Evolution of morphology through sculpting in a voxel based robot
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Abstract— Conventional design for robotics is based on the
assumption that the robot should operate only in one given
environment. As a result, often their skills are not transferable.
Biological systems on the other hand are surprisingly versatile
and robust. They exhibit remarkable adaptivity by placing more
emphasis on adapting their morphology. Consequently, provid-
ing robots with mechanisms to adapt their bodies (material
properties and even removing/adding parts) could be a way
to obtain more versatile and robust systems. In this paper we
propose a novel method which uses genetic algorithms to evolve
optimal adaptation rules for changing the bodies of soft robots.
Instead of optimising the morphology directly, we optimise the
rules that tell the robot how to adapt the body based on the
feedback it receives when interacting with the environment. It
uses a combination of local and global information to sculpt
(i.e., change stiffness and remove body parts) the soft body to
improve locomotion in different environments. We show that in
some cases the same rule with the same starting morphology
can lead to different, but beneficial morphologies in different
environments, i.e., it can translate feedback from the different
environments into different useful bodily changes. Furthermore,
we demonstrate that some of the found rules are highly robust
and are able to produce successful morphologies for a range
of environments that haven’t been experienced during the
optimisation process.

I. INTRODUCTION

Despite the success of robotics in numerous fields, ro-
bust locomotion in complex, demanding environments still
remains a significant challenge. Only a few notable excep-
tions (such as Big Dog [28]) come close to replicating the
movements we observe in biological systems. It has been
suggested that this is due to the traditional constrained design
approach in robotics [12]. Typically, robots are built with
a predefined and fixed morphology and a corresponding
suitable controller is found [26]. If a new behaviour is
required, typically, only the controller is changed, but the
morphology of the robot is kept as it is. This works well
in traditional robotic applications where the environment is
well known and can be controlled, like assembly lines or
under lab conditions, but it has its limitations when complex
behaviours are required to deal with unexpected situations,
e.g. changes in the environment, or new tasks. The required
controller becomes often too complicated and the robot is
likely to fail.
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Fig. 1: General principle of the proposed approach. The
chosen goal was to improve locomotion. With the help
of Genetic Algorithms we optimise adaptation rules that
translate feedback from the environment into morphological
changes (i.e., changing stiffness and removal). This means,
with the same starting configuration and the same adaptation
rules, when the robot is exposed to different environment,
it will receive different feedback and therefore sculpt into
different end morphologies.

The concept of embodied intelligence promises an alter-
native approach by placing higher emphasis on the morphol-
ogy of the robot and its interaction with the environment
[27]. Often, designing a more appropriate morphology can
significantly improve the performance of a robot, whilst
still employing either a very simple control system [5],
or in some cases none at all [22], [35]. Many researchers
have taken inspiration from this approach and used genetic
algorithms to evolve optimal morphologies, see for examples
[2], [4], [8], [10], [19], [30]. However, they are all optimised
for one fixed environment. If the environment changes, the
robot likely fails, because it does not have the ability to
adapt. It’s missing robustness. To solve this problem adaptive
morphology (often referred to as morphosis [14]) is required.
Moreover, if this adaptivity is coupled with information
obtained through interaction with the environment, we obtain
a highly flexible system potentially capable of optimising to
a variety of situations. It seems that biological systems rely
heavily on adaptive morphology. For example, in plants [11],
[23] where photo-convertible molecules found in the cells
can be activated by specific wave lengths of light when the
cells are above ground. The light simulates growth of the
stem and thus positioning leaves away from shaded areas
[11], [29]. Interestingly, the same cells when submergence in
water and, therefore, are stimulated differently, result in rapid
growth in from of roots and they remove the leaves [32]. In
these instances, the same plant genotype has been exposed



to different environments and corresponding stimuli and has
reacted to them by adapting its morphology accordingly in
order to survive.
Changing morphology as a reaction to external environmen-
tal stimuli occurs not only in plants but also in animals. For
example, Passerine birds change their musculature to cope
with low temperatures in winter [21]. The Arctic fox changes
the texture and colour of its coat in response to temperature
changes [23]. The tiger salamander is capable of a radical
metamorphosis if its aquatic environment becomes uninhab-
itable, and when a male bluehead wrasse is removed from his
harem, a female will change its phenotype to become a male
[23]. In all these cases, the biological systems have reacted
to changes in their environments (and corresponding changes
of stimuli) and adapted their morphology accordingly. They
have not just relied on a change in their behaviour (i.e., their
control system), but have also used significant morphological
changes to survive.
Inspired by these natural processes, we propose here soft
robotic systems that change their morphology in response
to external stimuli induced by changes in the environment
(see Figure 1). We use an evolutionary algorithm to optimize
rules that describe how a robot should adapt its morphology
based on the feedback it gets from its interaction with the en-
vironment. Specifically, in this work the goal was to improve
locomotion speed. The robot is driven by a simple control
signal (i.e., contracting rhythmically a subset of its soft body)
which doesn’t change. Depending on the environment, the
rest of the body, which is soft as well but passive, will
deform in reaction to this interaction. Information on local
deformation as well the overall locomotion distance will be
used as input for the optimal rules to change the morphology.
The way the robot should adapt its morphology is encoded
in the form of a very simple neural network. The weights
of this neural network are optimised via an evolutionary
algorithm. Note that adaptation is not instantaneous, instead
it is employed in form of an episodic approach, where
adaptation happens over a number of interactions with the
environment (episodes). During each episode, the effect that
the interaction with the environment has on different body
parts, i.e., the kinetic energy of each part of the robots
body, is recorded. At the end of each episode episode the
neural network (here called sculpting adaptation system)
uses this information to determine which parts to stiffen,
soften or all together remove for the next attempt. Therefore,
after a number of episodes, if the adaptation system has
been successful, an optimal robot morphology, specifically
adapted to a particular environment will have been sculpted.
Evolution is carried out in three distinct environments in
order to investigate transferability of optimal sculpting adap-
tation systems between environments, i.e., if they still able
to produce a successful morphology for a new environment
not experienced during optimisation.

II. RELATED WORK

The overall aim of this paper is to evolve optimal sculpting
adaptation systems that use environmental stimulation to

sculpt robots capable of performing (locomoting) in different
environments.

There have been many examples of changing a robots control
system in response to a change in environmental stimulus
e.g., [9], [24], [25], [31]. In the majority of these examples
the robots are controlled by a neural network, the weights of
which are adapted over the lifetime of the robot. Therefore,
as the robot interacts with its environment its behaviour
changes, but their morphology stays fixed.

There are comparatively few examples of robots capable
of changing their morphology in response to different en-
vironments. Whilst using techniques such as evolutionary
algorithms to design optimal robot morphologies is not a
new concept, e.g., see examples such as [2]-[4], [8], [10],
[30]. However, robots capable of online morphosis is a
more recent concept. For example, Bongard [1] showed that
allowing some predefined development in early evolution
stages (i.e., from anguilliform to legged robot) resulted in
better performing and more robust final robots. Similarly,
Zhu et al. [36] showed that the combination of discrete
growing stages (tadpole to frog robot) and transfer learning
can significantly accelerate learning control policies. Krieg-
man et al. [18] showed the benefits of using even a small
amount of morphological adaptation, coupled with evolution,
can create better performing (voxel) based robots. Initially
their approach did not consider how the environment could
influence growth; but touched on the idea later, in [17]. In this
later work, the stiffness of each voxel was changed dependent
on feedback from its interaction with the environment which
was shown to increase the robustness of the evolved robots.
Similarly, [7], inspired by the adaptive nature of plants,
investigated how individual voxels could alter their respective
size to alter the overall virtual creatures morphology. Corucci
et al. [6] also investigated how a small change in morphology
could result in a large behaviour change in an underwater
robot named “PoseiDRONE”. Here, different morphologies
were able to translate the same simple (sinusoidal) control
systems into different behaviours, e.g., swimming, hopping,
etc. In all these cases, it was always the morphology (and/or
the controller) that was optimised.

However, Walker and Hauser [33], [34] took a step further
by evolving not the morphology/controller directly, but un-
derlying adaptation rules. They studied evolving simple rule
sets that adapted the morphology and control of simulated
robots based on the SLIP model to increase the robustness
of locomotion in response to changes in the environment.
However, the used model was very simple and only 2
parameters were adapted. The presented work here takes this
initial approach to much more complex structures, i.e., voxel-
based soft robots, and to a range of environments to test
transferability.

III. METHOD

This section details the used methods. First, we introduce
the design of the robot, then a short discussion of the simula-
tion software is presented. The overall simulation framework
is introduced and the method used to adapt the morphology



of the robot is presented. Finally, the evolutionary algorithm
used to evolve the adaptation system is explained.

A. Initial Robot Design and Simulation Software

For the simulations the software Voxelyze was used, see
[15] for a full description. In Voxelyze, robots are built out
of 3D cubes, or voxels, connected to form a structure, in
this case our robots. The starting structure of our robots
was made from 216 square voxels arranged into a cube with
the dimensions 6x6x6 voxels. Each voxel had a volume of
0.125m? and a starting stiffness of 50,000N/m, which is in
the middle of the possible simulation range for the stiffness
in our experiments. The density of each voxel was set to a
fixed value of 1200kg/m?>.

A simple locomotion control signal was applied to the
centre of the robot, as shown in Figure 2. Specifically, a
central sinusoidal control signal with a period of T' = 0.25
seconds was applied to a set of specific, so-called active
voxels allowing them to expand and contract by 20% (green
voxels in Figure 2). In addition, an increasing phase shift
from front to back (from 0 to -0.5 rads along the y-axis) has
been added to achieve locomotion. Note that this control
is fixed throughout the simulation. It is not part of the
optimisation process. Also note that the pink voxels are
passive and, hence, are not driven by the central control
signal.
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Fig. 2: The initial configuration of the robot. The inner green
voxels are able to expand/contract by up to 20 percent in line
with the control signal (sinusoidal, with a period of 0.25
seconds) and continue the entire way through the body of
the robot. There is also a phase shift along the y-axis of the
robot. The phase shift increases from front to back with each
voxel, starting at O and ending at -0.5 rads.

B. Simulation Design

The robots were simulated for 7 seconds. This length
was chosen as it allowed for a significant number of voxel
expansion cycles, specifically 28 cycles, whilst still main-
taining a short enough run time for efficient optimization.
These 7 seconds are called an episode. Throughout each
episode j the kinetic energy F;; of each individual voxel i
is recorded. Note that the kinetic energy is calculated by the
formula F; = %miv?, where m; is the mass and v; is the
resultant velocity of the ¢th voxel. This local information,
i.e., the kinetic energy for every voxel, and the change in

global distance the entire robot travels between consecutive
episodes (AD;) form the inputs of the sculpting adaptation
system. Whilst the overall goal of this framework is to create
optimal final morphologies, it is not the final morphologies
that are optimised but instead the sculpting adaptation system
that is evolved using an evolutionary algorithm.

The simulation process has following steps (see Figure
3). The robot is first simulated in its starting configuration
(a cube with the same stiffness in all voxels, shown in Figure
2). The simulation runs for one episode, which is 28 cycles
of the sinusoidal control signal (i.e., 7 seconds). During
this time the kinetic energy, E, of all voxels are collected
and difference between the total distance the robot travelled
in the current episode and the previous (AD;) recorded.
Using the current sculpting adaptation system the individual
change of stiffness AK is calculated for every voxel. The
same sculpting adaptation system, which is encoded into
the artificial neural network, is used for each voxel. More
description of the artificial neural network is detailed in
the next section. When the stiffness falls below a certain
threshold, the voxel is removed (the body is “sculpted”). In
the next episode, this new updated morphology is simulated
for the same amount of time; the same data is recorded
and the same steps are followed to adapt the morphology.
After 15 episodes the process is stopped. The performance
D;_1s, i.e., travelled distance in the final episode serves as
performance measurement for the evolutionary algorithm.

C. Sculpting Adaptation System Design

This section details the design of the sculpting adaptation
system, which dictates how the stiffness of each voxel is
changed, and therefore when they are eventually removed.
The sculpting adaptation system is implemented as a simple
artificial neural network (ANN), shown in Figure 4a. This
ANN is encoded in genomes (Figure 4b) and optimised via
an evolutionary algorithm. Note that we specifically chose
to use a simple neural network as our sculpting adaptation
system, rather than a CPPN which is commonly used in this
field, i.e., to evolve virtual creatures. To our knowledge,
our work is the first example of sculpting robots after
initialisation to adapt them to different environments. As a
result we wanted to keep the system as simple as possible
as an initial starting point to this methodology. The ANN is
used to determine the stiffness change for all of the voxels
in one robot using two main inputs. The first input is the
change in distance travelled by the whole robot in the y-
axis between two consecutive episodes (AD = D; — D;_)
where j is the episode number. This value is the same for
all voxels in the robot. The second input is the difference
between the average kinetic energy across all the voxels in
jth episode, E;, and the local individual kinetic energy of
the ith voxels F; ;, i.e. AEj ;) Therefore, this input changes
from voxel to voxel.

The output of the ANN is AKj, i.e, how much the stiffness
of the particular voxel ¢ should be changed by. This amount is
added to the existing stiffness of the corresponding voxel; if it
is positive, stiffness is increased. A negative AK; decreases
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Fig. 3: This figure shows the basic method of how a suitable morphology is sculpted out of the original cube, using an
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Fig. 4: This image shows the simple neural network that
forms the sculpting adaptation system which is responsible
for how the robot adapts between episodes. The weights of
the neural network, as well as the two bias values are all
optimized through the use of the evolutionary algorithm.

(a)

the stiffness. If the stiffness of an individual voxel is adjusted
to below a threshold of 5000 N/m that voxel is removed, see
Figure 3 for an example.

D. The Evolutionary Algorithm

This section describes the evolutionary algorithm used
to evolve the sculpting adaptation systems, i.e., the ANN.
Figure 4b shows the parameters used to make up the genome.
In this work the structure of the neural network was kept
as simple as possible to reduce the search space for the
evolutionary algorithm. All parts of the genomes (i.e. the
weights and biases and the learning rate, o, were constrained
to take values between -1.5 and +1.5. The learning rate «
was a scaling factor at the readout.

An initial population of 30 different randomised genomes
was formed. As discussed before, per genome, the robot was
first simulated as a complete cube of 216 voxels. Each voxel
had a starting stiffness of 50,000N/m and the inner voxels
were able to expand and contract, as depicted in Figure 2.
After one episode the stiffness of each voxel was updated
according to the neural network that was encoded in the

genome. This was continued for 15 episodes, after which
the distance in the final episode was recorded and used as
a fitness measurement for the current genome. This process
was repeated for all of the 30 randomised genomes in the
initial population. Once the distance reached in the final
episode was recorded for the entire population, the popu-
lation was sorted accordingly to their performance, i.e., how
far they have travelled in the final episode. A new population
for the next generation was formed in the following way.
The best genome in the current generation was transferred
to the new generation unchanged. The next 17 genomes
were formed by randomly selecting and mutating genomes
from the current generation; to mutate, randomly generated
Gaussian noise, amplitude 0.05, was added to each of the
parameters in the genome. The final 12 of the new generation
were randomly initialised. The evolutionary algorithm was
run for 150 generations until convergence.

As mentioned in the introduction section, we aimed to
find an optimal way of adaptation that works in a wide
range of environments seperately. However, first we ran the
genetic algorithm in three different environments, shown in
Figure 5, with the goal to investigate inherent transferability
between environments. Firstly, the robot was simulated on a
horizontal plane (environment A), i.e. flat ground. Secondly,
the environment was changed by introducing a 15 degree
slope (environment B). For this environment, the robot was
positioned so that the line of actuation went uphill. Finally,
the evolutionary algorithm evolved sculpting adaptation sys-
tems for environment C, where the slope was remained at
15 degrees, but the robot was positioned so that it neither
faced up nor down the slope. Instead, the line of actuation
lay across the slope, as shown in Figure 5. The evolutionary
algorithm was run 10 times in each environment with 10
unique, randomized starting populations.

IV. RESULTS

Figure 6 shows the average generational fitness (average
over 10 evolution runs) for each of the three environments. A
selection of the final morphologies developed in each of the
three environments are shown in Figure 8. In this figure,
red indicates a very stiff voxel, whereas blue indicates a
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Fig. 5: Figure showing the three environments for which the
sculpting adaptation system was optimized.
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Fig. 6: Generational fitness for the best genomes evolved in
the three initial environments. Also note that although the
evolutionary algorithms were run for 150 generations, for
readability only 100 generations are shown on the graph.
Shown with 95% confidence interval

soft voxel. For Environment A, the majority of the final
morphologies have a very similar overall body shape —
they have a stiff top front part and stiff bottom back part,
similar to those in the first and second columns. The front
bottom voxels have been removed giving the illusion of
“hind legs”. The final morphologies in this environment
are very successful; an unsculpted robot is only able to
locomote slightly backwards (-0.61 voxels) whereas these
the top genomes sculpt robots able to travel forward by 54
voxels, i.e., 9 body lengths, in a single episode.

Figure 7 shows the success of the 10 top genomes from
the environment A in green. To investigate how well the
genomes evolved in one environment transferred to another,
the sculpting adaptation systems optimised for environment
A were also tested in the other two environments. The
performance in these unseen environments is also shown
in the top graph of Figure 7 (gray for environment B and
dark yellow for environment C). In these transferability
tests the same starting morphology (cube) was simulated
in environment B and C, but using the sculpting adaptation
system (the genomes) evolved for environment A to dictate
how it should adapt. This is also indicated by the black
dot on the green bar. Since the kinetic energy input to
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Fig. 7: Performance of the top 10 evolved genomes for
each environment and tested for transferability in the other
two. A black dot indicates the environment for which the
sculpting adaptation system was initially evolved — this is
also indicated by the diagram at the top left of each graph.
A red box highlights the sculpting adaptation systems which
showed transferability, i.e., they are capable of sculpting
successful but different morphologies in each of the three
environments. Note that the scale of the y-axis for environ-
ment A is different (compare Figure 6).

the neural network is different for each environment (i.e.,
the feedback), different final morphologies were sculpted.
However, in this particular cases (transfer from environment
A—B and A—C) this was not successful as can been seen
in Figure 7 (top graph). The sculpted morphologies in these
new environments either fell down hill (environment B) or
turned and locomoted downhill (environment C). This is why
the fitness in these environments was negative.

The morphologies developed from the top genomes found
through evolution in environment B are shown in Figure 8b.
In general, for this environment the obtained morphological
solutions exhibited more variation. However, some final mor-
phologies were similar to those developed in environment A,
(e.g., shown in the third column of Figure 8b). They had a
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Fig. 8: The sculpting process for three example genomes in
the three different environments. Note that in this figure the
robots are positioned so that the front of the robot is on the
right hand side of the image.

stiff front and the bottom middle voxels removed. Note that
at the start of the simulation these morphologies balanced
on the back voxels as a result of their interaction with the
slope. When the activation of the inner voxels begins the
robot fell over onto its “back” and continued locomotion
from this position as shown.

Figure 7 shows the top 10 genomes which have been evolved
in environment B and how they perform when tested in the
other two environments. As with those found from evolution
in environment A, when these genomes are simulated in
environment B they perform, unsurprisingly, very well as
this is the environment they were optimised for. However,
with two exceptions (genomes 4 and 7), these genomes are
also able to sculpt successful morphologies in environment
A. This is interesting as these genomes had not experienced
this environment during evolution. It might be the case that
environment A is so simple, that a lot of solutions for envi-
ronment B will also provide reasonably good solutions for
environment A. Loosely speaking, solutions for environment
A come for free when optimising for a more difficult envi-
ronment like B. Additionally, there is one genome (genome
1, highlighted by the red rectangle) that is also able to sculpt
a successful morphology for environment C.

Finally, we present the results from evolution in envi-
ronment C. Figures 8c show the final sculpted morpholo-
gies. When compared to the morphologies obtained for
environments A and B, morphologies for C show much
more variation. However, one similarity they all share is
asymmetry. This is expected as there is clear asymmetry in
the environment and therefore in the feedback. The voxels
on the right hand side of the robot (those further downhill)
are either removed or are much softer than those uphill.
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Fig. 9: The genomes from each of the three evolutionary
algorithms carried out in a single environment that are able
to sculpt successful morphologies in all three environments.
The black dot symbolises which of the environments the
genome was originally evolved for.

Figure 7 (bottom graph) shows the performance of the top
10 genomes that were optimised for environment C and their
transferability to environments A and B. All of the genomes
transfer well for environment A, but they fail to transfer to
environment B (but for one, i.e., genome 9).

Out of the 30 genomes presented so far (the top 10 from
3 environment) only two genomes worked in all three en-
vironments, i.e., they were capable of sculpting successful
morphologies in environments for which they were not
optimised for. While the sculpting adaptation system is
based on the environmental feedback, it doesn’t optimise for
transferability to new environments. The 30 genomes that
have been tested are the elite — the ones that perform the
highest in each particular environment. It might be they are
just too specialised. To investigate this question we tested
the top 50 genomes from each environment (150 genomes
in total) by simulating them in the two other corresponding
environments they weren’t optimised for.

Figure 9 shows all genomes (in total 7) that worked in all
three environments, i.e., exhibited transferabiliy. The black
dot highlights which of the environments the genome was
originally evolved for. Note that none of these transferable
genomes were originally evolved in environment A (flat
ground). Instead all transferable genomes come either from
environment B or environment C. The share between them
is quite equal (3 from environment C, 4 from environment
B). From these results it would appear that learning an
optimal sculpting adaptation system in environment A is
easy, and simply evolving in a more complex environment
and transferring to environment A is enough to ensure
success.

To investigate how these 7 transferable sculpting adapta-
tion systems actually change the morphology of the robots,
we looked at the distance travelled at each episode, see
Figure 10. Here, it can be seen that in each environment,
for the first few episodes the distance travelled per episode
increases gradually. When considering the corresponding
sculpting figures it can be seen that in the early episodes
no voxels are removed. Instead only the stiffness of the
voxels change. Firstly, this shows that the performance of
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the robot can be improved just by altering the stiffness
distribution. At approximately episode 8 (in some genomes
this occurs earlier, some later) the stiffness of some voxels
is decreased to the point where they are removed. In the
majority of cases this temporarily results in a significant
decrease in performance, especially prevalent in the more
complex environments B and C. The reason for why this drop
in performance in environment A is not present in most case
(besides genome 6) could be the simplicity of environment
A — there is no slope to roll down. So, any unbalance in
the system would only cause a smaller loss in performance
as opposed to environments B and C where the robot can
topple and roll down the slope.

After these voxels had been removed the distance travelled
per episode started to increase again. However, very few
other voxels were removed. Instead the increase in perfor-
mance was once again due to the change in stiffness. The
voxels, especially those surrounding the removed voxels,
were further stiffened. It would appear that all these sculpting
adaptation systems relied on a large loss in performance
(in some cases even failure) in earlier episodes in order to
create final successful morphologies. The sculpting adapta-

tion systems were able to overcome this performance drop,
because they were only optimised for the performance in
the final episode. Other adaptation methods like gradient
descent, that were evaluated after each episode, would not
able to go through this radical drop in performance, but
would rather avoid it. Although adaptation through stiffness
change alone did yield some improvement in performance,
the combination of voxel removal and the following stiffness
change seemed to be responsible for the major part of the
success.

In some cases a “zig-zagging” effect was observed, where
after the initial drop in performance the fitness increases
in the next episode then decreased in the one after before
increasing again. This effect might haven been caused by
the either the low resolution of voxels (216) or a too large
scaling factor o (compare Figure 4). The robot responded
too much to a change in performance and overcompensated
by adjusting the stiffness too much. As a result this change
in stiffness caused the robots performance to significantly
change once more, again causing a large change in stiffness.
On the other hand, if the scaling factor were to be reduced too
much the stiffness change would be too small and therefore
the performance would not be as significantly affected.
Similarly if the resolution of the robot were greater, i.e.,
if there were more voxels, a large stiffness change of one
voxel would not affect the global performance as much.

V. DISCUSSION AND FUTURE WORK

In this paper we presented a novel methodology of evolv-

ing robots that are able to adapt to new environments. This
was achieved by finding optimal adaptations rules (imple-
mented as a simple neural network) that use local kinetic
energy and the global success of the robot to adjust the
stiffness of discrete parts of the robot, and remove these
parts if the stiffness becomes too soft. As a result, based on
the feedback from the environment, successful morphologies
were sculpted.
To find an optimal sculpting adaptation system we used
an evolutionary algorithm. We investigated three environ-
ments separately to investigate transferability. Analysing
the successful genomes from the individual environments,
it was found that a small percentage (5%) showed good
transferability. These genomes were able to sculpt successful
morphologies in all three environments, including the two
that have not been seen during the optimisation process.
Furthermore, in nearly all cases, evolution in the two more
complex environments (environments B and C) yielded
sculpting adaptation systems capable of creating successful
morphologies in the easier environment A (flat ground).

Future work will include to find more transferable sculpt-
ing adaptation systems through optimisation for all three
environments simultaneously, i.e., where the fitness is the
weighted sum total of the distance travelled in all three
environments. The results can be then tested in additional
environments. Furthermore, the investigation about the “dif-
ficulty” of an environment would interesting to conduct. Can
we find a metric that capture this complexity and can this



help us to build ideal environment for robots to learn as
transferable skills as possible? Additionally, in the experi-
ments here we purposefully use a simple neural network as a
sculpting adaptation rules. As discussed, this paper is the first
exploration into sculpting robot morphologies. Therefore, we
were motivated to keep the system as simple as possible,
and explore its potential and also limitations. Therefore,
future work will also include incorporating a CPPN-NEAT
approach into our existing methodology. Finally, a transfer-
ability also suggest robustness. We assume such a system
would be also able to recover from insult, which is currently
being investigated.

The presented results are a step to bring us closer to more
adaptive robotics systems. Although these results are carried
out in simulation, recent advancement of sim-to-real robotics,
e.g. [13], [16], [20] are promising we might be able in the
near future to build robots that are capable of morphological
changes and which could take advantage of our proposed
approach..
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