Codoc: Code-driven Architectural View
Specification Framework in Python

Casper Weiss Bang
IT University of Copenhagen
Copenhagen, Denmark
Email: c@cwb.dk

Abstract—Architectural views are expensive to maintain. Soft-
ware systems continuously evolve, making architectural views
outdated. We present Codoc, a continuous architectural docu-
mentation system. Codoc empowers users to utilize a code-driven
architectural view specification language to create views that are
continuously updated and accessible. Through qualitative studies,
we find code driven view specification as a promising candidate
to replace manual architectural visualization in software docu-
mentation.

Index Terms—Architectural Views, Continuous Documenta-
tion,

Participatory Design

I. MOTIVATION

Software documentation is often outdated [1f] [2]. The
majority of agile developers find the level of internal docu-
mentation as foo little, while at the same time assessing that
documentation is either important or very important [3, p
161]. Leotta et al. [4] found that misaligned documentation
can impact programmer productivity. While documentation is
needed, there is also a motivation to “Travel Light” [5], i.e.
minimize the amount of artifacts that needs to be maintained.

Software documentation often includes diagrams that visual-
ize aspects of the underlying software. We use the term archi-
tectural views, meaning “[...] representations of the overall
architecture that are meaningful to one or more stakeholders
in the system’ﬂ

Osterweil [6] proposed that software development can be
represented by software processes. He argued that software
practitioners are used to define processes as code, and that
the development of software, and the related practices, should
be possible to represent as code too.

In this paper we investigate the possibility of specifying
software visualization, and in particular, architectural views
as code. We propose they are specified in a similar way in
which developers specify tests with the help of frameworks
like JUnit. We hypothesize that architectural-views-as-code
might be more easily accepted by developers if they are easy
to integrate in their continuous*-practices [7]]. Besides the ease
of adoption, an added benefit is that the architectural views are
less likely to become outdated because they can be define in
such a way as to automatically change when the code changes.
Furthermore, if the views are defined in code, developers can

Uhttps://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html

Mircea Lungu
IT University of Copenhagen
Copenhagen, Denmark
Email: mlun@itu.dk

be notified when changes to the code affect a view and verify
that it is still relevant.

Similar to testing, we believe that (architectural view)
documentation should be a continuous practice that should
part of the continuous integration workflows in such a way as
the architectural views to alwasy be up to date.

Broadly, we aim to answer the following question: How do
developers react to a code-driven continuous documentation
tool, which allows the definition of architectural views in the
same language as the system?

To answer this question we implement a code-driven code
visualization tool for Pythorﬂ that enables a user to specify
which parts of a given software system they want to visualize
in architectural views. Users subsequently test the tool. The
tool handles the layout and visualization automatically (in a
most basic way) and publishes the view in an online repository
where stakeholders can access them.

II. RELATED WORK

A recent survey of the software visualization domain found
no tools utilizing a code-driven interface. Instead most of them
are driven by interactive user interfaces [8[]. One exception
that we are aware of is the Glamorous Toolki¥] for Smalltalk
in which views are defined in Smalltalk code. There are,
unfortunately, few developers able to write Smalltalk at the
moment.

Architecture Description Languages (ADLs) are used to for-
malize, via code, a given software architecture [9]]. Languages
like ArchJava, an extension to Java, enable the developer to
embed “[...] architectural features and enforce communica-
tion integrity” [[10]. However, in general, ADLs are not built
to extract architectures, but rather formalize and visualize a
planned architecture. And the reality is that few systems are
nowadays designed with an upfront architecture specification.

Mens et al. propose the idea of intensional views, which
utilizes metaprogramming combined with logic programming,
to impose constraints and present various attributes of an
underlying software system [11]], [12]]. Their research utilizes
a rule-based system, making it easy for developers to see if a

20ne of the most popular languages at the moment https:/insights.
stackoverflow.com/survey/2020
Shttps://gtoolkit.com/

https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap31.html
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

given rule is followed in a codebase. Their studies, however,
do not address documentation or visualization explicitly.

Commercial tools like Understand [] and Sourcetraif| are
explorative and any exporting and filtering is done manually
in a graphical user interface. Similarly, some IDEs also include
features that will render diagrams, however, they are also
explorative.

Finally, command-line-driven, non-interactive visualizers
like the Python-specific pydepaﬂ — have a limited capacity of
view customization via command-line arguments.

III. SOLUTION

We created a Minimal Viable Product (MVP) that exposes
a code-driven interface for generating architectural views
directly from source code and we tested it with users. The
developed system is called Codoc, a name that stems from
the abbreviation of COntinuous DOCumentation. The code is
open source and available on GitHulﬂ under the GNU General
Public License. In this section we present version 1.0.0 of the
tool, as published in the corresponding release on GitHub and
through PIP.

This section illustrates with a step by step example how a
developer named Alice can document a Python project called
sample and share the created views with her colleague Bob.

Step #1. Getting an Online Account. To use Codoc, Alice
needs a user account to access the online web application (the
Codoc web app) and a project, which is a grouping of users
and views.

Step #2. Installing the codoc Python package. Alice
consults the Getting Startecﬂ guide in the documentation.

She installs the codoc-python package into the devel-
opment environment by running the following in a shell:

1 pip3 install codoc-python

This installs both the view generation framework (the codoc
Python package) and the command-line interface (CLI) for
publishing views to the online repository of views hosted at
codoc.org.

Step #3. Setting up the views folder. In a similar manner
to having a special folder for unit tests, Alice creates a folder
for all their architectural views in the project’s root directory.
The created folder has to be called codoc_views.

Inside the folder she creates a config file, named
config.py. The config file is shown in Snippet [I] where
sample is the name of the project that Alice wants to
document.

The lines that are specific to Alices project are #3 and
#8. With them Alice specifies that she wants to create a
source graph from the code in the “sample” package. The
source graph is built by analyzing the source code in the

4https://www.scitools.com/
Shttps://www.sourcetrail.com/
Ohttps://github.com/thebjorn/pydeps
"https://github.com/svadilfare/codoc-python/tree/v1.0.0.0
8https://codoc-python.readthedocs.io

from codoc import new_graph

import sample

2)

lags
def setup(x*kwargs) :
return new_graph (sample,

© N U R W —
t

*xkwargs)

Snippet 1: A minimal configuration file

sample package and consists of modules, classes, functions,
and relationships between thenﬂ

Step #4. Defining a View. After copying it from the Codoc
documentation, Alice pastes an example view into a new
file named top_level_modules.py. The file is shown in
Snippet 2] where several lines illustrate the API of Codoc:

L#3 the @view annotation signals that this function is to
be treated as a view definition

L#6 the modules function takes as input a parameter
named graph — that is the source graph that was
created in the config.py above.

L#13 the include_only_modules filter removes from
the graph classes and functions

L#14 the depth_filter function simplifies the graph

further by only keeping the top-level modules

from codoc import filters, view

@view (
label="Top Level Modules",

)
def modules (graph) :

mon

® 9 U R W —

The top level modules in our dear Sample project.
9

10 Also includes any direct
11 top level modules.

2 wnn

descendants of

13 module_graph = filters.include_only_modules (graph)
14 depth_filter = filters.get_depth_based_filter (2)
15 top_module_graph = depth_filter (module_graph)

16 return top_module_graph

Snippet 2: A view function that generates views containing
the top level modules of a given system

Step #5. Publishing a View. Having defined her first view
Alice consults the documentation, which tells her how to
publish her views (i.e., export an API key, and run codocpy
publish in the terminal). The input and output of her
terminal is shown in Snippet [3]

$ export CODOC_API_KEY="f35c0e821b8c831"

Publishing Module diagram...

1

2

3 $ codocpy publish

4

5 published at https://codoc.org/app/graph/770

Snippet 3: The terminal commands to publish views, and the
output Alice receives.

She opens the link in her browser and observes the generated
view, shown in Figure E} The view is also accessible online
at https://codoc.org/app/graph/771.

9The source graph term is borrowed from the Symphony process [13|

20f

https://www.scitools.com/
https://www.sourcetrail.com/
https://github.com/svadilfare/codoc-python/tree/v1.0.0.0
https://codoc-python.readthedocs.io
https://codoc.org/app/graph/771

@'Codoc

Alprojects

Module View DETAILS HISTORY

Sample Project

sample: module

sample.simple: module

y

enum: module dataclasses: module builtins: module

Qo

Fig. 1. The view generated by Snippet |Z|, as seen in the CoDoc web Ul,
including internal modules as well as direct dependencies

Step #6. Refining Views. Alice realizes that the view
does not contain her test cases, which she also wants to
visualize. After consulting the documentation, she modifies
the config.py file into what is shown in Snippet E[Re-

from codoc import new_graph
import sample
import tests

def setup (x+xkwargs) :
return (
new_graph (sample,
9 | new_graph (tests,
10)

*xkwargs)
*xkwargs)

Snippet 4: The modified version of the configuration file,
which also exports the test module.

running codocpy publish gives a new diagram, shown
in figure 2] which contains the tests and dependencies of
the tests module. She can also see the prior version, by
inspecting the history tab. The updated view is accessible at
https://codoc.org/app/graph/771.

tests: module

tests.test_simple: module

—~

uhittest: module

unittest.case: module unittest.main: module

sample: modul
sample.simple: module

dataclasses: module

builtins: module

enum: module

Fig. 2. The view generated by Snippet |Z| with the config of SnippetE|

Step #7. Sharing Views. She then sends Bob a link to the
specific view. Bob opens it, and realizes that he is missing a
view that presents all the classes in the domain model of the
system. He clones the project, adds a new view to the views
folder, publishes it, and then notifies Alice.

IV. EVALUATION METHOD

We ran four user tests with four different participants.

A user test is constructed by observing a given participant
and their first impressions trying to setup the tool, similar to
that of Alice in section [Tl

Each participant is given a link to the user documentation
and asked to create a view with Codoc. The documentation
includes a getting-started guide; however, the participants
were not asked to follow this strictly and were encouraged
to create any view that made sense for their context. We use
the Think out loud protocol to help the participants verbalize
their thoughts [8]], [[14], [[15].

The study made it possible to observe participants’ first
impressions while evaluating the experience of creating ar-
chitectural views and testing software practitioners’ ability to
articulate specific needs with the MVP.

The four tests were separated by at least a week to make
it possible to minimize the likelihood that negative feedback
was due to implementation details or bugs, but also meant that
the system evolved between tests. The evolution of the system
between tests was done from a participatory design perspec-
tive, where the product is polished by including potential users
in the design [16]]. A potential weakness is that tests are less
comparable; however, we see a bigger gain as we minimize
noise from issues that do not relate directly to Codoc, and can
actually make improvements to the prototype.

The interviews were conducted over Zoom to observe the
screen and participant and standardize the evaluation with par-
ticipants from different countries. All interviews were recorded
and evaluated afterwards.

At the start of each interview, the interviewer explained the
core problem that Codoc aims to solve and explained that
the meeting would be recorded. After verbal acceptance from
the participant, the participant would share their screen. The
interviewer provided login information to codoc.org, an API
key, and a link to the relevant user documentation. The user
tests was time-boxed to approximately one hour. After the test,
the participant was asked to answer a series of questions that
are detailed in Section

We use the answers, as well as the think out loud protocol,
to gain insight into what are the benefits, shortcomings, and
challenges when specifying architectural views via a code-
driven interface.

A. Participants

All participants are males between the age range of 20-45
years old. They are briefly described below:

Participant A was found by asking for participants in a
Danish forum for programmers. He is currently undertaking
his 6th semester of a bachelor’s in computer science at a

30f

https://codoc.org/app/graph/771

Danish university. He has prior work experience, both in
Python and other languages. At his place of employment
he answers to a project manager who is also a software
practitioner. He brought for analysis an internal tool from
his company, with the precondition that we would delete any
artifact after the end of the test.

Participant B is a former colleague of one of the authors.
He works as a freelance software engineer. He has a master’s
degree in Computer Science and has approximately five years
of professional experience, both in enterprise and freelance
settings. He brought for analysis a hobby CMS.

Participant C is a Canadian senior software developer
and was found through an international chatroom for Python
developers. He has approximately 20 years of professional
experience in software development. He works in a team with
4-6 other software practitioners. He chose as subject system a
collection of scripts for advent of cod

Participant D was also recruited through an international
chatroom for Python developers. He is British and has the
title of “Head of Engineering”. He has around 20 years of
experience in professional software development and works
with approximately 30 other software practitioners. He has a
master’s degree in Information Systems. His analyzed project
is an open-source system, to which he is a contributor.

V. RESULTS
A. Lessons Learned Observing the Participants

Based on our observations of the participants and their
thinking aloud while interacting with the tool we observe:

1) No starting view is good enough for everybody: To ease
adoption, the documentation had an introductory view that was
easy to copy-paste such that the users get up to speed quickly.
This proved very useful as every participant used it. However,
the challenge is that, the large variety of systems, does not
guarantee that this view will be relevant for every system.

Our original introductory view initially resulted in a very
large graph for Participant B that had too many nodes. The
participant spent quite a long time exploring the view, while
sounding overwhelmed, rather than continuing through the
documentation and adding further filtering.

Based on this, we changed the introductory view code to
start with stronger filters. But we ended up with a participant
(C) which coincidentally had a smaller system complaining
that the starting view was too simple (See Figure [3]).

Although, there probably is no introductory view to work
for every system, we think it might still be preferable to err
on the side of generating simpler views at first rather than
overwhelming users with too complex diagrams.

2) Participants asked for more interaction mechanisms:
Multiple participants ended up asking for better "navigation"
mechanisms, e.g.,: Participant B said: "I really need some
way to search or something, because i really can’t find the
components I am looking for," and Participant A argued: "It

10A yearly set of coding challenges https:/adventofcode.com/

day20: module

attr: modul io: module builtins: module

re: module math: medule
attr._make: module

Fig. 3. The initial view generated by Participant C, showing just the module
he analyzed and the external dependencies

would be nice if i could select this [edge], so i could follow
it through the graph".

One solution could indeed be more interactive views. How-
ever, we believe that, just as with unit testing, users need to be
trained into thinking in terms of what makes an architectural
view good. Then they would understand that the solution might
not be more interactivity, but rather creating multiple simpler
and more focused architectural views for their systems. Codoc
supports multiple views, but our participants did not think
about this when left to their own devices. One solution could
be adding an advisory note to this effect when the number of
graph elements exceeds some specified threshold.

3) Integration with existing documentation tool: Participant
C said: "Our existing documentation is hosted in a selfhosted
Gitlab instance, and I'd want this [view] in there, without
having to go through hoops". Publishing a URL only for
the image of a view, that can be easily embedded in other
documentation systems should solve this issue.

4) Incomplete Dependency Extraction Is a Deal-Breaker:
Participant C observed that some of the dependencies were
missing. We explained that some of the dependencies were
not detected by our code analysis, in particular due to the
dynamic nature of Python and the lack of type annotations his
system. Participant C explained that his place of employment
does not use the optional typing system, and argued that this
was a requirement for any tool they would use.

5) Long Feedback Loops Are a Nuisance: In our test with
Participant C, the parsing was very slow (more than three
minutes), which inhibited the creation of views, as it would
take a significant time to test out different filters. Even if
parsing can be sped up, the limitation of having to publish
a view before seeing the effect of changes to its definition is
a problem that we had not thought about until testing.

Indeed, participant C requested a local visualization tool
that would instantly update when modifying view functions.
Such a tool would also give instant feedback when creating
more complex views to determine whether it was correct and
make it possible to observe views before publishing them.

6) Privacy is an issue: Participant C and Participant D were
reluctant to send the views of their business systems to a third

40f

https://adventofcode.com/

party service. For a broad adoption of such a tool a self-hosted
version of the view repository would have to be considered.

B. Follow Up Questions

Here we briefly summarize the answers to the questions that
we asked the participants after their interactions with Codoc.

1) Can you express the needed views in the existing
framework? All participants responded positively regarding
expressiveness and the output of their view functions. Some
participants proposed additional filters that we implemented,
for instance regex-based filters. Participants A and C both
explicitly said that the filtering framework was a strength
of the tool and that they would rather use it compared to
manually graphing, while also arguing that it suited the views
they needed.

2) Which tasks & activities that you do in your daily
job, do you imagine that Codoc could help with and how?
The participants were questioned about which activities would
suit Codoc. The majority mentioned detecting a problematic
architecture, for instance, big ball of mud, a disordered system
with no clear architecture [17]]. Participants B and D also
argued for it’s use to guide refactoring tasks. Participant C and
Participant D suggested its usage in documentation, which was
in fact our initial motivation. The fact that participants A and
B did not mention documentation might reflect the amount of
documentation usually written by them: they both work alone.

3) Would you use a tool like this? All participants were
optimistic about the code-driven interface; however, not all
participants saw a need in their current employment. Moreover,
no participant saw the current solution as fulfilling, arguing
for different issues, as mentioned in Section Yet, both
Participant C and Participant D showed interest in the system
if the existing issues were mitigated.

VI. DISCUSSION

We discuss two aspects that are not directly raised by the
participants but we think must be mentioned.

1) View Evolution: To ensure that the views stay relevant
and up to date we believe that it would be good to notify
the developers when changes in the code will impact a given
view. To implement this a tool like Codoc would need a way
of tracking the version for which a view is generated. Then,
the CI pipeline could raise a notification about architectural
views that are affected by the new commit, in a similar way
in which unit testing tools raise exceptions when tests fail.

2) Visualization: The visualizations of Codoc are very
basic. Too basic maybe (e.g. not having different glyphs for
classes and modules). However, although they complained
when a view was too cluttered, the participants did not
complain about the visual language and conventions per se.
One possible reason is that their focus on defining the views
did not leave much energy for thinking critically about the
visual properties of the results. Another might be some users
are actually happy to leave the visualization to the tool. This
aspect needs to be investigated further.

VII. FUTURE WORK

Some of the observations from the Results and Discussion
sections already suggest directions of future work: supporting
view evolution, a local visualizer, handling privacy. Besides
these, more evaluations, and a longitudinal case study or
ethnographical study where Codoc is used in onboarding
processes or maintaining an evolving software system should
be done to better understand the place of such a tool during
software evolution.

Acknowledgements. We would like to thank the participants for
their time and the anonymous reviewers for their feedback.

REFERENCES

[1] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” IEEE software, vol. 20,
no. 6, pp. 35-39, 2003.

[2] A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: a survey,” in Proceedings of the 2002
ACM symposium on Document engineering, pp. 26-33, 2002.

[3] C.J. Stettina and W. Heijstek, “Necessary and neglected? an empirical
study of internal documentation in agile software development teams,”
in Proceedings of the 29th ACM international conference on Design of
communication, pp. 159-166, 2011.

[4] M. Leotta, F. Ricca, G. Antoniol, V. Garousi, J. Zhi, and G. Ruhe,
“A pilot experiment to quantify the effect of documentation accuracy on
maintenance tasks,” in 2013 IEEE International Conference on Software
Maintenance, pp. 428-431, IEEE, 2013.

[5] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Boston: Addison-Wesley Professional, 2004.

[6] L. Osterweil, “Software processes are software too,” in Engineering of
Software, pp. 323-344, Springer, 2011.

[7]1 B. Fitzgerald and K.-J. Stol, “Continuous software engineering and
beyond: Trends and challenges,” in Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering, RCoSE 2014,
(New York, NY, USA), p. 1-9, Association for Computing Machinery,
2014.

[8] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A systematic lit-
erature review of software visualization evaluation,” Journal of Systems
and Software, vol. 144, pp. 165-180, 2018.

[9] N. Medvidovic and R. N. Taylor, “A classification and comparison

framework for software architecture description languages,” IEEE Trans-

actions on software engineering, vol. 26, no. 1, pp. 70-93, 2000.

J. Aldrich, C. Chambers, and D. Notkin, “Archjava: Connecting software

architecture to implementation,” in Proceedings of the 24th International

Conference on Software Engineering. ICSE 2002, pp. 187-197, IEEE,

2002.

K. Mens, R. Wuyts, and T. D’Hondt, “Declaratively codifying software

architectures using virtual software classifications,” in Proceedings Tech-

nology of Object-Oriented Languages and Systems. TOOLS 29 (Cat. No.

PR00275), pp. 33-45, IEEE, 1999.

K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “Co-evolving code

and design with intensional views: A case study,” Computer Languages,

Systems & Structures, vol. 32, no. 2-3, pp. 140-156, 2006.

A. Van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva,

“Symphony: View-driven software architecture reconstruction,” in Pro-

ceedings. Fourth Working IEEE/IFIP Conference on Software Architec-

ture (WICSA 2004), pp. 122-132, 1IEEE, 2004.

S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik, “How do api

documentation and static typing affect api usability?,” in Proceedings

of the 36th International Conference on Software Engineering, ICSE

2014, (New York, NY, USA), p. 632-642, Association for Computing

Machinery, 2014.

M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of api

usability,” in 2013 ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, pp. 5-14, IEEE, 2013.

C. Spinuzzi, “The methodology of participatory design,” Technical

communication, vol. 52, no. 2, pp. 163-174, 2005.

B. Foote and J. Yoder, “Big ball of mud,” Pattern languages of program

design, vol. 4, pp. 654-692, 1997.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

50f

	Motivation
	Related work
	Solution
	Evaluation Method
	Participants

	Results
	Lessons Learned Observing the Participants
	No starting view is good enough for everybody
	Participants asked for more interaction mechanisms
	Integration with existing documentation tool
	Incomplete Dependency Extraction Is a Deal-Breaker
	Long Feedback Loops Are a Nuisance
	Privacy is an issue

	Follow Up Questions

	Discussion
	View Evolution
	Visualization

	Future Work
	References

