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Fine-grained reductions
from approximate counting to decision

HOLGER DELL, Goethe University Frankfurt, Germany, IT University of Copenhagen, Denmark, and Ba-
sic Algorithms Research Copenhagen (BARC), Denmark
JOHN LAPINSKAS, University of Bristol, UK

In this paper, we introduce a general framework for fine-grained reductions of approximate counting prob-
lems to their decision versions. (Thus we use an oracle that decides whether any witness exists to multi-
plicatively approximate the number of witnesses with minimal overhead.) This mirrors a foundational result
of Sipser (STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomial-time setting, and a similar result
of Miiller IWPEC 2006) in the FPT setting. Using our framework, we obtain such reductions for some of
the most important problems in fine-grained complexity: the Orthogonal Vectors problem, 3SUM, and the
Negative-Weight Triangle problem (which is closely related to All-Pairs Shortest Path). While all these prob-
lems have simple algorithms over which it is conjectured that no polynomial improvement is possible, our
reductions would remain interesting even if these conjectures were proved; they have only polylogarithmic
overhead, and can therefore be applied to subpolynomial improvements such as the n®/exp(©(+/log n))-time
algorithm for the Negative-Weight Triangle problem due to Williams (STOC 2014). Our framework is also
general enough to apply to versions of the problems for which more efficient algorithms are known. For ex-
ample, the Orthogonal Vectors problem over GF (m)? for constant m can be solved in time n - poly(d) by a
result of Williams and Yu (SODA 2014); our result implies that we can approximately count the number of
orthogonal pairs with essentially the same running time.

We also provide a fine-grained reduction from approximate #SAT to SAT. Suppose the Strong Exponential
Time Hypothesis (SETH) is false, so that for some 1 < ¢ < 2 and all k there is an O(c")-time algorithm for
k-SAT. Then we prove that for all k, there is an O((c + 0(1))")-time algorithm for approximate #k-SAT. In
particular, our result implies that the Exponential Time Hypothesis (ETH) is equivalent to the seemingly-
weaker statement that there is no algorithm to approximate #3-SAT to within a factor of 1+¢ in time 2°(") /¢2
(taking ¢ > 0 as part of the input).

CCS Concepts: » Theory of computation — Problems, reductions and completeness; Graph algorithms anal-
ysis; « Mathematics of computing — Graph algorithms.

Additional Key Words and Phrases: Fine-grained complexity, Approximate Counting, Satisfiability

1 INTRODUCTION

Itis clearly at least as hard to count objects as it is to decide their existence, and often it is harder. For
a concrete example, there is a polynomial-time algorithm to find a perfect matching in a bipartite
graph if one exists, but computing the exact number of all perfect matchings is a #P-complete
problem [32], which means that solving it in polynomial time would collapse the polynomial-time
hierarchy [30]. However, the situation changes substantially if we consider approximate rather
than exact counting. For all real ¢ with 0 < ¢ < 1, we say that x € R is an e-approximation to
N e Rif |[x — N| < ¢N holds. Since the approximation guarantee is multiplicative, computing
an e-approximation to N is at least as hard as deciding whether N > 0 holds. In fact, these two
tasks are often roughly equally hard, and indeed this is true for our example: Jerrum, Sinclair, and
Vigoda [20] proved that an e-approximation to the number of perfect matchings in a bipartite graph
can be computed in polynomial time. While there is a polynomial-time algorithm to find perfect
matchings in bipartite graphs and one to approximately count them, there is still an important
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discrepancy: The former algorithm runs in quasi-linear time while the latter runs in time 72 -

O(n').

This paper is concerned with fine-grained complexity, in which one considers the exact running
time of an algorithm rather than broad categories such as polynomial time, FPT time, or subex-
ponential time. Reductions that solve an approximate counting problem by means of an oracle
for its decision version have been studied already in various different contexts. Sipser [27] and
Stockmeyer [28] proved implicitly that every problem in #P has a polynomial-time randomised
e-approximation algorithm that has access to an NP-oracle; the result is later made explicit by
Valiant and Vazirani [33]. In parameterised complexity, Miller [22] proved an analogue of this
result for the W-hierarchy: In particular, for every problem in #W[1], there is a randomised algo-
rithm that has access to some W[1]-oracle, runs in time f(k) - poly(n,e™!) for some computable
f : N — N, and outputs an e-approximation to the problem. Finally, in the exponential-time
setting, Thurley [29] proposed a reduction for k-SAT that implies: If there is an O*(21=9")-time
algorithm for k-SAT for some § > 0, then there is an e-approximation algorithm for #k-SAT that
runs in time ¢72 - 0*(2(1%/2") (This reduction was later improved by Schmitt and Wanka [25].)
Such results are an important foundation of the wider complexity theory of approximate counting
initiated by Dyer, Goldberg, Greenhill and Jerrum [12]. However, all of these reductions introduce
significant overheads to the running time — they are not fine-grained.

Perhaps the most important polynomial-time problems in fine-grained complexity are orthog-
onal vectors (OV), 3SUM, and all-pairs shortest paths (APSP). All three problems admit well-
studied notions of hardness, in the sense that many problems reduce to them or are equivalent
to them under fine-grained reductions, and they are not known to reduce to one another. See Vas-
silevska Williams [34] for a recent survey. It is not clear what a “canonical” counting version of
APSP should be, but it is equivalent to the Negative-Weight Triangle problem (NWT) under sub-
cubic reductions [35], so we consider this instead. We give highly efficient fine-grained reductions
from approximate counting to decision for all three problems. All of these results are immediate
corollaries of an algorithm which counts edges in a bipartite graph to which it has limited oracle ac-
cess; this algorithm has several additional applications, including some new approximate counting
algorithms for related problems. We discuss our edge-counting framework further in Section 1.1,
and describe its applications in Section 1.2 together with a detailed overview of the literature.

The most important exponential-time problem in fine-grained complexity is unequivocally SAT.
We provide a fine-grained reduction from approximate #k-SAT to O(k log? k)-SAT as k — co; as
a corollary, we show that if the Strong Exponential Time Hypothesis (SETH) is false, then the sav-
ings from decision k-SAT as k — co can be passed on to approximate #k-SAT with subexponential
overhead. Our reduction also implies that the Exponential Time Hypothesis (ETH) is equivalent
to an approximate counting version. We discuss the reduction and its corollaries further in Sec-
tion 1.3.

1.1 Approximately Counting Edges in Bipartite Graphs

Let G be a bipartite graph with G = (U, V, E). We consider a computation model where the algo-
rithm is given U and V, and can access the edges of the graph only via its adjacency oracle and its
independence oracle:

e The adjacency oracle of G is the function adj; : U X V — {0,1} such that adj;(u,v) = 1if
and only if (u,v) € E.

e The independence oracle of G is the function indg : 2Y"V — {0,1} such that indg(S) = 1 if
and only if S is an independent set in G.
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Of course, the adjacency oracle can be simulated with the independence oracle by querying sets of
two vertices. We distinguish them here, because we wish to think of independence queries as very
expensive, and we will use them only polylogarithmically often. Our main result is as follows:

THEOREM 1. There is a randomised algorithm A which, given a rational number ¢ with 0 <
¢ < 1 and oracle access to an n-vertex bipartite graph G, outputs an e-approximation of |E(G)|
with probability at least 2/3. Moreover, A runs in time e - O(nlog* nloglog n) and makes at most
¢72 - 0(log’ nloglogn) calls to the independence oracle.

We prove this result in Section 4. Note that since oracle calls are constant time operations, the
adjacency oracle is called at most 72 - O(n) times. Moreover, a polynomial factor of ™! in the
running time is to be expected, since the exact value of |E(G)| can be recovered by taking ¢ =
1/(2n?).

In independent work, Beame et al. [3] obtain a result similar to Theorem 1, with an overall
running time of e~*- O(1) but with no further bound on the number of independence queries used.
Thus their result outperforms Theorem 1 when independence queries are fast, and underperforms
when they are slow. In all our applications, independence queries are so slow as to dominate our
running times; thus substituting Beame et al’s result for Theorem 1 would yield worse algorithms.

While Theorem 1 is not able to deal with the non-bipartite case at all, Beame et al. [3] present
a second algorithm in their paper that is able to approximately count edges in general graphs
by using O(n?/?) queries to the independence oracle. Recently, Chen, Levi, and Waingarten [10]
improve the number of queries to O(+/n) and prove unconditionally that this is optimal for general
graphs.

In work subsequent to this paper, using a different technique, the authors and Meeks [11] were
able to remove the adjacency queries from Theorem 1 while retaining a bound of £~ logo(l) n for
the number of independence queries. Moreover, they generalise the theorem to k-partite k-uniform
hypergraphs, where the bound on the number of queries is at most £72 logO“‘) n, and extend the
result to cover approximately-uniform sampling. This generalisation has consequences for the
fine-grained complexity of problems that do not directly correspond to bipartite graphs, such as
approximately counting graph motifs. Independently, Bhattacharya et al. [4, 5] generalise Theo-
rem 1 to k-partite k-uniform hypergraphs, obtaining a somewhat weaker bound of ¢* logo(k) n
on the number of queries. Moreover, Bishnu et al. [6] use the generalised oracle to solve various
decision problems in parameterised complexity.

1.2 Corollaries for Problems in P

As described in Section 1, the problems Orthogonal Vectors (OV), 3SUM, and Negative-Weight Tri-
angle (NWT) are central players in the field of fine-grained complexity. All three problems have
simple polynomial-time exhaustive-search algorithms over which it is conjectured that no truly
polynomial improvement is possible. The same exhaustive search algorithms also solve the canon-
ical counting versions of these problems. Nevertheless it is possible that the decision version has
faster algorithms while the exact counting version does not. Our results imply that any improve-
ment to decision algorithms transfers to the approximate counting version of the problem as well,
up to polylogarithmic factors in the running time.

In fact, for OV [1] and NWT [37], non-trivial (subpolynomial) improvements over exhaustive
search algorithms are already known. Our results transfer these improvements to approximate
counting. In the case of the standard version of OV, this turns out to be uninteresting as the deran-
domisation of [1] due to Chan and Williams [9] already solves the exact counting version. How-
ever in the case of NWT, we are not aware of improved algorithms for the counting version; using
our reduction, we obtain such an algorithm for approximate counting. Our reductions also apply
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to several variants of the three central problems, yielding more new algorithms. Notably, for one
variant of OV we obtain a quasilinear-time approximate counting algorithm, but all exact counting
algorithms require quadratic time under SETH. In the following, we state our results formally.

1.2.1  OV. In the orthogonal vectors problem OV, we are given two lists A and B of zero-one
vectors over R?, and must determine whether there exists an orthogonal pair (a,b) € AX B. In
#0V, we must instead determine the number of orthogonal pairs. Writing n = |A|+|B|, it is easy to
see that OV and #OV can both be solved in O(n?d) operations by iterating over all pairs. The low-
dimension OV conjecture [14, 36] asserts that in the case where d = w(log n), there is no randomised
algorithm that solves OV in time O(n?~?), for any constant § > 0. This conjecture is implied by
the Strong Exponential Time Hypothesis (SETH) [36], and Abboud, Williams, and Yu [1] proved
that it fails when d = O(log n).

To reduce the approximate version of #0V to OV, we model the instance as a bipartite graph and
apply the edge estimation algorithm from Theorem 1. Indeed, the list A becomes the left side of
the graph, B the right side, and each orthogonal pair (a, b) becomes an edge. Then approximately
counting orthogonal pairs reduces to estimating the number of edges in this graph, adjacency
queries take time O(d) and correspond to computing the inner product of two vectors, and inde-
pendence queries are simulated by invoking the assumed decision algorithm for OV. In this way,
in Section 5.2 we obtain the following structural complexity result as a corollary to Theorem 1.

THEOREM 2. If OV with n vectors in d dimensions has a randomised algorithm that runs in time
T(n,d), then there is a randomised e-approximation algorithm for #OV that runs in time T (n,d) -
£720(log® nloglogn).

In particular, if ¢! is at most polylogarithmic in n, Theorem 2 implies we can e-approximate

#0V with only polylogarithmic overhead over decision.

While OV has a non-trivial algorithm [1] with running time n?~/©(log(d/logm) 45 we mentioned
in Section 1.2, it has already been adapted into an exact #OV algorithm with the same running
time [9], so Theorem 2 does not yield a new algorithm at the moment. However, any further im-
provement for the decision version of the problem will immediately translate to a new approximate
counting algorithm.

Interestingly, there is a variant of OV for which our method does yield a new algorithm; in
this variant, the real zero-one vectors are replaced by arbitrary vectors over a finite field or over
the integers modulo m. Even though Williams and Yu [39] did not consider the counting version
and their algorithms do not seem to generalise to counting, we can nevertheless use their decision
algorithm as a black box to obtain an efficient approximate counting algorithm as a corollary to
Theorem 1.

THEOREM 3. Let m = pX be a constant prime power. There is a randomised e-approximation algo-
rithm for #OV over GF (m)¢ with running time e 2dP~V% . O(n), and for #OV over (Z/mZ)? with
running time e 2d™™' - O(n).

If ¢! and d are at most polylogarithmic in n, and m is constant, these algorithms run in quasilin-
ear time. Note that under SETH, any exact counting algorithm for #OV over (Z/mZ)? requires time
Q(n?*°W) [38]; we have therefore proved a separation between approximate and exact counting.
(As an aside, this implies that the factor of £~2 in the running time of Theorem 1 cannot be dropped
to e~/2*°() under SETH.) Williams and Yu showed that their algorithm’s dependence on d is close
to best possible under SETH, and this hardness result of course applies to approximate counting
as well.
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1.2.2  3SUM. In the 3SUM problem, we are given three integer lists A, B, and C of total length n
and must decide whether there exists a tuple (a,b,c) € A X B X C with a+ b = c. One popular
extension is 3SUM+, due to Vassilevska Williams and Williams [35], which asks for 3SUM to be
solved for all inputs (A, B, ¢) with ¢ € C. However, as we are specifically concerned with counting
problems, we instead consider the problem #3SUM, where we must compute the total number of
solution tuples (a, b, c).

It is easy to see that 35UM and #3SUM can be solved in O(n?) operations by sorting C and
iterating over all pairs in A X B, and it is conjectured [13, 23] that 3SUM admits no O(n?~%)-time
randomised algorithm for any constant § > 0. This approach is also how we model instances
of 3SUM as a bipartite graph in order to do approximate counting. Joining two vertices a and b
whenever a + b € C, adjacency queries can be answered efficiently by binary search on the now-
sorted list C, and independence queries on a set S € AUB can be answered by the assumed decision
algorithm. Analogous to Theorem 2, in Section 5.1 we obtain the following structural result for
3SUM as a corollary to Theorem 1.

THEOREM 4. If3SUM with n integers has a randomised algorithm that runs in time T (n), then there
is a randomised e-approximation algorithm for #3SUM that runs in time T(n) - ¢~20(log® nloglog n).

Thus if ¢! is at most polylogarithmic in n, then the approximate counting algorithm in The-
orem 4 has only polylogarithmic overhead over decision. Independently of whether or not the
3SUM conjecture is true, we conclude that 3SUM and, say, %—approximating #3SUM have the same
time complexity up to polylogarithmic factors.

The fastest-known algorithm for 3SUM, due to Baran, Demaine and Patrascu [2], has running
time O(n?(loglog n/log n)?). Theorem 4 does not currently yield improved algorithms for approxi-
mating #3SUM as the polylogarithmic speedup factor of o(log® n) over exhaustive search is smaller
than the O(log® nloglog n) cost in our reduction. However, Chan and Lewenstein [8] prove that
3SUM has much faster algorithms when the input is restricted to instances in which elements of
one list are somewhat clustered, in a sense made explicit below. (Their algorithm also works for
3SUM+, but not for #3SUM as far as we can tell.) This is an interesting special case with several
applications, including monotone multi-dimensional 3SUM with linearly-bounded coordinates —
see the introduction of [8] for an overview. Thus by using the algorithm of Chan and Lewenstein
as a black box for the independence oracle, we obtain the following algorithm as a corollary to
Theorem 1.

THEOREM 5. For all § > 0, there is a randomised e-approximation algorithm with running time
£72 . 0(n*7%17) for instances of #3SUM with n integers such that at least one of A, B, or C may be
covered by n'~? intervals of length n.

1.2.3 NWT. In the Negative-Weight-Triangle problem, we are given an edge-weighted graph and
must decide whether the graph contains a triangle of negative total weight. Vassilevska Williams
and Williams [35] prove that NWT is equivalent to APSP under subcubic reductions. An n-vertex
instance of NWT and its natural counting version #NWT can be solved in time O(n®) by exhaus-
tively checking every possible triangle, and it is conjectured [35] that NWT admits no O(n*~9)-
time randomised algorithm for any constant § > 0.

To reduce approximate #NWT to its decision version NWT, we put all vertices on one side of
the bipartite graph and all edges on the other side. Then adjacency queries correspond to testing
whether a given vertex and edge together form a triangle of negative weight, and independence
queries can be answered by the assumed decision algorithm for NWT. Thus in Section 5.3 we
obtain the following structural result for NWT as a corollary to Theorem 1.
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THEOREM 6. IfNWT for n-vertex graphs has a randomised algorithm that runs in time T (n), then
there is a randomised e-approximation algorithm for #NW'T that runs in time

T(n) - e 20(log® nloglogn) .

Thus if 7! is at most polylogarithmic, our algorithm has only polylogarithmic overhead over
decision. Itis known [35] that a truly subcubic algorithm for NWT implies that the negative-weight
triangles can also be enumerated in subcubic time. While an enumeration algorithm is obviously
stronger than an approximate counting algorithm, this reduction has polynomial overhead and so
does not imply Theorem 6.

Williams [37] gives an algorithm with subpolynomial improvements over the exhaustive search
algorithm. Using this algorithm as a black-box to answer independence queries, we obtain the
following algorithm as a corollary to Theorem 1.

THEOREM 7. There is a randomised e-approximation algorithm for #NWT which runs in time

e72n3 e (V18 on graphs with n vertices and polynomially bounded edge-weights.

1.3  Our results for the satisfiability problem

In k-SAT we are given a k-CNF formula with n variables and must decide whether it is satisfiable.
In the natural counting version #k-SAT, we must compute the number of satisfying assignments.
The phenomenon that decision, approximate counting, and exact counting seem to become pro-
gressively more difficult is nicely represented in the literature: The most efficient known 3-SAT
algorithms run in time O(1.308") for decision (Hertli [15]), in time O(1.515") for %-approximate
counting (Schmitt and Wanka [25]), and in time O(1.642") for exact counting (Kutzkov [21]).

Schmitt and Wanka’s algorithm is based on an approach of Thurley [29]. They reduce approxi-
mate counting to decision in such a way that an O*(2(!=%)")-time algorithm for k-SAT is turned
into an e-approximation algorithm for #k-SAT that runs in time ¢ 2 - 0*(2(1=%)") for some 8 /2 <
8, < O In the most general form of their algorithm, §; depends on a complicated parameterisa-
tion and is calculated on an ad hoc basis for k = 3 and k = 4, so no asymptotics of §, — & are
available; the slightly weaker form given in Section 4 of their paper satisfies §; — /2 as k — oo.
Thus the exponential savings over exhaustive search go down from &y for decision to roughly & /2
for approximate counting. For example, in the extreme case that Impagliazzo and Paturi’s [17] ex-
ponential time hypothesis (ETH) is false and 3-SAT can be solved in time 2°(", their reduction
would only yield an exponential-time algorithm for #3-SAT.

Traxler [31] constructs a reduction from approximate counting to decision, in which savings of §
for decision become & — o(1) for approximate counting, so by this metric the reduction is efficient.
However, this reduction creates clauses of width Q(log n) and so is not suitable for k-SAT when k
is a constant.

We adapt the Valiant-Vazirani style approach of Calabro, Impagliazzo, Kabanets, and Paturi 7]
to obtain a reduction from approximate #k-SAT to k’-SAT, with a trade-off between keeping k’
close to k versus keeping the cost of the reduction low. At the extremes, writing n for the number
of variables in the #k-SAT instance, it implies a reduction from approximate #k-SAT to k-SAT
with exponential overhead 20Uog’k/k)n_or 4 reduction from approximate #k-SAT to O(k log?® k)-
SAT with subexponential overhead. We formally state this reduction as Theorem 13 in Section 3.

Our reduction yields interesting structural corollaries for ETH and SETH. Recall that SETH is
false if and only if there exists some § > 0 such that k-SAT can be solved in time O(2(!~%") for all
constants k. Our reduction implies not only that SETH is equivalent to its approximate counting
version (which is also implied by [25] and [29]), but also that the exponential savings § must be
the same:
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THEOREM 8. Let 0 < § < 1. Suppose that for all k € N, there is a randomised algorithm which
runs on n-variable instances of k-SAT in time O(2(1=9"). Then for all & > 0 and all k € N, there
is a randomised e-approximation algorithm which runs on n-variable instances of #k-SAT in time
e2. O(z(l—§+5’)n).

By the sparsification lemma [18], ETH is false if and only if k-SAT can be solved in time O(2°")
for all constant § > 0 and k. Since approximate counting always implies decision, ETH clearly
implies its seemingly-weaker approximate counting formulation. By letting § increase to 1 in The-
orem 8, we see that the converse is also true:

THEOREM 9. ETH is false if and only if;, for every k € N and § > 0, there is a randomised -
approximation algorithm that runs on n-variable instances of #k-SAT in time e% - O(2°).

It remains an open and interesting question whether a result analogous to Theorem 8 holds
for fixed k, that is, whether deciding k-SAT and approximating #k-SAT have the same time com-
plexity up to a subexponential factor. Even a small improvement on Theorem 13 would lead to
new algorithms for approximate #k-SAT. Indeed, for large constant k, the best-known decision, %—
approximate counting, and exact counting algorithms (due to Paturi, Pudlak, Saks, and Zane [24],
Schmitt and Wanka [25], and Impagliazzo, Matthews, and Paturi [16], respectively) all have run-
ning time 2(1=®/k)n byt with progressively worse constants in the exponent. If our reduction
from approximate #k-SAT to k-SAT could be improved so that the exponential overhead were
20(1/k) instead of 20((108k)*/0) | this would yield faster approximate counting algorithms for large
but constant k.

1.4 Techniques
Our techniques for the CNF-SAT and the fine-grained results are independent from each other.

CNF-SAT results. We first discuss Theorems 8 and 9, which we prove in Section 3. In the poly-
nomial setting, the standard reduction from approximating #k-SAT to deciding k-SAT is due to
Valiant and Vazirani [33], and runs as follows. If a k-CNF formula F has at most 2%” solutions for
some 8 > 0, then we use a standard branching algorithm with O*(2%") calls to a k-SAT-oracle to
prune the search tree to size O(2°"). Otherwise F has many solutions, and for any m € N, one may
form a new formula F,, by conjoining F with m independently-chosen uniformly random XOR
clauses. It is relatively easy to see that as long as the number SAT(F) of satisfying assignments
of F is substantially greater than 2™, then SAT(F,,) is concentrated around 2~™SAT(F). By choos-
ing m appropriately, one may reduce SAT(F,,) to below 2% and thus compute SAT(F,,) exactly,
then multiply it by 2™ to obtain an estimate for SAT(F).

Unfortunately, this argument requires modification in the exponential setting. If F has n vari-
ables, then each uniformly random XOR has length ©(n) and therefore cannot be expressed as
a k-CNF formula without introducing Q(n) new variables. It follows that (for example) F|, /2
will contain @(n?) variables. This blowup is acceptable in a polynomial setting, but not an expo-
nential one — for example, given a @(2"2/3)—time algorithm for k-SAT, it would yield a useless
@(2"4/3)-time randomised approximate counting algorithm for #k-SAT. We can afford to add only
constant-length XORs, which do not in general result in concentration in the number of solutions.

We therefore make use of a hashing scheme developed by Calabro, Impagliazzo, Kabanets, and
Paturi [7] for a related problem, that of reducing k-SAT to Unique-k-SAT. They choose a 2s-sized
subset of [n] uniformly at random, where s is a large constant, then choose variables independently
at random within that set. This still does not yield concentration in the number of solutions of F,,
but it turns out that the variance is sufficiently low that we can remedy this by summing over
many slightly stronger independently-chosen hashes.
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Fine-grained results. We now sketch the proof of Theorem 1, which we prove in Section 4. Given
a bipartite graph with G = (U, V,E) and X C V, we write d(X) for the number of edges incident
to X. For all X C V, we may halve 9(X) in expectation simply by removing half the vertices in
X chosen independently at random. Moreover, if d(X) is sufficiently small, we may use binary
search to efficiently determine d(X) exactly. Thus, as with Theorems 8 and 9, we might hope to
implement the classical approach of Valiant and Vazirani [33]; start with X = V (so that 9(X) =
e(G)), repeatedly approximately halve 9(X) until it is small enough to determine exactly, then
multiply by the appropriate power of 2 and output the result.

Unfortunately, this naive algorithm may fail. For example, if the non-isolated vertices of G form
a star whose central vertex lies in V, then the new value of 9(X) is clearly not concentrated around
its expectation; it is either unchanged or reduced to zero. In Lemma 19, we show using martingale
techniques that this is essentially the only way things can go wrong. We say X is balanced if no
single vertex in X is incident to a large proportion of the edges in G[U UX] (see Definition 18), and
Lemma 19 shows that if X is balanced then with high probability we can approximately halve 9(X)
by deleting half of X uniformly at random.

We therefore proceed by finding a small set of vertices which “unbalances” X if one exists,
approximately counting the edges incident to them, and removing them from X. We repeat this
process as necessary until X becomes balanced, then delete half of what remains. At the end, we
approximate e(G) by taking an appropriate linear combination of our edge counts at each stage.
However, since our access to the graph is limited, it is non-trivial to find the “unbalancing” vertices.
We must also show that we do not remove too many vertices in this way, as finding edges by brute
force is computationally expensive. Our algorithm is essentially given by EdgeCount on p. 16, with
some trivial modifications as described in the proof of Theorem 1.

2 PRELIMINARIES
2.1 Notation

We write N for the set of all positive integers. For a positive integer n, we use [n] to denote the set
{1,...,n}. We use log or In to denote the base-e logarithm, and 1g to denote the base-2 logarithm.

We consider graphs G to be undirected, and write e(G) = |E(G)|. For all v € V(G), we use
N(v) to denote the neighbourhood {w € V(G) : {v,w} € E(G)} of v. For all X C V(G), we
define N(X) = U,ex N(v). We define 9(X) to be the size of the edge boundary of X, that is,
d(X) = |{e € E(G) | |e N X| = 1}]. For convenience, we shall generally present bipartite graphs G
as a triple (U, V, E) in which (U, V) is a partition of V(G) and EC U X V.

When stating quantitative bounds on running times of algorithms, we assume the standard
word-RAM machine model with logarithmic-sized words. We assume that lists and functions in
the problem input are presented in the natural way, that is, as an array using at least one word per
entry, and we assume that numerical values such as the edge weights in NWT are given in binary.
We shall write f(x) = é(g(x)) when for some constant ¢ € R, f(x) = O((log x)¢g(x)) as x — oo.
Similarly, we write f(x) = O*(g(x)) when for some constant ¢ € R, f(x) = O(x°g(x)) as x — oo.

We require our problem inputs to be given as finite binary strings, and write X* for the set of all
such strings. A randomised approximation scheme for a function f : ¥* — N is a randomised algo-
rithm that takes as input an instance x € X* and a rational error tolerance 0 < ¢ < 1, and outputs
a rational number z (a random variable depending on the “coin tosses” made by the algorithm)
such that, for every instance x, P((1 —¢)f(x) < z < (1+¢)f(x)) = 2/3. All of our approximate
counting algorithms will be randomised approximation schemes.
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2.2 Probability theory
We use some results from probability theory, which we collate here for reference. First, we state
Chebyshev’s inequality.
LEMMA 10. Let X be a real-valued random variable with mean p and lett > 0. Then
Var(X)
12

IP’(|X = t) <
We also use the following concentration result due to McDiarmid [26].

LeEMMA 11. Let f be a real function of independent random variables X1, ..., X, and let p =
E(f(X1,...,Xm))- Letcy,...,cm > 0 such that, for alli € [m] and all pairs (x, x") differing only in
the ith coordinate, we have |f(x) — f(x’)| < c;. Then for allt > 0,

P(f(X1,..., Xm) — p| > t) < 2e 2 /2 i, o

Finally, we use the following Chernoff bounds, proved in (for example) Corollaries 2.3-2.4 and
Remark 2.11 of Janson, Luczak and Rucinski [19].

LEMMA 12. Let X be a binomial or hypergeometric random variable with mean p.

(i) Forall e with0 < ¢ < 3 we have P(X —p| > ep) < 2~ € /3.
(ii) For all t witht > 7y, we have P(X > t) < e’ 0

3 FROM DECISION TO APPROXIMATE COUNTING CNF-SAT

In this section we prove our results for the satisfiability of CNF formulae, formally defined as
follows.

Problem k-SAT expects as input: A k-CNF formula F.
Task: Decide if F is satisfiable.

Problem #k-SAT expects as input: A k-CNF formula F.
Task: Compute the number SAT(F) of satisfying assignments of F.

We also define a technical intermediate problem. For all s € N, we say that a matrix A is s-sparse
if every row of A contains at most s non-zero entries. In the following definition, k € Nand s € N
are constants.

Problem IIj ; expects as input: An n-variable Boolean formula F of the form F(x) =
F’(x) A (Ax = b). Here F’ is a k-CNF formula, A is an s-sparse m X n matrix over GF (2)
with 0 < m < n,and b € GF (2)™.

Task: Decide if F is satisfiable.

We define the growth rate my s of Iy s as the infimum over all § > 0 such that IT;; has a ran-
domised algorithm that runs in time O*(2™) and outputs the correct answer with probability at
least 2/3. Our main reduction is encapsulated in the following theorem.

THEOREM 13. Letk € N withk > 2,let0 < § < 1, and let s > 1201g%(6/5)/5. Then there is
a randomised approximation scheme for #k-SAT which, when given an n-variable formula F and
approximation error parameter ¢, runs in time 2 - O(Z(”kv“‘s)").
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Before we prove this theorem, let us derive Theorems 8 and 9 as immediate corollaries. In both
cases, we use the fact that the condition Ax = b can be expressed as an s-CNF formula with m2s~1
clauses, and thus 7 s < Tmax(k.s},0 holds for all constant k, s.

THEOREM 8 (RESTATED). Let0 < § < 1. Suppose that for allk € N, there is a randomised algorithm
which runs on n-variable instances of k-SAT in time O(2(*~"). Then for all & > 0 and all k € N,
there is a randomised e-approximation algorithm which runs on n-variable instances of #k-SAT in
time e~ - O(2(1-0+)m),

Proor. Let § > 0 be as specified in the theorem statement. Then for all constant k,s € N, we
have 7 s < Tmax{ks}y,0 < 1 — 8. The result follows by Theorem 13 with s = 120 1g%(6/58") /8. O

THEOREM 9 (RESTATED). ETH is false if and only if, for everyk € N and d > 0, there is a randomised
e-approximation algorithm that runs on n-variable instances of #k-SAT in time e™% - O(2°™).

Proor. The backward implication is immediate: Any randomised %—approximation scheme for
#3-SAT is able to decide 3-SAT with success probability at least 2/3. For the forward implication,
assume ETH is false. By the sparsification lemma [18, Lemma 10], we then have 7x o = 0 for all k €
N. Hence for all k, s € N, we obtain 7y s < Zmax{k,s},0 = 0. The result now follows by Theorem 13.

m]

3.1 Proof of Theorem 13

Given access to an oracle that decides satisfiability queries, we can compute the exact number of
solutions of a formula with few solutions using a standard self-reducibility argument given below
(see also [29, Lemma 3.2]).

Algorithm CountFew(F, a): Given an instance F of Iy s on n variables, a € N, and access to an
oracle for I s, this algorithm computes SAT(F) if SAT(F) < a; otherwise it outputs FAIL.

1 (Query the oracle) If F is unsatisfiable, return 0.

2 (No variables left) If F contains no variables, return 1.

3 (Branch and recurse) Let Fy and F; be the formulae obtained from F by setting the first free
variable in F to 0 and 1, respectively. If CountFew(Fy, a) + CountFew(Fi, a) is at most a, then
return this sum; otherwise abort the entire computation and return FAIL.

LEMMA 14. CountFew is correct and runs in time at most (min{a, SAT(F)} + 1) - O(|F|). Moreover,
each oracle query is a formula with at most n variables.

ProoF. The correctness of CountFew follows by induction from SAT(F) = SAT(Fy) + SAT(F,).
For the running time, consider the recursion tree of CountFew on inputs F and a. At each vertex,
the algorithm takes time at most O(|F]) to compute F, and Fy, and it issues a single oracle call. For
convenience, we call the leaves of the tree at which CountFew returns 0 in Step 1 or 1 in Step 2
the 0-leaves and 1-leaves, respectively. Let x be the number of 1-leaves. Each non-leaf is on the
path from some 1-leaf to the root, otherwise it would be a 0-leaf. There are at most x such paths,
so there are at most nx non-leaf vertices in total. Finally, every 0-leaf has a sibling which is not a
0-leaf, or its parent would be a 0-leaf, so there are at most (n + 1)x 0-leaves in total. Overall, the
tree has at most 4nx vertices. An easy induction using Step 3 implies that x < 2a, and certainly
x < SAT(F), so the claimed running time is correct. O

When our input formula F has too many solutions to apply CountFew efficiently, we first reduce
the number of solutions by hashing. In particular, we use the same hash functions as Calabro et
al. [7]; they are based on random sparse matrices over GF (2) and formally defined as follows:
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DEFINITION 15. Lets,m,n € N. An (s, m, n)-hash is a random m X n matrix A over GF (2) defined
as follows. For each row i € [m], let R; be a uniformly random size-s subset of [n]. Then for alli € [m]
and all j € R;, we choose values A; j € GF (2) independently and uniformly at random, and set all
other entries of A to zero.

For intuition, suppose that F is an n-variable k-CNF formula, S is the set of satisfying assign-
ments of F, and |S| > 29" holds for some small § > 0. It is easy to see that, for all m,s € N and
uniformly random b € GF (2)™, if A is an (s, m, n)-hash, then the number X of satisfying assign-
ments of F(x) A (Ax = b) has expected value |S|/2™. (See Lemma 16.) If X were concentrated
around its expectation, then by choosing an appropriate value of m, we could reduce the number
of solutions to at most 2°7, apply CountFew to count them exactly, then multiply the result by 2™ to
obtain an approximation to |S|. This is the usual approach pioneered by Valiant and Vazirani [33].

In the exponential setting, however, we can only afford to take s = O(1), which means that X
is not in general concentrated around its expectation. In [7], only very limited concentration was
needed, but we require strong concentration. To achieve this, rather than counting satisfying as-
signments of a single formula F(x) A (Ax = b), we will sum over many such formulae. We first
bound the variance of an individual (s, m, n)-hash when s and S are suitably large. Our analysis

2511

here is similar to that of Calabro et al. [7], although they are concerned with lower-bounding the
probability that at least one solution remains after hashing and do not give bounds on variance.

LEMMA 16. Let 5 € R with0 < § < é and let s,m,n € N. Supposem < n and s > 201g*(1/5) /5.
Let S C GF(2)" and suppose |S| > 2™". Let A be an (s,m,n)-hash, and let b € GF(2)™ be
uniformly random and independent of A. Let S’ = {x € S : Ax = b}. Then E(|S’|) = 27™|S| and

Var(|S’]) < |S|?20m/8-2m,

Proor. For each x € GF (2), let I, be the indicator variable of the event Ax = b. Exposing A
implies P(I,) = 2™ for all x € GF (2)", and hence

E(IS') = Y B(L) =27"IS].

X€S

We now bound the second moment. We have

B(S')= ), Bdy)= ), PlAx=Ay=b)

(x,y) €S? (x,y)€S?
= > [ [r(ax): = (ay)i = by). (1)
(xy)es? i=1

When x and y are fixed, the events in (1) are identically distributed and we write p,, = P(a’x =
a’y = b), where b € {0,1} is sampled uniformly at random and a € {0,1}" is sampled by first
sampling a size-s set R C {1,...,n} and then setting the bits a; uniformly for j € R, and a; = 0 for
J € R. Using this shorthand notation, we split the sum in (1) depending on whether the Hamming
distance d(x,y) between the vectors is at most an or larger, for some parameter a <  specified

2
later.

E(S') = > py= DL Pl > ol 2)
(x.y)es? (x,y) €S* (x,y)es?
d(x,y)<an d(x,y)>an
We now provide upper bounds for these two sums. For the first sum, let us write h : [0,1] — [0, 1]
for the binary entropy function h(a) = —alga — (1 — a) 1g(1 — ); it is known that the Hamming
ball of radius an around a binary vector x contains at most 2/(®” binary vectors y. Thus the first
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sum is bounded by |§|2"(®)" max{py, }. To bound the maximum, note by exposing a that pyy < %
holds for all x,y. Thus, the first sum in (2) is bounded by |S|2P(@ =™,

The second sum in (2) is at most |S|? max{p;’fy :d(x,y) > an}, and so it remains to bound py.,,
for vectors x and y whose distance is more than an. Write xg € GF (2)X for the projection of x to

the coordinates of R. Conditioning on the event xg = yg, we get
Pry = P(aTx = aTy =b | XR * yR) -P(xg # yr)
+P(aTx = aTy =b | XR = yR) -P(xr = yr)

SP(aszaTy=b|xR¢yR)+%-P(szyR). (3)

We claim that the first summand of (3) is equal to % and the second is bounded above by %e‘”‘s .

Indeed, conditioned on xg # yg, there is a coordinate ¢ € R with x, # y.. Without loss of generality,
assume x, = 1 and y. = 0. Under this conditioning, the events a’ x = a’y and a’ y = b are actually
independent, because a. is a uniform bit that only affects the first event and b is a uniform bit that
only affects the second. More precisely, after exposing R with xg # yr and a@; for all j € R\ {c},
the probability that a. and b are set correctly is %. To bound the second summand of (3), recall that
d(x,y) = an and |R| = s, and observe

(n— [an])

o

Putting the bounds on the terms in (3) together, we arrive at

P(xR = yR) < < (1-TJan]/n)® < e *.

as

Pxy < i + %e_‘“ = %(1 +2e %) < %eze_

This allows us to bound the second moment and thus the variance as well:

Var(S'l) = B(IS'?) — B(IS')? < (|S|2H@m 4 |sPa7mem 2 ™) - ||z, (4)

By assumption we have |S| > 29", and thus |S|?272™ > |S[29""™. Now we set « < 1 such that

h(a) = & holds. Since § < %, we have a = h™1(8) > 6/(21g(6/8)) = §/(41g(1/5)). It follows that
as > 51g(1/6) = 21n(4/5), and together with (4) we get Var(|S’|) < |S|2e%m/8 /22m Since m < n

and § < 1/lg(e), the result follows. O

We now state our algorithm for Theorem 13 that reduces from approximate counting for k-SAT
to decision for ITj 5. In the following definition, ¢ is a rational constant with 0 < § < %

Algorithm ApxToDs: Given an n-variable instance F of #k-SAT, a rational number ¢ € (0,1), and
access to an oracle for Il s for some s > 401g*(2/8) /3, this algorithm computes a rational number z
such that (1 — €)SAT(F) < z < (1+ ¢)SAT(F) holds with probability at least %.

1 (Brute-force on constant-size instances)
If n/lgn < 8/, solve the problem by brute force and return the result.
2 (If there are few satisfying assignments, count them exactly)
Let t = [6n/2 +21g(1/¢)], and apply CountFew to F and a = 2/+9"/2, Return the result if it is
not equal to FAIL.
3 (Try larger and larger equation systems) For each m € {0,...,n — t}:
a Foreachie {1,...,2"}:
o (Prepare query) Independently sample an (s, m + t, n)-hash A,,; and a uniformly random
vector by, ; € GF (2)™"". Let Fyyj = F(x) A (Apm,ix = bm.i).
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o (Ask oracle using subroutine) Let z,, ; be the output of CountFew(Fm,,-, 4a).
* (Bad randomness or m too small) If z,,; = FAIL or if 3);_, zm ; > 4a, then go to the next m
in the outer for-loop.
b (Return our estimate) Return z = 2™ 212;1 Zm.i-

LEMMA 17. ApxToDs is correct for all § € (0, %) and runs in time at most €2 - 0*(2°™). Moreover,
the oracle is only called on instances with at most n variables.

Proor. Let F be a k-CNF formula on n variables and let ¢ € (0, 1). For the running time, note
that Step 1 takes time O(2'/%) = O(1), Step 2 takes time at most O*(a) by Lemma 14. By the same
lemma, each invocation of CountFew on input Fp,; in 3 takes time O* (min{z,, ;, a} + 1). Moreover,
the outer loop in Step 1 is run at most n — t times, and for each fixed m, executing Step 3a in its
entirety takes time at most O*(a) due to the check whether 25:1 Zm.k > 4aholds. Thus the overall
running time of the algorithm is O*(a) < O*(e722%") as required.

It remains to prove the correctness of the algorithm. If it terminates at Step 1 or Step 2, then
correctness is immediate from Lemma 14. Suppose not, so that n/lgn > 8/§ holds, and the set S
of solutions of F satisfies |S| > 2/*9"/2 Let M = max{m € Z : |S| > 2™+*91/2} and note that
0 <M< n-—tand|S| < 2M++n/2+1 The formulas F,,; are oblivious to the execution of the
algorithm, so for the analysis we may view them as being sampled in advance. Let S, ; be the set
of solutions to F, ;. For each m with 0 < m < M, let &, be the following event:

21‘

D 1Smil = 27ms|

i=1

< 2—m—(t—5n/2)/2 . |S| )

Thus &,, implies |2m 12;1 |Sm,il — |S|‘ < ¢|S]. By Lemma 16 applied with §/2 in place of § and
m +t in place of m, forall 0 < m < Mand1 < i < 2!, we have E(|Sp,;]) = 27™7%|S| and
Var(|Sp,.i|) < [8]2297/16-2m=2t _Since the S,,;’s are independent, it follows by Lemma 10 that

t . 200n/16—2m—2t
21812 >1-27%>1-1/n

P(Em) >1-

2—2m—t+5n/2|s|2

Thus a union bound implies that, with probability at least 3/4, the event &, occurs for all m with
0 < m < M simultaneously. Suppose now that this happens. Then in particular, we have

2[

Z'SM’” < (1+e)27M|g| < 2t+on/22

i=1
But then, if ApxToDgs reaches iteration m = M, none of the calls to CountFew fail in this iteration
and we have zy; = |Sy;| for all i € {1,...,2'}. Thus ApxToDs returns some estimate z while
m < M. Moreover, since &, occurs, this estimate satisfies (1 — ¢)|S| < z < (1 + ¢)|S]| as required.
Thus ApxToDs behaves correctly with probability at least 3/4, and the result follows. ]

THEOREM 13 (RESTATED). Letk € N withk > 2, let0 < § < 1, and let s > 1201g*(6/8) /5. Then
there is a randomised approximation scheme for #k-SAT which, when given an n-variable formula F
and approximation error parameter e, runs in time ¢ - O(2<”’<15+5)").

Proor. If ¢ < 277, then we solve the #k-SAT instance exactly by brute force in time O* (™),
so suppose ¢ > 27" By the definition of s, there exists a randomised algorithm for IT;  with
failure probability at most 1/3 and running time at most O*(2(s*9/3") By Lemma 12(i), for any
constant C, by applying this algorithm lg(1/¢) - O(n) = O(n?) times and outputting the majority
answer, we may reduce the failure probability to at most £2/Cn2%"/3, We apply ApxToDs/3 to F
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and ¢, using the randomized algorithm for ITj s in place of the IIj s-oracle. If we take C sufficiently
large, then by Lemma 17 and a union bound, the overall failure probability is at most 1/3, and the
running time is 72 - O* (2(s*20/3m) = =2 O(2(7ks+O)1) a5 required. o

4 APPROXIMATELY COUNTING EDGES IN BIPARTITE GRAPHS

In this section, we prove our main result, Theorem 1. Recall from Section 1.1 that it consists of an
algorithm that is given access to a bipartite graph via an adjacency oracle and an independence
oracle. Throughout this section, we fix G = (U, V, E) and ¢ > 0 as the input to our edge-counting
algorithm, and we define n = [U U V|.

4.1 Random subsets of balanced sets

A set X C V is balanced if the graph G[U, X] is not “star-like”, with a large proportion of edges
incident to a single vertex in X. We formally define this notion, and show that if X’ is a uniformly
random subset of a balanced set X, then d(X) ~ 29(X’) holds with suitably high probability.

DEFINITION 18. For any real £ with0 < & < 1, a set X C V is &-balanced if every vertex in X has
degree at most £9(X).

LEMMA 19. Let X C V be a set and let X' C X be a random subset formed by including each vertex
of X independently with probability %

(i) With probability at least 1 — 2 exp(—|X|/24), we have |X’| < %|X|.

(ii) Let y, & be reals with0 < £ < 1and0 < y < % If X is £-balanced, then with probability at

least 1 — 2 exp(—2y*/&), we have
(3-vy)-aX) <aX') < (3+y)-aX).
Proor. For the first claim, note that E(|X’|) = |X|/2 holds, and thus by Lemma 12(i) we have
P(X] 23 1X]) <P (|IX'| =1 IX]| > 1 |X]) < 2e” XV,

Now we prove the second claim. For each vertex v € X, let I, be the indicator random variable of

the event v € X’. Then d(X’) is a function of {I, : v € X}, and changing a single indicator variable
I, alters 9(X") by exactly d(v). Moreover, E(9(X’)) = d(X)/2. It therefore follows by Lemma 11

that 25(X)?
—2y°9(X)
P(lo(X') =1 a(X)| > y-a(X)) < 2exp (7) ) (5)
2 ZUGX d(v)z
Since X is £-balanced, we have Y .y d(0)? < £3(X) - ¥ ex d(v) = £3(X)%. With (5), the claimed
upper bound of 2 exp(—2y?/£) on the error probability follows. ]

In using Lemma 19, we will take y = @(¢e/log n) and &€ = ©(y?/log log n). To motivate this choice,
consider the following toy argument:

Suppose simplistically that Lemma 19(ii) was true for all sets, not just for balanced sets, and that &
could be chosen arbitrarily. We will see later (using the SampleNeighbours algorithm defined in
Section 4.2) that, if 9(X) is small, we can quickly determine it exactly. In this situation, the following
algorithm would estimate e(G): start with Xy = V. Given X;, check whether d(X;) is small enough
to determine exactly. If so, output 219(X;). If not, form X1 from X; by including each element
independently with probability % Let X; be the final set formed this way. By Lemma 19(i), we
have t = O(log n) with high probability. By our supposed simplistic version of Lemma 19(ii), we
have 3(X;) € (1£y)'a(Xy) /2" = (1+y)'e(G)/2'; thus the algorithm gives a valid e-approximation
whenever (1 £ y)! C (1 +¢). We have (1 +y)" C 1 + 4ty for sufficiently small y, so this holds for
Y = O(¢/logn) = O(e/t). Finally, using a union bound together with the fact that ¢t = O(logn)
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holds with high probability, Lemma 19(ii) holds at each stage with probability at least 1 —O(logn) -
exp(—2y?%/&); this can be made arbitrarily large by taking £ = O(y?/loglogn).

Of course, Lemma 19(ii) is not true for all sets — it fails badly if G[U, X] is a star, for example.
While the above argument does not use independence queries at all, we will need them to deal
with unbalanced sets.

4.2 Estimating vertex degrees

In order to test whether a set X is balanced and thus whether taking a uniformly random subset
of X will give a good approximation of 9(X) via Lemma 19, we will efficiently approximate the
relative degrees d(v) /IN(X)| for all v € X. To this end, we will use independence queries to uni-
formly sample a random subset Y € N(X) of a given size y. We show that, with high probability,
the random variable [N(v) N Y|/|Y]isa %-approximation of the relative degree unless the relative
degree is smaller than £/140, in which case |[N(v) N Y|/|Y]| is no larger than £/20.

LEmMMA 20. Let X C V and lety € N withy < |[N(X)|. Let Y € N(X) be a uniformly-random
size-y subset of N(X). Let v € X be a vertex and write
N N@)nY
st0) = N _IN@ Y|
INX| Y|
Let £ > 0. If 6(v) = &/140, then with probability at least 1 — 2 exp(—£&y/2000), the number 5(v)
is a 5-approximation of 5(v). On the other hand, if 5(v) < &/140, then with probability at least
1 — 2 exp(—&y/20), we have 5(v) < £/20.

and 5 (v)

ProoF. The random variable |[N(v) N Y| follows a hypergeometric distribution with mean p, =
6(v) - y. By Lemma 12(i), we have

> ,Ll_zu) < 2exp(—pp/12).

If §(v) > £/140 and thus p, > £y/140, this immediately implies the first claim. Similarly, if §(v) <
£/140 and thus t := Z—%y > 7p, holds, then Lemma 12(ii) immediately implies the second claim. O

P(|IN @) N Y1 -

When we use Lemma 20, we will apply it to all O(n) vertices in each of the O(logn) iter-
ations of the overall algorithm. So in order for a union bound to give something meaningful,
we need a success probability of 1 — Q(1/(nlogn)). We will therefore set y = ©(¢§ 'logn) =
O(e % log® nloglogn).

We can sample a uniformly random set Y € N(X), using the following straightforward proce-
dure. It is the only component of our algorithm that uses independence queries.

Algorithm SampleNeighbours: The algorithm takes as input a set X C V and an integer y, and it
returns a set Y C U such that IN(X)| < y implies Y = N(X) and |IN(X)| > y implies that Y is a
uniformly random size-y subset of N(X).

1 Letuy,...,ujy| be a uniformly random ordering of U and let Y = 0.
2 While Y| < y:
a Find the smallest i with u; € N(X) \ Y. To do so, we use independence queries of the
form indg (X U {uy,...,u;} \ Y) and perform binary search over j € {1,...,|U][}.
b If u; was found, add it to Y. Otherwise we have Y = N(X) and return Y.
3 Return Y.

LEMMA 21. The algorithm SampleNeighbours is correct, runs in time O(nlogn), and makes at
most O(y log n) independence queries.
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Proor. The uniform ordering of U induces a uniform ordering of N(X), which implies that
SampleNeighbours is correct. For the running time, note that Step 1 runs in time O(n) (using
Fisher—Yates shuffling) and each binary search runs in time O(logn). Thus the overall running
time is O(n + ylogn) = O(nlogn) and the number of independence queries is O(y logn). O

We use SampleNeighbours for two purposes: If it returns a set Y of size less than y, then Y =
N(X) holds and Y is small enough to compute d(X) using the adjacency oracle for all pairs in Y xX.
Otherwise the set Y gives us good estimates for the relative degrees of vertices in X by Lemma 20.
In particular, we shall use this to approximate the set of vertices in X of high relative degree, as
encapsulated by the following definition.

DEFINITION 22. Let £ € R with0 < £ < landletX C V. WesayS C X is a £-core of X if it
satisfies the following properties:

(W1) every vertex in X with degree at least g - |IN(X)| is contained in S;

(W2) every vertex in S has degree at least % - IN(X)].

We will show in the proof of Theorem 1 that the estimates given by Lemma 20 do indeed yield
cores. We now relate cores to balancedness.

LEMMA 23. Let E € R with0 < £ <1 andletS bea&-coreofaset X C V.

(i) If|S| = 32/ &%, then X is -balanced.
(ii) If X \ S contains a vertex of degree at least % - |IN(X\ S)|, then IN(X \ S)| < % - IN(X)].
Otherwise, X \ S is %—balanced.

ProoF. For the first claim, suppose |S| > 32/ Then by (W2), at least 32/£% vertices in X
have degree at least % - IN(X)|. Hence 9(X) > |N(X)|/& holds, and every vertex v € X satisfies
d(v) < IN(X)| < £9(X). Thus X is &-balanced.

For the second claim, suppose v € X \ S is a vertex whose degree satisfies d(v) > % S IN(X\ 9)|-
Since v ¢ S, we also have d(v) < g - IN(X)| by (W1). Together, these facts imply [N(X \ S)| <

% -d(v) < % - |IN(X)| as required. Finally, note that |[N(X \ S)| < a(X \ S) holds, so if all vertices

in X \ S have degree at most % -IN(X\ S)|, then X \ Sis %—balanced by definition. O

4.3 The Overall Algorithm

Throughout this section, we will take

£ e £
Y=—7—. &= = > , and
8001ogn 5loglogn  8-10° log“ nloglogn
_4000logn _ 32-10%log’ nloglogn
= 7 = 5 .

The edge counting algorithm works in O(log n) iterations, starting with X = V. In each iteration,
either | X| is roughly halved, or [N(X)]| is at least halved. We formulate the algorithm recursively.

Algorithm EdgeCount(X): This recursive algorithm takes as input a set X C V and returns an ¢-
approximation to d(X) with suitably high probability. (Recall that the input graph G = (U, V,E) and
the allowed error ¢ > 0 have already been defined globally.)

1 Use SampleNeighbours(X,y) to sample a uniformly random Y € N(X) of size min{y, [N (X)|}.

2 If |X| < 24logn or |Y| < y, then compute 9(X) using adjacency queries on U X X or Y X X,
respectively.  (if |Y| <y, then Y = N(X) holds by the properties of SampleNeighbours)
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3 For all v € X, compute S(U) = LN((Q\OH

(w.h.p. each 5(0) isa %—approximation to 8(v) if 6(v) > £/140)
4LetS={oeX:5() > %}. (w.h.p. this is a &-core)

5 If 5(0) < %f holds for all v € X, or if |S| > 32/& holds:  (w.h.p. X is now &-balanced)
a Let X’ be a uniformly random subset of X.  (w.h.p. X’ is at most % the size of X)

b Recursively compute 2 - EdgeCount(X’), and return this number.

6 Otherwise, independently and uniformly sample 3|U|logn/y? pairs from U x S, and use the
adjacency oracle to determine the number Z of these pairs which are edges in G. Let 9(S) :=
Zy?|S|/31ogn. (wh.p. 9(S) € (1 +y)a(S).)

7 Return EdgeCount(X \ S) + a(S). (w.h.p. either N(X \ S) is half the size of N(X), or X \ S is
&/4-balanced.)

using adjacency queries on Y X X.

We are ready to formally prove our main result.

THEOREM 1 (RESTATED). There is a randomised algorithm A which, given a rational number ¢
with 0 < ¢ < 1 and oracle access to an n-vertex bipartite graph G, outputs an e-approximation of
|E(G)| with probability at least 2/3. Moreover, A runs in time % - O(nlog® nloglogn) and makes
at most 7% - O(log® nloglog n) calls to the independence oracle.

Proor. We may assume without loss of generality that n > 10°; otherwise, we simply solve
the problem in O(1) time by brute force using the adjacency oracle. Note that each iteration of
EdgeCount makes at most one recursive call, so its recursion tree is a path. An iteration is an
execution of EdgeCount up to a recursive call. We first make a minor modification to EdgeCount:
adding a global counter to ensure that we perform at most t = [100logn] iterations, otherwise
halting with an output of TIMEOUT. We are very unlikely to reach this depth, but this modification
will allow us to bound the running time deterministically (as required by Theorem 1). Having done
so, we claim that running EdgeCount on input V has the claimed properties.

We first bound the running time for each iteration. By Lemma 21, Step 1 runs in time O(n log n)
and makes at most O(y log n) independence queries; this step is the only one that makes indepen-
dence queries at all. Step 2 takes time at most O(nlogn) if |X| < 24logn or time O(yn) other-
wise. Likewise, not counting the recursive calls, Step 3, Step 4, and Step 5 take time O(yn), and
Step 6 and Step 7 take time O(nlogn/y?) = e 20(nlog® n). There are O(log n) total iterations, and
y = £720(log® nloglog n), so the overall worst-case running time of the algorithm on input V is
O(ynlogn) = ¢20(nlog* nloglogn), and it makes at most O(ylog?n) = ¢ 20(log’ nloglog n)
queries to the independence oracle.

Next, we argue that the success probability is at least 2/3. To reason about this, we define the
following events at each recursion depth 1 < i < t of the algorithm:

#.(i) Either Step 3 is not executed at depth i, or each 5(v) computed indeed either %—approximates
d(v) (if 5(v) > £/140) or satisfies 5(0) < £/20 (otherwise).

F2(i) Either Step 5a is not executed at depth i, or |[X’| < %|X| holds and the number 29(X’) is a
2y-approximation of 9(X).

F3(i) Either Step 6 is not executed at depth i, or 9(S) is a y-approximation to 9(S).

Thus F1 (i), (i) and F3(i) vacuously occur if the algorithm terminates before reaching depth i.
We write F (i) = F1(i) N F2(i) N F3(i), and F = ., F (i). We will now show that Pr(F) > 2/3.

Each time Step 3 is executed, the set Y returned by SampleNeighbours in Step 1 has size
y = |Y| < |N(X)|, and thus this set is a uniformly random size-y subset of N(X). Lemma 20
applies and shows that each event ¥ (i) fails to occur for an individual v with probability at most
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exp(—£y/2000). By our choice of y, this is precisely 1/n2. Since there are at most n vertices v,
Pr(F(i) fails) < 1/n. (6)

Conditioned on ¥ (i), we claim that the set S defined in Step 4 is a &-core. If §(v) > &/8, then
5(v) is a valid %-approximation to 8(v), so 8(v) > £/16 and thus v is added to S; this implies that
(W1) holds. Conversely, if §(v) < £/32, then either 5(0) isa %-approximation of §(v) (in which
case 5(0) < £/16 and thus v is not added to S) or S(U) < £/20 (in which case again v is not added
to S); this implies that (W2) holds.

We now claim that if Step 5a is executed, again conditioned on ¥ (i), then X is é-balanced.
Suppose Step 5a is executed; therefore either 5(v) < %5 holds for all v € X or |S| > 32/&%. If
|S| > 32/&2, then X is &-balanced by Lemma 23(i), so suppose 5(v) < %f for all v € X. Since ¥ (i)
occurs, for all v € X, either 5(0) isa %-approximation for 6(v) or 6(v) < £/140. In the former case,
8(v) < 25(0) < &, 50 8(v) < & in both cases and so X is é-balanced as claimed.

It follows that conditioned on ¥ (i), each time Step 5a is executed, |X| > 24logn and X is &-
balanced. Thus Lemma 19(i) and (ii) apply, so 2 (i) fails with probability at most 2 exp(—|X|/24) +
2 exp(—2y%/&). By our choice of &, it follows that

2 2
Pr(7>(i) fails | F1(i)) < = + ——- (7)
n log n
Finally, conditioned on % (i), each time Step 6 is executed, Z is a binomial variable with mean
1= 33(S) log n/y?|S|. It follows by Lemma 12(i) that for all i,
Pr(73(i) fails | (1)) = Pr(13(S) = a(S)| > ya(S)) = Pr(1Z — ul > yp)
< 2 V13 = 9=9(S)logn/IS|

Since #7(i) occurs, S is a &-core (as shown above); thus by (W2), every vertex in S has positive
degree, and in particular 9(S) > |S|. Thus conditioned on ¥ (i), #3(i) fails with probability at
most 2/n. In conjunction with (6) and (7), this implies

Pr(F (i) fails) < 3 + .

n - log’n
Since n > 10° and ¢ < 100 log n, this is at most 1/3t. It follows by a union bound over all 1 < i < ¢
that F occurs with probability at least 2/3, as claimed.

Let us now show that conditioned on ¥, we do not output TIMEOUT. We claim that in every
other iteration, we multiply either |[N(X)| or |X| by a factor of at most %. Since ¥5(i) occurs for
all i, it is clear that |X| is multiplied by a factor of at most % if the algorithm recurses in Step 5b. If
the algorithm recurses in Step 7, then by Lemma 23(ii), either we reduce [N (X)| by at least half, or
the set X \ S is £/4-balanced. In the first case we are done, in the second case it may be that X \ S
is not significantly smaller than X. However, as X \ S is £/4-balanced, the condition 5(v) < &/21is
met for allv € X'\ S in the very next iteration of the algorithm (where the input is X \ S), and then
X\ S is multiplied by a factor of at most %. Since initially we have |X| < n and [N(X)| < n, the
number of iterations is thus at most 4 log sn<tas required.

It remains to prove that conditioned on ¥, the function call EdgeCount(V') returns an e-approxi-
mation for |E(G)| = d(V). Let t’ < t be the total number of iterations; we will prove inductively
that for all 0 < i < ¢’ — 1, we have EdgeCount(X,_;) € (1 + 2y)!d(Xy—;). In the last iteration, the
algorithm computes d(Xy) exactly, so the claim is immediate for i = 0. If the algorithm in iteration
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t’ — i recurses in Step 5b, then since 73(¢’ — i) occurs, we have
EdgeCount(Xy_;) = 2 - EdgeCount(Xy_is1) € (1% 2y) 10(Xp_ir1) C (1 2y)'0(Xpi),
as required. If instead it recurses in Step 7, then since #3(t’ — i) occurs, we have
EdgeCount(X,_;) = EdgeCount(Xy_i1) + 9(S)
€ (1£2y)'a(Xp_i41) + (1 £y)(S)
C (1%2) (0(Xp—is1) + d(Xp—ir1 \ Xp—)) = (1% 2y)'0(Xp—y).
Thus the claim holds, and in particular
EdgeCount(V) = EdgeCount(X;) € (1 +2y)" 'a(X1) € (1 + 2y)’e(G).

Since (1 —2y)! > 1 -2ty and (1 +2y)’ < e®" < 1+ 8ty, it follows that EdgeCount(V) is a 8ty-
approximation of |[E(G)|. Since t < 100 log n, by our choice of y, this is an e-approximation. m]

5 APPLICATIONS FOR POLYNOMIAL-TIME PROBLEMS
5.1 3SUM
We formally define the problems as follows.

Problem 3SUM expects as input: Three lists A, B and C of integers.
Task: Decide whether there exists a tuple (a,b,c¢) € AX B X C such thata + b = c.

Problem #3SUM expects as input: Three lists A, B and C of integers.
Task: Count the number of tuples (a, b,c) € AX B X C such thata + b = c.

THEOREM 4 (RESTATED). If 3SUM with n integers has a randomised algorithm that runs in time
T(n), then there is a randomised e-approximation algorithm for #3SUM that runs in time T(n) -
£ 20(log® nloglogn).

Proor. First we note that any bounded-error randomised algorithm for 3SUM must read a con-
stant proportion of the entries in A, B and C, so we can assume T (n) = Q(n).

Let (A, B,C) be an instance of #3SUM andlet 0 < ¢ < 1.If ¢ < %, then we use exhaustive search
to solve the problem exactly in time O(n®) = O(¢"%T(n)). In the following, we assume ¢ > % Let
E={(a,b) e AXB:a+b e C},andlet G = (A, B, E). We will proceed by sorting the set C in
O(nlogn) time, then applying the algorithm of Theorem 1 to G and .

We can evaluate adj; (a, b) in time O(log n) using binary search on C. Moreover, forall X € AUB,
we have indg(X) = 1if and only if (X N A, X N B,C) is a ‘no’ instance of 3SUM, so indg can be
evaluated by solving a single instance of 3SUM, which takes O(n) time to prepare. As in the proof
of Theorem 13, we solve the instance by invoking the assumed randomised decision algorithm
100 log n times and outputting the majority answer. The overall algorithm is given by Theorem 1.
As this algorithm makes at most e - O(log® n) < O(n?log® n) queries to indg, the probability
that at least one of them is answered incorrectly by the boosted randomised procedure remains
negligible, at most O(1/n) by Lemma 12(i), which is in particular at most 1/3 as required. The
overall running time is:

O(nlogn) +¢e20(nlog* nloglogn) - O(logn) +¢e20(log® nloglogn) - (O(n) + T(n)logn) .

sort C # queries to adjg binary search # queries to indg prepare and solve query
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We have constructed an e-approximation algorithm for 3SUM that has the claimed running time.
m]

THEOREM 5 (RESTATED). For all § > 0, there is a randomised e-approximation algorithm with
running time e2 - O(n*~%/7) for instances of #3SUM with n integers such that at least one of A, B, or
C may be covered by n'=% intervals of length n.

PROOF. SayasetS C Zis (n, §)-clustered if it can be covered by at most n'~? intervals of length n;
note that it can be checked in quasilinear time whether a set is (n, §)-clustered. Let (A, B, C) be an
instance of #3SUM in which at least one of A, B or C is (n, §)-clustered. By negating and permuting
sets if necessary, we may assume that C is (n, §)-clustered. Exactly as in the proof of Theorem 4, any
randomised T (n)-time algorithm for 3SUM on such instances yields a T(n) - e 20(log® n log log n)-
time randomised approximation scheme. (In particular, note that (X N A, X N B,C) remains an
instance of the restricted problem.) Chan and Lewenstein [8, Corollary 4.3] provide a randomised
O(n2‘5/ 7)-time algorithm for 3SUM on such instances, so the result follows. O

5.2 Orthogonal Vectors
We formally define the problems as follows.

Problem OV expects as input: Two lists A and B of zero-one vectors in R%.
Task: Decide whether there exists a pair (u,v) € A X B such that Z;j:l u;v; = 0.

Problem #0V expects as input: Two lists A and B of zero-one vectors in R?.
Task: Count the number of pairs (u,v) € A X B such that Zflzl u;v; = 0.

THEOREM 2 (RESTATED). If OV with n vectors in d dimensions has a randomised algorithm that
runs in time T(n, d), then there is a randomised e-approximation algorithm for #OV that runs in time
T(n,d) - e720(log® nloglog n).

Proor. Let (A, B) be an instance of #OV and let 0 < ¢ < 1. If ¢ < n™2 then we can solve the
problem exactly in time O(n?) = O(e™?), so suppose ¢ > n™2. Let E = {(a,b) € Ax B : {a, b) = 0},
and let G = (A, B, E) be a bipartite graph. We will proceed by applying the algorithm of Theorem 1
to G and e.

We can evaluate adj in O(d) time by calculating the inner product. Moreover, for all X € AUB,
indg(X) = 1ifand only if (ANX, BNX) is a ‘no’ instance of OV, so indg can be evaluated by solving
a single instance of OV which takes O(nd) time to prepare. As in the proof of Theorem 4, we do
so by invoking our randomised decision algorithm 100logn times and outputting the majority
answer. Our overall running time is then

£2.0(nlog* nloglogn) - O(d) + % - (O(nd) + T(n,d) logn) - O(log® nloglogn).

Since any randomised algorithm for OV must examine a constant proportion of the coordinates
of vectors in A and B, we have T(n,d) = Q(nd), so the result follows. O

In the following definitions, R is a constant finite ring.

Problem OV(R) expects as input: Two lists A and B of vectors in R?.
Task: Decide whether there exists a pair (u,v) € A X B such that Z;j:l u;v; = 0g.
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Problem #OV(R) expects as input: Two lists A and B of vectors in R.
Task: Count the number of pairs (u,v) € A X B such that Z?zl u;v; = 0R.

THEOREM 3 (RESTATED). Let m = pX be a constant prime power. There is a randomised e-approxi-
mation algorithm for #OV over GF (m)? with running time ¢ 2d*=V% . O(n), and for #OV over
(Z/mZ)? with running time e2d™ ' - O(n).

Proor. Exactly as in the proof of Theorem 2, any randomised T (n, d)-time algorithm for OV(R)
yields a T(n, d) - e 20(log® nloglog n)-time randomised approximation scheme for #OV(R). (Note
that R is finite and part of the problem specification, so arithmetic operations require only O(1)

time.) The result therefore follows from Theorems 1.6 and 1.3 (respectively) of Williams and Yu [39].
O

5.3 Negative-Weight Triangles
We formally define the problems as follows.

Problem NWT expects as input: A tripartite graph G and a symmetric function w :
V(G)? — Z.
Task: Decide whether there exists a triangle abc in G such that w(a, b) + w(b,c) +
w(c,a) < 0.

Problem #NWT expects as input: A tripartite graph G and a symmetric function w :
V(G)? — Z.
Task: Count the number of triangles abc in G such that w(a, b) + w(b,c) + w(c,a) < 0.

THEOREM 6 (RESTATED). IfNWT for n-vertex graphs has a randomised algorithm that runs in time
T(n), then there is a randomised e-approximation algorithm for #{NWTT that runs in time

T(n) - e 20(log® nloglogn) .

ProoF. Let (G, w) be an instance of #NWT, let A, B and C be the vertex classes of G, and let
0 < & < 1.If ¢ < n3 then we can solve the problem exactly in time O(n®) = O(e™!), so suppose
e>n3 LetU=A1letV={e€E(G):eC BUC} and let

E= {(a, (b,c}) € UXV:{a b}, {ac} € EG) and w(a b) + w(b,c) + w(c,a) < o}.

Let H = (U, V,E), so that H is a bipartite graph. We will proceed by applying the algorithm of
Theorem 1 to H and «.

We can evaluate adjy in O(1) time by summing the appropriate weights. Moreover, for all X C
U UV, define a graph Gx by V(Gx) = (X N A) UBU C and

E(Gx)z{eeE(G):eﬁXﬂAi(Z)oreeXﬂV}.

Let wx = w|y(Gy)2- Thenforall X € U UV, indy(X) = 1if and only if (Gx, wx) is a ‘no’ instance
of NWT, so indg can be evaluated by solving a single instance of NWT which takes O(n?) time to
prepare. As in the proof of Theorem 4, we do so by invoking our randomised decision algorithm
100 log n times and outputting the majority answer. Our overall running time is then

e - 0(n*log* nloglogn) - O(1) + £ 7% - (O(n?) + T(n)logn) - O(log® nloglogn).
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If G is a complete tripartite graph, then any randomised algorithm for NWT must examine a
constant proportion of the edges of G, so we have T(n) = Q(n?) and the result follows. O

In order to approximate algorithm for #fNW'T, we will reduce to APSP and apply the algorithm
of Williams [37]. We formally define APSP as follows.

Problem APSP expects as input: A directed graph G and a function w : E(G) — Z such
that G contains no negative-weight cycles under w.

Task: Output the matrix A such that for all u,v € V(G), A, is the minimum weight of
any path from u to v in G.

THEOREM 7 (RESTATED). There is a randomised e-approximation algorithm for #NW'T which runs

in time e72n3 /e (V18" on graphs with n vertices and polynomially bounded edge-weights.

Proor. By Williams [37, Theorem 1.1], an n-vertex instance of APSP with polynomially bounded

edge weights can be solved in time n?/e? (V6™ There is a well-known reduction from NWT to
APSP with only constant overhead, which we give explicitly in the following paragraph. Theo-
rem 6 then implies the existence of an e-approximation algorithm for #NWT with running time

e 20 /e (V181 noting that the polylogarithmic overhead is subsumed into the e(VI°¢™ term.
It remains only to reduce NWT to APSP. Let (G, w) be an instance of NWT, writing G = (V, E).
Form an instance (G’, w’) of APSP as follows. Let V(G’) = (V X [3]), and let

EG)= ) | (), i+ D) (i), (wi+ D))
ie{1,2} {u,v}€E
Let w ({(u, i), (v,i +1)}) = w(u,0) for all {(u,i),(v,i+ 1)} € E(G’). Thus for all {u,v} € E, each
path (u, 1)(w, 2) (v, 3) from (u, 1) to (v,3) in G’ corresponds exactly to the triangle uow in G, and
uow’s weight is the length of the corresponding path plus w(u,v). Let A be the output of APSP
on G’. Then from the discussion above, (G, w) is a ‘yes’ instance of NWT if and only if for some
{u,v} € E(G), we have A(,1),(53) + w(u,0) < 0. This can be checked in O(n?) time. O
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