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ABSTRACT
Robots are still missing the ability to adapt to new environments.
However, biological systems are able to adapt to new environments
with ease; perhaps because they have the ability to react to en-
vironmental input during a growth phase with changes not only
in behaviour, but also morphology. Yet within the field of robots,
environmental based development of morphology is an under re-
searched area. In this paper we use an evolutionary algorithm to
evolve neural cellular automata capable of inducing environmental
based developmental plasticity in robots. We use the kinetic energy
of each cell and its neighbours as an input to our network, the out-
put of which determines the position of new cell growth. We evolve
our neural cellular automata first in three individual environments
and then also for performance in multiple environments. We show
that the networks that use environmental feedback outperform
those that do not and that by introducing environmental feedback
during development, more adaptive and better performing robots
are potentially possible.
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1 INTRODUCTION
When compared with biological systems, robots are currently sim-
ply not as adaptive. One possible reason is that nature has the ability
to adapt over different time scales; i.e., instantaneous changes in the
nervous system (learning), slower changes over the lifetime of the
organism in both its morphology and behaviour (postnatal develop-
ment), as well changes over numerous generations (evolution). Also,
advances in biology have shown the importance of environmental
feedback at every stage of adaption. For example, molecules found
in the cells of plants can be activated by light, stimulating growth of
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the stem to position leaves away from shaded areas [3]. Depending
on location of the light source the final “morphology” of the plant
is different, it has adapted to its environment. The same mechanism
is triggered by submergence of the plant in water, removing leaves
from underwater. In these instances, the same plant genotype has
been exposed to different environments and has used postnatal
development to adapt accordingly.

The concept Eco-Evo-Devo (the combination of evolution and
environmental based development) has been somewhat explored
in robotics. It is more common in development of robot control but
there are examples of morphological development. For example,
Kriegman et al. [5, 6] showed the benefits of using even a small
amount of morphological development, coupled with evolution, to
create better performing voxel-based robots. Corucci et al. [2] in-
vestigated how individual voxels could alter their respective size to
alter the overall morphology. Walker and Hauser [7] studied evolv-
ing simple rule sets that adapted the morphology and control of
simulated robots based on the SLIP model to increase the robustness
of locomotion in response to changes in the environment.

Additionally, other researchers have investigated development
of simple 2D systems using other learning approaches. For example,
Mordvintsev et al. [1], train neural cellular automata to generate
a variety of images which are able to regrow after damage. Later,
Horibe et al. [4], also use neural cellular automata to grow soft
robots that have the ability to regenerate after damage, although
these methods to do utilise environmental feedback.

In this paper, we evolve neural cellular automata that specify
the morphological development of a simple voxel-based robot. We
show that using specific feedback, in the form of kinetic energy,
from the environment as an input to our neural network, we can
evolve robots that significantly outperform those generated with-
out environmental feedback. First, we let evolution take place in
one of three vastly different environments. Then we show that
our method generates better performing, and in some cases more
morphologically adaptive robots, when evolved for performance in
two different environments.

2 METHOD
Our hypothesis is that incorporating feedback from the environ-
ment (Eco-Evo-Devo) should increase the performance of the final
generated robots.We also consider how changes in the environment
have the potential to develop a single genotype into two different
morphologies. To test this we have devised a set of experiments
that involves evolving neural cellular automata capable of growing
robots for locomotion.

Each experiment starts as a 1×4 line of active cells, at the center
of a 3D grid of size 10×10×4, simulated using the software Voxelyze.
An active cell is one with a mass, stiffness and the ability to increase
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and decrease in volume in response to an external sinusoidal control
signal. This is used as actuation for the locomotion. An active cell
also has a phase shift property, allowing expansion to be offset
between neighbouring cells. An inactive cell is an “empty space"
for which an active cell has the potential to grow in.

Growth happens episodically; after each episode (10 seconds),
the state of each cell position is queried. The kinetic energy from
the cell in question is averaged across the episode, and inputted
into the neural network, along with the average kinetic energy
from its neighbours. If not incorporating environmental feedback,
an active cell has an input to the network of 1 and an inactive cell
has an input of 0. If including feedback, the input for an active
cell is its average kinetic energy. Therefore, the robot is tested in
its environment each episode. When growing without feedback,
the robot is only tested in its environment when it has finished
growing.

The neural network has 161 synaptic weights in total and is fully
connected. There are 7 inputs nodes using the kinetic energy from
the current cell in question and its 6 immediate neighbours. There
are 3 hidden layers, each with 7 nodes, and there are no recurrent
connections. The output of the neural network has two nodes: the
state of the cell and change of cell phase shift. If the value from
the first output node is greater than a threshold, the cell becomes
active, and it is connected to at least one active neighbour. Once
a cell is active it cannot become inactive. The threshold for state
change is initially 0, it is increased by 0.05 each episode to control
growth. The second output from the neural network determines
how the value of the phase shift of an active cell should change.
Initially a cell has a phase shift of 0.

The weights of the neural network are evolved using an evolu-
tionary algorithm. For each experiment the evolutionary algorithm
was run 12 times with a randomized starting population of 30 for
200 generations. A new population was formed as thus: the top 5%
were automatically passed on to the next generation. 80% of the
new genomes were generated by adding a jittered array of normal
distribution (mean 0, std 0.05), to a randomly selected genome. The
final 15% of genomes for the next generation were randomly gen-
erated. The fitness function for the evolution was the distance the
robot travelled from its starting position in any direction. In the
cases where we evolved for performance in multiple environments
the fitness in the individual environments were ranked and then
summed.

We investigated the evolution of the neural networks in three
different environments: on a horizontal plane (flat land), in wa-
ter, and on “bumpy" ground (bumped environment) both with and
without environmental feedback. Also, optimal neural networks
were evolved for both flat Land and water and flat Land and bumpy
ground where a single neural network is required to grow robots
that are successful in both environments.

3 RESULTS AND DISCUSSION
The mean fitness for the virtual creatures tested with and without
environmental feedback for each environment are summarised in
Table 1. The 𝑃 values (calculated via T-tests with significant of

0.05) in Table 1 show that when environmental feedback is used
to grow virtual creatures the overall final morphologies perform
significantly better.

Environment With
Feedback

Without
Feedback

P
Value

Mean 𝜎2 Mean 𝜎2

Land 75 70 85 201 0.02
Water 25 9 28 7 0.001
Bumped 50 142 67 348 0.01

Land + Bumped 106 427 133 545 0.03
Land + Water 44 213 64 434 0.048

Table 1: Summary of the mean fitness for the virtual crea-
tures tested with and without environmental feedback for
each environment.

Not only do the robots that develop with environmental feedback
outperform those that develop without, in some cases they are also
able to change their morphology depending on the environment
(e.g., Figure 1). Thus one neural network is able to produce two
different morphologies. However, the change in morphology is
relatively small and this is a limitation of our work.

Figure 1: Our results show that using environmental feed-
back in the growth process allows robots to adapt during
their lifetimes to different environments.

Our work demonstrates that robots capable of environmental-
based growth are capable of outperforming those without this
ability. It also lays some groundwork for a future of morphologically
diverse and adapting robots.
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