
XQM: Interactive Learning on Mobile Phones

Alexandra M. Bagi1, Kim I. Schild1, Omar Shahbaz Khan1,
Jan Zahálka2[0000−0002−6743−3607], and Björn Þór Jónsson1[0000−0003−0889−3491]

1 IT University of Copenhagen, Copenhagen, Denmark
bjth@itu.dk

2 Czech Technical University, Prague, Czech Republic
jan.zahalka@cvut.cz

Abstract. There is an increasing need for intelligent interaction with
media collections, and mobile phones are gaining significant traction as
the device of choice for many users. In this paper, we present XQM,
a mobile approach for intelligent interaction with the user’s media on
the phone, tackling the inherent challenges of the highly dynamic nature
of mobile media collections and limited computational resources of the
mobile device. We employ interactive learning, a method that conducts
interaction rounds with the user, each consisting of the system suggesting
relevant images based on its current model, the user providing relevance
labels, the system’s model retraining itself based on these labels, and
the system obtaining a new set of suggestions for the next round. This
method is suitable for the dynamic nature of mobile media collections and
the limited computational resources. We show that XQM, a full-fledged
app implemented for Android, operates on 10K image collections in in-
teractive time (less than 1.4 seconds per interaction round), and evaluate
user experience in a user study that confirms XQM’s effectiveness.

Keywords: Interactive learning · Relevance feedback · Mobile devices

1 Introduction

As media collections have become an increasingly large part of our everyday
lives, both professionally and socially, the traditional interaction paradigms of
searching and browsing have become less effective. Search requires users to have a
clear idea of the outcome of the interaction, while browsing large collections is too
inefficient. Many users have significant media collections on their mobile devices,
often thousands of photos, that they wish to interact with. When considering
intelligent interaction with these collections, many questions arise: How should
the system be designed to best utilize the limited computing resources of the
mobile device? How should users interact with the system to best make use of
the limited screen space? How will regular mobile device users react to this novel
interaction paradigm? In this paper, we explore these challenges.

The interactive learning paradigm has had a revival as a viable approach
for intelligent analysis of media collections. In interactive learning, the system
incrementally and interactively builds a model of users’ information needs, by



2 Bagi, Schild, Khan, Zahálka, Jónsson

continually using the model to suggest media items to users for feedback and then
using that feedback to refine the model. In recent years, significant progress has
been made towards scalable interactive learning systems, where the thrust of the
work has been on handling larger and larger collections with moderate hardware
whilst providing relevant results [17, 10]. Interactive learning is a good fit for
mobile systems, as it inherently does not rely on heavy data preprocessing, bears
limited computational resources in mind, and can work with dynamic datasets.

We present and evaluate XQM, a full-fledged mobile application for interac-
tive learning.1 Fig. 1 illustrates the overall architecture and processing of XQM.
In the interactive exploration phase, XQM gradually builds an interactive clas-
sifier capable of fulfilling the user’s information need. This is done by presenting
the highest ranked images from the current model in the user interface and
asking the user to provide feedback on those, labelling them as relevant or not
relevant. The labels are then used to retrain the interactive classifier, and the
classifier is in turn used to query the feature database for a new set of suggested
images to judge. This interactive process continues until the user is satisfied or
decides to start from scratch. To support the model construction, the app also
has a data processing phase, where state-of-the-art semantic feature extraction
is deployed on a dedicated server. When installing the app, existing images are
analysed in this manner to build XQM’s feature database, and subsequently the
user can analyse new images to add to the feature database. In a performance
study, we show that XQM can interactively explore collections of up to 10K im-
ages with response time of less than 1.4 seconds per interaction. Furthermore, we
report on user experience in a user study with participants ranging from novice
users to experienced interactive learning users.

2 Related work

Processing large image collections makes the collaboration between humans and
computers inevitable. Computers have a large memory and can process large
amounts of data fast, but they lack the human’s ability to extract a great amount
of semantic information from visual content. This phenomenon is known as the
semantic gap [14]. A large body of research has been devoted to closing the
semantic gap and indeed, we are able to automatically extract more semantic
information from the data than before. To that end, however, a computer still
needs feature representations of the data which are meaningful to the machine,
but might not be to a human. Currently, mostly convolutional neural networks
(CNNs) are used [11, 15, 16].

The need for feature representations presents two key challenges for a mo-
bile approach. Firstly, the resource-limited mobile phone needs fast access to the
feature representation in addition to the raw data. Secondly, CNNs are computa-
tionally very intensive, and their performance hinges on access to state-of-the-art
1 XQM is an acronym of Exquisitor Mobile, as the design of XQM relies heavily on
Exquisitor, the state-of-the-art interactive learning system [10]. The XQM app is
available to the research community at www.github.com/ITU-DASYALab/XQM.



XQM: Interactive Learning on Mobile Phones 3

Feature
Database

Feature
extraction

DCIM
storage

User
Interface

Interactive
classifier

feedback suggestions

images

model

Interactive Exploration Phase Data Processing Phase

new 
images

features

Phone Server

Fig. 1: Architectural overview of the XQM interactive learning mobile app.

GPUs that either mobile phones do not possess or are unsuitable for high long-
time usage due to overheating. There are approaches for deep learning on mobile
phones, but their performance lags behind the desktop-based state of the art.

Most recent approaches for analyzing multimedia collections are based on
retrieval: an index is built on top of the feature representation(s) and users
pose queries that retrieve results based on this index. There is a large num-
ber of approaches to build the index: to name a few, product quantization [9],
clustering-based approaches [8], or hashing-based approaches [2, 5]. Overall, this
approach works well, as the search engine is a familiar interface to the users, and
the semantic quality of state-of-the-art representations is high enough to surpass
human-level performance on some tasks [7]. However, an index-based approach
might not be so suited for mobiles. Again, there is the limited resources chal-
lenge: an index is yet another data structure the phone needs access to. Also,
multimedia collections on mobile phones tend to be highly dynamic, whereas
index-based approaches favour static collections.

Interactive learning approaches, in particular user relevance feedback (URF),
directly work with the user to obtain the items she finds relevant: in each in-
teraction round, the user selects relevant and not relevant items, the interactive
learning model retrains itself based on the judgment, and finally the user is pre-
sented with new and potentially relevant items for the next round. The bulk
of the algorithmic research on relevance feedback and the closely related ac-
tive learning techniques has been done in the 2000s [1, 13, 19]. Recent work has
improved interactive learning to perform well on modern large-scale datasets:
scaling up to interactive performance on 100 million images [17], and improving
the performance to 0.29 seconds per interaction round whilst further reducing



4 Bagi, Schild, Khan, Zahálka, Jónsson

computational requirements [10]. A good choice of an interactive classifier is the
Linear SVM [4], which combined with modern feature representations yields good
performance at a modest computational cost. In terms of applications, interac-
tive learning approaches fall under the umbrella of multimedia analytics, which
strives to iteratively bring the user towards insight through an interface tightly
coupled with an interactive learning machine model [18]. These approaches do
not rely on a static index and computational requirements are a built-in core
consideration, namely interactivity (making sure the model is able to retrain
itself and produce suggestions in sub-second time). However, it is still not trivial
to satisfy those requirements, especially on a mobile device.

This work aims to implement a URF system on mobile phones, therefore
both the technical restrictions of these devices and the general user behaviour
towards mobile applications need to be considered. There are a number of factors
that prevent simple deployment of the state of the art on mobile devices. Effi-
cient interactive learning approaches, such as Exquisitor [10], hinge on a C/C++
implementation and storage solutions not supported by mobile OS (at least An-
droid), and the machine learning (computer vision, information retrieval, etc.)
codebase for mobiles is limited. Whilst this is an implementational challenge
rather than a scientific one, it is a barrier nonetheless. Moreover, user interface
interactions and their convenience are somewhat different than on a computer.
For example, mobile UIs make heavy use of swipes and finger gestures which
do not necessarily map directly to mouse interactions and typing is more cum-
bersome on a screen keyboard than on a computer keyboard. Lastly, the core
framework components of a native mobile application largely stipulate the way
how connection can be established between the user and the system.

3 XQM Architecture

In this section, we describe the architecture of the XQM mobile app, depicted in
Fig. 1. We start by presenting the user interface which supports the interactive
exploration process outlined in the introduction, and then consider the under-
lying components in a bottom-up fashion: the semantic feature extraction, the
feature database, and the interactive classifier. Note that the actual photos are
stored by other applications in DCIM storage folders. When starting XQM for
the first time, the user must thus grant the app access to DCIM image storage.

User Interface: Fig. 2 shows the main screens of the user interface of XQM.
Each exploration session starts with the home screen (Fig. 2(a)), which displays
a non-scrollable list of 6 random images from the image collection (the largest
number of images that can be displayed on the mobile screen in adequate resolu-
tion). The user can tap on any of the six suggestions to open an enlarged image
on a new feedback screen (Fig. 2(b)) in order to inspect it in more detail, and
then potentially judge the image as a positive or negative example by swiping
the image right or left, respectively. Once an image has been judged as a posi-
tive or negative example, the user returns to the home screen where the image is



XQM: Interactive Learning on Mobile Phones 5

(a) Home Screen (b) Feedback Screen (c) Positive Images (d) Resulting Model

Fig. 2: The interactive learning process as captured in the XQM user interface.

replaced by the image currently considered the most relevant, according to the
interactive classifier.2

The user can, at any time, revisit the positive and negative examples by
tapping on the corresponding buttons at the bottom of the home screen, to
open the positives screen (Fig. 2(c)) or negatives screen (not shown). From those
screens, the user can remove images from the positive or negative lists, which in
turn impacts the model in the next suggestions round.

Once the interactive classifier seems good enough, the user can tap on the
“fast-forward” icon at the top of the screen to fill the home screen with the most
relevant images (Fig. 2(d)). In addition to the fast-forward button, the XQM
app has three buttons located on the top navigation bar: the “random” icon is
used to get a new set of random images;3 the “trash” icon is used to start a new
exploration from scratch; and finally the “overflow menu” icon (three dots) can
be used to add new images to the feature database through the data processing
phase, or get help as outlined in the user study in Section 5.

Semantic Feature Extraction: In the data processing phase of Fig. 1, se-
mantic deep learning features are extracted from images and stored in a feature
database. There are two options to facilitate feature extraction on mobile de-
vices: on-device, using the CPU of the mobile phone (or GPU, in the case of

2 In the current implementation, at least one positive and one negative example are
needed; until these have been identified, random images replace the judged images.

3 Loading random images is useful when the model is missing positive examples with
concepts that have not yet been seen; in a future version we plan to implement search
functionality to further help find positive examples.



6 Bagi, Schild, Khan, Zahálka, Jónsson

high-end devices); or off-device, sending the images to be processed to a remote
server. As outlined in Section 2, on-device processing suffers from lower semantic
performance, low availability of tools/libraries, and risk of overheating causing
damage to the device. The off-device approach, on the other hand, requires ac-
cess to a mobile or wireless network, which may result in latency and/or usage
charges [6], and can also raise security questions.

We have chosen the off-device approach for the XQM app, to (a) make use
of state-of-the-art semantic features, and (b) avoid complex resource manage-
ment issues on the device. We have wrapped a pretrained ResNext101 model
with 12,988 classes with a web-API, which allows submitting a ZIP file with
multiple images and returns a JSON file with information on the semantic fea-
tures. Following [17], however, the server only returns information about the top
s semantic features associated with each image (by default, s = 6).

During the data processing phase, the collection of images to analyse is split
into batches of 100 images, which are compressed and sent synchronously to
the server for processing. Upon receiving the JSON file from the server, it is
parsed and the information is stored in the feature database described in the
next section. When the app is first run, this process is applied to the entire
collection of images on the device; subsequently, only newly added images are
analysed when the user chooses to update the database.

Processing each batch of 100 images takes little over a minute with a Xi-
aomi Redmi Note 8 Pro smartphone and a laptop for running the extraction.
Initialising the app on a mobile device with thousands of images would thus take
significant time. For a production app more care must be taken to implement
the data processing phase, including asynchronous and secure communication.
The current process, however, is sufficient for the purposes of understanding the
performance of the interactive exploration phase, which is the main emphasis of
the paper.

Feature Database: The semantic feature data resulting from the analysis de-
scribed above must be stored persistently on the mobile device in a format that
allows efficient access in the interactive phase. However, neither the traditional
multimedia approach of storing a sparse NumPy matrix in RAM nor the ad-
vanced compression mechanism of [17] are applicable in the limited environment
of the Android OS. Instead, the standard approach to data storage is using the
SQLite relational database, which requires careful normalisation and choice of
data types to work well.

Fig. 3(a) shows the data that would typically be stored in (compressed)
binary format in RAM. In SQLite, the IDs of the features and corresponding
probabilities can be stored as a TEXT string that is parsed when reading the
data to rank the images. While this approach has modest space requirements,
requiring 179 kB for a database of 1,000 feature vectors, parsing the TEXT
string resulted in computational overhead.

Instead, Figs. 3(b)-(d) show the final normalised SQLite database, where
three tables represent the feature database, one for storing all relevant folder



XQM: Interactive Learning on Mobile Phones 7

ImageName

storage/emulated/0/DCIM/Camera/103501.jpg

storage/emulated/0/DCIM/Camera/101502.jpg

FeatureID

[5344, 4309, 6746, 5060, 2874, 2705]

[6248, 5326, 2851, 5324, 5325, 5326]

[0.102834791, 0.063476876, 0.05930854, 0.05230371, 0.03741937, 0.0310730178]

[0.122722, 0.116210177, 0.059408964, 0.045039124, 0.044916617, 0.0203401245]

Probability

(a) Original Table

FolderPathID FolderPath

0

1

storage/emulated/0/DCIM/Camera

storage/emulated/0/DCIM/Screenshots

(b) Path Table

ImageID ImageName

0

1

2

103501.jpg

101502.jpg

3

4

5

6

FolderPathID

103200.jpg

102200.jpg

101501.jpg

103301.jpg

103511.jpg

0

0

0

0

0

0

0

(c) Image Table

ImageID FeatureID

0

0

0

5344

4309

0

0

0

1

Probability

6746

5060

2874

2705

6248

102

63

59

52

37

31

123

(d) Feature Table

Fig. 3: Comparison of storage alternatives: (a) the original unnormalised table;
and (b)-(d) final normalised tables.

paths and their identifiers, one for storing image identifiers, image names and
path identifiers, and the third for storing the feature identifiers and probabilities,
one per row. For additional space savings, the probabilities have been converted
to integers using multiplication, since the INTEGER data type requires half the
storage of a FLOAT data type. With this implementation, a collection of 1,000
feature vectors requires only 116 kB.

When applying the interactive classifier to the feature vectors to rank images,
only the feature table is required, as it contains the image identifiers that can
be used to identify the most relevant suggestions. Once the 6 most relevant
suggestions have been identified, the image table and the path table must be
accessed to build the path of the image for presentation in the user interface.
Since the access is based on the primary keys of both tables, reading the required
data is very efficient.

Note that deletion of images is handled by detecting missing images as they
are suggested to the user, and subsequently removing their information from
the feature database. If an image is moved, it will be handled as a deletion and
an insertion; the order will depend on when the user updates the database and
when the moved image first appears as a relevant image.

Interactive Classifier: XQM uses the LIBSVM [3] implementation of linear
SVM, which is considered the state of the art classifier in interactive learning
[10, 17]. As the relevance judgments generally constitute a very small training
set, we used generic parameter settings to avoid over-fitting. Once the model
has been trained, the feature vectors are retrieved from the SQLite database,
as outlined above, and fed to the model to produce a score for each image. The
6 images with the highest score, or farthest from the decision boundary on the
positive side, are then returned as suggestions.



8 Bagi, Schild, Khan, Zahálka, Jónsson

4 System Performance Evaluation

This section evaluates the efficiency of the mobile application. Due to space con-
cerns, we focus primarily on the interactive phase, measuring the time required
to retrieve new suggestions in each interaction round. We have also measured
the one-time process of analysing image contents, only about one-third of the
time is spent on the phone.

Experimental Setup: For the evaluation, we used a Xiaomi Redmi Note 8 Pro
smartphone with 128 GB memory and 6 GB RAM, MediaTek Helio G90T 2.05
GHz (8-core) processor and Android 9.0 (Pie) OS. To obtain results that are
not influenced by other design decisions, we constructed two stand-alone apps
specifically for the experiments.

The first app randomly chooses positive and negative examples, retrieves
their feature vectors from the SQLite database, computes the SVM model, re-
trieves all the features from the SQLite database, and computes the next six
suggested images. The app takes three input parameters: number of feature vec-
tors, ranging from 100 to 10,000; number of rated examples, ranging from 3 to 48;
and number of suggestions to retrieve, set to 6. For each parameter combination
we ran 300 iterations and report the average.

The second app repeatedly selects random images from the database and
presents them on screen, as would be done in the XQM app. It takes as input a
database of images, ranging in size from 100 to 10,000. To avoid warm-up effects,
we first loaded 200 images, and then measured 1,000 images for each database.

We separated the two processes as the latter app is independent of many of
the parameters of the first app. To simplify the presentation of results, however,
we (a) only report results with 48 rated images, as computing the SVM model
is efficient and is only more efficient with fewer suggestions, and (b) incorporate
the time for presenting 6 images into the results from the first app.

Experiment Results: Fig. 4 presents the details of the time required for each
iteration of the relevance feedback process. The x-axis displays the number of
images and feature vectors in the database, while the y-axis shows the time
that was used for completing these tasks in seconds. As the figure shows, the
time required to build the model and show the final suggestions is negligible
(only visible for the smallest collection) and the time to rank images is also very
small, while the majority of the time is used to retrieve feature vectors, which is
linearly dependent on database size, and display the images on screen which is
independent of database size. As Fig. 4 furthermore shows, the process is very
efficient for small databases, requiring less than 250 ms for 1,000 or fewer images,
and that even for 10,000 images the total time per iteration is only about 1.4
seconds. Overall, we can conclude that for the vast majority of mobile phone
users, the app will perform interactively.



XQM: Interactive Learning on Mobile Phones 9

Fig. 4: The average time for subtasks in the interactive exploration phase.

5 User Interface Evaluation

XQM’s design is intended to make the app easy to use for novice users who are
not familiar with interactive learning. To evaluate the UI, we conducted a user
study focusing on the app’s usability, learnability and functionality.

Evaluation Setup: We recruited 8 users for the user study, 3 female and 5 male,
all university students between 23 and 27 years of age. Three testers have limited
technical knowledge, while the remaining 5 are CS students; 2 of the latter have
worked with interactive learning in their thesis. All 8 users use mobile phone
applications on a daily basis, but only 3 use an Android phone.

The users were provided with a Xiaomi Redmi Note 8 Pro with 2,883 images
from the INRIA holiday data set4 and the Lifelog Search Challenge.5 The users
were asked to conduct 3 sessions to find each target presented in Table 1: TV
screen; exotic bay; and skyscrapers. Note that this setup is different from the
intended use case scenario, as users have not created the collection themselves
and thus had no information about its contents. However, to establish a consis-
tent environment, it was necessary to use the same image collection for all users.
To further guarantee comparability, an identical random seed was used to begin
each interaction with the same set of random images.

The users received a brief verbal introduction to XQM. An on-boarding
modal within the app was then used to describe its functionality and usage;
users could return to this information at any time using the help menu. The
sessions were audio-recorded. Users were able to complete the task in 22 out of
the 24 sessions; the two unsuccessful sessions are excluded from the analysis.

Quantitative Analysis: Table 2 shows how many times users took each of
the main actions to accomplish the task. Due to the high variation in results,
4 http://lear.inrialpes.fr/people/jegou/data.php
5 http://lsc.dcu.ie/



10 Bagi, Schild, Khan, Zahálka, Jónsson

Table 1: Example target images and their occurrences in the collection.
Target TV screen Exotic bay Skyscrapers

Occurrences in collection ∼ 100 ∼ 30 ∼ 15
Example image

both the mean and median are provided in the table. On average, the users
gave between 7 and 20 images ratings (positive or negative) for the three tasks.
Showing random images was often used to accelerate the sessions, although the
value is heavily skewed from one session where a user hit random 84 times;
essentially simulating scrolling through the collection. Table 2 also shows that
fast-forward and correcting previous ratings were rarely used, while the trash
icon for starting a new session was entirely disregarded.

An analysis of the session logs indicates that novices encountered some diffi-
culties understanding the principle of interactive learning and thus XQM’s pur-
pose. Overall, though, the results indicate that the users were largely successful
in solving the tasks; in particular the fact that users never started from scratch
indicates that they generally felt they were making progress in the sessions. How-
ever, the fewer instances of the target class there are the longer the sessions take,
and the (sometimes extensive) use of the random button indicates that adding
search functionality to find positive examples would be useful.

Qualitative Analysis: We analysed the session logs to understand and classify
the concerns and suggestions of users, and report on this analysis below.

Understandability and Learnability: Most users refrained from using the buttons,
mostly because they did not remember or understand their functionality. Three
users had difficulties understanding which images were replaced and said they
would like to understand how the model evaluates images in order to make
better rating decisions. The two users with prior interactive learning experience,
however, did not report such problems. One of them said: “I think XQM’s strong
suit is its simplistic UI. That makes it a lot easier for novices to learn.” And:
“The modal gave very good information of how the app works.” Both experienced
users said that they would like to have a separate screen containing a history of
their search.

App Functionality: A number of suggestions were raised regarding the func-
tionality of the app. Five users desired an "undo" function to be able to reverse
their actions; such user control is desirable to allow the user to explore the app
without fear of making a mistake [12]. To accelerate the sessions, two users ex-
pressed a desire to be able to scroll through the collection, since 6 images are



XQM: Interactive Learning on Mobile Phones 11

Table 2: Mean/median of actions per user per motive
Target Feedback Random Fast-forward Start over Rating change

TV 7,0 / 6,0 1,0 / 0,6 0,0 / 0,0 0,0 / 0,0 0,6 / 0,0
Bay 13,0 / 11,5 1,0 / 1,0 1,7 / 1,0 0.0 / 0,0 0,7 / 0,0
Skyscrapers 19,5 / 11,0 19,8 / 8,0 3,8 / 0,5 0,0 / 0.0 1,3 / 0,0

only a small fraction of most mobile collections, and three users suggested to
incorporate a search function for finding relatively rare image motives. Further-
more, two users said that they would like to swipe directly in the home screen:
“It would be faster than opening the image every time you want to rate it. This
would be very useful for eliminating irrelevant results.” Nevertheless, after the
introduction, users quickly learned how to rate: “I like the swiping feature to
rate the image. That is very intuitive.”

Image Features: Users noted that some images score constantly higher in the
suggestion list than others without being perceived as relevant to the task. Tradi-
tional techniques, such as TF-IDF, have been reported to improve the relevance
of the returned items [17] and could be relevant here. Nevertheless, overall users
could find relevant results despite this issue: “It is exciting to see that the model
caught up on what I am looking for.”

Discussion: Overall, the results of the user study indicate that XQM succeeds in
its goal of implementing interactive learning on a mobile device. Despite variation
in the approach and performance of users, they were overwhelmingly able to
complete the assigned tasks and find examples of the desired target items. The
results also point out a number of improvements to make, including search and
browsing to find positive examples, an undo button to easily take back an action,
rating directly in the home screen, and improving the representative features to
avoid some images occurring in every interaction session.

6 Conclusion

In this paper we presented XQM, a full-fledged mobile app for user interaction
with media collections on the user’s mobile device. Our interactive learning based
approach is demonstrated to operate well on the dynamic mobile collections and
use modest computational resources, which are at a premium on mobile devices,
whilst providing relevant results in interactive time of less than 1.4 seconds
on a 10K collection. The user study confirms that XQM is a useful tool not
only to the experienced users, but also for the novice or casual users unfamiliar
with interactive learning, with clear potential for further improvement. With
XQM, we hope to have opened new avenues for research on advanced, intelligent
approaches for media collection analytics on mobile devices.



12 Bagi, Schild, Khan, Zahálka, Jónsson

Acknowledgments: This work was supported by a PhD grant from the IT
University of Copenhagen and by the European Regional Development Fund
(project Robotics for Industry 4.0, CZ.02.1.01/0.0/0.0/15 003/0000470). Thanks
to Dennis C. Koelma for his help with adopting the ResNext101 model.

References

1. Aggarwal, C., Kong, X., Gu, Q., Han, J., Yu, P.: Active learning: A survey. In:
Data Classification, pp. 571–605. CRC Press (2014)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117–122 (Jan 2008)

3. Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

5. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proc. SCG. pp. 253–262 (2004)

6. Ensor, A., Hall, S.: GPU-based image analysis on mobile devices. CoRR
abs/1112.3110 (2011), http://arxiv.org/abs/1112.3110

7. Geirhos, R., Temme, C.R.M., Rauber, J., Schütt, H.H., Bethge, M., Wichmann,
F.A.: Generalisation in humans and deep neural networks. In: Proc. NIPS. pp.
7538–7550 (2018)

8. Guðmundsson, G.Þ., Amsaleg, L., Jónsson, B.Þ.: Impact of storage technology on
the efficiency of cluster-based high-dimensional index creation. In: Proc. DASFAA.
pp. 53–64 (2012)

9. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE PAMI 33(1), 117–128 (Jan 2010)

10. Khan, O., Jónsson, B.Þ., Rudinac, S., Zahálka, J., Ragnarsdóttir, H., Þorleiks-
dóttir, Þ., Guðmundsson, G.Þ., Amsaleg, L., Worring, M.: Interactive learning for
multimedia at large. Proc. ECIR pp. 495–510 (2020)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proc. NIPS. pp. 1097–1105 (2012)

12. Nielsen, J.: 10 usability heuristics for user interface design (1995),
https://www.nngroup.com/articles/ten-usability-heuristics/, Last accessed
on 25.03.2020

13. Settles, B.: Active learning literature survey. Computer Sciences Technical Re-
port 1648, University of Wisconsin–Madison (2009)

14. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based
image retrieval at the end of the early years. IEEE PAMI 22(12), 1349–1380 (2000)

15. Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Er-
han, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proc.
CVPR. pp. 1–9 (2015)

16. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proc. CVPR (2017)

17. Zahálka, J., Rudinac, S., Jónsson, B., Koelma, D., Worring, M.: Blackthorn: Large-
scale interactive multimodal learning. IEEE TMM pp. 687–698 (2018)

18. Zahálka, J., Worring, M.: Towards interactive, intelligent, and integrated multime-
dia analytics. Proc. IEEE VAST pp. 3–12 (2014)

19. Zhou, X., Huang, T.: Relevance feedback in image retrieval: A comprehensive re-
view. Multimedia Syst. 8, 536–544 (2003)


