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Abstract Data should be placed at the most cost and

performance-effective tier in the storage hierarchy. While

performance and cost decrease with distance from the

CPU, the cost/performance trade-off depends on how

efficiently data can be moved across tiers. Log structur-

ing improves this cost/performance by writing batches

of pages from main memory to secondary storage using

a conventional block-at-a-time I/O interface. However,

log structuring incurs overhead in the form of recov-

ery and garbage collection. With computational Solid-

State Drives, it is now possible to design a storage in-

terface that minimizes this overhead. In this paper, we

offload log structuring from the host to the SSD. We

define a new batch I/O storage interface and we design

a Flash Translation Layer that takes care of log struc-

turing on the SSD side. This removes the CPU com-

putational and I/O load associated with recovery and

garbage collection. We compare the performance of the

Bw-tree key-value store with its LLAMA host-based log

structuring to the same key-value software stack exe-

cuting on a computational SSD equipped with a batch

I/O interface. Our experimental results show the ben-

efits of eliminating redundancies, minimizing interac-

tions across storage layers, and avoiding the CPU cost

of providing log structuring.
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1 Introduction

1.1 Problem and Opportunity

Cost/Performance Data should be placed at the most

cost and performance-effective tier in the storage hier-

archy. In the storage hierarchy, performance and cost

decrease with distance from the CPU. We have argued

earlier [16,33] that reducing I/O cost can have a sub-

stantial positive impact on the cost/performance. The

cost of storage for data is always paid, while the cost of

execution on it is paid only when the data is used. The

cost equation then becomes:

Cost/sec

= Storage cost/sec + (Ops executed/sec) ×Op Cost

This can be seen in Figure 1. Flash storage cost is

lower compared with the storage cost of main memory

(Figure 1.a), while its operating cost is higher due to

the I/Os needed to bring data into main memory (Fig-

ure 1.b). Using this formulation, Figure 1.c illustrates

the relative cost of executing operations on cached data

versus data that resides on flash, as performance in-

creases. We compare a main-memory system (where

data is always in memory), SSD-based system (where

data is on flash and only brought to memory when used)

and data caching system that places data at the most

cost/performance-effective tier in the storage hierarchy.

As shown in the figure, a main-memory system is best

when performance is high, an SSD-based system is best

when performance is low, while a data caching system
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Fig. 1: It is all about relative costs! When data is in main memory and when it comes from an SSD, (a) flash storage cost
is lower, but (b) execution cost is higher for reading the data into main memory. (c) cost vs performance for key-value store
operations. The data caching system can follow the lower cost curve. The dotted light blue line shows how costs are reduced
if I/O cost can be reduced.

is best throughout the cost/performance space (i.e., the

dotted black line). More importantly the cost over a

large part of the performance range can be further low-

ered for SSD-based and data caching systems by reduc-

ing the I/O cost (i.e., the dotted light blue line).

Coping with I/O Flash-based solid state drives (SSDs)

are sold as self-contained hardware units that support

the standard block-at-a-time I/O interface for compati-

bility with the classic hard disk interface. A flash trans-

lation layer (FTL) [11], running on the SSD controller,

enables logical in-place page update despite flash need-

ing erases between writes. FTLs use log structuring

(LS) virtualization [39] to avoid update-in-place at the

flash storage layer, instead writing pages to new loca-

tions. LS is also used for file systems and cache man-

agers to reduce host I/Os. The I/O path is expen-

sive, and LS reduces its execution frequency. But LS

needs garbage collection (GC) and checkpoint/recovery

(CKPT/REC), which cuts into the performance gain.

Further, with LS on a CPU using an SSD, both end up

supporting LS functionality. We aim to reduce the cost

of I/O by removing this redundancy.

1.2 Our Approach

Batching I/O We build a new FTL exploiting an

open-channel SSD (OCSSD) that provides only read,

write and erase functionality against raw flash mem-

ory. We augment the OCSSD with our own storage con-

troller and implement the usual SSD FTL, with its GC

and CKPT/REC. So, what changes? The primary ad-

vantage of implementing LS on the host is that many

pages can be written in a batch, from a single buffer,

with a single write I/O. GC and CKPT/REC are over-

heads. We modify the SSD block-at-a-time interface so

that, from one buffer, we can write a disparate batch of

pages (like LS) with one I/O. The host sends a buffer

with a batch of data pages together with metadata de-

scribing which pages are included in the batch. By doing

this, the host enjoys the benefits of LS while virtually

eliminating its overhead.

If the hosts reads a logical page from SSD, it needs

only provide the logical page id (LPID). The storage

controller maps LPID to flash storage location, reads

data from this flash location, and sends the resulting

data back to the host. Reads can also be batched, with

the host requesting a set of pages to read.

Moving LS Overhead to the SSD Controller With

host-based LS, a conventional SSD receiving a write

sees a storage start address and data length. It knows

nothing about what the host sees as a collection of non-

contiguous logical pages. The host maintains a mapping

table associating an LPID for each page. Our new ap-

proach “outsources” the mapping responsibility to the

SSD controller, giving it both data and LPID for each

page in a multi-page buffer. Like an LS-based file sys-

tem, we designate the first page of the I/O buffer as

a metadata page containing the set of LPIDs for the

pages contained in the buffer.

Now our storage controller maintains the mapping

between LPIDs and physical locations. Hence, it is re-

sponsible for CKPT/REC to provide mapping table

durability. Further, the controller can freely move pages

around in flash storage. Hence, the controller must now
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Fig. 2: (a) Host with a conventional, block-oriented SSD (b) Host using an SSD with an LS engineered controller that allows
a batch interface. LSS and FTL denote Log-Structured Store and Flash Translation Layer, respectively.

also perform GC, moving pages as required to enable

the erasure of flash blocks and their subsequent reuse.

Our hypothesis is that offloading GC and CKPT/REC

from the CPU to the storage controller not only sim-

plifies the host system, saving CPU I/O execution cy-

cles, it is more efficient overall. We do not consume I/O

bandwidth for GC or CKPT/REC. These functions are

no longer replicated between host-LS and FTL, they are

specialized in our SSD controller. Further, the CPU no

longer needs to keep a mapping table in main memory

that contains the flash addresses of its pages. Rather,

it merely needs to know if a page is cached, and if not,

it uses an LPID to request the associated data by way

of the storage controller.

1.3 Our Contributions

We have transformed a data caching system implement-

ing host-based LS on top of a traditional SSD, into a

system where LS is implemented on the storage con-

troller of a programmable SSD (see Figure 2). This

transformation is based on the introduction of a new

storage interface: batch I/O. Realizing the storage con-

troller’s modified FTL component that supports this

new interface is not trivial. There are a number of con-

cerns that software does not usually deal with:

– Hardware errors Traditionally, systems using stor-

age devices do not worry much about hardware er-

rors, assuming (mostly correctly) that the controller

software deals with that. When we implement con-

troller soft- ware, it becomes our responsibility to

cope with errors in flash.

– Wear Leveling Controller software needs also to

deal with wear leveling, counting erase cycles and

provisioning storage so as to balance the erases across

erase blocks.

– Durability Before the FTL acknowledges a write,

it must ensure durability for the data being written

and the updates to the mapping table. The FTL

must ensure that information needed for recovery

can be accessed and processed to ensure high per-

formance recovery and availability.

Implementing and evaluating a batch I/O storage

interface is the overarching contribution of this paper.

Batch I/O reduces the cost of I/O while improving

the effective IOPS rate. We provide a background on

SSDs and log structuring in Section 2. We introduce the

batch I/O storage interface in Section 3, another con-

tribution. Here we need to balance write performance,

latency and concurrency with user needs and under-

standability. Section 3 also provides an overview of our

log structured SSD store. This sets the stage for how

we implement the batching functionality.

– Durability Section 4 describes how we use database

style logging and recovery to provide durability in

the FTL. Our contribution here is in how we deal

with media failures during normal operation, in writ-

ing both pages and log records.

– Garbage Collection Section 5 deals with garbage

collection (called cleaning in log-structured file sys-

tems (LFS) [39]). Our contribution here is in ex-

ploiting an out-of-band controller accessible meta-

data region to track free(over-written) pages.

– Checkpoint We describe how we decompose SSD

controller state that needs to be checkpointed in

section 6. Imposing a hierarchy on resources being

checkpointed is not entirely new, but its systematic

exploitation is a contribution.

The OX Framework constitutes the software foun-

dation and the basic functionality for our FTL. We de-

tail how it was modified to efficiently support the batch

I/O storage interface in section 7. Working close to the

hardware is substantially more arduous than at higher

levels of the system stack. A final contribution is our

evaluation of the resulting performance in Section 8.

The results demonstrate the effectiveness of our effort.

We discuss related work in Section 9, and end with a

short conclusion in Section 10.
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2 Background

2.1 Solid State Drives (SSDs)

A modern SSD is split into two components [13], storage

media and controller. The storage media is composed

of arrays of flash chips wired in parallel on physical

channels. A flash chip consists of multiple blocks, each

of which holds multiple pages. Each page is further de-

composed into fixed-size sectors with an additional out-

of-bound (OOB) area (TAG) that is primarily used for

Error Correction Code (ECC) and user-specific data.

The unit of erasure (EBLOCK) is a block while writes

are done at the granularity of pages (WBLOCK), and

reads can be performed at the sector unit (RBLOCK).

In the remainder of this paper, we will frequently refer

to flash memory elements. Table 1 provides the terms

we will use subsequently.

The controller is responsible for communicating to

a host via the traditional block-at-a-time interface, and

is designed to effectively manage the underlying stor-

age media where in-place updates are not allowed. The

controller implements a form of log structuring [11] in

a Flash Translation Layer (FTL) that maps a flat log-

ical address space to the hierarchical physical address

space available in the SSD. The FTL also implements

garbage collection to reclaim flash blocks, possibly con-

taining valid data, and wear leveling to ensure that flash

blocks wear evenly to prolong SSD life.

One of the keys to the widespread adoption of SSDs

in the enterprise was due to their support of the same

block-at-a-time interface that hard disk drives (HDDs)

have used for several decades. But at the same time,

this led to sub-optimal storage utilization and perfor-
mance [34,22,27]. To address this problem, the SSD in-

dustry is facing two emerging changes - exposing SSD

internals, and offloading host processing to SSDs.

2.1.1 Trend 1: Exposing SSD internals

In conventional SSDs, the main role of the FTL em-

bedded on the SSD controller is to hide the complex-

ity of managing internal storage media. Alternatively,

SSD’s internal media geometry and parallelism can be

exposed to a host by implementing FTL responsibili-

ties such as logical to physical mapping and garbage

collection on the host side. With a host-based FTL,

the host can control data placement and I/O schedul-

ing based on user requirements [18,24]. Parts of the

industry are moving in this direction: Open-Channel

SSDs [9,38], for example, introduces a new I/O inter-

face, called Physical Page Addressing that enables the

host to access physical flash pages, not possible with the

traditional block device abstraction. In an open-source

project called Project Denali [2], Microsoft proposes a

model allowing software-defined data placement on the

SSD. In early 2019, Alibaba announced the deployment

of open-channel SSDs to their hyper-scale data centers

[44].

2.1.2 Trend 2: Offloading host processing to SSDs

Modern SSDs package processing (e.g., storage con-

troller) and storage components (e.g., DRAM, Flash)

for routine tasks such as mapping and garbage collec-

tion. These computing resources present an opportu-

nity to execute user-defined functions inside the SSDs

[15,26,37], which has evolved from the pioneering idea

of Jim Gray’s active disks [19] to a new generation of

SSDs allowing such in-situ processing, called “computa-

tional SSDs” [17]. Computational SSDs include general-

purpose, multi-GHZ clock speed, multi-core processors

with built-in hardware accelerators (e.g., compression

and decompression [10], pattern matching [20], FPGA

[35]) to offload compute-intensive tasks from the proces-

sors, multiple GBs of DRAM, and tens of independent

flash channels to the underlying storage media, allowing

GB/s of internal data throughput. In the year of 2019,

the Storage Networking Industry Association (SNIA)

set up a technical working group [6] to standardize de-

vice interoperability, management and security among

SSD vendors developing a number of different technolo-

gies and approaches to computational SSDs.

2.2 Log Structuring

Log-structured file systems (LFS) [39] were originally

designed to minimize random I/O overhead on HDDs.

LFS batch random updates in a large main memory

buffer first, and then sequentially write the whole buffer

as a large segment to the HDD. This design maximizes

system write throughput by exploiting sequential I/Os,

but the system must maintain a persistent mapping ta-

ble that stores the latest location for each write. More

importantly, periodical garbage collection must be per-

formed to reclaim disk space occupied by stale data to

ensure contiguous free areas for sequential writes. Log

structured techniques have been explored as a way for

a host to exploit SSDs [28,42].

Internally, SSDs use log structuring approaches in

their own FTLs to overcome the absence of in-place

updates on flash memory. Both host-based LSF and

SSD FTL implement their own mapping, cleaning, and

recovery mechanisms. These redundant functionalities

result in unnecessary management overhead [25,43,41].
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Term Name Size Description

RBLOCK read block 4KB Smallest readable storage unit
WBLOCK write block 32KB Smallest writable storage unit
EBLOCK erase block 8MB Smallest erasable storage unit
TAG out-of-bound area 16B per RBLOCK Controller accessible metadata

Table 1: Flash memory terms
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Fig. 3: Examples of concurrent read and write operations on a logical page P where blocks of different patterns indicate
different states of P.

3 The Batch I/O Storage Interface

3.1 Batching multi-page writes

Log structuring replaces multiple write I/Os (one for

each logical page (LPAGE)) with a single I/O (of a large

buffer containing a collection of LPAGEs). Batching the

pages enables sharing of a large part of the I/O path

to the secondary storage device. As discussed in [33],

this impacts both performance and cost of execution

for operations requiring an I/O.

LPAGEs within a log structured buffer are time or-

dered, i.e., the updates to pages are intended to be in

the order of the LPAGEs within a buffer, and between

buffers. This order determines the visible states of up-

dated blocks, and reads must expose SSD state as re-

flected in the write order as illustrated with examples

in Figure 3:

(a) a read preceding a write batch (i.e., it is acknowl-

edged before the write batch is initiated) sees a

state that includes no updates in the batch.
(b) a read following a write batch (i.e., it is issued after

the write batch is acknowledged) sees a state that

includes all updates in the batch.
(c) a read that is concurrent with a write batch (i.e.,

it is initiated and/or acknowledged between the

times a write batch is issued and acknowledged)

sees a state that includes a time ordered prefix of

the blocks in the batch.
(d) a second read B concurrent with a write batch but

later than an earlier acknowledged read A sees a

prefix of the blocks of the batch that includes the

prefix seen by A.

Lastly, a write of a buffer is always completed atom-

ically, meaning that all updates within a batch eventu-

ally appear in the data state on the SSD or none of

them do. Put differently, the batch I/O interface offers

transactional guarantees for write operations. It is a

significant evolution compared to the traditional block

I/O interface.

3.2 Log Structuring Functionality

3.2.1 Host-Based Log Structuring

Host-based log structuring requires a data management

system, e.g., Deuteronomy, to assign “storage addresses”

for its LPAGEs, identified with logical page ids (LPIDs).

The host uses LPIDs when accessing secondary storage

by first translating them into Logical Block Addresses

(LBAs) on the SSD. The SSD knows nothing about this

translation. It simply sees large blocks being written to

sequential SSD locations. It uses the host based SSD

addresses as LBAs, and maps them to the physical ad-

dress space on flash. This logical-to-physical (L2P) ta-

ble is fully hidden from the host. These mappings are

illustrated in the Host-Based LS column of Figure 4.

Thus, the SSD, when garbage collecting, simply erases

flash blocks and moves any live data it contains. This

is hidden from the host. The host must do LPAGE level

garbage collection, and thus read its previously written
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Fig. 4: The double mapping of host LPAGEs with their

LPIDs to physical flash locations. Note that Host-Based

LS and SSD-Based LS denote host-based and our SSD

controller based log structuring, respectively.

buffers back into main memory to relocate still valid

LPAGEs.

The host-based storage management must provide

durabililty, maintaining the mapping between LPIDs

and physical locations up to the last acknowledged write.

Without recovery, a log structured store would either

compromise this durability or require immediate durable

mapping update. To speed up recovery, periodic check-

points are necessary. Note that the SSD also imple-

ments recovery and checkpointing to guarantee the dura-

bility of the L2P mapping table.

3.2.2 SSD-Based Log Structuring

The SSD controller based log structured store accepts

large, multi-page buffers. Unlike in a host based system,

where the SSD knows nothing about the logical blocks

within a buffer, the LPAGEs in each buffer are described

via metadata (DESC) that resides in the first block of

the buffer. DESC indicates the logical blocks that are

present in the buffer and their offsets in the buffer.

This SSD-Based Log Structuring is in effect a FTL,

specialized to support the batch I/O interface. As any

FTL, its core functionalities are:

– maintaining a LPAGE-to-physical mapping table,

that we denote MAP(see SSD-Based LS column in

Figure 4);
– garbage collection based on detecting when an ear-

lier write of an LPAGE has been over-written by a

later write to the same LPAGE;
– recovery and checkpointing since MAP(which is the

major recoverable element in the system) is under

its management.

We describe recovery, garbage collection and check-

pointing in the next sections. In the rest of this section,

we describe the data structure we have devised to rep-

resent the mapping table in a memory efficient way.

MAP is organized as a hierarchical search structure

as shown in Figure 5. We exploit this hierarchical struc-

ture for both cache management and incremental check-

points. Since some LPAGEs may also be cached in the

controller DRAM, each MAP entry (8-byte flash address)

contains a flag indicating whether the LPAGE is cached

or not. An associative side table (much smaller than

MAP) is used to locate cached LPAGEs. This avoids a

potential doubling of the size of MAP, were it to always

include both flash and DRAM addresses. Depending on

the SSD capacity, it would be not viable to entirely load

MAP to the controller DRAM cache. As an instance, for

a 2TB flash drive MAP’s size is 4GB. Thus MAP is orga-

nized to be aligned with flash page boundaries so that

parts of it can be flexibly cached, and large parts of it

do not consume memory on the controller cache.

Pages of MAP are found via a smaller table MAPSthat

tracks MAP pages in the same way that MAP tracks

LPAGEs. Each entry of MAPS includes not only a flash

address, but also a cache address of a MAP page be-

cause MAP pages are likely to be cached in the controller

cache. Even with 16 byte entries, the size of a complete

MAPS is just a few megabytes (in our example with the

2TB flash drive, MAPS has a size of 16MB), which fits in

contiguous locations of controller memory. An LPAGE
is found by (1) using a 20 bit LPID prefix as an index

to the MAPS entry that points to the MAP page refer-

encing the LPAGE; (2) accessing the MAP page to yield

the flash pointer for the LPAGE. This two level index-

ing enables the controller to keep in cache only the MAP
pages needed for active LPAGEs.

4 Durability and Recovery

Durability here refers to the need for the FTL to recover
MAP and LPAGE states up to and including the last ac-

knowledged buffer write prior to the system crash. This

recovery step is not needed for conventional update-in-

place storage systems.

4.1 Log Structuring Crash Recovery

MAP is treated as part of the SSD “database”. Every up-

date for an LPID updates the MAP database by storing

a new physical flash address into its MAP entry. Should

the system crash, we replay the SSD log to recover MAP,

using LPAGE physical locations as the updated values

for MAP LPID entries. While LPAGEs written by the

host are the source for updates, the recoverable updates

are the changes to MAP entries. There are other parts

of our “SSD database” that we need to recover as well,

and we discuss them below.
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4.2 Normal Operation

Recovery is tied to how we perform updates during

normal operation, e.g., the database world uses write-

ahead logging (WAL) [36]. WAL ensures that updates

re stable on the log ahead of them being entered into

the database. If a failure occurs, the log is replayed to

recover database state.

Here the FTL itself provides durability. Whatever is

written to a WBLOCK (See Table 1) is durable. Should

an SSD error prevent the write from succeeding, the

WBLOCK state can be determined by an attempt to read

it. RBLOCKs each have a TAG field where we store the

LPID associated with the RBLOCK. This makes recovery

possible by scanning the disk and reading TAGs. But

we want much faster recovery. So, instead of scanning

the entire SSD, we replay a recovery log from the last

checkpoint (see Section 6).

4.2.1 Update Protocol

Our recovery log is derived from the DESC block con-

tained in each batch. A DESC associates LPIDs with

buffer blocks. The FTL associates an LPID with the

physical flash address at which we store its data. This is

illustrated in Figure 6. The mapping metadata in DESC
is used to create a redo recovery log block (RDESC) that

is written to the SSD recovery log prior to the associ-

ated data blocks being written to the designated flash

addresses. The ordering for writes in the RDESC is the

same as the ordering of blocks in the write buffer. We

incur latency for posting the RDESC in our WAL proto-

col as we must wait for an acknowledgement of success

before we continue with the update the associated SSD

LPAGE physical locations.

An RDESC does NOT enable redo of LPAGE writes

as it does not contain LPAGE data. It only permits us to

restore MAP. It assumes that LPAGEs have been success-

fully written to flash locations designated in the RDESC.

RDESC permits us to test the flash locations by reading

them at recovery time, in order to determine whether

they have been successfully written.

4.2.2 Page Write Failures

An LPAGE write might fail. Should this happen, we

need to write it to another location, prior to updating

MAP. We also need to record on the log that the LPAGE
is not where the original RDESC indicated. We use an

amendment log record RDESCA that provides a new

location for any blocks whose writes have failed. The

RDESCA is organized like the RDESC but only has entries

for LPIDs whose writes failed. RDESCA is also written to

the log prior to writing to flash the data blocks that it

describes. If writes in the RDESCA also fail, we continue

writing RDESCAs until we have successfully written all

blocks. Updating MAP does not start until all blocks

are written successfully to flash storage. Once MAP is

updated, completion is returned to the host system.

Given that LPAGE writes can fail, how does recovery

know, after the loss of MAP in controller volatile state,

whether a set of LPAGE updates has been installed?

We can verify each write in recovery log RDESCs. How-

ever, this is expensive, requiring reading each physical

address to determine whether the write succeeded. To

avoid this and to speed up recovery, we write a done

record for a RDESC when its updates are completely

installed. A recovery log RDESC with a done record is

confirmed to be durable without further checking. Also

we do not wait for the RDESC done record to be durable

before acknowledging the writing of DESC data blocks.

4.3 The Recovery Log

Recovery logs are usually assumed to be both logically

and physically sequential on durable storage. But we

want to make RDESCs for the log durable promptly,

since writing RDESCs is in the latency path of a host

I/O operation. Further, SSD storage is partitioned in

various ways and is consumed and re-cycled in rela-

tively divergent ways. So we want to construct a logi-

cally sequential log which is not required to be physi-

cally sequential in flash storage. We do this by means

of a doubly linked list.

Each RDESC has a back link that points back to

its predecessor block, and a forward link that points to
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RDESC that describes where the previous version of data for each LPID has been written on flash, and where the

new version would be written.

the location of the successor block. This permits the

recovery log to be traversed both forward and back-

wards, without being physically sequential. However,

this is complicated by the fact that log writes can also

fail. For this reason, we include an ordered vector (size

specified by a parameter) of forward links with each

RDESC. A log write failure triggers a retry at the next

forward link of the vector.

In an RDESC, in addition to the new locations where

updated data blocks are to be written, we include the

prior location of each updated data block. This becomes

an undo and redo log. We do not expect to use the undo

information to roll back MAP, even for unfinished buffer

writes because MAP is not updated until all data blocks

are durable. Rather, undo information permits us to

recover garbage collection information using the same

log (see next section).

5 Garbage Collection

Flash memory requires that a block must be erased

(EBLOCK) before the pages it contains can be writ-

ten. This is why SSDs use log structuring for their

FTLs. During updates, new data is written to a newly

allocated block while old versions of the data “hang

around” until garbage collected.

5.1 Erase Block Based Garbage Collection

The host multi-page write buffer is completely inde-

pendent of the geometry of the SSD. To exploit SSD

controller parallelism, pages of the write buffer are writ-

ten across multiple EBLOCKs, in write block (WBLOCK)

units. However, an EBLOCK, is the unit of garbage col-

lection as it is the unit of erasure. Thus, we need to

determine, per EBLOCK, the physical pages that have

been over-written by subsequent updates to their con-

tained LPAGEs. These over-written RBLOCKs then need

garbage collection to reclaim their space. This is done

by moving (re-writing) the still current RBLOCKs of an

EBLOCK old to a new location in another EBLOCK new

that was previously erased, and is thus writable. Once

this has been done, all RBLOCKs in old have been “over-

written” and old can be erased and re-used.

We need metadata associated with an EBLOCK, out-

side of the physical RBLOCKs to which logical pages are

mapped, in order to track

– which RBLOCKs are garbage and which are not;

– how much storage (in RBLOCK units) is garbage in

an EBLOCK;

– which logical pages that are not garbage need their

RBLOCKs to be relocated to another EBLOCK and

their MAP entry updated.

We maintain a global bit vector GBITV to identify

which RBLOCKs are garbage and which are not. The seg-

ment of GBITV associated with an EBLOCK also permits

us to determine how much EBLOCK storage is garbage.

We schedule EBLOCKs for garbage collection in avail-

able storage (amount of garbage) order. Reclaiming this

storage is the payoff for doing garbage collection.

We use an EBLOCK’s GBITV segment to identify still

valid pages (RBLOCKs) in the victim EBLOCK, i.e., the

EBLOCK being garbage collected. The garbage collec-

tor reads each valid RBLOCK and its associated TAG
field (See Table 1) that tells us the LPID for the cor-

responding MAP entry pointing to the RBLOCK. Then

the garbage collector updates this MAP entry to the

new RBLOCK containing the LPID page’s state. This

approach, exploiting TAG metadata that is not visible

to the host, permits the controller to clean an EBLOCK
without reading the entire EBLOCK into controller mem-

ory.

We have implemented a very simple scheme for sep-

arating hot data from cold data, a technique found to

improve the garbage collection efficiency of log struc-

tured file systems [39] (i.e., reducing the RBLOCKs need-

ing to be re-written per RBLOCK of storage reclaimed).

This reduces the re-writing of cold data, and focuses

most garbage collection on the current (presumed hot)

data. The garbage collector uses a set of EBLOCKs for

re-writing garbage collected RBLOCKs that is different

from those used for ordinary user updates. There are
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other more sophisticated strategies that can improve

garbage collection efficiency further [39].

5.2 Protecting the Recovery Log

Section 4.3 described the recovery log as a linked list of

RDESCs. But RDESCs are around the size of an RBLOCK,

not a WBLOCK. We fill the rest of the WBLOCK containing

an RDESC with data pages. This works well by permit-

ting us to fill more fully each WBLOCK containing an

RDESC, both reducing wasted space while maintaining

low latency for the WAL protocol.

However, our garbage collector now has a problem if

it chooses to garbage collect an EBLOCK containing an

RDESC. We do not have a simple way of relocating the

RDESCs of our log. The problem here is with maintain-

ing the integrity of the log’s linked list. Various indi-

rect mappings using a relocation table are possible but

awkward. Instead, we mark an EBLOCK as NOT sub-

ject to garbage collection until our checkpoint process

can truncate the part of the recovery log that is in the

EBLOCK.

6 Checkpointing

Checkpoints capture the state of a system at a given

point in time. They are used to truncate the recovery

log and thus speed up recovery in the event of system

crash. Should our SSD controller crash, we apply redo

log records (Section 4) from the latest complete check-

point to the latest completed done record to restore

the SSD state.

6.1 Checkpointing Strategy

We use a fuzzy incremental checkpoint that is an appli-

cation of techniques used in database systems, e.g. [36]

to truncate the recovery log.

– The checkpoint is fuzzy when it does not capture

the system state at a precise point in time. Rather,

it captures the state over some time interval, and

uses redo recovery to make the state precise as of

the end of the interval.
– The checkpoint is incremental when it does not cap-

ture the entire system state. Rather, it captures the

part of the state that has changed since a prior

checkpoint and merges that with the unchanged

part.

We use this fuzzy incremental checkpoint to cap-

ture the state of MAP. In addition, we need to cap-

ture the states of the garbage (stale data, written and

not yet reclaimed), and the flash block wear counters

used for wear leveling. A checkpoint contains additional

state, e.g. where the recovery log endpoint was when the

checkpoint began.

6.2 Checkpointing Elements

We show the elements of the state that we capture for

a checkpoint in Table 2. We introduce hierarchies to

enable the states of MAP, GBITV, and WEAR to be saved

incrementally. We save these states by treating their

pages the same way that we handle data updates. That

is, following the WAL protocol, we first write a recovery

log record describing the metadata pages we intend to

write, then we write their pages to the SSD as data.

We accumulate enough state to properly utilize each

recovery log WBLOCK. Once we have finished writing all

changes to flash, we complete the checkpoint by writing

the checkpoint record in a “well-known location” (see

subsection 7.2.7).

6.2.1 Mapping Information

MAP updates are produced whenever a data block is

written to flash storage. The update permits MAP to

track the most recent state of any page on the SSD.

This marks the MAP page as “dirty” in its MAPS entry,

meaning the cached version is an update to the ver-

sion of the MAP page stored durably in flash memory.

At some point, our checkpoint process needs to make

the updated (dirty) MAP page itself durable. When this

happens, the page in MAPS that references this part of

MAP is likewise marked as dirty and will need to be

made durable.

We introduce an additional level for the mapping

information, called MAPT (T for tiny, see Figure 5) table

because we do not want to write the entire MAPS state

to flash during a checkpoint. MAPT has 16 byte entries

<flash address, cache address> referencing the pages of

MAPS, and is 64KB in size for a 2TB flash drive.

When we persist MAPS pages that have changed,

these update entries are referenced in MAPT. MAPT is

not on the access path to data blocks. Accesses all start

at MAPS. However, MAPT permits us to unite the un-

changed parts of the mapping information (referenced

by entries pointing to unchanged parts of MAPS) with

the changed pages that we need to capture in our check-

point. This allows us to incrementally save only dirty

pages of MAPS.

One way to view the above is that our mapping

hierarchy permits us to treat pages in MAPS and MAP
as blocks of data whose writes are captured on the log.

That is, every time a page in MAPS or MAP is written
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Term Description

MAP Mapping Table: LPID to physical flash address
MAPS Small table paginating MAP
MAPT Tiny table paginating MAPS
GBITV Bit vector: RBLOCKs containing overwritten state
GBITVS Small table paginating GBITV
GBITVT Tiny table paginating GBITVS
WEAR Wear Table: Erase cycles for each EBLOCK
WEARS Small table paginating WEAR

Table 2: Recoverable state terms

to flash, we update the mapping hierarchy to reflect

that change, and log that update in the same way that

we log data block updates, but of course with different

metadata to identify the metadata page being written.

6.2.2 Garbage State

Garbage is tracked using a bit vector per EBLOCK, each

bit representing the state of a RBLOCK page. The cu-

mulative size of the bit vectors (called GBITV) is 64MB

for a 2TB flash drive, large enough that we want to cap-

ture only the parts that have changed, as we did with

MAP. The smaller table that tracks the updated pages

of GBITV is called GBITVS and is 256KB. GBITVS ’s

size is not small enough to conveniently store entirely

in our checkpoint record, so we introduce a tiny table

GBITVT , of size 512, as we did with MAPT before for

mapping data. GBITVT is stored in its entirety in the

checkpoint record.

6.2.3 Erase Count

Each EBLOCK (the unit of erasure) has a limited num-

ber of erase cycles. We count and maintain a 4 byte

counter per EBLOCK to track wear (the number of erase

cycles) and store it in the WEAR vector. Total size of

WEAR is 1MB. As we did with MAP, we paginate WEAR
and only save the part of WEAR that has changed, by in-

troducing WEARS, a page based index for WEAR. WEARS
size is 2KB and hence is small enough to be stored di-

rectly into our checkpoint record, without a tiny wear

state vector.

7 SSD Controller Programming

Traditionally SSD storage controllers are programmed

by storage vendors. The FTL is a proprietary firmware,

that developers of host-based system do not have ac-

cess to. Thus developers are stuck with a device whose

functionality and capabilities are outside their control,

even as many of them are modifiable in software. The

advent of the Open-channel SSD provides an opportu-

nity to break this state-of-affairs by decoupling front-

end (FTL) and back-end (storage media) SSD manage-

ment.

However, how to program SSD controllers is not ob-

vious. As a way for offloading host processing to a stor-

age controller, for example, application-specific codes

can be executed on the top of a generic block-oriented

FTL (e.g., Scaleflux [5], NGD Systems [3]). While this

approach naturally improves performance by leverag-

ing resources available inside the SSD (Section 2.1.2),

we might miss a number of optimization opportunities

across several layers on the data path in the FTL [9].

Thus instead of simply adding functionality on the top

of a generic FTL, we want to map commands defined

on an application-specific address space onto storage

primitives defined over a physical address space. To do

this, we must be able to design a new FTL.

7.1 The OX Framework

Recently, many robust open-source FTLs have been re-

leased. Pblk [9], for example, implements a full-fledged,

host-based FTL exposing a traditional block I/O inter-

face, and is released as part of the Linux Kernel 4.12.

Intel released a user-space FTL in the context of SPDK

[7]. Those FTLs, however, must remain generic. They

are not meant to be modified to support application-

specific address space. As a result, we designed and

and developed a modularized framework (called OX)

that can readily be modified to program storage con-

trollers [38].

OX uses an abstract execution model with well-defined

APIs, consisting of three layers (Transport and Parser,

FTL, and Media Manager) between the host and the

storage media as shown in Figure 7. A unique merit of

modern SSDs is their rich internal parallelism, which is

naturally abstracted through pairs of submission and

completion queues. The three layers in OX also rely on

a decoupling of command submission and notification

of completion. The layers are asynchronously intercon-
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Fig. 7: Abstract execution model of the OX framework

nected with queue pairs. The number of queues in each

layer can be customized depending on many factors in-

cluding the number of available cores in the controller

or the number of channels connected to the controller.

7.1.1 Transport and Parser

This layer is responsible for interacting with the host

and for parsing commands with the goal of delivering

reliable and consistent messages to the next layer. OX
supports PCI express (PCIe) and network fabrics trans-

port types. Examples of transports include PCIe mes-

sages for PCIe and Sockets/RDMA over Converge Eth-

ernet (RoCE) for network fabrics. For transport pro-

tocols, OX implements both NVMe and NVMe-oF [4].

The first byte of a NVMe command must contain an

operation code, which allows us to define custom com-

mands and thus support new storage interfaces (e.g.,

batch I/O interface, see Section 3).

Incoming commands are sent from the transport

layer to a command parser. The command parser reads

the operation code and the data pointer in the incoming

command (which could be a host memory address for

DMA/RMDA, or an offset within a packet for TCP/UDP),

and sends a re-formatted command to the next layer.

7.1.2 FTL

The middle layer manages the mapping of logical to

physical addresses, and the associated tasks such as log-

ging, checkpointing, recovery and garbage collection. As

a high level, an FTL is a block box that exposes FTL

submission and completion queues. Submission queues

process commands submitted by the upper layer, while

completion queues use callbacks for completion. Physi-

cal I/O commands are submitted to the next layer when

reading/writing data to storage media is required.

7.1.3 Media Manager

This layer contains a number of media manager in-

stances to support several different forms of storage

media. Each type of media requires an instance in OX,

which exposes a geometry abstraction of the underlying

media. A media manager receives commands from the

upper layer, and moves data to/from hosts according

to the commands. Note that the data might not be lo-

cated on the memory buffer in the storage controller,

rather on the host connected directly or via fabric. In

this case, DMA or RDMA is required to avoid memory

copies for bypassing the storage controller during data

transfers to/from the media.

7.2 FTL Programming with OX

Figure 8 shows OX’s FTL architecture (including de-

pendencies across nine FTL components) as well as the

data path for both controller and user generated data

movement. Controller I/Os (represented by solid lines)

are synchronously executed by several components. For

example, garbage collection may read and write to me-

dia as data get invalid, and block and mapping meta-

data need to be persisted during the checkpoint pro-

cess. User I/Os (represented by dashed lines), on the

other hand, are performed asynchronously. Note that

the controller cache is only used for caching writes, not

reads. When a write is issued, it is first posted to the

queue in the write cache, and immediately returned if a

write-back caching mechanism is enabled. Otherwise,

the write is completed only after persisting data on

flash.

7.2.1 Bad Block Management

A media EBLOCK is considered bad if the data it con-

tains is unrecoverable or if an erase command fails due

to the limited number of erase cycles per each block.
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Fig. 8: Dependencies and interactions among nine OX FTL components.

For example, for single-level cell (SLC) flash it is typi-

cally 100,000 erase/write cycles, and for multi-level cell

(MLC) it can go down to 3,000 - 10,000 cycles. Thus it

is important to track bad blocks to remove them from

the provisioning and get retired from any further us-

age. We maintain bad block information with an array

of bytes representing the whole set of EBLOCKs in a

device, which is stored on a dedicated set of EBLOCKs.

For a 2TB 8-channel device, as an instance, each chan-

nel stores a 32KB bad-block table that is written to the

first WBLOCK of the dedicated EBLOCK of this channel.

When the table is updated, a new version is written

at the next WBLOCK, and if the EBLOCK gets full, it is

erased and the first WBLOCK is used again.

7.2.2 Block Metadata

We maintain metadata related to live EBLOCKs, which

is used for components such as provisioning and garbage

collection. The block metadata contains block types,

numbers of erase cycles (i.e., WEAR in Table 2), and

bit vectors representing invalid RBLOCKs (i.e., GBITV
in Table 2). Each EBLOCK metadata has a 16-bit field

that tells the status of this EBLOCKat any point of

time. Status flags include: 1) FREE if EBLOCK is empty

and ready to be written, 2) FULL if EBLOCK is full,

3) OPEN if EBLOCK is partially written 4) HOT if

EBLOCK contains data written by users, 5) COLD if

EBLOCK contains data moved by garbage collection,

and 6) META if EBLOCK contains log data. The us-

age of each flag is described in the next section.

7.2.3 Block Provisioning

Block provisioning is responsible for data placement by

providing physical addresses of EBLOCKs in a certain

order to achieve full inter- and intra-channel parallelism

on the SSD. At a high level, a write request is striped

over multiple flash channels (that can be considered as

independently operated I/O buses). Within a channel,

the request is further pipelined to be simultaneously

served by multiple flash chips.

At startup, EBLOCKs are grouped into three types

per chip: FREE, FULL, and OPEN. Bad EBLOCKs are

excluded from provisioning, and not added to any group.

Then an OPEN EBLOCK from each chip is selected to

create a fully intra-channel parallelized list called line.

When physical addresses where data is written are re-

quested, to maximize the inter-channel parallelism, a

single EBLOCK from each line per channel is reserved,

and then channels are selected in a round-robin fash-

ion until the amount of requested addresses have been

reserved.

Writes could be generated by several FTL processes

such as user writes, garbage collection, checkpoint, and

logging. Some of these processes require independent

EBLOCKs where data is not mixed with other processes.

We define three types (HOT, COLD, and META) of

provisionings, each of which has its own line. By us-

ing several provisioning policies we avoid concurrency

between write threads that could lead to wrong write

sequence within an EBLOCK. Note that, as an excep-

tional case, and in order to maximize the space utiliza-

tion, and to reduce the latency for the WAL protocol,

EBLOCK could be filled up with both HOT and META

data (see Section 5.2).

7.2.4 Mapping Metadata

Mapping logical to physical addresses is the essence of

the FTL. Pairs of logical and physical addresses are

placed sequentially to assemble a table (MAP, see Sec-

tion 3.2.2) that represents the entire address space.

Since the size of MAP, which depends upon the stor-
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age capacity and the granularity of each entry, could

grow tens of gigabytes, loading the entire MAP at once

to the controller DRAM is not viable. Instead we split

MAP into WBLOCK-size pages that are spread across flash

chips and channels, and use a secondary table (MAPS)

to store physical addresses where MAP pages are writ-

ten. Making MAP durable requires: (i) persisting dirty

MAP pages that are cached, (ii) persisting dirty MAPS
pages, and (iii) sending a copy of an additional level of

the mapping information (MAPT, see Section 6.2.1) to

a checkpoint. Once the checkpoint is completed, MAP
gets durable.

7.2.5 Mapping Table Cache

Independent MAP pages that are aligned to the WBLOCK
boundaries can be flexibly cached (and evicted when

the cache is full), which allows us to efficiently access

MAP entries while maintaining them in the controller

DRAM. Multiple threads are allowed to access the cache,

however, if a MAP page is being loaded or evicted, the

working thread holds a lock to guarantee consistency.

It also avoids the same page being loaded twice by con-

current threads. The cache component is not aware of

durability, but responsible for updating MAPS, which

is small enough to be always cached to the controller

DRAM, properly after loading or evicting pages. Note

that, at startup, we do not warm up the cache by design,

meaning that every first access to a MAP page requires

a read from flash.

7.2.6 Log Management

A recovery log is used to ensure durability of metadata

information. Even in the case of a clean shutdown, some

mapping entries and block metadata may not contain

the latest values due to the nature of the fuzzy check-

point. The recovery log contains all changes performed

after the latest durable checkpoint when a shutdown

was caused by failure. For both cases, after a startup,

we recover the metadata to a consistent state by ap-

plying updates that are recorded after the latest check-

point. Logs, each of which is 64-byte in size, follows the

structure described in Section 4.

7.2.7 Checkpoint and Recovery

The complete state that we need to maintain across

system crashes, after having converted larger tables to

updatable data, consists of MAPT (516 bytes, Section

6.2.1), GBITVT(512 bytes, Section 6.2.2), WEARS(2KB,

Section 6.2.3), the current timestamp (8 bytes), the

log location of where to start recovery using the re-

covery log (8 bytes), called the “redo scan start point”

or RSSP, and the channel identifier (32 bytes) for the

provisioning to continue the round-robin selection after

recovery. This comprises our checkpoint record that we

write to a “well known location” so that it can be found

after a crash. Should the system crash, we first find the

latest checkpoint record, and then execute recovery by

reading the log from the RSSP until end of log, redo-

ing the logged operations. End of log is detected when

the next pointers in a recovery log block point only to

erased blocks, not written blocks.

7.2.8 Garbage Collection

Our garbage collection design is based on a channel

abstraction. If a channel contains FREE EBLOCKs less

than a threshold, the garbage collector initiates the pro-

cess by disabling the channel for further user writes (but

user reads are allowed). Note that the garbage collec-

tor might need to wait until ongoing user writes on the

channel are completed. Once the channel gets disabled,

EBLOCKs in the channel are sorted based on the number

of invalid RBLOCKs so that EBLOCKs that require less

data movement could be recycled first. The remaining

garbage collection process is described in Section 5.1.

In order to manage concurrency issues with user

writes, the garbage collector uses the optimistic locking

strategy [29] when updating MAP entries (after moving

valid RBLOCKs to new locations). Let us suppose the

garbage collector moves an LPAGE to a RBLOCKgc, and

at the same time, a new version of the LPAGE is written

to a different location, RBLOCKuw by an user write. In

this case, the user write has a higher priority over the

garbage collector since the MAP entries always have to

point to the latest versions. Thus, before updating the

LPAGE’s MAP entry with a standard fine-grained lock,

the garbage collector reads the entry first. Then after

holding the lock, it reads the entry again, and replaces

the entry value only if those two entries with and with-

out the lock are equal.

7.2.9 Write Caching

The write cache is an entry point for user writes, and

is responsible for abstracting complex interactions with

other FTL components required for persisting data on

flash (Compared to this, user reads only involve the

Mapping Table Cache component as they do not change

the state of metadata.) Once a write buffer has ar-

rived at the cache, LPAGEs are extracted by parsing the

buffer, and then the LPAGEs are grouped into WBLOCK-

aligned data blocks. As a next step, we request flash

physical addresses, telling where the blocks will be writ-

ten, from the Block Provisioning component, and store
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logical addresses at the TAG fields of each block, which

is useful for reverse mapping performed by garbage col-

lection (Section 5.1). Finally we write the blocks to

their designated flash addresses in parallel using multi-

ple threads, which is the most expensive step in making

the LPAGEs durable, and then update the MAP entries

associated with the LPAGEs.

Writes are accepted in different granularities rang-

ing from 4KB to several megabytes, depending on the

underlying storage media. For hosts, a large logical write

is seen as a single command that must be either success-

ful or failed while such write is divided into multiple,

WBLOCK aligned, and independent commands in SSDs.

We guarantee atomicity (either all data belonging to

the same logical write succeed or we abort them all)

with the WAL protocol (Section 4.2). For each logical

write with multiple LPAGEs, we append a log record de-

scribing old and new physical addresses of the LPAGEs.

If a logical write fails, we do not update MAP entries nor

append the done log record.

8 Evaluation

Our goal with the evaluation is twofold. First, we com-

pare the impact of our new batch I/O storage interface

(OXBatch) on the BwTree key-value store, compared

to the traditional block I/0 interface. We thus focus

our experimental study on a single-threaded version of

the BwTree in order to isolate the performance impact

of the storage interface. Second, we explore the perfor-

mance impact of the different components of the log

structuring solution that we offload to the SSD with

OXBatch.

8.1 Experimental Setup

8.1.1 Hardware

We performed our evaluation via single-threaded ex-

periments conducted on an Ubuntu Linux host ma-

chine with an Intel Xeon E5-1620 3.5GHz processor

with 32GB of DRAM. Our computational SSD is built

based on a standalone platform, named STT100, de-

veloped by Broadcom for developing storage applica-

tions. The platform uses a BCM5880X SoC equipped

with an ARM Cortex-A72 1.8GHz processor and runs

Ubuntu as a working OS. The storage media is a West-

lake Open-Channel SSD from CNEX Labs attached to

the STT100 via PCIe Gen3x8. Data transfer between

the host and the computational SSD is performed via

stream sockets with the NVMe-oF/TCP protocol. We

configured the network speed between the host and the

SSD to be 100Gbps, which guarantees that the network

is not a performance bottleneck in all experiments.

8.1.2 Software

Figure 9 shows two system configurations used for our

evaluation. In both configurations, the host is connected

to a computational SSD.

The software system running on computational stor-

age is OX. We consider two variants of OX: OXBlock
and OXBatch. OXBlock1 is a full-fledged, block-oriented

FTL, in approximately 31,000 lines of C code. We ran

the OXBlock inside the computational SSD (Figure 9a

- Comp. SSD) to enable processing read and write op-

erations via the standard block-based interface.

OXBatch (Figure 9b - Comp. SSD) is a new FTL

that implements the batch I/O storage interface. This

implementation relies on in-SSD log structuring with

the following two new commands: (1) readLPID for read-

ing an LPAGE with its LPID, which differs from the

standard block read (used in the OXBlock) that re-

quired the starting address of the LPAGE, (2) flushbatch
for flushing a batch of LPAGEs entirely. Compared with

the standard write of an array of bytes, identifies the

LPAGEs by parsing the batch with its metadata (DESC).

Note that the modularized OX framework, and the fixed-

size (4KB) LPAGEs that are aligned with the OXBlock
mapping granularity allows to reuse most of the OXBlock
FTL components when building the OXBatch.

The software system running on the host is a key-

value store based on BwTree [32], a latch-free, B-tree

style index layered on LLAMA [30], a subsystem pro-

viding both log-structured cache and storage manage-

ment. The original BwTree avoids updating base pages

directly by storing modifications to a node in a delta

record, and maintains a chain of such records for ev-

ery page in the index, which is periodically consoli-

dated into the base pages. We modified the original

BwTree to perform updates in-place without creating

delta chains, and therefore to process only fixed-size

pages during the entire evaluation (Figure 9a - Host).

We configured the BwTree page size to 4KB and write

buffer size to 1MB.

We modified or removed the following components

from BwTree with fixed-size pages to use the batch I/O

interface with the LS-engineered SSD (as illustrated in

Figure 9b - Host):

– The BwTree no longer needs to remember where

LPAGEs are located on the SSD.

1 The source code of OXBlock is available at

https://github.com/DFC-OpenSource/ox-ctrl
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Fig. 9: Two experimental configurations with the OX running on a computational SSD. (a) BwTree Block: host-based

log structuring built using a block-based SSD, (b) BwTree Batch: host batch I/O interface to log structuring

built into an SSD.

– Checkpointing and recoverying BwTree’s mapping

table is not needed as only cached LPAGEs are mapped

to their main memory locations.
– Garbage collection is performed by the SSD con-

troller being aware of LPAGEs’ physical locations.
– BwTree’s I/O layer needs to support the batch-

oriented operations.

We experimentally set the size of the I/O queue

depth used in the LLAMA to be large enough that the

queue is never starved, and multiple asynchronous read

and write requests can be issued simultaneously.

8.1.3 Workloads

We ran all experiments with a set of YCSB [12] bench-

marks, which are a widely used framework for evaluat-

ing performance of NoSQL stores. Our YCSB dataset

has 10 million unique records, each consisting of an 8-

byte key, and a 100-byte payload. With this dataset,

we evaluated the throughput performance of the sys-

tem with two YCSB workloads, both of which contains

10 million operations: (1) a read-heavy workload with

95% reads and 5% updates, and (2) a write-heavy work-

load with 5% reads and 95% updates. For all workloads,

keys to read or update are selected randomly from the

set of existing keys in the index according to a Zipfian

distribution, which has skewed access patterns common

to NoSQL workloads.

All the results presented here are for cold experi-

ments. For each run of benchmarks we newly initial-

ized an index with records in the dataset, and then

ran the specified workload for 300 seconds. We reported

the total number of operations completed in that time,

where operations are either reads or updates. To simu-

late real-time usage, the read and update operations are

interleaved. Specifically, for the read-heavy workload,

we performed 19 reads, then 1 update, then repeated

the cycle; For the write-heavy workload, we performed

19 updates, then 1 read, then repeated the cycle.

8.2 Results

In this section, we present the overall throughput achieved

for the YCSB workloads when the BwTree runs with a

computational SSD (1) configured as a block-oriented

SSD (BwTree Block), and (2) configured as a batch-

oriented SSD (BwTree Batch) as shown in Figure 11.

To better understand the impact of checkpointing and

garbage collection, we enabled those features one-by-
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Fig. 11: Throughput of OXBlock and OXBatch, respectively when running YCSB benchmarks with read- and

write-heavy workloads (a) without Checkpoint/GC, (b) with Checkpoint only, and (3) with GC only

one in a single-threaded environment. We varied the

host DRAM cache size over a range measured as a per-

centage of the dataset size. In addition, we measured a

pure in-memory throughput (In-Mem) where no read

and write operations are issued to the SSD during the

benchmarks. In contrast, when the host cache limit is

set to 100%, all read operations are responded with data

cached in memory while new or updated pages are (se-

quentially) flushed to the SSD whenever a host write

buffer gets full.



Better Database Cost/Performance via Batched I/O on Programmable SSD 17

8.2.1 Non-Durable Baseline

In this first experiment, we evaluated the throughput of

the BwTree Batch and the BwTree Block in a non-

durable setup where both checkpointing and garbage

collection are disabled. The results are shown in Figure

11a and Figure 11d for read- and write-heavy work-

loads, respectively. As expected, the performance of

both configurations slowed down with limited memory

because of increased number of I/Os issued to the SSD,

but reached the in-memory performance level as the

entire dataset fits into memory.

When the dataset is larger than memory we ob-

served clear benefits of using the batch-at-a-time in-

terface compared with the block-at-a-time protocol. For

example, as shown in Figure 11a and Figure 11d, BwTree Batch
outperformed BwTree Block by 1.11 – 1.91× and 1.14

– 1.68× for read- and write-heavy workloads, respec-

tively. The main reason for this behavior is due to the

different write granularities that are supported by each

configuration. Unlike the read path of BwTree where

a single page is read at a time, in the write path, an

1MB-sized write buffer is flushed (when it gets full) to

the SSD during the benchmarks. Once the flush opera-

tion starts, the 1MB data is first split into 17 packets2

according to the NVMe-oF/TCP protocol (See Figure

9), and then the packets are sent to the SSD.

On the SSD side, BwTree Batch waits until all 17

packets are received, and then creates a single write con-

text to guarantee the atomicity of the whole 1MB data.

In contrast, BwTree Block does not know any logical

relationship among the 17 packets, so a write context

needs to be created per each packet, resulting in 17 con-

texts for the 1MB data. This means BwTree Block
has to process about 17× more internal writes than

BwTree Batch, resulting in much more “done” log

records (Section 4.2.2) that need to be generated and

flushed before completing the 1MB write request due

to the WAL protocol (See Figure 12). In addition, the

small write granularity of BwTree Block prevents fully

exploiting the internal SSD parallelism - the maximum

size of an internal write of BwTree Block is bounded

by the packet size, which is not big enough to leverage

all flash channels at once.

8.2.2 Checkpoint

We next added a checkpoint process during the bench-

marks (except the In-Mem setup) to study its impact

2 Note that the maximum size of an IP datagram, a basic
transfer unit associated with a packet-switched network is
65,532 bytes including a 20 bytes header followed by a data
area.
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Fig. 12: Number of “done” log records (Section 4.2.2) gener-
ated for the durability of host write requests.

on the throughput performance. In this experiment,

at a given interval, a checkpoint process described in

Section 6 occurs by the SSD controller for both the

BwTree Block and the BwTree Batch. In addition

to the SSD-based checkpointing, the BwTree Block
needs to trigger a host-based checkpoint to persist its

BwTree mapping table entries pointing the pages stored

on the SSD (i.e., in the BwTree Block case, two check-

pointing processes, one by the host and the other one by

the SSD might need to be performed simultaneously.)

Interestingly, as shown in Figure 11b and Figure

11e, even in the case where a checkpoint is triggered

very aggressively (e.g., 3 seconds), we observed almost

no degradation on performance for both the read- and

write-heavy workloads. This is mainly because the amount

of state required to be stored during a checkpoint, which

primarily depends on the size of the dataset, does not

put enough pressure on the bandwidth available on the

SSD in our experiment. For example, when the cache

limit was configured to be 50% of the dataset, for the

write-heavy workload (Figure 11e), the BwTree Batch
required to persist about 15MB metadata during a check-

point3, which does not incur much overhead to the

3 Due to the host-based checkpoint for persisting BwTree
mapping table entries, the BwTree Block required to

write additional 3.5MB data during the checkpoint.
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Cache Limit Configuration User Read User Write GC Read GC Write Reclaimed Space

20%
BwTree Block 19.96 GB 28.08 GB 28.78 GB 3.74 GB 25.97 GB
BwTree Batch 45.89 GB 57.28 GB 22.93 GB 7.54 GB 56.86 GB

50%
BwTree Block 13.16 GB 22.99 GB 23.48 GB 3.58 GB 19.90 GB
BwTree Batch 25.13 GB 40.96 GB 17.07 GB 5.21 GB 42.16 GB

80%
BwTree Block 6.09 GB 17.58 GB 17.37 GB 2.83 GB 14.07 GB
BwTree Batch 10.80 GB 25.74 GB 9.84 GB 3.86 GB 25.44 GB

Table 3: The amount of data read from, or written to, the SSD for user requests and GC processing. The “Reclaimed Space”
column shows the the amount of SSD space cleaned by GC.

Cache Limit Configuration Read Amplification Write Amplification GC Overhead

20%
BwTree Block 2.442 1.133 1.252
BwTree Batch 1.500 1.132 0.536

50%
BwTree Block 2.784 1.156 1.359
BwTree Batch 1.679 1.127 0.528

80%
BwTree Block 3.850 1.161 1.435
BwTree Batch 1.911 1.150 0.538

Table 4: Read/Write amplifications and GC overhead where lower values are better.

available SSD bandwidth that is in the range of 1 –

2 GB/sec. We might see a noticeable performance drop

with a bigger dataset, which needs to flush larger amount

of data during a checkpoint, but a further study of this

case is left as future work.

8.2.3 Garbage Collection

We then explored how garbage collection (GC) affects

the overall performance. To facilitate the GC process,

the SSD capacity was limited to 10 times larger than the

dataset size with an over-provisioning of 30% to avoid

the situation where all channels are full. This over-

provisioning space designated as “free space” assists in

efficient delivery of free blocks during GC in progress,

contributing to maximize the lifetime, endurance, and

overall performance of the SSD.

GC is triggered when the number of used blocks in

the SSD reaches to a certain threshold. In this exper-

iment, we examined the impact of the aggressiveness

of GC on the workload throughput with two thresh-

old options: a) aggressive threshold: 50%, and b) non-

aggressive threshold: 70%, meaning that the GC pro-

cess starts when the SSD space is 50% and 70% full,

respectively. When such GC condition is met, the in-

SSD GC process described in Section 5 is conducted

by the SSD controller for both the BwTree Block and

the BwTree Batch.

The BwTree Block requires an additional host-

based GC process initiated by LLAMA [30] that con-

tinuously reclaims space occupied by stale data to en-

sure continuous free areas for the appending of new

versions of pages. Since versions of pages have different

lifetimes, from the host-based log structuring perspec-

tive, very old parts of the log could contain current

page states. To reuse this old section of the log, the

still current pages states need to be moved to the ac-

tive tail of the log, appending them there so that the

old part can be recycled for subsequent use. In other

words, the oldest part (head of the log) is “cleaned”

and added as new space at the active tail of the log

where new page state is written. Note that LLAMA-

managed GC simplifies BwTree Block GC. Indeed,

from BwTree Block’s perspective, it is trivial to iden-

tify victim blocks containing only obsolete pages. They

correspond to the tail of the log managed by LLAMA.

Figure 11c shows throughput results of the read-

heavy workload when enabling GC with the aggressive

or non-aggressive GC options. As expected, compared

with the case where GC is completely disabled (i.e., dot-

ted lines) we observed performance degradation with

the non-aggressive GC (gc: 70%) in the range of 5% to

12% for the BwTree Batch (i.e., read lines with dia-

mond marker) and 10% to 27% for the BwTree Block
(i.e., blue lines with diamond marker), respectively4.

The performance drop is because a fraction of CPU

and I/O resources used to be dedicated for handling the

benchmark operations needs to be used for performing

GC periodically.

Compared with the read-heavy workload, the write-

heavy workload shown in Figure 11f requires more space

to be reclaimed at the cost of using processing power

and I/O bandwidth that would be leveraged for user re-

4 In some cases where the entire dataset fits into memory,
no performance drops were observed as the SSD usage during
the experiment was not big enough to meet the given GC
condition.
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quests, resulting in more significant performance drops

(i.e., 8% – 22% drops for the BwTree Batch and 24%

– 47% drops for the BwTree Block, respectively, with

the non-aggressive option). Note that the aggressive GC

(gc: 50%, lines with square marker) that cleans up or-

phaned pages more frequently than the non-aggressive

case requires more space to be freed, resulting in about

5% – 10% further performance drops.

To better understand the impact of GC, we mea-

sured the amount of data read from, or written to, the

storage media for (i) user requests and (ii) GC pro-

cessing. We also measured the amount of SSD space re-

claimed by GC. An example of such measurement when

running the benchmark with the write-heavy workload

by enabling the aggressive GC option is presented in

Table 35. Note that since the BwTree Batch achieved

much higher throughput than the BwTree Block (Fig-

ure 11.f), it is obvious that a larger amount of data

needed to be transferred to process the user requests

(e.g., 28.08 GB vs. 57.28 GB written to the SSD by

user requests when the cache limit was set to 20%).

Since more data was written to the SSD, it is clear

that the BwTree Batch required to trigger GC more

frequently, reclaiming larger space (e.g., 25.97 GB vs.

56.86 GB reclaimed by GC when the cache limit was

configured to 20%).

Table 4 presents the results of analyzing the aggressive-

GC efficiency for the write-heavy workload in terms of

read (write) amplification and GC overhead. Due to the

GC activity, the actual amount of data that is read or

written physically to flash is greater than the logical

amount that is intended to be read or written. This

undesirable phenomenon is called “Read(Write) Am-
plification”. A lower amplification is always desirable.

In addition, we measured the GC overhead represent-

ing the amount of data GC moved per unit of reclaimed

space. i.e., (GC Read+GC Write) / Reclaimed Space.

We use the following simple formula [23] to calculate

read(write) amplification.

Read(Write) Amplification

=
User Read(Write) + GC Read(Write)

User Read(Write)

As can be seen in the table, BwTree Batch achieves

about 1.5X – 2X lower read amplification and about

2.5X lower GC overhead compared to LLAMA GC on

top of BwTree Block.

5 Note that we found similar observations when running
the read-heavy workload.
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Fig. 13: Overall end-to-end throughput results with both
checkpointing and GC are enabled.

8.2.4 End-to-End Throughput

Figure 13 presents the overall throughput results with

both checkpointing and GC enabled. For the read-heavy

workload, BwTree Blockhas a throughput of 92K (20%

cache limit) – 366K (80% cache limit) ops/sec while

BwTree Block has a throughput of 240K – 497K ops/sec,
representing a 1.4× – 2.6× speedup depending on the

available host cache size (see Figure 13a). A similar

speedup is observed for the write-heavy workload shown

in Figure 13b - 35K – 119K ops/sec for the BwTree Block
and 95K – 201K ops/sec for the BwTree Batch, re-

spectively.

8.3 Discussions

8.3.1 Comparison with Conventional SSD

As a sanity check, we compare the performance of our

solutions based on OX, with a commercial NVMe SSD.

The results are shown in Figure 14. The dotted green

curve represents throughput for the conventional SSD.

We can compare it directly to the performance of BwTree Block,

as both are based on the same storage interface. We ob-

serve that the conventional SSD is significantly faster

than our computational SSD. There are several reasons
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for that: (i) the conventional SSD is connected to the

host via PCIe instead of fabric, (ii) the FTL of the

conventional SSD runs in firmware on a custom ASIC

instead of user-space on a SoC running Linux, and (iii)

the FTL of the conventional SSD builds on years of ex-

perience at Samsung. Our hypothesis is that hardware

acceleration will enable us to alleviate the effects of (i)

and (ii). Testing this hypothesis is future work.

Interestingly, changing the storage interface from

block I/O to batch I/O reduces significantly the gap

between conventional SSD and computational storage.

With the write-heavy workload under aggressive garbage

collection, the performance of BwTree Batch (solid

green line in Figure 14(b)) is similar to the performance

of the conventional SSD (solid red line), i.e, 2X faster

than BwTree Block.

In summary, this experiment shows that an appro-

priate storage interface compensates for the lack of spe-

cialized hardware on computational storage. This is a

very encouraging initial result for computational stor-

age.

Our motivation for using a computational SSD was

to offload log structuring from host to SSD. Figure 15(a)

shows CPU throughput, in operations/sec, as a function

of time for the write-heavy workload and a working set

that is twice the size of the cache (50% cache). The

graph shows that throughput is constant in the non-

durable configuration (i.e., in the absence of checkpoint-

ing and garbage collection (dotted line)), while it fluc-

tuates at a much lower rate (2/3 of the non-durable con-

figuration) when checkpointing and garbage collection

are activated on the host. Figure 15(b) shows that ap-

proximately 10% of the CPU load is due to garbage col-

lection. That work is offloaded to computational storage

in BwTree Batch.

8.3.2 Hardware acceleration

As pointed out in the previous section, we consider that

hardware acceleration is necessary to improve the per-

formance of computational storage. In the remaining of

this section, we discuss two potential avenues for hard-

ware acceleration: (i) non-volatile memory to reduce

the overhead of durability and (ii) hardware-supported

RDMA to avoid data copies on computational storage.

Integrating these solutions in OXBatch is future work.

Non-Volatile Memory If we assume that our pro-

grammable SSD contains a form of non-volatile mem-

ory (NVM) or DRAM with flash backup in the case of

power failure, which enterprise SSDs might do [8], our

durability implementation could be significantly sim-

plified. More specifically we would ACK to a request

once a buffer arrives in the controller cache. This be-
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Fig. 14: End-to-end throughput for BW-tree on a

conventional SSD compared to BwTree Block and

BwTree Batch.

comes our latency boundary and should bring the la-

tency down in a few-hundred microsecond or less range.

Now pages in the buffer would be written to flash with

no worries about the latency of response time, and the

entire buffer could be just written to one flash EBLOCK.

There is no logging nor done record. This approach

also reduces thread scheduling and its cost by reducing

thread interaction, and also simplifies flash provision-

ing.

In addition, we need to implement a “checkpoint

on power failure” capability. It would be nice to have

a power supply that stays on long enough to take the

checkpoint involving writing the entire contents in mem-

ory to flash storage. We only pay for checkpoints when

there is a power failure. The part of flash consumed

by the checkpoint is immediately empty and available

for reuse when the system comes back up if the check-

point is written to EBLOCKs that are dedicated to the

checkpoint.
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8.3.3 RDMA

NVMe over Fabrics (NVMe-oF) has been recently in-

troduced as a way for accessing NVMe devices over

high-speed networks. With fast interconnect technolo-

gies, such as Remote Direct Memory Access (RDMA)

or socket connections, NVMe-oF offers a low remote ac-

cess latency, enabling fast network-based storage I/Os

widely used in the industry. As a transport protocol, in

our design we used a standard network protocol (i.e.,

TCP/IP) that offers a cheap and flexible solution in

terms of required hardware and software changes to

support the communication protocol.

Unfortunately, the socket connection delivers fast

network performance at the cost of moving data on the

network stack with a high CPU utilization. Such high

utilization might be acceptable for a server equipped

with a large number of cores so that some can be fully

assigned for the network communication purpose while

others are used for processing user applications, this

is not ideal for storage devices where relatively fewer

number of cores exist. To quantify the overhead of pro-

cessing NVMe-oF (TCP/IP) requests with ARM cores,

we measured the performance of transferring 20GB of

data with the request size of 64KB over a network in-

terface providing 20Gbps Ethernet bandwidth. We first

assigned only a single core to handle the I/O requests,

and then increased the number of cores one-by-one.

Figure 16 shows the result. Initially as shown in

Figure 16a, we achieved only 500Mbps throughput of

transferring the data with a single core dedicated for

processing the I/O requests. As increasing the number

of cores, higher throughput was observed, but it re-

quires to 100% utilize all the ARM cores (Figure 16b)

for fully saturating the network bandwidth. Since all

cores are busy only for processing the I/O requests, not

much core cycles would be left for running other in-SSD

tasks. As a way of improving the interface bottleneck

introduced by the socket approach, we could instead use

a form of RDMA [21,45] to bypass the CPU whenever

possible and to avoid memory copies on the network

stack when transferring data. With hardware-support,

our hypothesis is that RDMA will significantly improve

performance. Testing this hypothesis is a topic for fu-

ture work.

9 Related Work

9.1 Programmable SSDs

Modern SSDs contain computing components (such as

embedded processors and DRAM) to perform various

SSD management tasks, providing interesting oppor-

tunities to run user-defined programs inside the SSDs.

An overview of the concept of programmable SSDs is

described in [17]. There is clear industrial interest in

exploiting programmable SSDs [2], so research in this

area is likely to have a high payoff.

Do et al. [15] were the first to explore such opportu-

nities in the context of database query processing. They

modified a commercial database system to push down

selection and aggregation operators into a SAS flash

SSD. In addition, Jo et al. [26] extended a variation of

MySQL to perform early filtering of data by offloading

data scanning to an NVMe SSD. While they pioneered

the creative use of flash SSDs to open up cost-effective

ways of processing data, their approaches were primar-

ily limited by hardware and software aspects of the

SSD. Firstly, the embedded processors in the prototype

SSDs were clocked at a few hundred MHz and were not

powerful enough to run various user-defined programs.
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Fig. 16: NVMe over Fabrics (TCP/IP) performance with ARM cores. As the number of cores dedicated to network processing
increases, (a) data transfer throughput improves, but (b) more core cycles are required, making fewer cycles to be used for
other in-SSD tasks.

More importantly, the software development environ-

ments made the development and analysis very chal-

lenging, preventing thorough exploration of in-storage

processing opportunities.

Recently, researchers have studied better program-

ming models for programmable SSDs. In [40], Seshadri

et al. proposed Willow, a PCIe-based generic RPC mech-

anism, allowing developers to easily augment and ex-

tend the SSD semantics with application-specific func-

tions. Gu et al. [20] explored a flow-based programming

model where an in-SSD application can be dynami-

cally constructed of tasks and data pipes connecting

the tasks. These programming models offer great flex-

ibility of programmability, but are still far from being

truly general-purpose. There is a risk that existing large

applications might need to be heavily redesigned based

on models’ capabilities.

9.2 Deuteronomy

The Deuteronomy architecture [31] supports efficient

ACID transactions by providing a clean separation of

transnational component (TC) from data management

component (DC). The idea is to decompose functions

of a database storage engine kernel into TC that pro-

vides concurrency control and recovery, and DC that

handles data storage and management duties (such as

access methods, and caching). Each Deuteronomy com-

ponent is implemented for high performance on mod-

ern hardware, resulting in Bw-tree (i.e., a latch-free ac-

cess method [32]) and LLAMA (i.e., a latch-free, log-

structured cache and storage manager [30]). The com-

bination of these two, resulting in a key-value store,

is used in several Microsoft products, including SQL

Server Hekaton [14] and Azure Cosmos DB [1].

9.3 Our Work

Compared to the earlier studies, our work exploits a

state-of-the-art programmable SSD, providing powerful

processing capabilities with abundant in-SSD comput-

ing resources, and a flexible development environment

with a general-purpose operating system which allows

easy programming and debugging.

10 Conclusion

Programmable SSDs open up new possibilities for man-

aging the cost/performance trade-off in the storage hi-

erarchy. In this paper, we explored the design of a trans-

actional batched I/O storage interface that removes the

burden of Log structuring recovery and garbage collec-

tion from the host. We designed and implemented the

storage controller software by specializing components

from the OX framework. We compared the performance

of the Bw-tree key-value store with two storage engines:

(i) the LLAMA host-based log structuring running with

a traditional block I/O SSD, (ii) a thin layer issuing

batched I/O to our storage controller. Our experiments

explored the performance implications of offloading log

structuring recovery and garbage collection from host

to storage controller.
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