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Abstract—This work tackles the problem faced by net-
work/infrastructure providers of jointly selecting routing and
functional split level to satisfy requests from virtual mobile
network operators (vMNOs). We build a novel system model that
brings together all the involved elements and features, embracing
split levels defined by the 3GPP and packet switch fronthaul
network. To our best knowledge, this is the first work that pro-
vides a solution for multiple vMNO requests considering the two
aforementioned sub-problems (i.e. split selection and routing).
We use the model defined to formulate an optimization problem,
which is characterized by the exponential size of its search space.
We propose two heuristic approaches to address this problem:
(1) a greedy scheme, and (2) an evolutionary algorithm, which
is also improved with a specialized initialization. We conduct
extensive experiments to assess the performance and behavior
of the proposed methods, over varying network instances. When
possible, we also perform comparisons with respect to the optimal
solution and a well-known commercial solver. Our results indicate
that the proposed techniques represent appropriate trade-offs
between solution quality and execution time, and can serve
complementary goals: the quality of the results yielded by our
evolutionary method are better, but at the cost of longer execution
times; in contrast, our greedy algorithm offers a reasonably
appropriate performance, with an execution time that is notably
lower. Our experiments show that it is possible to produce
near-optimal results to the above complex problem through
computationally efficient algorithmic solutions.

Index Terms—Route selection, functional split, 5G, C-RAN.

I. INTRODUCTION

The stringent requirements posed by 5G services lead to
profound transformations in all network segments. On top of
it, 5G networks aim to provision heterogeneous services with
varying features and requirements. Along with the increasing
capacity demanded by enhanced Mobile Broadband services,
massive Machine Type Communications (mMTC) and Ultra
Reliable Low Latency Communications (URLLC) services
will require a tailored network configuration. Moreover, future
5G networks and beyond will need to dynamically adapt their
capabilities to efficiently offer the aforementioned services.

One of the main advancements, from the architectural per-
spective, comes from the capacity to virtualize and re-allocate

network functions, leveraging software defined network (SDN)
and network function virtualization (NFV) techniques. Under
this new paradigm, the functionalities of conventional base sta-
tions (BSs) are split, so that part of the functions traditionally
performed by Baseband Units (BBUs) are virtualized.

Initially, fully centralized solutions were proposed, lead-
ing to the so-called cloud-RAN (C-RAN) [1], [2]. In these
architectures, the whole BBU is virtualized while a remote
radio head (RRH) performs basic RF functions. Although this
approach would allow a tight coordination of the access points,
it also poses highly demanding requirements on the fronthaul
links connecting the RRH and BBU [3]. As a result, C-RAN
networks require a vast deployment of fiber links, leading to
high deployment costs, which might not be affordable in some
scenarios. In order to overcome these limitations, the use of
different functional splits was proposed [4], [5]. The BBU is
divided in a distributed unit (DU) placed close to the RRH,
now renamed as radio unit (RU), and a central unit (CU) that is
located close to the edge of the aggregation network. In recent
years, flexible functional split solutions have been proposed
[6], so that functions in the DU and CU can be dynamically
shifted [7], [8] to convey the service requirements.

Fig. 1 depicts the splits defined by the 3GPP [9] over the
protocol stack, so that each split defines the functionalities that
are moved to the CUs (on the left) and those that remain at the
DUs (on the right). As can be observed, most of the splits are
defined in the boundaries of each protocol or layer, while three
of them are specified within the protocol itself. In addition, for
some of the splits depicted in Fig. 1, different alternatives are
defined. For instance, the Intra-MAC split is defined within
the MAC layer, dividing it in low and high sub-layers [9]. The
high-MAC sub-layer, placed in the CU, would be responsible
for managing multiple low-MAC sub-layers, leveraging the
use of coordination techniques, such as centralized schedulers
or Coordinated Multipoint (CoMP) transmission and reception
solutions. On the other hand, the low-MAC sub-layer would
implement stringent time-constrained functionalities, such as
hybrid automatic response request (HARQ). The reader may
refer to [9] for a detailed discussion of the functionalities that
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Fig. 1: Possible functional splits between the CU and DU according to 3GPP [9].

are considered by the various splits. It is worth noting that,
at the time of writing, the applicability of the different splits
is being analyzed by standardization and industrial initiatives
like 3GPP or O-RAN Alliance. In particular, special attention
is being paid to lower layer split possibilities [10], and open
implementation have started by assuming PDCP/RLC split
between DU and RU1.

The selection of the different splits will be conditioned to
both, the required quality of service (QoS) and the commu-
nication capabilities of the underlying fronthaul network that
communicates DUs and CUs. Table I summarizes the main
requirements of the splits depicted in Fig. 1 (i.e. bandwidth and
latency), as well as some benefits and cons. As can be seen,
the communication requirements show a large variation, and
the split selection process thus needs to be tightly coordinated
with other management techniques of the fronthaul network.
As we discuss later, the proposed solution is based on the split
requirements shown in Table I. In this sense, we will analyze
in our future work studying how some particular splits might
be preferred, based on the functionalities they execute at the
CU, and so the cooperation techniques they enable.

This architectural evolution has increased the complexity of
the fronthaul, that has shifted from a set of dedicated links to a
packet-based network that needs to be appropriately managed.
As a consequence, academia, industry and standardization
bodies are working together on the definition of the so-
called next generation fronthaul interface (NGFI) [11], [9].
According to [11], the conventional fronthaul segment in NGFI
is further divided in the NGFI-I, which connects DUs and RUs,
and the NGFI-II, also known as midhaul, which interconnects
the DU and CU. As an example, Fig. 2 depicts an illustrative
network, embracing three virtualized base stations, whose
components are attached through an NGFI network. In the
figure, the colored rectangles at the DUs and CUs represent,
respectively, the functions to the right and to the left of the split
selection according to Fig. 1. In addition, NGFI-I is depicted
with dotted lines, which connect DUs and RUs, while NGFI-II
is shown with colored dashed lines, communicating DUs and
CUs through a network having various intermediate nodes.

As can be seen, NGFI-I connects RUs and DUs, which
host the corresponding base station functions. Then, a NGFI-

1Architecture of the O-RAN alliance software components: https://docs.
o-ran-sc.org/en/latest/architecture/architecture.html
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Fig. 2: Example of virtualized RAN with NGFI.

II packet based network connects DUs and CUs, which
implement the remaining functions, according to the selected
functional split. Considering the non-deterministic nature of a
packet-based network, the intermediate nodes in the NGFI may
need to employ buffering techniques. This might increase the
delay, thus hindering the QoS, which in turn depends on the
particular split. In addition, the different links of the NGFI-II
may use different technologies, with varying capabilities.

In order to ensure that the requirements shown in Table I
are fulfilled, it becomes necessary to develop techniques that
can appropriately manage the traffic flow, jointly combining
routing and split selection. Furthermore, the resulting opti-
mization problems usually have a combinatorial nature [12],
while the NGFI imposes stringent latency requirements [11].
Altogether, the proposed solutions need to find a trade-off
between complexity and performance. It is worth noting that
the concept of RAN functional split is not exclusive of 5G
networks (in Fig. 1 the LTE protocol stack is actually used),
but it is becoming more relevant (in 5G) along with the
required evolution of the fronthaul and midhaul segments.

In this paper, we consider the critical issue of providing
a solution to the problem of jointly determining appropriate
functional splits and the routes of the midhaul network to
support the quality of service requirements of virtual Mobile
Network Operators (vMNOs) optimizing the physical infras-
tructure. This problem encompasses the following two sub-
problems: (1) the problem of determining the location of each
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TABLE I: Split requirements, benefits and cons [9]. The particular requirements are defined with 100 MHz channel bandwidth,
256 QAM modulation and 8 MIMO layers for both downlink and uplink [9, Tables A-1, A-2], and benefits and cons are
summarized from the document body. Information from different split alternatives is merged.

Split One-way latency DL/UL bandwidth Benefits Cons

RRC/PDCP (f1) 10 ms ∼ 4/3 Gbps U-plane separation. Potential benefits
for edge computing.

Unclear performance with security.
Potential issues with aggregation.

PDCP/RLC (f2) 1.5− 10 ms 4/3 Gbps U-plane separation and traffic ag-
gregation.

Security configuration issues.

Intra-RLC (f3) 1.5− 10 ms lower than PDCP/RLC Traffic aggregation and better flow
control. Potential handling of more
connected mode UEs

Latency requirements and dupli-
cation of buffers.

RLC/MAC (f4) ∼ 100 us ∼ 4/3 Gbps No benefit foreseen with LTE pro-
tocol stack.

–

Intra-MAC (f5) hundreds of us ∼ 4/3 Gbps Traffic aggregation and better inter-
ference management.

Additional scheduling complex-
ity.

MAC/PHY (f6) 250 us ∼ 4/5 Gbps Traffic aggregation, COMP joint
transmission, centralized schedul-
ing.

Stringent timing between CU and
DU.

Intra-PHY (f7) 250 us 10.1 − 22.2/16.6 −
86.1 Gbps

Allows implementation of ad-
vanced receivers

–

PHY/RF (f8) 250 us 157.3/157.3 Gbps More efficient resource manage-
ment. Improvement of RF/PHY
scalability.

High requirement in fronthaul for
latency and bandwidth

DU and CU composing the BS, as well as the optimal split
distribution between them, according to such location; and (2)
the problem of selecting the best routes for the traffic coming
from each of the DUs. The first sub-problem consists of
assigning, to each DU, the functional split that optimizes both,
the level of centralization and the use of network resources,
and associating each DU with an appropriate CU that will
implement the remaining virtualized functions. The second
sub-problem aims at establishing the best route to connect each
DU with its respective CU, which will process and forward the
traffic to the core network. The routes should meet the delay
and bandwidth requirements of the functional splits, and the
network connections of the DU-to-CU assignments. It is worth
mentioning that the solution proposed in this paper intends to
address both sub-problems jointly.

Even when considered individually, each of the above sub-
problems poses a significant computational challenge, since
both have been proved to be NP-hard [12]. On the one
hand, the optimal allocation of a functional split depends on
the capacity and latency of the paths connecting the DU to
the CU. These values depend on the routes of the whole
network. On the other hand, identifying the best routes for the
traffic for each DU requires information about the functional
splits, because the latter determine the bandwidth and latency
requirements. Addressing these two problems hierarchically,
that is, solving one of the problems first and using the solution
obtained as a starting point to solve the second problem, might
yield sub-optimal or even unfeasible solutions [12].

This paper addresses the problem described above, introduc-
ing a solution for joint route and functional split selection for
5G C-RAN architectures. It is worth noting that the solution
proposed in this work is not intended to be applied in real-
time. Contrarily, it would be part of the mechanisms for
network configuration and orchestration that might be executed
upon requests from vMNOs. We can summarize the main
contributions of this paper as follows:

• A novel model that brings together all the elements and
features to address the whole problem and to handle its
complexity. The problem is modeled as a virtual network
embedding problem, supporting multiple requests from
vMNOs, heterogeneity in the use of resources, diversity
of DU-to-CU assignments, constraint-aware routes selec-
tion, and functional split level management.

• An optimization problem formulation that is meant to
evaluate the quality of potential solutions based on the
level of centralization given by the functional splits, as
well as the number and types of network links.

• Two algorithmic approaches to address the aforemen-
tioned problem. Due to the complexity of the problem,
exact algorithms can find optimal solutions, but their exe-
cution time drastically increases with practical instances,
i.e., instances consisting of large substrate and virtual
networks. Therefore, exact algorithms can be efficiently
used only for small problem instances. We introduce two
heuristic algorithms: a greedy approach tailored to opti-
mize the execution time, and an evolutionary algorithm
customized to provide more promising solutions.

• With the aim of facilitating future comparative analyses,
this paper also contributes with a full collection of test
problem instances, as well as the source codes of our
proposed methods, which are available to the research
community through our GitHub repository2.

The remainder of this paper is organized as follows. Section
II discusses the related work in the area, identifying the
contributions of the research presented herewith. The system
model, problem formulation and search space analysis are
described in Section III, while algorithmic solutions are intro-
duced in Section IV. Section V describes the evaluation setup,
which is afterwards used in Section VI, where we analyze
the performance of the algorithms proposed by means of an

2https://github.com/cristian-erazo/Joint Route Selection and Split Level
Management for 5G C-RAN
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extensive experiment campaign. Finally, Section VII highlights
the most relevant outcomes of our work and provides some
possible directions for future research.

II. RELATED WORK

Recently, several studies have focused on optimizing the
fronthaul performance assuming functional splits. As a general
approach, the authors of [13] analyze the convergence time of
split decision algorithms according to data rate performance.

As for particular solutions, there exist a variety of applica-
tion scenarios and use-cases. Energy-aware solutions are pro-
posed in [14], [15], and an energy-constrained functional split
solution for scenarios with unmanned autonomous vehicles
is proposed in [16]. Content-aware solutions have been also
studied. In particular, content placement along with split selec-
tion and energy minimization, are considered in [17], jointly
analyzing flexible functional split and mobile edge computing
(MEC). Other works focus on the interplay of functional split
selection and fronthaul communication technology. In this
regard, functional split management over optical networks is
analyzed in [18], [19], [20]. On the other hand, joint opti-
mization of split selection and network slicing is addressed in
[21], while machine learning is used in [22] to develop a delay-
constrained split selection solution. Also, some recent works
have focused on the implementation aspects and implications
of dynamic functional split. Worthy to mention is the work
presented in [23], where baseband signal precoding is analyzed
to enable functional split. Similarly, a flexible functional split
implementation is proposed and evaluated in [24].

Although the aforementioned works share aspects with our
proposal, none of them jointly addresses split selection and
routing over the fronthaul network. However, some works
have partially analyzed routing and path selection in fronthaul
networks. The authors of [25] study the impact of the optical
routing on fully centralized C-RAN architectures, paying
special attention to load balancing. Other works consider the
impact of functional split in the routing algorithms, so that
delay requirements are satisfied for pre-established splits. In
[26] , for instance, the authors consider the minimization of
the worst case, while a machine learning solution is proposed
in [27] to minimize the delay.

Taking into account the increasing convergence of fronthaul
and backhaul networks, it is worth mentioning recent backhaul
routing solutions for 5G scenarios. Works [28] and [29] apply
backpressure routing to communicate cellular base stations
through a wireless backhaul network. Also, routing over mil-
limeter wave (mmWave) links has been analyzed, jointly with
link scheduling [30] and with beam alignment [31]. However,
these proposals do not consider functional split.

Only very few works have jointly analyzed the problem of
functional split selection and routing. For instance, the authors
of [32] present a framework that integrates heuristic solutions
for energy-efficient routing in converged fronthaul/backhaul
networks. The framework also allows the re-allocation of
virtual network functions. As an example, a simple application
use-case of the framework is described in [33]. Similarly, the
authors of [34] propose an architecture for joint resource man-
agement and energy efficiency in backhaul/fronthaul networks.

In particular, the resource management approach considers
path computation and placement of virtual networks functions,
including functional split. The general optimization problem
is simplified, since the aim of this work is on the architecture,
rather than in an algorithmic solution itself.

The authors of [35] propose a method to find the optimal
location of CUs, jointly addressing computation resource
management and routing. It is worth noting that a chain of
CUs is considered, rather than a central one. In this sense, the
split configuration is not constrained by traffic requirements
(e.g. delay), but it is a consequence of route selection and
network costs. Work by Koutsopoulos [36] proposes a set
of solutions for joint split selection and traffic scheduling,
considering different network characteristics. However, the
envisioned model assumes that CUs and DUs are connected
by a single link, where in more realistic scenarios these units
are connected by networks.

Much closer to our proposal are the approaches described
in [12] and [37]. The authors of [12] tackle the problem of
jointly deciding the split shift and route selection to maximize
centralization. To solve such problem the authors propose two
algorithms: one based on backtracking branch and bound, and
a second one with a greedy behavior. One step beyond, [37]
proposes a mathematical framework to jointly select functional
split, fronthaul routing and placement of MEC functions. The
authors thoroughly describe the resulting optimization problem
and propose a solution based on Benders decomposition.
Unlike our proposal, these works assume that the placement of
CUs and DUs is known beforehand, notably simplifying the
underlying problem, since the potential number of routes is
much lower. On the other hand, different to our work, it may
not find the overall optimal fronthaul behavior, and it does
not minimize the number of active processing entities where
virtualized components (DUs and CUs) are allocated.

Finally, some works have considered the functional split
selection as part of some type of network embedding. In par-
ticular, in [38] the authors propose slice embedding strategies
for 5G considering functional split. Similarly, in [7] virtual
network embedding was already addressed along with split
selection. Nevertheless, none of these works consider the
routing through the packet-based fronthaul.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the model proposed to address the
problem of jointly selecting the routes of the midhaul network
to connect DUs and CUs of the NGFI-II, and determining
the appropriate functional splits to support the quality of
service requirements of virtual Mobile Network Operators
(vMNOs). It is assumed that the vMNOs do not own physical
resources, and their requests thus need to be embedded in
a common substrate network. The problem is modeled as a
virtual network embedding problem (VNE) for which we first
model the physical network, the virtual network requests, the
mapping of virtual and physical resources, and the candidate
solutions. Further, the optimization problem is formulated
based on our VNE model. Finally, the size of the search space
for this problem is analyzed at the end of this section. It
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TABLE II: Main components of the proposed system model.

Component Description

G Physical (substrate) network.
V Set of physical network nodes.
E Set of connections between physical network nodes.
C Set of possible physical CUs, |C| = n.
R Set of possible physical DUs, |R| = m.
T Set of intermediate (transmission) physical nodes, |T | = l.

P j
a,b The j-th physical path available between nodes a and b.
P ∗a,b Set of all physical paths available between nodes a and b.
F Set of all functional splits.
Q Set of all virtual resource requests.
Gv

i The i-th virtual resource request.
V v
i Set of requested virtual nodes for the i-th request.
Cv

i Set of virtual CUs requested for the i-th request, |Cv
i | = n′i.

Rv
i Set of virtual DUs requested for the i-th request, |Rv

i | = m′i.
Ev

i Set of requested virtual links for the i-th request.
Ωi

rvj
Set of suitable candidate physical DUs for virtual DU rvj .

∆i
cvj

Set of suitable candidate physical CUs for virtual CU cvj .

Λi
erv
j
,cv
k

Set of all candidate physical paths for the virtual link ervj ,cvk .

sij,k Assignment of physical nodes, physical path, and functional split for
the i-th request, j-th virtual DU, and k-th virtual CU.

X Candidate solution (assignment configuration for all the requests).
Rv

L1
Set of assignments of physical layer functional split.

Rv
L2

Set of assignments of data link layer functional split.
Rv

L3
Set of assignments of network layer functional split.

BBUpoolρ Set of CUs that represent the ρ-th pool of resources.

is worth mentioning that the fronthaul elements (e.g. model,
physical and electrical features of the NGFI-I network) are out
of the scope of this paper and they are not considered in the
problem formulation.

A. System Model

The main components of our proposed system model are
summarized in Table II. A comprehensive description of
this model is presented below, which is organized based on
the correspondence of model components to the physical
network (Section III-A1), to the virtual resources requested
(Section III-A2), to the mapping between physical and virtual
resources (Section III-A3), and to the definition of a full
candidate solution to the problem (Section III-A4).

1) Physical Network: Our model considers a scenario in
which a physical (substrate) network is used to support a
set of requests for resources from virtual Mobile Network
Operators (vMNOs). An example is graphically illustrated in
Fig. 3. The substrate network is represented as a non-directed
graph G = (V,E), where the network nodes correspond
to the graph vertices, V , and the connections between the
network nodes correspond to the graph edges, E. The set
of physical nodes is defined as V = C ∪ R ∪ T , where C
corresponds to the set of n possible CUs, R corresponds to the
set of m DUs, and T corresponds to the set of l intermediate
(transmission) nodes. The CUs are nodes with processing
capabilities, in which the functionalities of the different sub-
layers of the radio protocol stack can be virtualized. Each
CU ci is characterized by its coordinates (xi, yi), and its
maximum amount of computational resources wprci . Similarly,
DUs are nodes where the radio frequency functions can be
virtualized. Each DU ri is characterized by its location (xi, yi),
its coverage radius θi, its maximum capacity of computational

t1
t2 t3

r1

r2

r3

r4

r5

c1

c2

et1,c1
e
r
1 ,t1
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e
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Fig. 3: Example of a physical (substrate) network. The ex-
ample comprises possible CUs (c), DUs (r) and intermediate
nodes (t), all connected by heterogeneous links (e).

resources wprci , its number of antennas wanti , and its number
of physical resource blocks wprbi . We assume that each DU
ri is associated with one or multiple RUs)3. Each intermediate
network node ti is modeled by its position (xi, yi).

A link evi,vj ∈ E between two physical nodes vi and vj
is modeled by its maximum capacity bi,j , its induced delay
di,j , and its cost γi,j . Parameter γi,j is modeled as a weight
which captures the relative cost of using fiber optic, copper, or
wireless links. It is worth mentioning that the concept of cost
is generic (i.e. not necessarily monetary cost) and can be used
to model any preference or policy to be implemented by the
physical substrate owner. A path between two nodes a and b
is defined as a set of k links connecting a succession of k+ 1
nodes, such that the first node corresponds to a and the last
one corresponds to b; formally, P j

a,b = {evi,vi+1 | 1 ≤ i ≤ k,
v1 = a, vk+1 = b}. The set of all possible paths between
nodes a and b is given by P ∗a,b = {P 1

a,b, .., P
p
a,b}.

2) Virtual Resource Requests: The set of all virtual resource
requests4 is denoted by a set of q non-directed graphs, Q =
{Gv

1 , .., Gv
q}, where Gv

i = (V v
i , E

v
i ) represents the i-th request.

Virtual nodes V v
i and virtual links Ev

i are modeled to support
the QoS requirements of the vMNO. Here, V v

i = Cv
i ∪ Rv

i ,
where Cv

i and Rv
i denote the sets of n′i virtual CUs and

m′i virtual DUs requested, respectively. Each virtual CU cvj
specifies the required processing capacity wv

prcj to be set at
some physical CU. Analogously, each virtual DU rvj defines
a desired location (xj, yj), the required processing capacity
wv

prcj , the number of antennas wv
antj (each virtual DU rvj

might be associated with one or multiple RUs), and the number
of required physical resource blocks wv

prbj
, to be set at some

physical DU.
A virtual link ervj ,cvk ∈ Ev

i , connecting virtual DU rvj ∈
Rv

i and virtual CU cvk ∈ Cv
i of the i-th request, is defined

by the tuple ervj ,cvk = (rvj , c
v
k, b

v
j,k, d

v
j,k), where terms bvj,k and

dvi,j correspond to the minimum bandwidth required and the
maximum acceptable delay, respectively, bvj,k, d

v
j,k ∈ N.

Finally, it is assumed that vMNOs cannot exploit other re-
sources but those from the common substrate network, so that
solutions like Licensed-Assisted-Access (LAA) or unlicensed

3It is important to note, however, that in practice the same physical
node may assume either the role of a CU, that of a DU, or the two roles
simultaneously. Such a scenario is supported by our system model, as the
same node can be specified to be a member of either C, R, or both sets.

4In this paper, the term virtual resource request is used to refer to the
requirements of resources (namely, DUs, CUs, and links) from a vMNO.
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Fig. 4: Example of a resource request from a vMNO. rvi are
virtual DUs, cvj are virtual CUs, and ervi ,cvj are virtual links.

spectrum (i.e. LTE-U) are out of the scope of this work. An
example of a virtual resource request is shown in Fig. 4.

3) Mapping of Virtual and Physical Resources: For any
given virtual request Gv

i , we define the set of all candidate
physical DUs that can support rvj , its j-th virtual DU, as
Ωi

rvj
= {rk | wv

prcj ≤ wprck , w
v
antj ≤ wantk , w

v
prbj

≤
wprbk , distance(r

v
j , rk) ≤ θk}; that is, suitable physical DUs

are those nodes rk whose coverage area θk and resources are
compatible with the desired location and with the resources
required by the virtual DU rvj . Similarly, the set of candidate
physical CUs for the virtual CU cvk consists of all nodes cl
with sufficient computational resources to serve cvk; formally,
∆i

cvk
= {cl | wv

prck
≤ wprcl}. Regarding suitable assignments

for a virtual link ervj ,cvk , candidate physical paths comprise
all possible paths that connect suitable physical nodes for rvj
and cvk, as given by Λi

erv
j
,cv
k

= {P l
rx,cy ∈ P

∗
rx,cy | rx ∈ Ωi

rvj
,

cy ∈ ∆i
cvk
}. To illustrate the above, Fig. 5 shows an illustrative

example of the mapping of a virtual resource request to
suitable physical resources of the substrate network.

A central topic of this work is the appropriate selection of
functional splits (also referred to as split levels), for which we
can define the set of possible alternatives as F = {fi | fi =
(βi, δi), βi, δi ∈ N, 1 ≤ i ≤ 8}. In this definition, βi and
δi denote the bandwidth and delay requirements of functional
split fi, respectively.

Having defined all the above concepts, we can now formal-
ize the assignment of the physical nodes, physical path, and
split level for the i-th virtual request Gv

i , j-th virtual DU rvj ,
and k-th virtual CU cvk, as the tuple sij,k=(rx, cy, fz, P

l
rx,cy ),

where rx ∈ Ωi
rvj

, cy ∈ ∆i
cvk

, fz ∈ F , and P l
rx,cy ∈ Λi

erv
j
,cv
k

.
It is worth noting the correspondence between the previous
definition of an assignment and that of a virtual link; for each
virtual link ervj ,cvk ∈ E

v
i , the goal is to find an assignment sij,k

so that suitable physical nodes, physical path, and functional
split can be configured, according to the resource require-
ments. Therefore, the set containing all of the assignments for
the i-th request can be defined as Si = {sij,k | ervj ,cvk ∈ E

v
i }.

4) Candidate Solution: A full candidate solution, denoted
by X , is given by a particular set of assignment configurations
for all the q virtual requests; formally, X = {Si | 1 ≤ i ≤ q}.
Once a candidate solution has been formally defined, we need
to introduce additional elements that account for the usage of
network resources.

Recalling our definition of the assignment of resources for
a given virtual DU-CU pair of the i-th request as a tuple

sij,k=(rx, cy, fz, P
l
rx,cy ), we can now divide and classify the

set of all assignments in a solution X based on the specific
functional splits fz configured. Three disjoint subsets are
defined: (i) assignments of physical layer split level, Rv

L1
=

{sij,k ∈ Si | Si ∈ X, fz ∈ {f6, . . . , f8}}; (ii) assignments
of data link layer split level, Rv

L2
= {sij,k ∈ Si | Si ∈

X, fz ∈ {f2, . . . , f5}}; and (iii) assignments of network layer
split level, Rv

L3
= {sij,k ∈ Si | Si ∈ X, fz ∈ {f1}}.

For convenience, we can also define subsets of assignments
depending on whether they use a particular physical resource.
The set of assignments that use a specific physical link eva,vb
is defined as Eva,vb = {sij,k ∈ Si | Si ∈ X, eva,vb ∈ P l

rx,cy}.
Also, the sets of assignments that involve physical CU cy and
physical DU rx are respectively defined as Ccy = {sij,k ∈
Si | Si ∈ X, sij,k = (. . . , cy, . . . )} and Rrx = {sij,k ∈
Si | Si ∈ X, sij,k = (rx, . . . )}. Moreover, we can define
several sets representing all the assigned physical resources as
follows. The set of all physical links that have been assigned
is given by EA =

⋃q
i=1E

A
i , where EA

i denotes the set of
links that are in use as part of the physical paths assigned to
the i-th request. Similarly, the set that contains all the physical
DUs that have been assigned is defined as RA =

⋃q
i=1R

A
i ,

where RA
i is the subset of physical DUs assigned to the i-th

request. Likewise, the set that contains all the physical CUs
that have been assigned is defined as CA =

⋃q
i=1 C

A
i , where

CA
i is the subset of physical CUs assigned to the i-th request.
Finally, a pool of resources, denoted by BBUpoolρ , repre-

sents a group of assigned CUs, cj ∈ CA, such that for every
pair of nodes in this group there exists a path connecting
them, either directly or through other intermediate assigned
CUs. An example illustrating two pools of resources is shown
in Fig. 6. The collection of all the resource pools defined
by a given candidate solution is referred to as BBUpools =
{BBUpool1 , .., BBUpoolλ}.

B. Optimization Problem Formulation

With the elements considered and described above, this
section formalizes the definition of the problem studied in this
paper as a constrained discrete optimization problem.

Our goal is to obtain a resource assignment, X , for all
the virtual requests from the vMNOs (as defined in Sec-
tion III-A4), which maximizes the degree of centralization and
at the same time optimizes the usage of the network resources.
We therefore define this optimization problem formally as the
task of determining the best possible assignment X∗ such that:

X∗ = arg max
X∈F

f(X), (1)

where F ⊂ X denotes the set of all possible feasible
assignments in the search space X , as defined by a set
of constraints (see below), and f : F → R is the following
objective function, to be maximized:

f(X) = [DoC(X) · (1− UoL(X))] , (2)

where

DoC(X) =
ω1 · |Rv

L1
|+ ω2 · |Rv

L2
|+ ω3 · |Rv

L3
|

|BBUpools| ·
∑q

i=1m
′
i

, (3)
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Fig. 5: Example of a potential resource assignment for a virtual request Gv
1 , which involves a single CU, cv1 , and a single DU,

rv1 . Virtual DU rv1 can be assigned to physical node r1, as the desired position of rv1 is within the coverage area of r1. Virtual
CU cv1 can be assigned either to c1 or to c2. Thus, the virtual link evrv1 ,cv1 can be assigned either to path P 1

r1,c1 or to path P 1
r1,c2 .

t1

c1 c2

c3

c4

c5

c6

BBUpool1 BBUpool2

CUs assigned

CUs unassigned

CUs assigned

Fig. 6: The pools of resources BBUpool1 and BBUpool2

represent groups of assigned physical CUs connected to each
other either directly or through other assigned physical CUs.

UoL(X) =
∑

eva,vb∈ EA

γa,b · β(va, vb)

|E| · ba,b
, (4)

and

β(va, vb) =
∑

sij,k∈ Eva,vb

βz. (5)

The objective function in (2) involves two factors. The first
one, given in (3), evaluates the degree of centralization (DoC)
of the network, which depends on the different functional
splits of the assignment solution X . The DoC is defined
as a weighted sum of the number of virtual DUs assigned
to each layer of the radio protocol stack (as given by the
cardinality of sets Rv

L1
, Rv

L2
, and Rv

L3
). The weights ω1,

ω2, and ω3 are used to represent the degree with which
each split selection contributes to the centrality level of the
RAN network. Since the goal is to optimize the level of
centralization, the following relationship is defined to correlate
these three weights: ω1 > ω2 > ω3. In this study, the specific
values adopted for these weighting parameters are as follows:
ω1 = 0.7, ω2 = 0.2, and ω3 = 0.1. It is worth noting that

this setup may yield an unbalanced centralization among the
different vMNOs requests. The analysis of other definitions
for the DoC, such as those fostering proportional fairness, is
left for future work. By dividing this weighted sum in (2) by
the total number of resource pools and the total number of
virtual DUs assigned in solution X , we can keep the values
of DoC within the range [0, 1].

The second factor in our objective function, (1−UoL(X)),
is used to account for network links usage (UoL) in the
assignment solution X . The goal is to decrease link usage, by
minimizing the number of links and the bandwidth required to
satisfy the requests of the vMNOs. The UoL in (4) evaluates
the total bandwidth used for each physical link assigned
(i.e., link in set EA). As defined in (5), and once again
leveraging our previous definition of an assignment as a tuple
sij,k=(rx, cy, fz, P

l
rx,cy ), the total capacity used depends on the

specific bandwidth requirement βz of the functional split fz ,
which is accumulated for all the assignments sij,k ∈ Eva,vb
using a particular link. Due to the diversity of links in the
midhaul network, a hierarchical approach is taken to assess
the cost of the links. Given the relative cost of each type of
physical connection (γa,b), the cost of optical fiber links is
assumed to be higher than that of wired links, which in turn
is assumed to be higher than that of wireless links. Similar
to DoC in (3), link usages in (4) are divided by the total
number of physical links and the maximum capacity of the
link in order to define the values of UoL in the range [0, 1].
In (2), we subtract UoL(X) from 1 so that the factor can be
maximized, as required by our objective function.

The objective function defined in (2) is subject to the
following constraints:

∀eva,vb ∈ EA

( ∑
sij,k∈Eva,vb

βz ≤ ba,b

)
, (6)
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∀sij,k ∈ Si

( ∑
eva,vb∈P lrx,cy

da,b ≤ δz

)
, 1 ≤ i ≤ q, (7)

∀cy ∈ CA

( ∑
sij,k∈Ccy

wv
prck
≤ wprcy

)
, (8)

∀rx ∈ RA

( ∑
sij,k∈Rrx

wv
prcj ≤ wprcx

)
, (9)

∀rx ∈ RA

( ∑
sij,k∈Rrx

wv
antj ≤ wantx

)
, (10)

∀rx ∈ RA

( ∑
sij,k∈Rrx

wv
prbj ≤ wprbx

)
, (11)

∀sij,k ∈ Si

(
bvj,k ≤ βz

)
, 1 ≤ i ≤ q, (12)

∀sij,k ∈ Si

( ∑
eva,vb∈P lrx,cy

da,b ≤ dvj,k

)
, 1 ≤ i ≤ q, (13)

|CA
i | = |Cv

i |, 1 ≤ i ≤ q, (14)

|RA
i | = |Rv

i |, 1 ≤ i ≤ q, (15)

|BBUpools| > 0. (16)

The expression in (6) models the bandwidth constraint of
physical connections. For each physical link eva,vb in use by
solution X , the link capacity ba,b must be greater than or equal
to the sum of the bandwidths βz required by the functional
splits fz of all assignments sij,k ∈ Eva,vb using this link.
Functional split fz also involves parameter δz , which imposes
a constraint on the maximum acceptable delay. The sum of
the delays produced by all the links in the path P l

rx,cy of an
assignment sij,k must not exceed δz , which must hold for all
the assignments of the q vMNO requests, as stated in (7).

The constraint in (8) refers to the computational resource
capacity of CUs. For any physical CU used cy ∈ CA, this
constraint implies that cy must have a capacity wprcy at least
as high as the sum of the capacities wv

prck
required by all the

virtual CUs cvk assigned to this physical node. Similarly, the
computational resource capacity constraint for all the DUs as-
signed rx ∈ RA is modeled in (9). This constraint implies that
the physical node rx must have a capacity wprcx greater than
or equal to the sum of the requirements wv

prcj of all the virtual
DUs rvj assigned to rx. Additional constraints for assigned
DUs rx ∈ RA refer to the number of antennas and physical
resource blocks, as modeled respectively by (10) and (11). The
total number of requested antennas wv

antj and resource blocks
wv

prbj
for all the assignments sij,k involving physical node rx

must not exceed its number of available antennas wantx and
available resource blocks wprbx , respectively.

Recall that, as stated at the end of Section III-A3, sij,k
represents the assignment of physical resources to the virtual
link ervj ,cvk . Thus, as captured by (12), the minimum bandwidth

βz required by the functional split fz specified in sij,k must
be at least as high as the bandwidth requirement of the virtual
link, namely bvj,k. Similarly, the total delay of the path P l

rx,cy

specified in sij,k must be at least as low as the maximum delay
dvj,k defined by the virtual link ervj ,cvk , as expressed in (13).

In (14), we model the constraint on the number of CUs
assigned, which implies that for each of the q vMNO requests,
the number of physical CUs assigned |CA

i | must equal the
number of virtual CUs requested |Cv

i |. Analogously, the num-
ber of physical DUs assigned |RA

i | must match the number of
virtual DUs requested |Rv

i |, as indicated in (15). Finally, (16)
models the resource pool constraint, which states that there
must be at least one resource pool in the assignment.

C. Search Space Analysis

The search space of the above optimization problem, de-
noted by X , represents the set of all possible solutions. The
size of X can be computed as:

|X | =
q∏

i=1

[(
|∆i

cvk
|
)n′

i

·
(
|Ωi

rvj
| · |F | · |P ∗rx,cy |

)m′
i

]
. (17)

As can be seen in (17), the size of X is determined by
the number of possible assignment configurations that can
(independently) take each of the virtual requests. That is, each
possible solution X ∈ X represents a potential assignment
configuration for all the q requests. As defined in Section III-A,
the i-th request involves a total of n′i virtual CUs, and each
of these virtual CUs is assigned to a physical node for which
there exists a total of |∆i

cvk
| available choices. Similarly, the

request involves m′i virtual DUs, for which the assignment
consists of a selection of one of the |Ωi

rvj
| available physical

DUs, one of the |F | possible functional splits, and one of the
|P ∗rx,cy | existing physical paths.

The above analysis reveals that the optimization problem
studied in this paper defines a very large search space, whose
size grows exponentially with the number of vMNO requests,
as well as with the amount of virtual resources involved in
these requests (namely, virtual CUs and DUs). The consider-
ation of large physical networks also poses a challenge, as
it is the physical network that defines the sets of choices
available to satisfy the requests (namely, physical CUs, DUs,
and paths). It is worth noting that our definition of the search
space in terms of sets ∆i

cvk
and Ωi

rvj
entails a meaningful

reduction; that is, rather than considering the full sets C and
R of physical nodes, we narrow the search in order to focus
only on these subsets of nodes that are deemed appropriate for
each specific requested virtual node. Furthermore, in order to
reduce the cardinality of set P ∗rx,cy as well, we have employed
the generalized version of Dijkstra’s algorithm to compute
the subset of k shortest paths between the physical nodes, as
detailed in Section V-A. Shorter paths are considered more
promising choices, as they favor the optimization of link
usage, which is the goal pursued by the second factor of our
objective function, UoL, as described above. A similar strategy
to reduce the number of possible paths has been adopted in
other studies (refer, for example, to [12]). These considerations
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are intended to make the problem more manageable, although
it keeps the exponential nature of its search space.

The above analysis fuels the need for solution approaches
that can efficiently explore the enormous search space of this
problem in order to identify promising resource assignments
within reasonable times. In the next section, we introduce two
such approaches to cope with this challenge.

IV. SOLUTION TECHNIQUES

The problem addressed in this paper has a very large search
space, as has been analyzed in Section III-C. The use of exact
optimization techniques thus becomes prohibitive, even for
relatively small problem instances, namely, physical networks
with very few nodes and links, and few requests of vMNOs.
Such a complexity demands the development of efficient meth-
ods, capable of producing high-quality results within reason-
able execution times. This section introduces the two heuristic-
based approaches that we propose to tackle our problem.
First, in Subsection IV-A, we present a greedy algorithm that
iteratively constructs a (suboptimal) solution in a rapid manner.
Then, Subsection IV-B describes an evolutionary algorithm
that implements a specialized initialization routine, based on
the greedy strategy introduced in Section IV-A, and uses
genetic operators that facilitate a more effective exploration
of the search space. The proposed methods thus represent two
distinct trade-offs between computational efficiency and the
ability to yield higher-quality solutions.

A. Greedy Algorithm

Greedy algorithms construct solutions iteratively, by making
the decisions that seem to be the best at each step of the
process. Although such locally optimal choices do not usually
lead to the global optimum, these heuristics tend to produce
satisfactory results in a reasonable amount of time and have
been successfully applied in a range of practical scenarios.

Our greedy algorithm is driven by a resource-demanding
priority policy. That is to say, the algorithm starts by sorting
the requests in descending order based on the amount of
resources they involve. Then, it processes all the requests
one by one in this order, thus prioritizing those requiring
the most resources. Such resource-demanding requests might
otherwise be difficult to satisfy if they were considered after
some network resources have been already allocated to other
requests. Our greedy algorithm is illustrated in Fig. 7.

The processing of a request starts by assigning, one by
one, each of the virtual CUs to a physical CU. In particular,
virtual CUs that require the most resources are considered
first. When two or more suitable physical CUs are available
for a given virtual CU, the algorithm always favors the
physical CU that would be left with the minimum amount
of (unallocated) resources after such an assignment. In other
words, the algorithm would choose a physical CU that meets
the requirements, but that in turn exceeds them as little as
possible. This conservative strategy is intended to reserve
resource-rich physical CUs for other more demanding virtual
CUs that may arise in future requests.

Pending
requests?

START

END

Select the most resource-
demanding request

Unassigned
virtual CUs
in request?

Select virtual CU requiring
the most resources

Unassigned
virtual DUs
in request?

Select virtual DU requiring
the most resources

Suitable
physical DUs

available?

Assign virtual DU to suitable
physical DU with the least

amount of resources available

Choose best available path
between physical DU and CU

Choose best possible
split level for DU-CU pair

Suitable
physical CUs

available?

Assign virtual CU to suitable
physical CU with the least

amount of resources available

B

B

A

Mark request as
unresolved B

Mark request as
resolved A

No

Yes

Yes Yes

No

Yes

No

No

Yes

No

Fig. 7: Flowchart of the proposed greedy algorithm.

Once all the virtual CUs in the request have been assigned to
suitable physical nodes, the algorithm attempts the assignment
of virtual DUs. Just as for virtual CUs, the most resource-
demanding virtual DUs are handled first, and the assignment
process targets suitable physical nodes minimizing the amount
of available resources. Here, a physical DU is considered
suitable if and only if: (i) it meets the resource requirements of
the virtual DU; and (ii) there exists at least one path from the
physical DU to the corresponding physical CU that satisfies
the bandwidth and latency constraints of the request. Once a
suitable physical DU is identified, the algorithm completes the
assignment by choosing the best available path (minimizing
the delay as well as the excess of bandwidth) and the best
possible split level (achieving the maximum centralization).

When there does not exist a physical node that can meet the
requirements of at least one of the virtual nodes of the request
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Stop?
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Survival
selection

Mating
selection

Variation
operators

START

STOP
Yes No

Fig. 8: Flowchart of the proposed evolutionary algorithm.

(this applies both to CUs and to DUs), the whole request is
regarded as unsatisfiable, and so is marked as unresolved. The
algorithm stops once all the requests have been processed and
marked either as resolved or unresolved.

B. Evolutionary Approach

Evolutionary algorithms (EAs) are metaheuristic techniques
inspired by the principles and mechanisms of natural evolu-
tion [39], [40]. Our proposed method follows the generalized
scheme of EAs outlined in Fig. 8 [41]. The EA starts by
initializing a population of individuals (candidate solutions),
and then enters an iterative process that evolves these indi-
viduals until a stopping criterion is met (in this case, until
a maximum number of generations Gmax is reached). The
evolutionary process consists of three key components: (i)
the mating selection mechanism, which identifies suitable
parent individuals for reproductive purposes; (ii) the variation
operators, that create new offspring individuals from the
selected parents; and (iii) the survival selection strategy, which
determines the parent and offspring individuals that survive
from one generation to the next. All the elements that allow
us to instantiate such a generalized scheme in order to address
our problem are separately described below.

1) Solution Representation: The genetic representation
(also referred to as encoding) is a key component of EAs,
as it has to be devised so as to suit the problem and facilitate
the design of operators that can effectively sample the solution
space [42], [43]. An integer representation is adopted in this
study, where the genotype of a candidate individual encodes a
potential physical resource assignment for each of the requests.
An encoding example is depicted in Fig. 9, where the physical
network and the virtual request are those illustrated earlier in
Figs. 3 and 4, respectively. As can be seen, the assignment
configuration for any given request is encoded as a string
of integers. Each encoding position (gene) corresponds to a
particular decision and it can take any value from a finite
set of possible choices (alleles). These decisions include the
physical nodes each of the virtual nodes will be assigned to
(CUs and DUs), as well as the choice of a physical path and
the functional split level to use for each DU-CU pair selected.

In the example of Fig. 9, the specific integer string encodes
that virtual nodes cv1 , cv2 , rv1 , rv2 , and rv3 are assigned to physical
nodes c1, c2, r1, r2, and r5, respectively. Configurations for

2 1 3 2 5 2 32111

cv1 cv2
rv1 rv2 rv3

Assignment of physical CU

Assignment of physical DU

Physical path DU-CU

Split level

Fig. 9: Encoding of a possible resource assignment for the
virtual request in Fig. 4 over the physical network in Fig. 3.

rv1 and rv2 indicate that the first (and only) available path
between the assigned physical nodes will be used, and that
the split levels will be f2 and f3, respectively. Finally, the
last three encoding positions indicate that rv3 will use the
second available path between the assigned physical nodes,
and functional split f3. It is worth noting that multiple virtual
DUs can be connected to the same virtual CU in the request,
and so the encoding positions that refer to DU configurations
are organized by CU in our genetic representation.

The set of all virtual resource requests is represented by a
matrix, where the i-th row corresponds to the i-th request.
The number of columns in this matrix corresponds to the
maximum number of encoding positions required by any of
the requests, which depends on the number of virtual CUs
and DUs involved. More specifically, the number of columns
in the matrix is given by max(n′i + 3 · m′i), being n′i and
m′i the number of virtual CUs and DUs of the i-th request,
respectively (as defined in Section III-A). Given that some
requests will only need a subset of the matrix columns,
unnecessary columns are simply ignored in our method.

2) Population Initialization: The proposed EA employs
a specialized initialization routine which aims to seed the
population with a diverse set of N potentially good initial
individuals. In order to do so, our initialization routine takes
advantage of the greedy algorithm proposed in Section IV-A.

The first individual of the population is built by using the
greedy algorithm, exactly as described in Section IV-A. The
remaining N − 1 individuals, however, are generated using a
modified version of this algorithm. Rather than processing,
selecting, and assigning resources (namely, requests, CUs,
DUs, paths, and split levels) in the order dictated by their
priority, which as explained above is established by the to-
tal amount of demanded resources, the modified version of
this algorithm makes all these decisions at random. Despite
such random (non-greedy) decisions, the modified algorithm
preserves the characteristic of only assigning virtual nodes
whenever a suitable physical node can be found.5

The above modification thus converts the originally deter-
ministic procedure into a non-deterministic one, which can
generate a potentially different individual with each execution.

3) Optimization Criterion: The objective function defined
in (2), Section III-B, which is to be maximized, is adopted
as the fitness (evaluation) function to measure the quality of
candidate solutions in our proposed method.

5Even a single virtual node for which no suitable physical node is available
makes the whole request unsatisfiable, as indicated at the end of Section IV-A.
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4) Mating Selection: We use a panmictic mating strat-
egy [44], giving all individuals in the population the same
probability of being selected as parents. The parents that will
undergo recombination (see variation operators below) are
randomly selected (without replacement). This is intended to
reduce the selection pressure and increase the diversity.

5) Variation Operators: Variation operators produce new
candidate solutions and are to a large extent responsible for
the exploration and exploitation capabilities of every search
algorithm [45]. Our method uses both recombination and
mutation as variation operators. Recombination takes as input
two parent individuals, and produces as output two offspring
individuals by means of uniform crossover [46]. This operator
works by creating exact copies of the input parents, and
by either preserving or interchanging every piece of genetic
information between these copies with equal probability. Re-
combination is applied with a given probability pr.

All the offspring produced through recombination are sub-
jected to uniform mutation [47]. This operator independently
mutates each position in the encoding of the individual with
a given probability pm. When a position mutates, its original
value is replaced by another one, uniformly chosen from the
set of available options for that particular encoding position.

6) Survival Selection and Constraint-Handling: Our sur-
vival selection strategy relies on the use of stochastic ranking
(SR), which is known to be an effective constraint-handling
technique [48]. Once an offspring population has been created
by using the variation operators, these new individuals com-
pete against the parent individuals for a place in the population
of the next generation. SR thus provides a suitable means to
rank all the individuals (both parents and offspring), taking
into account the constrained nature of our problem.

SR employs a bubble-sort-like procedure and a user-defined
parameter, here denoted ps, representing the probability of
using either fitness or the degree of constraint violation as the
basis for solution comparison. For a comprehensive description
of SR, the reader is referred to [48]. In order to promote
the diversity of the population, all duplicated individuals are
filtered and discarded before applying the SR technique.

V. EVALUATION SETUP

This section provides details about the evaluation setup that
was developed to validate the proposals of this paper. This
includes the description of the test scenarios considered, the
parameter settings adopted for the algorithms evaluated, and
the performance assessment methodology employed.

A. Test Scenarios

We define a problem instance as a triplet that contains a
substrate network, a set of resource requests from vMNOs,
and a set of pre-calculated routes. For our experiments, we
generated a total of 3, 024 instances and classified them
into three categories: small-size, medium-size, and large-size
(there are 1, 008 instances in each of these groups). For the
network topologies, we considered Barabasi-Albert, Waxman,
Hierarchical Top-Down, and Hierarchical Bottom-Up substrate
topologies. The results reported in Section VI correspond to

TABLE III: Parameters used for generating physical networks.

Group # nodes # links # DUs # CUs # substrate
min,max min,max min,max min,max networks

small 3, 10 3, 12 2, 8 1, 3 42
medium 100, 500 197, 1000 20, 50 14, 26 56
large 600, 1000 1197, 2000 40, 200 25, 50 56

TABLE IV: Parameters for the generation of virtual requests.

Group # request per set # virtual DUs # virtual CUs # sets of
min, max min, max min, max requests

small 1, 5 2, 7 1, 3 8
medium 5, 50 2, 10 1, 5 6
large 50, 100 2, 10 1, 5 6

the average for all such topologies. For completeness, however,
a detailed analysis of the performance of our proposals on a
per-topology basis is presented in Appendix D.

For the small-size test instances, the network topology can
be one out of 42 options. The substrate networks of all
instances are generated with the BRITE toolkit6 with random
values within the following ranges: the smallest network has 3
nodes with 3 links, and the largest network has 10 nodes and
12 links. The networks are generated with a random number
of DUs between 2 and 8, and a random number of CUs
between 1 and 3. The small-size instances include one of 8
sets of resource requests. Each of these sets is generated with
a random number of resource requests in ranges from 1 to
5. Each resource request is generated with a random number
of virtual DUs which ranges from 2 to 7, and with random
numbers of virtual CUs in the range from 1 to 3.

For medium-size instances, the network topology can be one
out of 56 options. Substrate networks are generated randomly
considering the following ranges: the smallest network has 100
nodes with 197 links, and the largest network has 500 nodes
and 1,000 links. The networks are generated with a random
number of DUs between 20 and 50, and a random number
of CUs between 14 and 26. These instances include one of
6 sets of resource requests, each of which is generated with
a random number of resource requests ranging from 5 to 50.
Each resource request is generated with a random number of
virtual DUs with ranges from 2 to 10, and with a random
number of virtual CUs in the range from 1 to 5.

For large-size instances, the network topology can be one
out of 56 options. Substrate networks are generated at random
using the following ranges: the smallest network has 600 nodes
with 1,197 links, and the largest network has 1,000 nodes and
2,000 links. The networks are generated with a random number
of DUs between 25 and 50, and a random number of CUs
between 40 and 200. These instances include one of 6 sets of
resource requests, each generated with a random number of
requests in the range from 50 to 100. Each resource request
has a random number of virtual DUs between 2 and 10, and
a random number of virtual CUs between 1 and 5.

6BRITE - Boston University Representative Internet Topol-
ogy Generator, software to generate network topologies.
Source code: https://github.com/unly/brite, BRITE homepage:
https://www.cs.bu.edu/brite/index.html
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TABLE V: Parameter settings selected for EAgre and EArnd.
The table shows the specific values of the recombination (pr),
mutation (pm), and stochastic ranking (ps) probabilities that
are used for small, medium, and large problem instances.

Algorithm Small-size
instances

Medium-size
instances

Large-size
instances

EAgre
pr = 0.5
pm = 3/`
ps = 0.425

pr = 0.7
pm = 1/`
ps = 0.425

pr = 0.7
pm = 1/`
ps = 0.425

EArnd
pr = 0.5
pm = 3/`
ps = 0.475

pr = 0.5
pm = 1/`
ps = 0.475

pr = 0.7
pm = 1/`
ps = 0.475

` refers to the total number of encoding positions in the genotype.

For the three groups of test instances (small-size, medium-
size and large-size), we generated three sets of pre-calculated
routes. The k-shortest path routing version of Dijkstra’s algo-
rithm was used, where each set corresponds to the k routes
between each CU-DU pair of nodes, varying k from 1 to 3.

For all types of instances, the available resources and
the requested resources were randomly generated using the
following ranges of values: for each CU, wprc takes a value
from 10 to 20; for each physical link, bi,j takes a value from
1,000 and 10,000 and γi,j has values among 0.1, 0.2 and 0.7;
for each DU, want takes a value from 10 to 50, wprc takes a
value from 10 to 20, wprb takes a value from 50 to 100, and θ
takes a value from 10 to 100; for each virtual link, bvi,j takes
a value from 100 to 1,000, and dvi,j takes a value from 100 to
500; for each virtual CU, wv

prc takes a value from 2 to 6; for
each virtual DU, wv

ant takes a value from 2 to 10, wv
prc takes

a value from 1 to 5, and wv
prb takes a value from 6 to 15.

Table III summarizes the parameters used to generate the
substrate networks, and Table IV summarizes the parameters
used to generate the virtual resource requests.

B. Algorithms Evaluated and Parameter Settings

Our experiments seek to investigate and compare the per-
formance of our two proposed methods: the greedy algorithm
described in Section IV-A, and the evolutionary approach in-
troduced in Section IV-B. In addition, we consider a modified
version of the evolutionary approach, which is enhanced with
a random initialization approach. This variant will allow us to
evaluate to which extent the use of a specialized initialization
routine contributes to the performance of our method. The
three algorithms will be respectively referred to as GRE,
EAgre, and EArnd throughout our evaluation study.

A preliminary analysis was conducted to investigate ap-
propriate parameter settings for EAgre and EArnd (see Ap-
pendix B). Based on those preliminary experiments, the most
promising settings for each of these algorithms were selected
and used for the experiments whose results are presented in
Section VI. Table V summarizes the settings for the probability
of recombination, mutation, and stochastic ranking. In all
cases, the population size and the number of generations were
set to N = 100 and Gmax = 300, respectively.

C. Performance Assessment

Due to the stochastic nature of the approaches EAgre and
EArnd, a total of 31 independent executions of these algo-
rithms was performed for every problem instance considered.
Given that our proposed GRE method is deterministic, a
single execution of this algorithm was considered in all cases.
In our experiments, the performance of these algorithms is
evaluated in terms of solution quality, request acceptance
rate, execution time, and the statistical significance as further
described below.

1) Solution Quality: In this study, solution quality refers to
the degree of centralization of a given resource assignment.
This is properly captured by the objective function defined
in (2), Section III-B, which is to be maximized. In our
experiments, thus, solution quality corresponds to the objective
value of the (best) candidate solution reached by an algorithm.
Even though objective values are defined in the range [0, 1],
the best attainable objective value can vary from one instance
to another. Therefore, the objective values obtained for a
particular problem instance have been normalized by dividing
them between the best (highest) objective value observed for
that instance (considering all the algorithms evaluated and
executions performed). We report both, the average solution
quality and the best solution quality achieved by an algorithm
in the set of all independent executions performed.

2) Acceptance Rate: This metric is computed as the ratio of
the number of virtual resource requests that were successfully
assigned to physical resources, let this be denoted by q′, to
the total number of requests, q. Formally, the acceptance rate
is computed as q′/q, and it is defined in the range [0, 1], and
higher values of this metric indicate a better performance.

3) Execution Time: In order to conduct a fair comparison
based on execution time, we ensured that all the algorithms
were run under similar conditions. Experiments for measuring
execution time were run in an exclusively dedicated server,
equipped with 2 Intel Xeon E5-2630 (2.30 GHz) processors,
32 GB of RAM, and the Ubuntu 18.04.4 LTS operating system.

4) Statistical Significance: We investigate the statistical
significance of the differences observed among the set of
algorithms evaluated as follows. First, the (non-parametric)
Kruskal-Wallis test is carried out in order to investigate the
set of algorithms as a whole. If the test indicates that there
exists a significant difference, a post hoc analysis based on the
Mann-Whitney U test and Bonferroni correction is conducted
to investigate specific pairs of algorithms. In all the cases, a
significance level of α = 0.05 is considered.

VI. RESULTS

This section presents the results of a series of experiments
conducted in order to investigate the suitability of the two
algorithms proposed in Section IV, namely, our greedy algo-
rithm denoted by GRE, and our evolutionary method denoted
by EAgre. Also, as indicated in Section V-B, a modified
version of our evolutionary method, here referred to as EArnd,
is included in our comparative analysis as a baseline. The
three algorithms are investigated in the context of a diverse
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(b) Medium-size instances
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(c) Large-size instances

Fig. 10: Summary of the results obtained by approaches GRE, EAgre, and EArnd. Results are shown separately for small-size
instances (a), medium-size instances (b), and large-size instances (c). For each of the problem categories, results are evaluated
in terms of the average solution quality (left), the best solution quality (center), and the average acceptance rate (right).

collection of test scenarios, which are organized into the small-
size, medium-size, and large-size categories of problem in-
stances, as described in Section V-A. The performance of these
algorithms is evaluated on the basis of the average and best
achieved solution quality, the request acceptance rate, and the
execution time (refer to Section V-C for a description of these
measures). The results obtained are analyzed and discussed
from different perspectives in the following subsections.

A. Overall Performance

The results obtained during the testing of approaches GRE,
EAgre, and EArnd are shown in Fig. 10, with the findings
of the statistical significance analysis summarized in Appendix
A. As can be seen, the proposed evolutionary method, EAgre,
is found to be the best overall performer in our experiments,
offering the best compromise for the set of evaluation mea-
sures employed. In all the three categories of test scenarios
considered, EAgre outperforms the other two algorithms, or at
least achieves comparable results, in terms of average solution
quality, best solution quality, and acceptance rate.

Our GRE method exhibits a significantly lower perfor-
mance for the small problem instances in comparison to the

evolutionary approaches EAgre and EArnd. Nevertheless,
in the medium-size and large-size scenarios, GRE clearly
surpasses EArnd in terms of average solution quality and ac-
ceptance rate (with statistically significant differences), while
competing closely with EAgre.7 As described in Section IV-B,
GRE is the basis of the initialization routine of EAgre; the
fact that GRE is able to produce, by itself, very satisfactory
results, confirms that our specialized initialization provides
EAgre with a clear competitive advantage and explains, to
a certain extent, the success of this method in our tests.

Despite the promising results obtained by EArnd for the
small instances, this algorithm reports poor average solution
qualities and acceptance rates for the medium-size and large-
size scenarios. Such performance decreases are statistically
significant when compared with respect to both GRE and
EAgre (see Appendix A). This suggests that the advantages of
a specialized initialization routine become more evident as the
size of the instances (and therefore the search space) increases.
Given that EArnd starts with a population of random, most
likely infeasible solutions, it can invest a significant amount

7Note that the proposed GRE method is deterministic. Hence, the average
solution quality is the same as the best solution quality for this algorithm.
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of effort just to reach the feasible region. This behavior is
evidenced by the convergence curves of this algorithm, as
analyzed in Section VI-B. However, in spite of such invested
effort, EArnd usually fails at discovering even a single feasible
solution (satisfying the requirements of at least one of the
vMNO requests), as indicated by the very poor acceptance
rates scored by this algorithm. Interestingly, though, the results
for the large instances show that EArnd outperforms our two
proposals when measuring the best solution quality. This sug-
gests that the unbiased nature of a purely random initialization
routine still has some merits, and allows EArnd to produce
some successful runs for a number of test scenarios.

To further illustrate the performance of our EAgre algo-
rithm, Appendix C includes an example of a test instance as
well as the highest-quality solution produced by this method.

B. Convergence Behavior

This section analyzes the convergence behavior of algo-
rithms EAgre and EArnd as a means of explaining their
performance differences as well as highlighting the role and
impact of initialization. Fig. 11 illustrates the evolution of the
highest quality solution for both EAgre and EArnd throughout
the evolutionary process in a sample of test scenarios.

The examples in Fig. 11 confirm that the initial efforts of
algorithm EArnd are mostly invested in locating the feasible
region, as argued earlier in Section VI-A. This behavior can be
observed as a flat region in the convergence curves of EArnd

during the early stages of the search, which is particularly
evident for the medium-size and large-size examples. As
shown in the plots, after a number of generations have passed,
EArnd manages to identify a feasible individual, and hence
the algorithm can focus further on improving solution quality.
The figure also confirms that this limitation of EArnd is
accentuated as larger problem instances are considered.

As described in Section V-B, the initialization process is
the only distinguishing factor between approaches EAgre and
EArnd. Therefore, our analysis confirms that this component
plays a critical role and is a major contributor to our method’s
performance. From Fig. 11, it is possible to observe that
our specialized initialization routine is effective at seeding
the population of EAgre with good-quality, feasible initial
solutions. EAgre is thus able to start the evolutionary process
with a significant advantage over the reference method EArnd

(see in Fig. 11 the differences between the performance of the
initial populations of these methods, at generation 0).

Finally, it is worth mentioning that although initialization
is a key component, it is not the only factor contributing to
the performance of EAgre. The convergence curves shown in
Fig. 11 illustrate the ability of the method to gradually improve
solutions over time. While initialization is responsible for
setting up a good starting point for the search, the evolutionary
process itself is the key to capitalize on such a favorable initial
state in order to reach a high-quality final solution.

C. Ability to Produce High-Quality Solutions

The results presented in the previous subsections are suitable
to compare the studied algorithms with respect to each other,
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Fig. 11: Convergence behavior of approaches EAgre and
EArnd. The plots show the best solution quality observed at
every generation, averaging the results of all the independent
executions performed. Results are exemplified for a small-size
(a), a medium-size (b), and a large-size (c) problem instance.

based on their relative performance. However, due to the
heuristic nature of these approaches, there remains the question
of how close the solutions produced by these algorithms are
to the optimal solution of the problem instances considered.

The main challenge in addressing this question lies in
the fact that the optimal solutions for our test instances are
unknown and, more importantly, they are computationally
expensive to calculate. Thus, our attempt to shed some light
on this question necessarily focuses on a subset of our small-
size instances, for which the optimum has been determined
through the systematic, exhaustive enumeration of the solution
space. Note that this analysis is limited to small instances, as it
becomes prohibitive for larger instances due to the exponential
growth of the solution space (see Section III-C). Accordingly,
the analysis presented in this section is based on results
computed for a selection of 129 of our small-size problem
instances (originally described in detail in Section V-A). These
selected instances involve a maximum of 4 virtual resource
requests, where each request has at most 5 DUs and 3 CUs,
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(a) Small-size instances (subset of 129 instances for which the optimum is known)
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(b) Small-size instances (complete set of 1008 small-size problem instances)
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(c) Medium-size instances (subset of 174 instances for which results of Gurobi were computed)

Fig. 12: Ability of approaches GRE, EAgre, and EArnd to find good-quality solutions. In (a), the results of these approaches
are evaluated with respect to the optimal solution (OPT ) and the results of solver Gurobi [49] in a subset of 129 small-size
problem instances. In (b) and (c), comparisons with respect to solver Gurobi are presented for the full set of 1008 small-size
instances and for a subset of 174 medium-size instances, respectively. In all the cases, results are evaluated in terms of the
average solution quality (left), the best solution quality (center), and the average acceptance rate (right). Results are normalized
by dividing the obtained solution qualities and acceptance rates by those of the optimal (or best known) solution.

as well as substrate networks with at most 6 DUs, 2 CUs, and
2 available routes connecting each DU-CU pair.

In view of the above limitations, and with the aim of
extending this analysis to a larger number of instances, results
for solver Gurobi [49] are included as an additional reference.
Gurobi is one of the most powerful, commercial mathematical
programming solvers available, and one of the fastest. This
allowed us to compute results for all the 1008 small-size
instances, and for a subset of 174 instances of the medium-
size category (instances with at most 20 virtual requests, each
involving a maximum of 10 DUs and 5 CUs; and substrate
networks with at most 500 nodes, a maximum of 30 DUs and
20 CUs, and a single available route for each DU-CU pair).
Note that, as shown in Section VI-D, the execution times of
Gurobi increase significantly with the size of the problem, and

consequently the remaining medium-size instances as well as
all large-size instances have been excluded from this com-
parison. It is also worth noting that Gurobi does not always
produce the optimum, but it often yields approximations that
can serve the purposes of this analysis to evaluate the ability
of our methods to find good-quality solutions.

The results of this analysis are summarized in Fig. 12. As
can be seen from sub-figure (a), Gurobi and evolutionary
approaches EAgre and EArnd report solution qualities that
in most cases are comparable to that of the optimal solution.
This suggests that the three methods are able to either locate
the optimum or at least produce a close approximation for
the particular subset of small-size instances considered. The
results for the full set of small-size instances, shown in
sub-figure (b), reveal that both EAgre and EArnd perform
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better in average than solver Gurobi, used as the reference.
Similarly, sub-figure (c) indicates that in average EAgre yields
higher solution qualities and acceptance rates in comparison
to Gurobi for the set of medium-size instances analyzed,
highlighting the suitability of our proposed method.

On the other hand, our GRE algorithm is seen to produce
good approximations for some of the small-size instances,
but overall its solution qualities and acceptance rates are
inferior when compared to those of the optimal solution and
solver Gurobi. Note, however, that in average the solution
qualities scored by GRE are comparable to those obtained
by Gurobi on the medium-size scenarios, where GRE also
reports the highest acceptance rates among all the approaches
evaluated; this latter result suggests that the strategy of GRE
of prioritizing resource-demanding requests may grant this
method a better ability to satisfy a greater number of requests.

D. Computational Efficiency

A key aspect in determining the applicability of an al-
gorithm in practice is certainly its computational efficiency.
While the analyses presented earlier reveal that our methods
are able to yield high-quality solutions, we now turn to inves-
tigate the efficiency with which such solutions are reached.

The execution times measured during our experiments are
shown in Fig. 13. The results in sub-figure (a) make evident
that the exponential size of the search space of this problem
renders an exhaustive exploration impractical, even for very
small instances. Although such an exhaustive approach was
only applied to a subset of our smallest test cases (refer to
Section VI-C for details), the times reported are relatively
very high (the largest instances considered took more than
22 days to run, using the hardware described in Section V-C).
Sub-figure (a) also shows that, in general for the small-size in-
stances, evolutionary approaches EAgre and EArnd are found
to be more computationally expensive than solver Gurobi [49]
(which is used as a reference, as detailed in Section VI-C). It
is possible to see from sub-figure (b), however, that increasing
the size of the problem leads to a significant growth in
the execution times of Gurobi, suggesting that our proposed
heuristic methods represent better alternatives to cope with the
larger problem sizes that appear in practice.

Fig. 13 also points out the high efficiency of our GRE
method, which is able to produce solutions within times of
the order of milliseconds even for the largest test cases.
The figure also evidences that the use of the evolutionary
approaches EAgre and EArnd causes a significant increase
in the execution time with respect to algorithm GRE. The
execution times reported by approaches EAgre and EArnd

are however of the order of seconds in the majority of the
cases. Thus, such observed increases in the execution times
may be regarded as negligible compared to the meaningful
advantages that the use of algorithm EAgre can provide in
terms of optimization performance, as seen in Section VI-A.

Finally, owing to the low computational cost of GRE,
the repeated use of this algorithm within our specialized
initialization has not caused a very noticeable impact on the
running time of the EAgre method. Only minor increases in
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Fig. 13: Execution times of our experiments. Plots in (a), (b),
and (c) present results for small, medium, and large instances,
respectively. In (a), the times taken to find the optimum by
exhaustive search (OPT ) are included for a subset of instances
(see Section VI-C). Results of solver Gurobi [49] for all small
instances are included in (a), but only results for a subset of
medium-size instances are reported in (b). Note that times are
expressed in milliseconds and shown in logarithmic scale.

the execution time can be observed from Fig. 13 with respect
to the use of a random initialization in approach EArnd (such
increases are only statistically significant for the small-size
and medium-size instances, see Appendix A).

The algorithmic solutions presented in this paper are the first
solutions reported in the literature that have addressed the joint
selection of route and split level holistically. At this point, the
results obtained by our algorithmic solutions are encouraging
to address the critical target of providing solutions to online
versions of the problem addressed in this paper.

VII. CONCLUDING REMARKS AND FUTURE WORK

This paper addressed the critical problem of jointly selecting
midhaul routes and determining appropriate functional splits
over 5G C-RAN architectures, to support the quality of ser-
vice requirements of vMNOs. We have shown that this is a
highly complex problem, which was tackled by holistically
considering the two following sub-problems: (1) the problem
of deciding the most appropriate location for DUs and CUs
composing the BS, as well as the optimal split distribution
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between them; and (2) that of selecting the best routes for the
traffic coming from each of the DUs. To our best knowledge,
this is the first work that has addressed the aforementioned
problems in a combined way. In fact, there exist few works
that have considered either of them individually.

We have built a system model to address such a challenge,
formulating a virtual embedding problem, which we have
afterwards holistically tackled. Two algorithmic solutions have
also been proposed: a greedy approach, and an evolutionary-
based solution which implements an intelligent initialization
procedure. After an extensive validation, which has been made
over a diverse set of network topologies, we have shown
that the proposed techniques provide appropriate trade-offs
between the quality of the solutions, the acceptance rate of
virtual requests, and execution time. We have also compared
the solutions obtained by our methods with respect to the
optimal solution (in those cases where this was possible),
as well as with respect to a well-known commercial solver.
The outcome of such an analysis was very satisfactory: our
proposed heuristics were found to produce good approxima-
tions to the optimum, and better trade-offs regarding the above
criteria when compared to the reference solver considered.

The model, algorithmic solutions, and test instances pre-
sented in this paper represent the first efforts reported to ad-
dress the joint route and functional split selection problem over
C-RAN architectures to fulfill vMNOs requests. At this point,
the results obtained by our algorithmic solutions, in terms of
quality of solutions, acceptance rates, and execution times,
are encouraging to address the online version of this complex
problem, which in turn will be part of our future work.
We will also analyze the behavior of our approaches under
special cases of the network topologies and other peculiarities
with a potential impact over the aforementioned performance
trade-offs. We will explore alternative optimization problem
formulations and, in particular, definitions of the DoC that
promote proportional fairness among requests, which would
enable the implementation of different centralization policies.

From the algorithmic viewpoint, future work will be devoted
to the design of novel genetic operators that exploit knowledge
of the problem domain to enhance the generation of high-
quality, feasible solutions. We will also analyze whether the
consideration of alternative metaheuristic approaches could
yield better performance trade-offs, providing a faster conver-
gence while maintaining, or even improving, solution quality
in comparison to our proposed evolutionary method.

In addition, we will also propose system model mod-
ifications to include practical requirements. First, we will
exploit the developed framework and proposed methodology
to analyze slicing techniques for Beyond 5G Networks, where
appropriate resource management will become even more rel-
evant. Furthermore, we will investigate additional restrictions
on the split set, according to the coordination functionalities
they provide and the required QoS. Finally, we will study
the energy reduction brought by the proposed optimization
problem, which comes from the increased centralization and
the link usage minimization. We will also consider the addition
of explicit energy metrics, to give more relevance to this
particular aspect in the split decision process.

TABLE VI: Results of the statistical significance analysis.
Algorithms GRE, EArnd, and EAgre are compared pairwise,
considering three different performance measures: average so-
lution quality (Q), average acceptance rate (A), and execution
time (T). The results are presented separately for small-,
medium-, and large-size problem instances. Symbols ! and
% indicate whether or not a statistically significant difference
is observed between a specific pair of algorithms compared.

Instances
GRE − EArnd GRE − EAgre EArnd − EAgre

Q A T Q A T Q A T

Small ! ! ! ! ! ! % ! !

Medium ! ! ! ! ! ! ! ! !

Large ! ! ! % % ! ! ! %

APPENDIX A
STATISTICAL SIGNIFICANCE ANALYSIS

As described in Section V-C4, we conducted an analysis
of statistical significance to determine how meaningful the
performance differences between methods GRE, EArnd, and
EAgre are. This analysis focuses on a subset of relevant
results, including: (i) average solution qualities and acceptance
rates obtained, as reported in Section VI-A, Fig. 10; and (ii)
execution times measured for these methods, as reported in
Section VI-D, Fig. 13. Given that our initial analysis using
the Kruskal-Wallis test revealed that in all the cases there is a
significant difference within the group of methods analyzed,
we therefore applied the Mann-Whitney U test (Bonferroni
corrected) to the three possible pairs of methods. The findings
of this post hoc analysis are summarized in Table VI.

The table indicates that, in the majority of the cases, a
statistically significant difference is observed for every pair
of algorithms compared, for the three performance measures
under consideration. A few exceptions can be highlighted. For
the large instances, the differences observed between our two
proposed algorithms GRE and EAgre are not statistically
significant in terms of both solution quality and acceptance
rate. Also, there is no statistically significant difference be-
tween the average quality of the solutions obtained by the two
evolutionary methods EArnd and EAgre for the small-size
instances. Finally, the execution times reported by EArnd and
EAgre for the large instances are not significantly different.

APPENDIX B
PARAMETER TUNING OF EVOLUTIONARY ALGORITHM

In this appendix we discuss how the initial parameters for
the proposed algorithms were selected.

Initial experiments aimed at identifying suitable parameter
settings for the proposed EA. We considered three possible
values for the recombination, mutation, and selection param-
eters, whereas the population size and number of generations
were fixed to 100 and 300, respectively. The values explored
for the mutation probability are pm = {1/`, 2/`, 3/`}, where
` refers to the total number of encoding positions in the
genotype. The values used for the recombination probability
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Fig. 14: Results of the parameter tuning of approach EAgre.

are pc = {0.5, 0.7, 0.9}. Finally, the settings considered for
the selection mechanism based on stochastic ranking are
ps = {0.425, 0.45and0.475} corresponds to 0.425, 0.45 and
0.475. Thus, a total of 27 parameter combinations were
evaluated using the genetic algorithms (EArnd and EAgre).
The 27 parameter combinations were evaluated with 300 test
instances (100 instances randomly selected for each of the
three categories described in Section V-A).

Fig. 14 summarizes the the average solution qualities ob-
tained by EAgre for each parameter configuration. It can
be seen that the best result for the small-size instances is
obtained using pc = 0.5, pm = 3/`, and ps = 0.425. For
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Fig. 15: Results of the parameter tuning of approach EArnd.

the medium-size instances, the best performance is obtained
using pc = 0.7, pm = 1/`, and ps = 0.425. Finally, the best
result obtained by for the large-size instances is obtained using
configuration pc = 0.7, pm = 1/`, and ps = 0.425.

Similarly, Fig. 15 shows the results obtained by EArnd.
From the figure, it is possible to identify the best param-
eter configurations as follows. For the small-size instances:
pc = 0.5, pm = 3/`, and ps = 0.475. For the medium-sized
instances: pc = 0.7, pm = 1/`, ps = 0.475. Finally, for the
large-size instances: pc = 0.7, pm = 1/`, and ps = 0.475.
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Fig. 17: The best solution found by the EAgre algorithm for the small-size test instance. The unassigned elements have been
removed to better highlight the assignments that were made (X). Each virtual DU has been assigned to a physical DU. All
virtual CUs were assigned to a single physical CU, this being the resource pool (BBUpool1 ). Each virtual DU implements the
PHY II functional split (f7).

APPENDIX C
EXAMPLE TEST INSTANCE AND SOLUTION FOUND

This appendix presents an example of a test instance and a
solution of our validation simulations. We use a small-size test
instance, which includes the set of resources requests, a sub-
strate network with 10 nodes, and a set of pre-defined routes.
Finally, a solution found by algorithm EAgre is presented.

Fig. 16 illustrates the corresponding small-sized instance. It
contains a substrate network with 10 nodes and 12 links, from
which four nodes were chosen as DUs, and three nodes were
selected as CUs. The set of resource requests (Q) contains
three resource requests (Gv

1 , Gv
2 , and Gv

3). Each Gv
i requires a

virtual CU and two virtual DUs. For each CU-DU pair, a route
was generated (k = 1). A total of 12 routes were obtained for
this instance. The figure shows the desired positions for all
virtual DUs, as well as the coverage of each physical DU. As
can be seen, virtual DUs rv1 , rv2 , rv4 , and rv6 can be assigned
to more than one physical DU, while virtual DUs rv5 and rv3
have only one possible DU assignment. Fig. 17 shows the
best solution that was obtained by algorithm EAgre for this
instance. The unused elements were removed from the graph
to clearly observe the assignments made. It can be seen that the
algorithm places all virtual CUs in a single physical CU (this
CU being the only one that is part of the pool of resources).
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Virtual DUs rv1 and rv6 were assigned to physical DU r1, virtual
links erv1 ,cv1 and erv6 ,cv3 were assigned to path P 1

r1,c1 . Similarly,
virtual DUs rv2 and rv3 were assigned to physical DU r2, and
virtual links erv2 ,cv1 and erv3 ,cv2 were assigned to path P 1

r2,c1 .
Virtual DUs rv4 and rv5 were assigned to DUs r4 and ri3,
respectively. Virtual links erv4 ,cv2 and erv5 ,cv3 were assigned to
routes P 1

r4,c1 and P 1
r3,c1 respectively. Finally, all virtual DUs

were assigned the functional division PHY II (f7).

APPENDIX D
DETAILS ABOUT SUBSTRATE NETWORK TOPOLOGY AND

ITS INFLUENCE ON ALGORITHMS PERFORMANCE

This appendix gives details about the substrate network
topologies and the performance of the GRE, EArnd, and
EAgre approaches with each topology. As described earlier
in Table III, for the small-size instances we generated 42
substrate networks, and 56 substrate networks for the medium-
size and the large-size instances. The process to generate the
substrate networks with the BRITE toolkit is as follows:

1) A number of m possible DU nodes were selected
from the convex hull. We used Graham’s method to
obtain the nodes that are part of the convex hull of the
graph generated with BRITE. The value of m is chosen
from the minimum and maximum values described in
Table III.

2) We randomly selected n possible CU nodes that are
not part of the convex hull of the graph. The value of
n is chosen from the minimum and maximum values
described in Table III.

3) Finally, we assigned parameters for bandwidth, types of
links, capacities of the DU and CU nodes, etc, with the
values from Table III. The parameters used for the links
are described in Section V-A. The types of link can be:
wired, optical, or wireless.

Using BRITE we generated four types of substrate network
topologies: Barabasi-Albert, Waxman, Top-Down hierarchical,
and Bottom-Up hierarchical, with the following parameters:

• Barabasi-Albert [50]: this model generates scale-free
graphs. The parameter used in BRITE was m = 2.

• Waxman [51]: this model generates graphs with short
communication links since long links tend to be more
expensive in the real world. The parameters used in
BRITE were alpha = 0.2 and beta = 0.3.

• Top-Down hierarchical: this model generates a two-level
hierarchy model using Waxman or Barabasi-Albert at
either of the two levels.

• Bottom-Up hierarchical: this model generates a two-
level hierarchy where the second level is gener-
ated using Waxman or Barabasi-Albert and the first
level is generated by randomly grouping nodes. These
groups are formed with a constant number of nodes
(total nodes/total groups). The total number of nodes
is described in Table III for each instance size. The total
number of groups was ranged from 10 to 100 for large
instances, while for medium instances 10 groups were
used. For small instances, this model was not used.

For small instances, we generated 17 substrate networks
using the hierarchical Top-Down model, using Waxman at
level 1 and Barabasi-Albert at level 2. Also, we generated 9
substrate networks using the Top-Down model using Barabasi-
Albert at the two levels. A total of 10 substrate networks were
also generated using the Barabasi-Albert model and 6 substrate
networks using the Waxman model.

For the medium-size instances we generated 33 substrate
networks using the hierarchical Bottom-Up model, using
Barabasi-Albert. Also, we generated 11 substrate networks
using the hierarchical Bottom-Up model using Waxman and
12 substrate networks using the Waxman model.

For large instances, we generated 27 substrate networks with
the hierarchical Bottom-Up model using Barabasi-Albert. We
also generated 20 substrate networks using the hierarchical
Bottom-Up model using Waxman and 9 substrate networks
using the Barabasi-Albert model.

The performance of the GRE, EArnd, and EAgre ap-
proaches in terms of (a) average solution quality, (b) best
solution quality, (c) average acceptance rate, and (d) execution
time, is shown in Fig. 18. For the small-size instances (Fig. 18,
left column) the Waxman topologies are more suitable for
the average solution quality, whereas the best solution quality
is achieved with the hierarchical Top-Down topology for the
EAgre algorithm. The highest acceptance rates are obtained
with the hierarchical Top-Down topologies. Finally, the execu-
tion time seems to be agnostic to substrate network topology
for the small-size instances.

For the medium-size instances (Fig. 18, center column), the
highest values for average solution quality are obtained with
the Waxman model. For best solution quality the best results
are achieved with the algorithm EAgre. The higher average
acceptance rates are achieved with the hierarchical Bottom-Up
model using Waxman. The execution time of the algorithms
is similar for all topologies of the medium-size instances.

For the large-size instances (Fig. 18, right column), the
results for average solution quality, best solution quality, and
execution time are similar for every topology considered. The
algorithm EArnd obtains the best solution quality, and the
average acceptance rate is higher in the hierarchical Bottom-
Up model using Waxman topologies.

Overall, the highest values for the average solution quality,
the best solution quality, and the average acceptance rates are
obtained in hierarchical topologies. Regarding the similarity
in the results of the execution time by each algorithm in
the different topologies, this behavior is achieved because we
have pre-calculated the k possible routes between the CU and
DU nodes, with the intention to let the algorithms focus on
exploring the search space to identify the choices that must be
made to satisfy the requests of the vMNOs.
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(a) Average solution quality
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Fig. 18: Summary of the results obtained by approaches GRE (red), EArnd (blue), and EAgre (black) grouped by topology.
Results are shown for small-size (left), medium-size (center), and large-size instances (right) and are evaluated in terms of
average quality of the solution (a), best solution quality (b), average acceptance rate (c), and execution time (d).
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