2.8 243 65 0.111 
Phosphorus (22)* 9 0.3 24 6 0.011 
Organic material (22)* 678 22.0 1,941 519 0.888 

Source: MEDAID WP1 data collection. 237 
*The number in ( ) are the number of farms that have reported this data out of 26 farms. 238 

The environmental variables are highly correlated with the input variable feed because the contents 239 

of nitrogen and phosphorus within the feed strongly determine the emissions from the farms. Thus, 240 

overall feed use also determines the emission of organic material because it is currently not possible 241 

to collect or harvest organic material or nutrients in open-sea cage farms. Due to the high correlation, 242 

it was not possible to include the environmental variables within the first stage of DEA modelling.  243 

Results and discussion 244 

The estimates of mean technical efficiency from the input- and output-oriented DEA models with or 245 

without bias correction are presented in Table 3. 246 

The results show that the mean technical efficiency scores from the basic DEA models are 0.83 and 247 

0.84 for the input- and output-orientated models, respectively. The interpretation of this result is that 248 

the average farm could reduce inputs by 17% without reducing outputs under the input-oriented 249 

model, or a farm could increase outputs by 16% without increasing input use under the output-250 
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oriented model if the average farm were producing in the manner of the best-practice farms in the 251 

sample. 252 

Table 3: Mean Technical Efficiency scores estimated in the DEA models 253 

  DEA basic models DEA Bootstrap models 
  

Input  
oriented 

Output 
oriented 

Input  
oriented 

Output 
oriented 

Mean TE-score   0.83 0.84 0.73 0.66 
No. of farms  26 26 26 26 
Efficient  farms  9 9 0 0 
St. deviation  0.17 0.17 0.13 0.11 
Maximum  1.00 1.00 0.91 0.81 
Minimum  0.49 0.51 0.46 0.44 
Lower 95% CI for Mean    0.63 0.54 
Upper 95% CI for Mean    1.01 0.88 

Because some missing values have been constructed using mean values from the other farms in the 254 

sample, following the method of Lien et al. (2006) and Flaten et al. (2005), a sensitivity analysis of 255 

the DEA models and technical efficiency scores was performed.  256 

First, a DEA model containing only 14 farms with all variables present in the original data set was 257 

estimated using harvest in tonnes as output and feed and fingerlings in tonnes and labour in numbers 258 

of people employed as input. The results show that according to the conventional input- and output-259 

oriented model, the technical efficiency was 0.84 and 0.82, respectively. The scale efficiency for the 260 

input-oriented model was estimated to be 0.91, and that for the output-oriented model was 0.93 261 

(Appendix 2).  262 

Second, a model containing 29 farms was estimated using the full data set with missing values 263 

interpolated. The results showed that for both the conventional input- and output-oriented models, 264 

the technical efficiency was 0.83, and the scale efficiency was 0.91. Bootstrapping the technical 265 

efficiency scores from the DEA model with 29 farms resulted in an average technical efficiency score 266 

of 0.69 and 0.70 for the input- and output-oriented models, respectively (Appendix 2).  267 
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Thus, from the sensitivity analysis provided here, we can conclude that the model is robust and that 268 

the construction of a few variables does not affect the mean technical efficiency estimated within this 269 

study. Furthermore, the results from Danish aquaculture (Nielsen 2011, 2012 and Nielsen et al 2014) 270 

also confirm that aquaculture production within comparable production systems is quite homogenous, 271 

which suggests that the estimated values for a few inputs on a few farms do not have significant 272 

effects on the overall results. Finally, Guttormsen (2002) showed that the most important input in the 273 

salmon industry was feed and that limited input substitution possibilities existed in the salmon 274 

industry, which also suggested limited input variation among seabream and seabass farms.  275 

The results correspond to findings in Karagiannis et al. (2002), where the technical efficiency was 276 

estimated to be 83.7%. Technical efficiency in Norwegian sea cage farming was estimated to be 277 

81.5% using stochastic frontier analysis (Asche and Roll 2013). 278 

A recent study on aquaculture raised the issue of bias correcting technical efficiency estimates (Long 279 

et al. 2020) in order to provide confidence intervals and obtain more valid estimates of technical 280 

efficiency using DEA. The results of the bias-corrected models for input and output orientation had 281 

a mean score of 0.73 and 0.66, respectively, which are lower than the values for the ordinary DEA 282 

model. This is expected due to the construction of the bias-corrected models and is similar to the 283 

findings in Long et al. 2020. The results from the bias-corrected models imply that farms could reduce 284 

input by 27% and still produce the same output or keep the input level and produce 34% more output 285 

if they were all able to produce at the level of the best farmers in the sample. These results correspond 286 

to findings in Karagiannis et al. 2000a, where the mean technical efficiency of Greek seabass and 287 

seabream farms under output- and input-oriented models was estimated to be 78.5% and 73.6%, 288 

respectively, using a stochastic frontier model. 289 

It seems reasonable to expect that farm technical efficiency could be improved by between 16% and 290 

34%. In contrast to the Norwegian salmon sea cage farming industry, seabream and seabass producers 291 

are located all along the Mediterranean coast in different countries applying different rules and 292 
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regulations for the aquaculture industry (Guillen et al. 2019, STECF 2014, STECF 2016). This may 293 

affect technical efficiency because knowledge and innovation may not be transferred as easily as in 294 

Norway, where only one set of rules apply. Similar effects have been documented for the land-based 295 

trout industry producing relatively small volumes in many EU countries (Nielsen et al. 2016). In 296 

Norway, the public sector has also supported innovation and development within the industry (Asche 297 

and Bjørndal 2011). The support of governments for innovation and development may be different 298 

(lower) within the Mediterranean countries because the sector in each country is smaller, and the 299 

benefits of new innovations will be transferred to all the producing countries.  300 

In Table 4, the mean scale efficiency (SE) is shown for the four estimated models. The estimated 301 

mean scale efficiencies for the basic DEA models with input and output orientation are 0.91 and 0.90, 302 

respectively. For the DEA bootstrap models, the estimated mean scale efficiencies for the input- and 303 

output-oriented models are 0.79 and 0.87, respectively. The results from the basic DEA analysis 304 

indicate that farms could either increase their production by 10% using the same amount of input as 305 

used today or reduce the input used by 9% and still produce the same amount of fish as produced 306 

today if they adjusted their scale of operation (size of farms) to the optimal scale.  307 

Table 4: Mean Scale Efficiency estimated in the DEA models 308 

  DEA basic models DEA Bootstrap models 
  Input 

oriented 
Output 
oriented 

Input 
oriented 

Output 
oriented 

Mean Scale Efficiency   0.91 0.90 0.79 0.87 
No. of farms  26 26 26 26 
Scale Efficient farms  6 6 0 0 

The analyses of farm economics provided by Karagiannis et al., 2000a and 2002 and Llorente et al 309 

2020 suggest that economics of scale exist within the sea cage farming of seabream and seabass. 310 

Furthermore, looking at the development of the sea cage farming sector in Norway, there is evidence 311 

that economies of scale (Asche et al. 2013b and Asche et al. 2018) and production by each company 312 

have been increasing over time (Asche, Guttormsen and Nielsen 2013). However, it has also been 313 
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shown that there are significant cost savings associated with localization (agglomeration) because 314 

farms can benefit from each other in terms of logistics and knowledge transfer (Tveterås 2002).  315 

A study by Tveterås and Heshmati (2002) indicated that two-thirds of the productivity growth in 316 

Norwegian salmon aquaculture originated from input providers and improved inputs, while one-third 317 

originated from better production practices at the farm level. Another study (Asche, Roll, and 318 

Tveteras 2007) compared the Norwegian sectors producing cod and salmon. The important insight 319 

from these studies is that it does not matter where in the value chain productivity growth occurs. 320 

Productivity growth downstream in the supply chain may be just as important as improved production 321 

methods at the farm level because consumers are only interested in the final price of the product, not 322 

where the cost reduction happens within the value chain. Furthermore, it is pointed out in Bergesen 323 

and Tveterås, 2019 that suppliers of input to aquaculture businesses are highly innovative, while 324 

aquaculture companies largely incorporate innovations from these input suppliers and thereby 325 

become more productive. 326 

Table 5: Spearman’s correlation of years and environmental variables 327 
Models DEA Input DEA Input BIAS DEA Output DEA Output BIAS 

Variables S 
p-

val. rho S 
p-

val. rho S 
p-

val. rho S 
p-

val. rho 
Year 4239 *0.02 -0.45 4121 *0.04 -0.41 4189 *0.03 -0.43 3581 0.27 -0.22 
Nitrogen 
(22) 

2616 0.61 0.11 3124 0.74 -0.07 2262 0.27 0.23 1537 *0.01 0.47 

Phosphorus 
(22) 

2589 0.58 0.11 3077 0.80 -0.05 2244 0.25 0.23 1524 *0.01 0.48 

Organic 
material 
(22) 

2604 0.59 0.11 3108 0.76 -0.06 2254 0.26 0.23 1531 *0.01 0.48 

Significance codes: ‘*’ 0.05 328 

Spearman’s correlation has been used to test how the technical efficiency of farms correlates with the 329 

time period 2015-2017 and interacts with the environmental variables nitrogen, phosphorus and 330 

organic material. Each of the variables is tested individually against the different efficiency scores 331 

obtained with the four DEA models. In Table 5, the results from the Spearman correlation tests are 332 

shown.  333 
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The estimate (rho) between 2016 and 2017 shows a negative sign, meaning that the technical 334 

efficiency decreased from 2016 to 2017, which is significant for three out of the four models. There 335 

were only two observations in 2015, and thus this year was not compared to 2016 and 2017 due to 336 

the lack of observations.  337 

For the environmental variables, the results are ambiguous, showing positive estimates for three out 338 

of the four models, but with only the DEA output bias-corrected model being statistically significant. 339 

A positive rho value indicates that the higher the technical efficiency of the farms is, the higher the 340 

emissions of nutrients and organic materials. It must be stressed that the results of the environmental 341 

variables should be interpreted with caution given the small sample and that these numbers were 342 

reported by farmers based on the feed used in production and can be highly hypothetical. It is a bit 343 

surprising that emissions seem to increase with technical efficiency because higher emissions also 344 

indicate higher use of feed, which is a cost to the companies. However, an increase in the use of feed 345 

can also lead to faster growth of the fish, increasing technical efficiency. If growth in the biomass 346 

value exceeds the extra cost spent on feed, it could be an economically attractive strategy to use more 347 

feed. The downside is that it also leads to larger emissions from the farms. This feeding strategy was 348 

implemented in Danish trout farms before feed quotas were introduced to regulate the emission of 349 

nutrients (Nielsen, 2011; Danish environmental protection agency, 2018).   350 

The environmental variables presented in Table 2 show that per kilo of produced seabass and 351 

seabream, 0.11 kilos of nitrogen, 0.011 kilos of phosphorus and 0.89 kilos of organic materials are 352 

discharged to the sea. The average feed conversion rate (FCR) for the farmers in the sample is 2.3, 353 

which means that they use 2.3 kilos of feed to produce 1 kilo of fish. An FCR of 2.3 for seabass was 354 

also found in the studies of Bozoglu and Ceyhan 2009 and Gasca-Leyva et al. 2002, which showed 355 

FCRs of 2.23 for fish at a size of 400 grams and 2.7 for 700-gram fish produced in the Mediterranean 356 

Sea.  357 
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In the Danish sea cage farming sector producing trout, the emissions are lower. The FCR was on 358 

average 1.13 for the years 2016 to 2018, which corresponds to emissions of 0.04 kilos of nitrogen, 359 

0.004 of phosphorus and 0.10 kilos of organic material per kilo of produced fish (Danish 360 

environmental protection agency, 2018). The Danish emissions are approximately one-third of the 361 

emissions of nitrogen and phosphorus and nine times lower than the emission of organic material 362 

reported by the seabass and seabream farmers in the Mediterranean. 363 

Experience from the Danish aquaculture industry (Danish environmental protection agency, 2018, 364 

Nielsen 2011) shows that aquaculture farms may follow two different feeding strategies. The first one 365 

is to achieve the fastest growth of the fish by supplying the fish with as much feed as they can 366 

consume. This strategy decreases the rotation2 time in the cages and brings the fish to market faster. 367 

This can save costs because the production facility can be re-stocked faster; however, there will be 368 

an increased cost of feed, and the environmental impact is greater because more feed is also wasted. 369 

The second strategy is to optimize feed use, which may prolong production time, but on the other 370 

hand, better utilization of feed saves costs and has a positive environmental impact. Within the Danish 371 

context, the aquaculture farmers shifted from the first strategy to the second strategy when the Danish 372 

feed quota system was implemented in the 1990s to protect the water environment (Nielsen et al. 373 

2016).  374 

Studies on sea cage farming (Asche et al. 1999; Tveterås 2002) suggest that farmers have an incentive 375 

to internalize negative environmental effects in their production decisions because farm productivity 376 

is dependent on good water quality in and around the farms. Thus, if they emit nutrients at levels that 377 

are too high, it may affect both short- and medium-term productivity at the farm location. 378 

Furthermore, Asche et al. (2009) showed that in the case of Norwegian sea cage farms, increased 379 

technical efficiency could be linked to improved environmental effects because better utilization of 380 

the feed improved technical efficiency and thereby reduced the environmental impact of the farm. 381 

                                                           
2 (Guttormsen 2008) 
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Thus, according to the results for the environmental variables, it can be suggested that farmers in the 382 

Mediterranean are not affected by a feedback effect or that the feedback effects are so small that the 383 

gains from applying the first strategy (high growth, high use of feed) are economically more 384 

attractive. Furthermore, there are no environmental effects exceeding the current environmental 385 

regulations in the countries where the fish are produced.  386 

Conclusions  387 

The purpose of this study was to investigate the technical efficiency and scale effects of 388 

Mediterranean Sea cage farms producing seabream and seabass. The technical efficiency effects were 389 

analysed for both an input- and an output-oriented DEA model, and the bootstrap procedure was 390 

applied for bias correction. Furthermore, the correlations of the technical efficiency scores of the four 391 

models with the year of production and the environmental variables reported were tested using 392 

Spearman’s correlation test. 393 

The results showed that the mean technical efficiency was 0.83-0.84 in the basic models, and the bias-394 

corrected mean technical efficiency was 0.73-0.66 for the input- and output-oriented models, 395 

respectively. The results indicate that, on average, the farmers could reduce their input use by 17-396 

27% without reducing the output produced under the input-oriented model, whereas under the output-397 

oriented model, farmers could produce 16-34% more output without increasing the input used if they 398 

were able to produce according to the best farmers in the sample. Farmers could also increase 399 

efficiency by approximately 10% by operating at an optimal scale. Furthermore, the results show that 400 

technical efficiency decreased from 2016 to 2017 for the countries represented in the analysis.  401 

For the environmental variables reported, the feed conversion rate (FCR) remained unchanged over 402 

the past 20 years when compared to those in previous studies. Furthermore, our study shows that 403 

technical efficiency is positively related to the emission of nitrogen (the use of feed).  404 
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We recommend that there be a continuous focus on improving technical efficiency because the sector 405 

is highly competitive, and producers with lower costs (Egypt and Tunisia outside the EU) are 406 

currently increasing their supply. Focusing on improving technical efficiency and the scale of 407 

operation could increase profitability and the robustness of the sector to withstand future fluctuations 408 

in prices due to the increasing supply. 409 

From an environmental regulatory perspective, improved technical efficiency at the farm level can 410 

also benefit the environment because feed is used more efficiently and thereby lowers emissions to 411 

the surrounding environment. Seeing that feed is the most important input in terms of cost in the 412 

seabream and seabass sector, farmers will have an incentive to reduce cost and utilize the feed most 413 

effectively. On the other hand, our results indicate that technical efficiency increases with more 414 

emissions (feed used), which does not provide farmers with a strong incentive to reduce the use of 415 

feed. In this case, public regulation is necessary to provide farmers with an incentive to internalize 416 

the environmental externalities into their production decisions, ensuring that future growth in the 417 

seabream and seabass sector will become more environmentally sustainable.  418 
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 560 

Appendix 1: 561 

In an output oriented model, technical efficiency H can be estimated for each farm f’ solving the 562 
following model: 563 

  𝐻𝐻,𝜆𝜆
𝑀𝑀𝑀𝑀𝑥𝑥    𝐻𝐻       st.:      (2) 564 

𝐻𝐻 ∙ 𝑌𝑌𝑓𝑓,𝑘𝑘 ≤ ∑ 𝜆𝜆𝑛𝑛 ∙ 𝑌𝑌𝑛𝑛,𝑘𝑘
𝐹𝐹
𝑛𝑛=1   k = 1, …, K   (2.a) 565 

𝑋𝑋𝑓𝑓,𝑚𝑚 ≥ ∑ 𝜆𝜆𝑛𝑛 ∙ 𝑋𝑋𝑛𝑛,𝑚𝑚
𝐹𝐹
𝑛𝑛=1        m = 1, …, M   (2.b)   566 

𝜆𝜆𝑛𝑛 ≥ 0,     ∑ 𝜆𝜆𝑛𝑛𝐹𝐹
𝑛𝑛=1  = 1     n = 1, …, F   (2.c) 567 

The subscript f (f=1,… f’…, F) represents the farms going from 1 to F, where F is the total number of 568 
farms and f’ is a farm in F. Y is the observed harvest k (k=1,…, K) per year. X is the variables for each 569 
of the discretionary inputs m (m=1,…, M). The scalar H measures the radial expansion in the 570 
discretionary output necessary for making the farm technically efficient, and it is above or equal to 1 571 
in the output-oriented approach. If H equals 1, the farm is considered to be technically efficient. 572 
Finally, λ is a vector of F weights, or intensity variables, which identifies the extent to which the 573 
different observations are used to construct that part of the piecewise linear frontier approximation 574 
that envelops the f’ data point. 575 

The restrictions imposed by equations (2.a)–(2.b) ensure that the farm stays within the production 576 
possibility set for the sector. The production possibility set is based on the assumption that it is 577 
impossible to produce more than the observed outputs, or a linear combination of these (equation 2.a 578 
and 2.b), using less than the observed inputs or linear combinations of these (equation 2.b). VRS are 579 
assumed by inclusion of restriction (2.c). The DEA linear programming model indicates the potential 580 
technical efficiency gain for each farm and for the industry as a whole, if all farms were technically 581 
efficient, compared to the initial situation.  582 

 583 
Appendix 2:  584 

Mean Technical Efficiency (TE) scores estimated in the basic DEA model with variable returns 585 
to scale for 14 and 29 farms and bootstrapping of TE scores for the model with 29 farms 586 
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 Basic DEA model 

14 farms 
Basic DEA model  

29 farms 

Bootstrap TE Scores  
DEA model 

29 farms 
  Input 

oriented 
Output 
oriented 

Input 
oriented 

Output 
oriented 

Input 
oriented 

Output 
oriented 

Mean TE-score   0.84 0.82 0.83 0.83 0.69 0.70 
St. deviation  0.13 0.14 0.17 0.17 0.11 0.12 
Maximum  1.00 1.00 1.00 1.00 0.86 0.87 
Minimum  0.65 0.62 0.48 0.51 0.41 0.47 
Scale efficiency   0.91 0.93 0.91 0.91 0.86 0.84 
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