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Abstract

Random exploration is one of the main mechanisms through
which reinforcement learning (RL) finds well-performing
policies. However, it can lead to undesirable or catastrophic
outcomes when learning online in safety-critical environ-
ments. In fact, safe learning is one of the major obstacles
towards real-world agents that can learn during deployment.
One way of ensuring that agents respect hard limitations is
to explicitly configure boundaries in which they can operate.
While this might work in some cases, we do not always have
clear a-priori information which states and actions can lead
dangerously close to hazardous states. Here, we present an
approach where an additional policy can override the main
policy and offer a safer alternative action. In our instinct-
regulated RL (IR?L) approach, an “instinctual” network is
trained to recognize undesirable situations, while guarding
the learning policy against entering them. The instinct net-
work is pre-trained on a single task where it is safe to make
mistakes, and transferred to environments in which learning a
new task safely is critical. We demonstrate IR?L in the Ope-
nAl Safety gym domain, in which it receives a significantly
lower number of safety violations during training than a base-
line RL approach while reaching similar task performance.

Introduction

Deep reinforcement learning (RL) has allowed many com-
plex tasks to be solved, from playing video games to robotics
(Justesen et al., 2019; Li, 2017; Silver et al., 2016; Mahmood
et al., 2018; Gauci et al., 2018; Vinyals et al., 2019). How-
ever, developing RL agents that can learn new tasks quickly
while respecting safety restrictions is an unsolved challenge
(Ray et al., 2019a; Wainwright and Eckersley, 2019; Ortega
et al., 2018). Most RL approaches rely on trial and error
in order to solve tasks, and often these trials are based on
random actions. Executing random actions to learn tasks is
inherently problematic, especially in the real world, since it
can cause damage to the agent and its surroundings. For ex-
ample, a self-driving car cannot randomly try actions until
it learns a new task because it will likely cause death and
material damage.

In contrast to common RL approaches, animals in nature
developed instinctual behaviors that prevent them from try-
ing out actions that are likely dangerous to their lives. These

instincts are innate behaviors provided by evolution to re-
duce the cost of first having to learn to avoid common dan-
gers. For example, human infants have a congenital fear of
spiders and snakes (Hoehl et al., 2017), likely because the
evolved instinctual fear improved our ancestors’ chances of
survival. Other animals, such as rats, instinctively and with-
out any learning avoid a specific compound found in carni-
vore urine (Ferrero et al., 2011).

In this paper we are building on the Meta-Learned In-
stinctual Network (MLIN) approach (Grbic and Risi, 2020),
where a policy neural network is split into two major com-
ponents: a main network trained for a specific task, and a
fixed pre-trained instinctual network that transfers between
tasks and overrides the main policy if the agent is about to
execute a dangerous action. However, meta-learning can be
quite expensive since it relies on two nested learning loops:
an inner task-specific loop and an outer meta-learning loop.
Such high computation demands can limit the type of appli-
cations that meta-learning can be applied to.

The main insight in this paper is that the expensive meta-
learning loop in MLIN is not necessary to learn safely: we
can train an instinct network efficiently on a single task
where it is acceptable to make mistakes and then com-
bine this pre-trained instinct network with a random pol-
icy to learn another task safely. An important aspect of
our instinct-regulated RL (IR?L) approach is the balance be-
tween learning and staying safe. The instinct network can-
not be too restrictive (i.e. blocking the policy from doing
anything) and has to make sure that the policy is still able to
adapt. We show that this balance can be achieved by care-
fully tuning the hyperparameters of the reward used to train
the instinct network, which includes both hazard risk mini-
mization and task reward.

The results in a modification of the OpenAl Safety Gym
environment (Ray et al., 2019b) demonstrate that an instinc-
tual network allows an agent to learn new tasks while avoid-
ing hazards. We also show that while a typical baseline ap-
proach that consists of pre-training a policy on a task with
hazards (without an instinct network) can reduce safety vio-
lations to some extend, it performs significantly worse when
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compared to our IR?L approach. In the future, the idea of
combining a pre-trained instinctual network with other RL
methods could enable safer forms of Al across a range of
different tasks.

Background

This section includes a short introduction to reinforcement
learning, policy gradient methods (which we use to train our
models), and Al safety.

Reinforcement learning

We define an environment and the task that needs to be
solved as a Markov decision process (MDP) denoted as a
tuple of five elements 7 = (S, A, r, P, so); where S is the
set of possible environment state observations, A is the set
of actions the agent can execute, r is the numerical reward
the agent receives executing an action at a certain state,
r:S8xA— R, P(:s,a) is a probability distribution of
states reached by executing action a in the state s, and so(-)
is the distribution of initial states.

Often, the agent interacts with the environment in
episodes, where an episode is a sequence of actions that
the agent executes starting with the initial state sam-
pled from so(-) until a terminal state sp. After the
agent reaches sr, the environment resets and the agent
is initialized in one of the sy states. A sequence
of ((so0,ag,70,51), (s1,a1,71, S2)...(S4, ai, r;, s7)) tuples is
called a trajectory and it is the data used to train the pol-
icy. The cumulative reward the agent collects in an episode
is called return. Return from (s;, a;) to st is calculated as
R =r; + Z;‘F:Z 41775, Where r; the reward received by
executing a; at state s;, y is the reward discount factor that
is treated as a fixed hyper-parameter. The agent has to find a
policy that maximizes the expected return E[Rp].

In online reinforcement learning the task that the agent
needs to solve can change, thus requiring the agent to re-
adapt to maximize the expected j-th task-specific return
[E7 [Ro]. Here we assume that the tasks differ only in the
task reward r that the environment gives to the agent.

Policy gradient methods (Williams, 1992) are a family
of reinforcement learning methods that optimize policy pa-
rameters applying a gradient-based optimization algorithm
with respect to expected episode returns E[Rg]. A policy
is an action probability distribution my(a;|s;) conditioned
on the current observed state s;, where 6 are the policy pa-
rameters. Normally, the policy is modeled with an artificial
neural network (Mnih et al., 2013), where parameters are
the weights of the network. The algorithm calculates the
estimator of the policy gradient and passes it to a gradient-
based optimization algorithm like Stochastic Gradient De-
scent (Robbins and Monro, 1951; Kiefer et al., 1952) or
Adam (Kingma and Ba, 2014). The equation for the basic

policy (Williams, 1992) gradient estimator is:

N
9(0) = Eo[> _ Vo logmo(ais:)Rs)], (1

i=1

where NV is the total number of steps over all trajectories, and
Ri is the return estimate from state s;. The expectation Ey
is approximated with a finite batch of sampled trajectories.

We are using an upgraded policy gradient method called
PPO (Schulman et al., 2017, 2015) since original policy gra-
dient methods are prone to catastrophically large policy up-
dates. PPO limits the policy gradient updates to a "trust re-
gion” to prevent catastrophic fall in a performance that can
be caused by large policy changes.

Al Safety

An overview of Al safety methods can be found in Pecka
and Svoboda (2014) and Garcia and Fernandez (2015). A
large body of work in the area of Safe Al focuses on con-
strained RL (Altman, 1999; Wen and Topcu, 2018). Con-
strained RL depends on a-priori defined safety constraints
which are states or actions that the agent should avoid. The
constraints are often encoded within the environment reward
functions. However, a challenge here is that when agents are
transferred to a new task, learning again requires stochastic
actions that could break safety. Additionally, there is the risk
that the agent might forget its hazard avoidance skills during
re-training on a new task.

In other related work, Lipton et al. (2016) introduced an
approach in which a module is trained in a supervised way to
predict the probability of catastrophic events. This module
is integrated within the Q-learning objective. Another re-
cent work that implements a similar modular idea of safety
was introduced by Srinivasan et al. (2020), where a separate
critic module is pre-trained on a random policy to approxi-
mate a Q-function that predicts a likelihood of hazard viola-
tion for an action. If the probability that an action will lead
to a catastrophe exceeds a safety threshold, the probability
to execute that action is set to 0. This approach is suitable
for discreet action spaces. Bharadhwaj et al. (2020) pro-
vides an in-depth mathematical analysis of such approaches.
Our work differs in that we in effect have two policies: the
main policy and the instinct policy, both with their own ac-
tion probability distributions and a modulation signal that
can change the main policy’s output. Furthermore, our ap-
proach is applicable to continuous action spaces.

In Alshiekh et al. (2018) a system called “’shield” mon-
itors the agent’s actions and overrides them if they would
violate the pre-specified safety constraints. The safety con-
straints are specified through temporal logic. Yuan et al.
(2019) also employs goal specifications in temporal logic for
safe RL. Other approaches to safe deep RL include estimat-
ing the safety of trajectories through Gaussian process es-
timation (Fan and Li, 2019) or reducing catastrophic events
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through ensembles of neural models that capture uncertainty
and classifiers trained to recognize dangerous actions (Ken-
ton et al., 2019).

In this paper, we follow (Ray et al., 2019b) and define an
unsafe set of states as a subset of all states, S, C S. The
unsafe states represent situations or areas where we would
like to minimize or completely prevent the agent from en-
tering. For example, these states could represent walls that
the agent should not collide with because of the resulting
damage. Another example could be sidewalks and oppo-
sites lanes in the case of self-driving vehicles. While not
always damaging, the car entering those areas exposes other
traffic members to an increase risk. We would like to make
sure that the car is avoiding those areas even when trying
actions to learn a new task. We can define hazard viola-
tions as a binary variable h(s;) € 0,1, where h(s;) is 1
if the current state is undesirable, and 0 if it is not unde-
sirable. We would like to minimize the expected violation
return Vs, = E[ZZ;O h(s)] during the trajectory sampling,
while still maintaining a reasonably good performance on
the reward return Ry. The agent needs to know when it is in
a hazards’ neighborhood and to suppress the exploratory ac-
tions that can violate safety. Here, we assume that the subset
S}, stays the same across different tasks 7; and 7.

Approach: Instinct Regulated Reinforcement
Learning

Following the instinct network architecture introduced in
Grbic and Risi (2020), the agent’s neural network is divided
into two modules (Figure 1a). The first module (policy net-
work) has to learn the task, while the second module (in-
stinct network) should learn to modify the main policy’s ac-
tions when those would likely lead to safety violations.

The instinct network is pre-trained to detect hazard zones
and to engage instinctual actions to avoid them. Unlike re-
lated work (Srinivasan et al., 2020), this architecture is suit-
able for continuous action spaces. The final policy output is
determined by:

1. Following the standard way of continuous action explo-
ration in RL (Williams, 1992), the actions of the policy
network a® are noisy; the policy network outputs a mean
action a,, that is given to a distribution (usually the nor-
mal distribution) from which the output action is sampled:
al ~ N (aj;,0™), where o is part of the policy parame-
ters A7, and n denotes n'”* action dimension.

2. The instinctual network is aware of the action @’ as well

as the state observation s; at step ¢, creating the instinct
state observation s/ := (s;,al’). This is in contrast to
our previous MLIN approach (Grbic and Risi, 2020), in
which the instinct co-evolved to expect what kind of be-
havior the policy performs around hazards and therefore
did not need @’ as input. In our IR?L approach, the in-

stinct needs to work with a random policy on a task where

hazards could be distributed differently than during pre-
training; the instinct needs to know what the policy wants
to execute so it can modulate it accordingly.

3. The instinct network outputs two instinctual actions:

modulation value m; € [0,1] and the instinctual action
-1
a; € A.

4. The modulation value m; is multiplied with the policy ac-

tion vector @l giving .

5. The instinct network action @’ is multiplied with 1 — m;

giving @~ If the policy action is getting suppressed by
having m; close to 0, the instinct action can pass through
and vice versa. The final action @ is the sum of @~ and
~p*
a; .

Iterative Training Procedure

Substituted the expansive meta-learning loop in MLIN (Gr-
bic and Risi, 2020), we present a more efficient sequential
method where the instinct learns a transferable skill by be-
ing exposed to only one task. We perform pre-training in
two phases: (a) policy-only pre-training, and (b) instinct-
only pre-training (Figure 1b).

First, we train a policy on a task without any hazards and
transfer the policy to the second phase consisting of the same
type of task with added hazards. The policy is frozen, but an
instinct is introduced that has to learn to prevent the pol-
icy from colliding with hazards. We consider the second
phase to be a situation in which the agent can afford to com-
mit many hazard violations during training (e.g. training in
a simulator). The hypothesis is that after this pre-training
phase, safe learning from a random policy in safety-critical
domains should be possible by combining this policy with
the hazard-avoiding skills of the instinct. We assume that
the hazard observations are invariant between all tasks. In
more detail, the pre-training phases include:

Phase 1: Policy-only pre-training without hazards. We
train a policy network without an instinct component to
solve a task without any hazards in the environment. The
purpose of this phase is to have a policy that can perform the
task well but not safely. When transferred to the instinct pre-
training phase, it should help the instinct to collect relevant
hazard experiences.

Phase 2: Instinct pre-training. The second pre-training
phase introduces hazards to the task used in the first pre-
training phase. The policy from the first pre-training phase
is expected to do frequent hazard collisions and thus provide
abundant experiences for an instinct to learn to avoid. Dur-
ing this phase, the policy is fixed to the policy found in the
first pre-training step while the instinct is randomly initial-
ized. Unlike during later training of the policy during trans-
fer to test tasks ("Training” column in Figure 1b) in which
a random policy executes stochastic actions and the instinct
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deterministic ones, here the instinct executes stochastic ac-
tions and the policy executes deterministic ones. The goal
of the second phase is to train an instinct that stops an agent
from colliding with hazards while still giving the policy
enough flexibility to reach its goal. To achieve this task,
we designed the following instinct reward function:

ri(8i, M, e, h) = (1 — h(s) H)mgre(s;)D,  (2)

where s; is the current state observation, m; is the instinct
suppression value, 7, is the reward given for getting closer to
the goal. h(s;) = 1 if the agent collided with a hazard in the
i-th step, otherwise h(s;) = 0. The first term 1 — h(s;)H
models the safety, and is 1 if the agent is safe. If the agent
collided with a hazard, the term becomes smaller for H > 0.
If the hyperparameter H > 1 the safety term will become
negative and the instinct reward will be negative overall. The
hyperparameter H controls how harsh the instinct will be
punished for not preventing collisions with hazards and, as
a result, how conservative it will be in the end.

As a reminder, 0 < m; < 1, where m; = 1 means that
only the policy is controlling the agent, and m; = 0 means
that the instinct took complete control. The smaller m; is,
the smaller is the instinct reward, discouraging the instinct
from activating when not necessary. Since the instinct works
in combination with a policy that is efficient in reaching the
goal, the goal-reaching reward r; is there to maximize the
reward when the instinct is not active. We would like to
discourage the instinct from doing anything if the agent op-
erates within safe parts of the environment, activating only
if the agent is in danger of colliding with a hazard. Hyper-
parameter D is there to amplify the contribution of ;. We
performed a hyperparameter search on H and D and found
that H = 100 and D = 15 work best for our experiments.
The instinct was trained for 300 epochs and in each epoch,
215 trajectories were sampled.

Task environment

We test our approach on the OpenAl Safety Gym environ-
ment developed exactly for studying reinforcement learning
for safe exploration (Ray et al., 2019b). The framework pro-
vides a variety of tasks, agents, and obstacles that can be
easily rearranged and modified and is built upon MuJoCo
physics engine for robotics simulations.

The environment allows three different task types: ”goal”,
”push”, and “buttons” (Figure 2). In the “goal” task type,
the agent (red body) has to reach a green cylinder randomly
spawned in the environment. In the ’buttons” task type
there are several buttons (orange spheres) where the agent
needs to learn to press the correct button. The most com-
plex ’push” task type requires the agent to push a yellow
box in the green cylinder. The agent is challenged by a vari-
ety of obstacles that generate cost if the agent collides with
them. For the purpose of this paper, we focused only on
static "hazard zones” (blue circles) that the agent can cross

but that generate a cost for every step the agent spends within
one of them.

The agent is equipped with a set of lidars for detecting
environment elements. There is a separate set of lidars for
each element (colored crowns above the agent in Figure 2).
Each lidar set has 16 lidars distributed around the agent at
equal angles. They are represented as a vector with each
lidar observation in the range [0, 1], O when the target is
not visible and 1 when the observed object is adjacent to the
agent. Furthermore, the agent has access to its orientation
relative to the north and the central point of the map.

The agent is a floating dot that only moves on a two-
dimensional surface. The available actions are represented
by a two-dimensional vector where the first dimension rep-
resents backward/forward movement, while the second di-
mension represents left/right turning movement.

In the original Safety Gym setup, the agent sees the goal
object and the correct button with the same lidar set. Thus,
a policy trained to follow the green cylinder in the “goal”
task type, would perfectly transfers to the “buttons” task
type. To make it more challenging for the agent, we mod-
ified the original Safety Gym code to separate the lidar set
into two different sets, one for ’buttons” and one for ”goal”
task types. We also modified the frameowk to allow differ-
ent lidar ranges for hazard detection and for task elements
(box, cylinder, button). If the original range was too short,
the agent could not see goals too far away. If the lidar range
was too long, the agent would get over-saturated with haz-
ards lidar inputs in case there were a lot of hazards present in
the environment. We modified the original source code to al-
low for short lidar ranges when detecting hazards, and long-
range when detecting other elements. The episode length of
all implemented tasks is equal to 1000 steps (s = S1000)-

Task Goal. Here the agent has to reach the green cylin-
der randomly placed on the map (Figure 2a). The agent is
spawned in the center of the map at the start of each episode.
If the agent reaches the goal before the episode finishes, the
goal is placed at a different location on the map. There are
other elements on the map (yellow box and orange buttons)
but they are irrelevant to this task, so the agent needs to learn
to ignore them. The hazards are distributed in a static 5x5
grid, with the central hazard missing, equaling to 24 haz-
ards in total. Since this task is used only in the instinct
pre-training phase, we wanted to maximize the opportuni-
ties where the agent can collide with the hazard while still
being able to learn to reach the goal.

The reward is defined as the negative difference between
the agent-goal distance in this step and in the previous step.
If the agent came closer to the goal, the reward is positive.
Otherwise, the reward is negative. For each step that the
agent spends in a hazard zone, the environment hazard func-
tion h(s) returns 1, otherwise, it returns 0. The behavior of
the policy trained without hazards and the same policy after
we added the pre-trained instinct can be seen in Figure 3.
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Figure 1: Instinctual network architecture and instinct-regulated RL training procedure. (a) The topology of the policy net-
work with instinct module. Both networks receive the same input from the environment. The instinct network also takes the
sampled policy action as additional input. The instinctual network outputs an instinctual action @’ and a suppression signal
m. The suppression signal is a value between 0 and 1 that determines the magnitude of instinctual action that will be mixed in
the policy action. The suppression signal m is multiplied with policy action @ and the opposite suppression signal 1 — m is
multiplied with the instinctual action @’. Two action values are finally added, resulting in the final action @*". (b) Pre-training
and training procedures for IR’L and two baselines. 1. IR?L goes through two pre-training phases (one for the helper policy
and the other for the instinct) before it is transferred to the training tasks. 2. Pre-trained baseline is a single network adapted to
the pre-training task and transferred to the training tasks. 3. Random baseline is a randomly initialized policy network exposed

to the learning tasks.

Task Buttons. The agent is spawned in the center and has
to press the correct button out of four randomly positioned
buttons (Figure 2b). All four buttons are detectable through
one lidar set, and the correct button is visible through a sep-
arate lidar set. The buttons are fixed throughout the episode
and the next correct button is randomly chosen as soon as
the agent presses the current correct one.

There are eight randomly positioned hazards at the be-
ginning of an episode. This is the first task used to test the
hazard avoidance capabilities of the instinct network. We
would want the agent to learn to press the correct buttons
while avoiding the hazards during the training phase. The
reward is the measure of how much closer the agent is to the
correct button since the last step. The h(s) function commu-
nicates whether the agent is stepping over a hazard.

Task Push. The goal of the agent is to push the yellow
box into the goal (green cylinder) (Figure 2c). The agent
gets a reward for getting close to the yellow box and an-
other reward for closing the distance between the box and
the goal. The two rewards are summed, resulting in the final
step reward. The hazards are spawned in a 5x4 grid on the
left-hand side, while the box and the goal are located on the
right-hand side of the map. The agent is always spawned
just at the left of the hazards grid.

The hazards are fixed in a grid layout while the goal and
the box are randomly spawned in their area. The reasoning
for this layout was that in an environment where hazards,
box, goal, and the agent are uniformly distributed across the
map, it is extremely difficult for the agent to push the box
around the hazards. For that reason, we made it easier for the
agent to solve the task by decoupling the obstacles from the
task. The agent needs to clear the hazards grid to solve the
task. The environment hazard function h(s) communicates
hazard violations.

Training details

Network implementation details. For the policy network
and the instinct network, we use an advantage actor-critic
system (Konda and Tsitsiklis, 2000), where actor and critic
are two separate, fully connected neural networks with three
hidden layers of 512 neurons each and Tanh activation func-
tions. The policy gradient in the advantage actor-critic sys-
tem can be described as:

G(0) = Eg[Vglog fo(s,a)Ae(s)], 3)

where Agy(-,) is the advantage calculated from the critic
and fy(-,) is the output of the actor-network. The critic-
network is updated to minimize the temporal difference be-
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(a) Task Goal

(b) Task Buttons

(c) Task Push

Figure 2: (a) Task Goal: The agent has to reach the green cylinder while avoiding hazards (blue circles). As soon as the
agent reaches the green cylinder, the cylinder reappears on a different, randomly chosen, spot. (b) Task Buttons: There are 8
randomly distributed hazards. The agent has to reach one of the 4 randomly distributed buttons. When the agent reaches the
correct button, one of the other buttons becomes the correct one. The correct button is highlighted with a gray halo. (c¢) Task
Push: There are 20 hazards distributed in a 5x4 grid. The agent spawns in the area left of the hazard grid and has to clear the

hazards grid to push the box into the goal.

tween predicted expected return Ay(s;) at state s, and the
reward R(s;) updated return estimate: Ag(s:) — (R(s¢) +
~vAg(s¢4+1)), where -y is the reward discount hyperparameter
(Peters et al., 2005; Wu et al., 2017).

The actor outputs a mean action for a Gaussian distribu-
tion N (@, &), from which an action is sampled (Williams,
1992). The critic outputs the predicted value (predicted
future cumulative reward). The final layer of the plas-
tic policy’s actor-network has two outputs (Tanh) scaled to
[—0.1,0.1], reflecting the Safety Gym Point agent’s action
space. The instinct actor-network outputs three outputs; two
are the instinct actions reflecting the agent action space and
the last one is the instinct modulation signal m. The mod-
ulation signal is then scaled to fit the [0, 1] range. We clip
the modulation signal to [0, 1] range in case sampling from a
Gaussian distribution AV (@, 3') takes it outside the range.
RL training details. The weights of all networks imple-
mented for this paper are initialized with Kaiming uniform
initialization (He et al., 2015). Gaussian action noise pa-
rameter o is initialized to 0.6 and the learning rate is set to
0.001. In each training epoch, the sample buffer collects
216,000 state-action-reward samples which are equal to 216
trajectories/episodes. An existing PPO implementation from
Kostrikov (2018) served as a starter code for our implemen-
tation of the method. There is a set of PPO hyperparameters
needed for training: ~ discount factor (0.99), PPO clip pa-
rameter (0.2), PPO epoch number (4), value loss coefficient
(0.5), and entropy term coefficient (0.01). This configura-
tion was used for both pre-training phases and experiment
task adaptation; The implementation of our method can be
found at github.com/djole/IR2L.

Task Transfer Results

We compare the final task reward and number of collisions
during training between IR2L that uses a pre-trained in-

(b)

Figure 3: (a) A sequence of frames showing policy from
pre-train phase 1 going over a hazard in Task Goal. (b) The
same policy working in conjunction with an instinct trained
to avoid hazards in Task Goal. The instinct can learn to reg-
ulate unsafe policy actions.

stinct module and two baselines that do not use an instinct
module. The first is a random baseline, i.e. a randomly
initialized policy that has to learn Task Buttons and Task
Push from scratch. The second one represents a baseline
that is pre-training on Task Goal and then transferred to
the other two tasks. The idea is that pre-training a policy,
even without an instinct network, should reduce safety vio-
lations when learning another task afterward. The task re-
ward during experiments is 77 (s) = r¢(s) — h(s)H;, where
r+(s) is the task-type specific reward, and h(s) is a binary
function indicating hazard violations. Hyperparameter H;
is a task-specific punishment for colliding with a hazard.
The hyperparameter H; was chosen to optimize baseline’s
learning to avoid hazards while still being able to solve
the tasks. We found that H; = 1 and H; = 10 works
best for baseline training on Task Buttons and Task Push
respectively. We used the same task reward for baselines
and IR?L. Videos of the resulting behaviors can be found:
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Smoothed training reward on Task Buttons
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Figure 4: Reward and collisions during training in Task But-
tons. After each episode, we evaluate the agent on a single
episode and plot the cumulative reward. The collisions are
added over all exploratory episodes per update. All meth-
ods show comparable task rewards with IR?L consistently
avoiding hazards throughout training.

https://youtu.be/lgRvHimgvAc.

Transfer to Task Buttons. We trained the baselines and
IR2L for 300 training epochs with each epoch having 215
sampled trajectories in the training buffer (Figure 4). This
setup leads to a significant reduction in training collisions.
In case of the baseline, the noise in the training curves is
due to reward punishments caused by colliding with haz-
ards, while in case of the instinct they can be the results of
an agent unable to move, with hazards blocking the path to
the correct button. The rewards are measured on a single
episode with a deterministic policy after a weight update,
while collisions are measured during the sample collection
before the update.

The reward calculations during training (Figure 4) also in-
clude the hazard violations. To better distinguish the perfor-
mance on the task and the ability to avoid hazards, we eval-
uate the models on 50 episodes purely on the task rewards
(hazards not accounted for). The baseline agents move faster
than the IR%L agent, which is more carefully and thus re-
ceives a slightly reduced task return (Figure 5a).

In the original Safety Gym paper (Ray et al., 2019b), the
benchmarks for the vanilla “buttons” type task show cu-
mulative rewards to be 25 on average with 200 collisions
per episode on average for unconstrained methods (the task
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Figure 5: (a) Reward: Box-plot showing the cumulative
reward on 50 episodes for the final baselines and I R?L on
Task Buttons. (b) Training collisions: Box-plot showing
the cumulative collisions on 10 training runs. Median colli-
sion number for IR%L is 608. IR?L shows large reductions in
training collisions while still being able to perform the task.

reward here does not include hazards punishments). Con-
strained methods show the cumulative reward to be between
0 and 5 on average, while collisions to be 25 per episode on
average during training.

We repeated the Task Buttons experiment 10 times and
plotted the cumulative hazard collisions during the learning
period for the baseline policies and IR?L (Figure 5b). Due to
the stochastic nature of the task and imperfect instinct train-
ing during the pre-training phase, IRL performs some haz-
ard violations but shows significant improvements over the
two baselines. As expected, the pre-trained baseline shows a
significant transfer of hazard-avoiding skills to the new task
compared to the random baseline.

Transfer to Task Push. The number of training epochs
and samples is the same as for Task Buttons (Figure 6).
Training with instinct protection allows the policy to almost
completely avoid hazards. Not surprisingly, the random
baseline displays a large spike of hazard collisions at the
start of training until it start learning to avoid them. The pre-
trained baseline also shows large spikes in collisions during
training since there is nothing to protect a stochastic pol-
icy from stepping over hazards in the dense grid of hazards
present in Task Push. The task reward over training steps
shows a similar performance between all methods. Large
dips in task reward are sometimes observed during training,
which is due to the agent occasionally stepping over hazards
and receiving a punishment of H; = 10. The dips are not
visible in the “collisions” plot since the rewards are mea-
sured on a single episode with deterministic policy after a
weight update, while collisions are measured during the ex-
ploration phase before the update. The Safety Gym bench-
marks (Ray et al., 2019b) for the vanilla “push” type task
show cumulative rewards to be 7 on average with 40 colli-
sions per episode on average. Constrained methods show the
cumulative reward to be 2 on average, while collisions to be
25 per episode on average during training. The “push” task
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Figure 6: Task Button rewards and collisions during train-
ing. The approaches display a comparable task reward
with IR?L consistently avoiding hazards throughout train-
ing, while both baseline show large collision spikes at the
start of training.

implementations in Safety Gym and here are significantly
different so the numbers are not perfectly comparable.

The result of 50 evaluation episodes of the final policy is
shown in Figure 7a. The IR2L approach shows similar fi-
nal median performance on the task reward as the baselines.
The pre-trained baseline is showing better performance in
some episodes compared to the random baseline and IR%L,
likely due to a large skill transfer between Task Goal and
Task Push. We also repeated the Task Push experiment 10
times and plotted the cumulative hazard collisions during
learning for the baseline policies and IR?L (Figure 7b). The
pre-trained baseline has a strong hazard-avoiding and goal-
reaching skill transfer. Still, the IR2L method has substan-
tially better hazard-avoiding skills while maintaining similar
reward returns on average.

We observe that the random baseline policy is very quick
to clear the hazards grid and reach the box and the goal on
the other side but has a much higher risk of hitting the haz-
ards. The instinct-protected policy is, on the other hand,
more careful around the hazards grid. Figure 8 shows a
trajectory of the agent with high instinct activation within
the hazards grid, keeping the agent safe from collisions.
Even with the relaxation of the task with separate hazard
and box/goal zones, the task is challenging to learn for the
baseline and IR?L.
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Figure 7: (a) Reward: Box-plot showing the cumulative re-
ward on 50 episodes for the final baseline and IR?L on Task
Push. (b) Training collisions: Box-plot showing cumu-
lative collisions during 10 training runs. [R2L has a sig-
nificantly smaller number of collisions during training with
similar task learning capabilities than the baselines.

instinct regulation

Figure 8: Agent trajectory on the Task Push. The more red
a line segment, the more the instinct is active. Thick orange
lines indicate the box trajectory, while the green circle indi-
cates the goal location.

Discussion and Conclusion

The modular network approach is a promising avenue for
achieving safe online reinforcement learning. Without a
computationally expensive outer meta-learning loop, IR?L
shows that an instinct module can be efficiently trained that
can be transferred to multiple tasks and different policies
than the ones from a pre-training phase. Although the re-
sults are encouraging, there is still work to be done in finding
instincts with an optimal and predictable trade-off between
safety and performance, as well as better guarantees of gen-
erality in task transfer. The immediate future work involves
implementing the IR%L architecture in CARLA self-driving
vehicle (Dosovitskiy et al., 2017) to protect the car agents
during cross-task adaptations.
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