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ABSTRACT

This paper introduces the Quaternion Transition Generator (QTG), a
new network architecture tailored to animation transition generation
for virtual characters. The QTG is simpler than the current state
of the art, making it lightweight and easier to implement. It uses
approximately 80% fewer arithmetic operations compared to other
transition networks. Additionally, this architecture is capable of
generating visually accurate rotation-based animations transitions
and results in a lower Mean Absolute Error than transition generation
techniques that are commonly used for animation blending.

Index Terms: Computing methodologies—Computer graphics—
Animation—Procedural animation;

1 INTRODUCTION

Transitions are short animated sequences that connect two anima-
tions or keyframes in virtual characters. For instance, when a charac-
ter transitions from a running state to a roll, the animation database
may not contain the animation frames for this intermediate action
connecting both states. Modern virtual characters require a large
amount of animations, and each new state or animation added to the
character increases the needed amount of transition animations expo-
nentially [3]. These animation transitions are often generated using
techniques such as linear blending and inertialisation [1]. However,
these techniques frequently have unsatisfactory results, requiring the
work of a professional animator to manually edit and fine tune the
animation transition parameters. Therefore, the task of setting up
such transitions and manually editing them becomes an immensely
time-consuming and expensive task.

Here, we explore the use of neural networks in the task of creating
animation transitions. Harvey & Pal [3] were the first to demonstrate
their effectiveness, applying an adaptation of a Recurrent Neural
Network (RNN), which they named Recurrent Transition Network
(RTN), to the issue. Harvey & Pal built RTNs upon the ideas of
Encoder-Recurrent-Decoder (ERD) networks, from Fragkiadaki et
al [2], and residual temporal networks for modeling human body
dynamics, from Martinez et al [6]. Moreover, they also extended
ERD networks with future-context conditioning, by adding a target
vector to indicate the frame that the network should attempt to
predict by the end of a transition.

In summary, the RTN uses auto-encoders to encode the past
context, the current context and the target state of the transition.
Then, a recurrent generator consisting of a single Long Short-Term
Memory (LSTM) layer is applied to the encoded input. Finally,
the output of the recurrent Generator is decoded, resulting in an
offset that is added to the previous frame to obtain the current frame.
However, although the RTN is capable of generating natural looking
motion, it lacks the capability to predict joint rotations, which are
needed to completely represent the skeleton of a skinned character.
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(b) Ground truth transition

Figure 1: In red, a transition generated with the proposed method
(a) compared to the ground truth motion data (b). Images were
sub-sampled to show a still every 5 frames.

This paper introduces a new network architecture tailored to
transition generation. The network has a simpler architecture and a
smaller footprint than the RTN, making it lightweight and easier to
implement and, additionally, is capable of generating rotation-based
animations transitions.

2 IMPLEMENTATION

The motion capture data set from Holden et al. [5] is used for training
the network. It contains long animation sequences with transitions
between various locomotion states and is re-targeted to a uniform
skeleton. A subset of 22 joints from the skeleton is used, and the
animation sequences are downsampled to 30 frames per second.
Each animation is divided into smaller, overlapping 1 second se-
quences, where the root joint transformation of each pose is relative
to the first pose in the sequence. Four additional frames are stored
with each transition, the two poses immediately before the transition
(the past context), and the two poses immediately after (the future
context, or the target state). Joints are kept in local space, and each
joint is represented by a local rotation quaternion, and additionally
a translation in the case of the root joint. Thus, each sequence is
represented by a vector of T + 4 poses, with T being the transition
length, and each pose consisting of P+ Q %22 values representing
the root joint translation (P = 3) and the local rotation quaternion
(Q =4) of the 22 joints. Additionally, the root translation values are
standardised using z-normalisation on each dimension.

The network architecture, shown in figure 2, is based on the ERD
architecture [2], but with additional operations performed in the
encoded space. All dense layers in the auto-encoder use the Leaky
Rectified Linear Unit activation function, except for the output layer
with a linear activation. The network takes 2 past poses and 2 target
poses as input and encodes them into a latent space representations,
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Figure 2: QTG architecture for a single time step, with layer sizes in
parentheses.

which are used to derive the latent velocities and the offset from the
target pose. The calculated latent information is then processed by a
recurrent layer, composed of a GRU unit and a dense layer, into the
current latent space velocities. The velocities are added to the last

pose h{ through a residual connection, resulting in the next latent

pose htf 1> Which is decoded into the next pose, and fed back to the
network to generate the next transition frame.

The network was tested on 1 second transitions (30 frames). It
was trained using minibatches of size 32 for 1000 epochs, using
the Mean Absolute Error loss, an Adam optimizer with beta values

Bi =0.5and B, = 0.9, and a learning rate set to 0.0001.

3 RESULTS

In order to evaluate the QTG quantitatively, the Mean Absolute Error
over time was calculated. The results, together with the results of
two baseline methods, can be found in Fig. 3. When compared to
the ground truth animation, the error of the QTG was several times
lower than that of the two baselines, staying below 5 centimeters in
the average per joint. Yet, it should be noted that the noisy error in
the first few frames (0-100ms) of the transition can cause noticeable
jitter to some transition animations.

We also present a visual comparison of the predicted transitions
by comparing the individual frames of the predicted animation to
the ground truth. Fig. 1b contains an example transition, in which
the character turns right whilst running. The QTG predictions are
displayed in Fig. 1a. The past context is shown in green, whilst the
future context is shown in white; the images were sub-sampled and
only show a still every 5 frames.When comparing the animations,
there is a slight deviation in the movement of the left and right arms
of the character at the middle of the transition animation. Both
arms extend more in the QTG, in comparison to the ground truth
animation. This is especially visible in the top-down view of the
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Figure 3: The Mean Absolute Error per joint per frame of the QTG
network, Inertialisation and Temporal Interpolation.

movement. However, the generated frames are visually similar to the
ground truth. The movement of the feet, as well as the root position
and orientation of the character appear to be particularly similar.

Compared to the RTN, the proposed network performs ~ 80%
fewer arithmetic operations due to its simpler structure. The QTG
achieves a prediction time of 0.33ms to generate a 1 second transi-
tions (30 frames), as tested on a Core i7-8700 CPU.

4 CONCLUSION

We presented the QTG, a lightweight neural network that can ef-
ficiently generate transition animations for virtual characters. The
QTG requires approximately 80% fewer arithmetic operations than
the RTN, but still generates visually accurate transitions. Addition-
ally, the QTG generates rotation-based animation transitions, and
results in a much lower error than transition generation techniques
relying on pose blending.

In the future, we would like to compare our results with the
RTN, and to investigate how QTG performs on a wider range of
character animation transitions. Moreover, Harvey et al. [4] have
recently expanded their research with an altered network architecture.
However, their focus is no longer on generating real-time animation
transitions, but on in-betweening for animation creation. Still, a
comparison between [4] and the QTN would be interesting.
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