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Abstract: In a fire, the polymer combustion occurs when gaseous fuels react with oxygen. The heating
of a material could force the release of gaseous fuels during thermal decomposition and pyrolysis.
The rate of pyrolysis to define the gaseous fuels is usually interpreted by means of the Arrhenius
expression and a reaction model expression, which are characterized by an activation energy, a pre-
exponential factor, and a reaction order value. Many methods are available for determining kinetic
parameters from thermogravimetric experimental data. However, the most challenging issue is
achieving an adequate balance between accuracy and simplicity. This work proposes a direct method
for determining the kinetic parameters with only a thermogravimetric experiment at a single heating
rate. The method was validated with six polymers, and the results were compared with those from
similar procedures, such as the Lyon method and generalized direct method. The results achieved
using the simpler approach of the proposed method show a high level of accuracy.

Keywords: thermal decomposition; fire chemistry; activation energy; pre-exponential factor; reaction
order

1. Introduction

The effect of fire or heat and the associated fire hazards of the materials are studied
through different phenomena. One of them is the thermal decomposition, which occurs
when chemical compounds are heated. These thermal decomposition reactions are defined
by the amount of gaseous fuel released, the release rate, and the temperature of each reac-
tion. This phenomenon is fundamental to understand and simulate fire and its propagation
between different elements. Therefore, a pyrolysis sub-model is a fundamental part of fire
computational models [1].

Thermal analysis comprises a group of experimental techniques that measure changes
in physical, mechanical, and chemical properties during controlled heating [2,3]. The
thermal decomposition characteristics of a solid may be determined by the kinetic analysis
of the data [4–6]. Rates are parameterized in terms of temperature, pressure, and the degree
of conversion, α, which is defined as:

α =
m0 −m
m0 −m f

(1)

where m0 is the initial mass, mf is the final mass, and m is the mass at a given time. α is a
dimensionless parameter. The influence of pressure is frequently ignored in kinetic studies,
and most kinetic methods consider the rate to be a function only of temperature and the
degree of conversion [7]. The rate constant, k(T), describes the velocity of the reaction as a
function of temperature, and the reaction model, f (α), describes the dependence on α. The
rate of thermal decomposition, dα/dt, is expressed as
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dα

dt
= k(T)· f (α) (2)

Although there are other approaches for representing k(T) [8], the Arrhenius expres-
sion, given by Equation (3)—where A is the pre-exponential factor (s−1), E (J mol−1) is the
activation energy [2], R is the gas constant (J mol−1 K−1), and T is the temperature (K)—is
commonly used to describe the temperature dependence of a rate process [9].

k(T) = A·e(−
E

R·T ) (3)

Although A and E are attributed to the frequency of molecular collisions and to the
energy barrier of chemical bond breaking, respectively, as a mechanistic interpretation by
some authors, these quantities may be considered to be adjustable parameters of k(T) [10].

The influence of α on the rate process may be expressed in terms of accelerating,
decelerating, or sigmoidal models. We focus on the decelerating model in this paper,
because this formalism is commonly applied to thermal decomposition reactions in fire
science [1,2]. The decelerating model applies to processes where the rate initially exhibits
its maximum value and decreases continuously as the degree of conversion increases. The
most widely applied description of this process is the following reaction-order expression,
which depends on α and the reaction order, n (dimensionless parameter):

f (α) = (1− α)n (4)

The kinetic parameters, E, A, and n, provide the ability to generate predictive thermal
curves which can be used to assess the rate of thermal decompositions in terms of percent
conversion, time, and temperature. These thermal decompositions can be of different
nature, as melting crystallization, pyrolysis, oxidative reactions, etc. There are several
methods for obtaining the kinetic parameters to describe the thermal decomposition of
polymers [5,11–26]. However, each method has particular constraints and limitations and
may require some factors to be ignored to simplify interpretation [2].

The two approaches developed to study the kinetic parameters of thermal decomposition
can be categorized as analytical and curve-fitting optimization methods [2] (see Figure 1).
These are further divided into model-fitting and model-free methods. In model-fitting
methods, the kinetic parameters are defined in terms of previously established reaction
mechanisms. The direct differential [12], Freeman–Carroll [13], and Coats–Redfern [14]
approaches are the most commonly used of these methods. These methods consider the
activation energy and pre-exponential factor to be constant throughout the entire reaction.
However, some practitioners [12] limit α to an experimental range between 0.01 and 0.11
at the low limit and between 0.67 and 0.98 at the high limit, depending on the material,
reaction order, and method. This is completed because extreme curvature is observed in
experiments at large α, which leads to deviation from Arrhenius behavior, especially for
the direct differential method.

There are isoconversional and non-isoconversional methods of analysis. Isoconver-
sional methods evaluate the kinetic parameters at successive values of α rather than
applying a reaction model [10]. These methods typically require kinetic curves at different
heating rates because they assume that the activation energy is the same at each degree of
conversion. However, some studies show large differences in the thermal decomposition
of certain materials at different heating rates [3,15]. The most popular isoconversional
approaches are the standard isoconversional [16], Ozawa–Flynn–Wall [17], Friedman [18],
Vyazovkin [19], and Kissinger–Akahira–Sunose [20] methods. These methods are contro-
versial according to the study [21] that claim that the activation energy obtained using
integral isoconversional methods is mathematically incorrect and recommend avoiding
them.
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Model-free non-isoconversional methods allow direct calculation of the activation
energy and pre-exponential factors using a single equation. These methods are generally
easy to apply, but can be sensitive to data noise [22]. The most commonly used examples
are the generalized direct (GDM) [22], Friedman [23], McGrattan [24], Lyon [25], and
Kissinger [26] methods. The differences among these methods lie in the definition of the
reference point used to obtain the kinetic parameters. The reference point in the Lyon
method is chosen at the maximum decomposition rate, whereas the GDM considers the
reference point to be the position where the third derivative of the decomposition rate is
zero. The dependence on the definition of a single point requires a separate analysis to be
conducted for each method.

Finally, curve-fitting optimization methods are very efficient for complex processes
involving multiple reactions, but require significant computational effort [27–36].

In summary, isoconversional model-free methods require kinetic curves at different
heating rates. However, the definition of kinetic parameters as a function of the degree
of conversion does not allow their direct use in computational pyrolysis models. Non-
isoconversional model-free methods can be directly applied to computational models
because it is necessary to have only a single kinetic curve at a certain heating rate. However,
these methods employ a unique reference point in defining the reaction and are, therefore,
very sensitive to competing reactions [9]; these equations do not necessarily follow a perfect
exponential Arrhenius response. Curve-fitting optimization methods are more precise,
because they require only an individual kinetic curve at a certain heating rate and can
be directly applied to computational models. However, their complexity makes their
utilization difficult for non-experts. Therefore, the challenge is to develop a method with a
suitable balance between accuracy and complexity.

A modification of the direct differential method [12] is proposed to address this issue.
This approach allows simple analytical equations to be used for calculating the kinetic
parameters of thermal decomposition while assigning equal weight to the decomposition
behavior at the beginning, middle, and end of the process. Kinetic parameters calculated
via the proposed method are evaluated by comparison to the results obtained by the
established protocols of the Lyon [25,37] and GDM [22,38] methods, which are widely used
for obtaining kinetic parameters for pyrolysis models used in numerical fire simulations [1].
The Lyon and GDM methods are chosen, because they use simple analytical equations
to calculate a single activation energy and pre-exponential factor for each decomposition
reaction and are applicable to a single thermogravimetric result.
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The remainder of the paper is divided into sections as follows. Section 2 contains
a description of the proposed method. Section 3 describes the polymers examined and
experimental procedures. Section 4 presents the results obtained by application of the
proposed method and shows a comparison of these with results from the Lyon and GDM
methods. The results are discussed in Section 5.

2. Approach for a New Direct Method

Our approach uses a model-fitting method based on a direct differential method [2,12]
using the Arrhenius equation and a reaction-order model to define the kinetic process.
This proposed method (PM) enables users to obtain kinetic parameters by resolution of a
few simple equations that can be easily automated. The combination of Equations (2)–(4)
yields:

dα

dt
= A·e(−

E
R·T )·(1− α)n (5)

or
dα

dt
· 1
(1− α)n = A·e(−

E
R·T ) (6)

Equation (6) can be expressed as Equation (7) using Napierian logarithms,

ln
dα
dt

(1− α)n = ln A−
(

E
R·T

)
(7)

where the logarithmic argument on the left-hand side of the equation is represented by:

F′(α) =
dα
dt

(1− α)n (8)

As n, A, E, and R are considered constant during a particular decomposition re-
action, the Equation (7) is a linear equation expressed in terms of the variables lnF′(α)
(y-coordinates) and 1/T (x-coordinates). The activation energy is obtained from its slope, s,
by use of Equation (9):

s = − E
R

(9)

The slope is calculated by dividing the difference between the y-coordinates of two
points by the difference between the x-coordinates of the same two points:

sα1−α2 =
ln F′(α1)− ln F′(α2)

1
Tα1
− 1

Tα2

(10)

where sα1−α2 is the slope between α1 and α2. However, it is necessary to determine the
reaction order, n, to do so. We use the equation of Friedman [23], which considers the three
points αa, αb, and αc shown in Figure 2. These points are located in three distinct regions
along the path of conversion so that the same weight is assigned to kinetic parameters
calculated in the initial (α1 to α2), middle (α3 to α4), and final (α5 to α6) stages of thermal
decomposition. The reaction order is calculated by means of Equation (11):

n =

ln
(

dαc
dT
dαa
dT

)
− Tb ·(Tc−Ta)

Tc ·(Tb−Ta)
· ln
( dαb

dT
dαa
dT

)
Tb ·(Tc−Ta)
Tc ·(Tb−Ta)

· ln
(

1−αa
1−αb

)
− ln

(
1−αa
1−αc

) (11)
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To evaluate this equation, we need to derivate the experimental α versus the tem-
perature. Then, by considering αa, αb, and αc equals to 0.15, 0.45, and 0.65, respectively,
we can calculate the associated dα/dT and T to obtain n from Equation (11). Once n is
calculated, F′(α) can be evaluated with the desired experimental values of α and dα/dt,
and the calculated n.

The slope is determined from data corresponding to three intervals in the course of
reaction. The points α1 through α6 are defined at 0.1, 0.2, 0.3, 0.6, 0.7, and 0.8, respectively,
and the activation energy is calculated by Equation (12):

E = −


ln F′(α1)−ln F′(α2)

1
Tα1
− 1

Tα2

+ ln F′(α3)−ln F′(α4)
1

Tα3
− 1

Tα4

+ ln F′(α5)−ln F′(α6)
1

Tα5
− 1

Tα6

3

·R (12)

Following the determination of E and n, the pre-exponential factor is estimated using
Equation (13), which follows from Equation (7) by considering the values of α1 to α6 and
the average values of 1/Tαi and lnF(αi), where i = 1–6 and nα = 6 are the numbers of α
evaluated.

A = e
∑nα

i=1 ( Ea
R ·

1
Tαi

+ln F(αi))

nα (13)

The methodology was applied to multiple decomposition reactions by segmenting the
mass results. This may be done automatically considering the second derivative of the mass
loss or by the visual association of each peak of the mass versus temperature derivative
(dm/dT) curve with a reaction. The latter procedure was chosen for the cases analyzed in
this study for the PVC, but the first one is described below for the poly(methaphenylene
isophthalamide) (NOMEX) as it undergoes thermal decomposition in several overlapping
steps.

Application to Decomposition Reactions for Overlapping Steps

The application of the methodology to multiple decomposition reactions requires the
segmentation of the TG results. This requirement implies the definition of the different
decomposition reactions pertaining to the polymer by directly analyzing the TG and dm/dT
experimental curves by the user or by an automatized method to define the different
reactions.

One way to automatize the definition of the decomposition reactions is to associate
each peak of the dm/dT curve with a reaction. In the dm/dT, the local maximum defines the
points of the different reactions when more mass is released, and the local minimum is the
separation between the different reactions. It is necessary to remark that this method sepa-
rates decomposition by the predominant reaction in each temperature range considering
decomposition reactions as consecutives.

According to this, the second derivative of the mass loss (dm2/dT2) helps to directly
obtain dm/dT maximum and minimum when dm2/dT2 is equal to 0. This can be used to
define material reactions, as shown in the Figures 3 and 4 for the NOMEX. In Figure 3, we
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can see two different peaks in the NOMEX dm/dT. The first peak is associated with the first
reaction and the second peak with the second reaction, respectively. In Figure 3, we can
appreciate that the separation between both reactions is produced at the same temperature
of the zero value of dm2/dT2 (vertical grey line). Figure 4 shows the representation of the
two considered reactions in the TG curve.
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Once the different reactions considered are defined, the proposed methodology is
applied independently to each one of them. To do so, the degree of conversion, α, is
calculated for each reaction using Equation (1), as shown in Figure 5.
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3. Materials and Experimental Setup

The polymers selected for study were poly(hexamethylene adipamide) (PA 6.6 or
nylon 6.6), acrylonitrile/butadiene/styrene copolymer (ABS), poly(vinyl chloride) (PVC),
linear low-density poly(ethylene) (LLDPE), poly(methyl methacrylate) (PMMA), and
poly(methaphenylene isophthalamide) (NOMEX).
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PA 6.6 was analyzed at heating rates of 2.5, 5, 10, 20, and 40 K min−1. Although heating
rate of 40 K min−1 is high enough to not be recommended by the ICTAC, it is included in
the validation analysis as it is allowed by the standard [39] and higher values of heating
rate are used by several authors for specific applications [33,34]. The other polymers were
studied at a single heating rate of 10 K min−1 (Table 1) to examine decomposition patterns.

Table 1. Materials tested and heating rates.

Material Heating Rate (K min−1)

PA 6.6 2.5, 5.0, 10.0, 20.0, 40.0
ABS, PVC, LLDPE, PMMA, NOMEX 10.0

A Netzsch STA 449 F3 instrument was used to carry out thermogravimetric experiments.
The apparatus can operate at temperatures between 303 and 1773 K in oxidative or inert
atmospheres. Its temperature and mass resolutions were 0.001 K and 0.1 µg, respectively.
Because we are concerned with pyrolysis, all measurements were conducted under an inert
atmosphere with a nitrogen gas flow of 40 mL min−1. The percentage mass losses and
dm/dT responses for the six materials at a heating rate of 10 K min−1 for the temperature
range where decomposition processes also took place, as shown in Figure 6a,b.
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The results indicate that the thermal decomposition processes exhibit different patterns
of behavior depending on the material in question. PA 6.6, LLDPE, and ABS undergo
a single abrupt decomposition reaction, PMMA and NOMEX participate in a lengthier
combined process, and PVC undergoes distinct stepwise reactions.

4. Results

The methodology is applied to calculate the kinetic parameters for the PA 6.6 at
heating rates of 2.5, 5, 10, 20, and 40 K min−1, and for the other polymers at one single
heating rate of 10 K min−1. For each case, the obtained kinetic parameters for the different
methodologies are compared. These kinetic parameters are used to calculate the mass and
dm/dT curves which are compared with the experimental ones. Furthermore, we calculate
the mean absolute error of the experimental mass and dm/dT curves with those obtained
by the kinetic methods. The mean absolute error is the average over the test, considering a
temperature step of 1 K, of the absolute differences between prediction and experimental
results where all individual differences have equal weight. Finally, we also compare the
maximum dm/dT values and their temperatures.
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Table 2 summarizes the kinetic parameters obtained for PA 6.6 at different heating
rates. The three kinetic parameters obtained by the proposed method are compared with
those obtained by the Lyon and GDM methods.

Table 2. Comparison of kinetic parameters for the decomposition reaction of PA6.6.

Heating Rate
(K min−1)

Proposed Method Lyon Method GDM

E
(kJ mol−1) A (s−1) n E

(kJ mol−1) A (s−1) n E
(kJ mol−1) A (s−1) n

2.5 192 1.27 × 1012 1.5 140 1.03 × 108 1 189 4.80 × 1011 0.84
5 175 5.05 × 1010 1.16 170 2.25 × 1010 1 195 1.45 × 1012 0.87
10 181 1.25 × 1011 0.96 187 5.14 × 1011 1 202 4.07 × 1012 0.77
20 160 3.15 × 109 0.72 204 5.59 × 1012 1 234 8.14 × 1014 0.82
40 184 2.36 × 1011 0.84 212 2.57 × 1013 1 233 6.90 × 1014 1.04

A graphical comparison of the kinetic parameters is shown in Figure 7. The proposed
method has the narrowest range of activation energy and pre-exponential factor values.
These quantities range from E = 160 to 192 kJ mol−1 and A = 3.15 × 109 to 1.27 × 1012 s−1.
The reaction order calculated by the proposed method decreases from 1.5 to 0.72 at heating
rates from 2.5 to 20 K min−1, but increases to 0.84 at 40 K min−1.
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Figure 7. A comparison of (a) activation energy, (b) pre-exponential factor, and (c) the reaction order of PA 6.6 decomposition
as a function of heating rate by different kinetic methods.

We prepared mass versus T and dm/dT versus T curves to determine the accuracy of
these estimates. By solving the differential equation (Equation (4)) using each set of kinetic
parameters, values of α as a function of temperature may be obtained by calculating the
sample mass as a function of temperature using the expression:

m = m0 − α·(m0 −mres) (14)

where m0 and mres are the initial and residual masses, respectively. The mass percentage is
obtained by dividing the instantaneous mass by the initial mass and multiplying by 100.
The dm/dT response is calculated by taking the derivative of the mass versus temperature
behavior. The mass-T and dm/dT-T responses were plotted for the Lyon, GDM, and
proposed methods, and were used to compare absolute errors in the determination of mass
values and dm/dT peak positions.
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Table 3 shows a comparison of the mean absolute error of the experimental mass-T
and dm/dT-T curves with those obtained by the other kinetic methods. The errors equal
the average of the absolute value differences between the calculated and experimental
results at each temperature. All three methods provide a good correlation of the thermal
decomposition behavior of PA 6.6 at all heating rates. The Lyon method produces the best
results at 20 K min−1 (Figure 8), whereas the proposed method provides the best results
at 2.5, 5 (Figure 9), 10, and 40 K min−1. The absolute average error using the proposed
method is less than 1.628 % for mass measurements and less than 0.045 % K−1 for dm/dT
measurements over all heating rates.

Table 3. Mean absolute error in experimental versus calculated mass-T and dm/dT-T results for
PA 6.6.

Curve Method
HR (K min−1)

2.5 5 10 20 40

Mass (%)
PM 0.488 0.694 0.611 1.628 1.070

Lyon 2.660 1.342 3.367 0.576 1.076
GDM 1.964 1.275 1.004 1.484 0.987

dm/dT (% K−1)
PM 0.038 0.030 0.024 0.045 0.034

Lyon 0.052 0.039 0.108 0.035 0.036
GDM 0.128 0.085 0.079 0.094 0.053
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Table 4 summarizes the maximum dm/dT values and temperatures. The calculated
results closely match the experimental ones, particularly for the proposed method.

Table 4. Comparison of dm/dT maximum values and temperatures for PA 6.6.

Experiment. PM Lyon GDM

HR_2.5K min−1 dm/dT max (% K−1) 1.37 1.48 1.37 1.91
Temp. dm/dT max (K) 676 676 677 686

HR_5K min−1 dm/dT max (% K−1) 1.49 1.49 1.58 1.89
Temp. dm/dT max (K) 695 696 694 700

HR_10K min−1 dm/dT max (% K−1) 1.57 1.61 1.67 1.97
Temp. dm/dT max (K) 718 715 708 717

HR_20K min−1 dm/dT max (% K−1) 1.62 1.58 1.71 2.13
Temp. dm/dT max (K) 733 731 733 735

HR_40K min−1 dm/dT max (% K−1) 1.67 1.65 1.74 1.84
Temp. dm/dT max (K) 741 743 740 744

Evaluation of the methods for studying polymer degradation was further tested
by examining the decomposition patterns of the other five materials at a heating rate
of 10 K min−1. NOMEX undergoes thermal decomposition in several overlapping steps
(Figure 6). PVC degrades in two distinct reactions, whereby hydrogen chloride gas is
evolved nearly quantitatively by a chain-stripping mechanism (dehydrochlorination) be-
tween 500 and 650 K, and the second reaction (700–800 K) corresponds to the pyrolysis of
the polyene sequences formed during the previous reaction [15]. PMMA, ABS, and LLDPE
decompose via a single thermal reaction.

Table 5 shows kinetic parameters obtained with the different methodologies for all
polymers. The reaction order was set at 1 for the first step of PVC decomposition in the
proposed and GDM methods, as this value is fixed in the Lyon method. This was done
because Equation (11) did not yield a realistic value of n, and a minimum error value could
not be established within the range of n obtained. The problem, which deserves further
study, may be related to the reaction model used to describe the decomposition reactions.
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Table 5. Comparison of kinetic decomposition parameters for five materials at a heating rate of 10 K min−1.

Material
Proposed Method Lyon Method GDM

E
(kJ mol−1) A (s−1) n E

(kJ mol−1) A (s−1) n E
(kJ mol−1) A (s−1) n

ABS 347 7.52 × 1023 2.01 241 7.98 × 1015 1 248 1.96 × 1016 1.76
LLDPE 352 2.05 × 1022 0.76 444 4.82 × 1028 1 440 3.12 × 1028 0.96
PMMA 188 9.19 × 1012 0.92 289 2.66 × 1021 1 197 5.28 × 1013 1.06

NOMEX
R1 275 4.15 × 1017 1.76 184 1.04 × 1011 1 314 1.71 × 1020 1.76
R2 125 3.38 × 105 2.73 125 4.73 × 105 1 126 2.93 × 105 4.96

PVC
R1 197 1.62 × 1016 1 301 2.80 × 1026 1 314 2.33 × 1027 1
R2 295 7.97 × 1018 2.45 97 2.29 × 104 1 280 4.19 × 1017 1.19

Similar values for the activation energies of ABS and LLDPE using the proposed
method can be seen. Nevertheless, the higher pre-exponential factor of ABS (36 times higher
than the one of LLDPE) makes the decomposition reaction occur at lower temperatures.
The reaction order was 2.01 for ABS and 0.76 for LLDPE. The higher reaction order of the
ABS makes the end of the decomposition reaction slower than the LLDPE one. Comparing
the ABS and PMMA kinetic parameters, it can be seen that, although the pre-exponential
factor of PMMA is lower than the ABS one, by decreasing the reaction rate according
to Equation (5), the lower activation energy of PMMA increases more the reaction rate
(Equation (5)), leading to the decomposition reaction at lower temperatures for the PMMA.
The proposed and GDM methods yielded similar values of E = 188 and 197 kJ mol−1 and
A = 9.19 × 1012 and 5.28 × 1013 s−1, respectively, for PMMA, and E = 295 and 280 kJ mol−1

and A = 7.97 × 1018 and 4.19 × 1017 s−1, respectively, for the second reaction of PVC. The
kinetic parameter differences between the proposed and the GDM and Lyon methods are
greater for the other polymers. A valid value of n cannot be established for multi-step
reactions, as in the case of NOMEX. Thus, n is selected to provide the smallest error. The
partially overlapping character of the NOMEX reactions also necessitates the smoothing of
calculated mass results. Graphical comparisons of the kinetic parameters obtained by the
proposed, Lyon, and GDM methods are shown in Figure 10.
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Table 6 lists the mean absolute error of the mass-T and dm/dT-T responses at
10 K min−1. The largest TGA error obtained by the proposed method is 2.507 % for PMMA.
The largest dm/dT error is 0.084 % K−1 for PVC. The proposed method yields the smallest
mean absolute error in all cases except for the dm/dT result of PVC.

Table 6. Mean absolute error of mass-T and dm/dT-T responses versus experimental results for five
polymer materials obtained by different methodologies.

Curve Method ABS LLDPE PMMA NOMEX PVC

Mass
PM 1.234 0.303 2.507 0.613 0.982

Lyon 3.030 1.688 3.640 3.475 2.357
GDM 2.404 0.725 2.700 2.663 1.190

dm/dT
PM 0.044 0.027 0.050 0.010 0.084

Lyon 0.115 0.077 0.147 0.037 0.116
GDM 0.104 0.034 0.051 0.032 0.070

Table 7 shows a comparison of the calculated values of the dm/dT maximum and its
temperature with experimental results for five polymer materials. The proposed method
provides a good approximation of the experimental values in all cases.

Table 7. Comparison of dm/dT maximum values and temperature with experimental results for five
polymer materials.

Experiment. PM Lyon GDM

ABS
dm/dT max (% K−1) 2.11 2.11 2.20 1.63

Temp. dm/dT max (K) 704 704 704 709

LLDPE
dm/dT max (% K−1) 3.36 3.16 3.45 3.51

Temp. dm/dT max (K) 758 759 760 758

PMMA
dm/dT max (% K−1) 1.84 2.13 3.12 2.08

Temp. dm/dT max (K) 649 653 649 652

NOMEX-R1
dm/dT max (% K−1) 0.35 0.38 0.34 0.41

Temp. dm/dT max (K) 728 732 729 740

NOMEX-R2
dm/dT max (% K−1) 0.20 0.20 0.27 0.09

Temp. dm/dT max (K) 805 786 805 804

PVC-R1
dm/dT max (% K−1) 1.81 1.17 1.82 1.86

Temp. dm/dT max (K) 559 565 559 564

PVC-R2
dm/dT max (% K−1) 0.26 0.23 0.14 0.33

Temp. dm/dT max (K) 746 735 745 747

Figures 11–15 provide comparisons of the predicted and experimental TGA and dm/dT
results using the proposed, Lyon, and GDM methods.

The GDM method provides the best fit to the ABS response at temperatures below
690 K. However, the proposed method fits the mass and dm/dT results better than the other
methods from this point until the end of the reaction. The proposed method provides the
best fit to the experimental mass loss results of LLDPE throughout the reaction.
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Figure 12. A comparison of experimental and calculated (a) mass and (b) dm/dT results for LLDPE.

None of the methods predict the initial mass decrease shown in the mass data for
PMMA. However, the proposed and GDM methods correctly predict the overall weight
loss. Figure 13b shows that the temperature of the dm/dT maximum is accurately predicted
by all methods.

The proposed method best approximates the experimental NOMEX results by consid-
ering the process as two reactions. Although all methods are able to approximately define
the first reaction, only the proposed method obtains a more accurate approximation to the
second reaction.
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All three methods provide an acceptable, but not perfect, description of the first PVC
reaction (dehydrochlorination). The proposed method produces the best fit to the second
reaction based on the mass and dm/dT results.
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5. Discussion

Although the Arrhenius equation adjusts as much as possible to experimental results,
it only approximates the thermal decomposition behavior, which can be perturbed by
experimental noise and competing reactions. These limitations make it unlikely that perfect
results will be obtained.

It is useful also to highlight some considerations regarding application of the Lyon and
GDM methods. The former is valid only for a reaction first order. The latter is employed
using different equations [22] to calculate the reaction order and maximum and minimum
of the second α derivative and to choose the kinetic parameters that best fit the experimental
curve.

In estimating the kinetic parameters at different heating rates, there is a tendency for
the activation energy and pre-exponential factor predicted by the Lyon method to vary,
which occurs because these quantities are determined using only the dm/dT maximum
as a single reference point. As the dm/dT maximum moves to higher temperatures with
increasing heating rate, the activation energy increases. The GDM produces considerable
variation in the estimated kinetic parameters without exhibiting the trend of the Lyon
method. The variability results from the methodology of the GDM approach, which
prioritizes obtaining a good representation of the experimental response rather than the
homogeneity of the equations used.

The proposed method overcomes these constraints by considering three regions of
the curve (beginning, middle, and end) to estimate kinetic parameters characteristic of the
entire reaction. The use of several reference points along the course of the reaction may
explain why the proposed method does not produce the trend in activation energy and
pre-exponential values exhibited by the Lyon method. The new method also produces
the narrowest range of E and A values at all heating rates and a smaller dependence
on reaction order. Nevertheless, variation in the kinetic parameters with heating rate
is still observed. The variability could arise from the influence of heating rate on the
nature of the decomposition reactions, where it has been shown [3,15] that the boundary
conditions (including heating rate) employed in the definition of the TGA response can
change the temperature at which reactions take place and the kind of material produced
upon decomposition.

Although GDM and Lyon methods can be applied to analyze complex behavior, such
as that exhibited by NOMEX, where decomposition occurs by competitive reactions. When
it is applied to competitive reactions with more than one step, it is not possible to define a
unique and separate peak in the second derivative to calculate kinetic parameters. This
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seems to affect the results of these methods, producing worse results when competitive
rather than consecutive reactions occur.

The proposed method is applicable to single, consecutive, and partially competitive
reactions, as illustrated by the results shown in Table 6, which show the lowest error under
all conditions except for the dm/dT result of PVC. Special attention should be paid to
the analysis of competitive reactions. The new method can be applied to other reaction
models by modifying Equation (7) to fit specific circumstances better, such as the first
decomposition reactions of PMMA and PVC. However, these objectives are beyond the
scope of the present work. The proposed method of calculating average kinetic parameters
at different heating rates should enable users to define global kinetic parameters to predict
thermal decomposition behavior under a wider range of conditions.

6. Conclusions

This paper presents a simple and direct method for calculating the kinetic parameters
of polymer thermal decomposition using the Arrhenius equation and a reaction-order
model to define the kinetic process. The method achieves a satisfactory balance between
accuracy and complexity. The protocol involves selection of three regions in the course of
a thermogravimetric experiment to determine the activation energy and pre-exponential
factor. The method is applied to the thermogravimetric analysis of several polymers to
study the influence of heating rate and polymer decomposition characteristics.

The proposed method is valid for calculating the kinetic parameters of polymer
thermal decomposition at different heating rates. The proposed method is superior to
the Lyon and GDM methods in terms of fitting the mass-T and dm/dT-T curves of PA 6.6
decomposition at heating rates of 2.5, 5, 10, and 40 K min−1. The Lyon method is better at
providing a heating rate of 20 K min−1.

The method is also applicable to distinct patterns of thermal decomposition and to
competitive and consecutive reactions. The method is validated by studies of six different
polymers at a heating rate of 10 K min−1, which demonstrate its applicability to different
patterns of behavior including competitive reactions.

In summary, the proposed method provides a more accurate calculation of kinetic
parameters and a better description of experimental responses in polymer thermal decom-
position.
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