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ABSTRACT 

Spaceflight poses many risks to human health due to the harsh conditions of 

microgravity, cosmic radiation, and confinement. One of the impacts that spaceflight entails is 

bone loss, which is a risk to astronauts as future space missions will require long travel durations. 

To elucidate the role of genetics in spaceflight bone loss, in this study differential gene 

expression analysis was performed using Nextflow-RCP, an adaptation of NASA Genelab’s 

RNA-Seq Consensus pipeline. The dataset for this project was GLDS-241, which contained 

samples from mice femoral skin.  To gain a comprehensive understanding of the genes involved 

in bone loss, the results from the differential gene expression analysis were further analyzed 

using programs specifically for gene enrichment analysis.  The findings demonstrated that there 

are many factors involved in bone loss under microgravity conditions. Altogether, the results 

from the gene enrichment analysis indicated a relationship between bone loss and glucose 

metabolism. However, additional studies on the mechanisms involved in bone loss are necessary 

to reduce bone loss in astronauts and assure their safe travel in space.  
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I. INTRODUCTION 

Spaceflight has come a long way since the beginning of space exploration. The first 

successful mission in 1961 only lasted an hour and 48 minutes and completed one orbit around 

the Earth [1].  However, given that it was the first mission in which a human was successfully 

launched into space, it was a remarkable achievement.  Today, astronauts are sent to the moon 

and robots are sent to Mars. In addition, researchers have made many discoveries from 

spaceflight with longer missions. For example, researchers found that spaceflight has various 

effects on the human body due to confinement, cosmic radiation, and microgravity [2].  Some of 

these effects are on the cardiovascular, and immune, pulmonary, and digestive systems. One 

well-known effect, since the first long-duration space mission, is the development of bone loss 

[3], [4].  However, no effective solution to this ongoing problem has been discovered. 

 

A. Bone Remodeling 

The skeleton is a metabolically active organ that undergoes a continuous cycle of 

regeneration throughout life [5]. The purpose of undergoing this cycle is to adjust the skeletal 

architecture to meet the body’s mechanical needs and to repair any damages in the bone matrix. 

Bone remodeling involves two main multicellular units—osteoblasts and osteoclasts—found in 

the three stages of the remodeling cycle. The stages of the remodeling cycle involve resorption, 

reversal, and formation seen in Figure 1 from [6].   
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Figure 1. Representation of the bone remodeling cycle from [6]. 

 

In the resorption stage, osteoclasts digest old bone [6].  Then in the reversal stage, 

reversal cells cover the exposed bone surface and may send or receive signals that transition the 

bone from resorption to formation stage. Lastly, in the formation stage, osteoblasts produce new 

bone to replace the reabsorbed bone. As demonstrated in Figure 1, the bone remodeling cycle is a 

coupled process where bone reabsorption occurs at the same rate as bone formation. When the 

bone remodeling cycle becomes uncoupled, bone mass decreases as the rate of bone reabsorption 

becomes higher than the rate of bone formation. This ultimately leads to osteoporosis.  

Osteoporosis is classified as a disorder of the skeleton where there is reduced bone mass 

and the increased risk of bone fractures, most likely related to metabolic changes in the bone and 

changes to the body’s homeostasis [7]. Osteoporosis can occur in all ages and genders. However, 

it is more common in an aging population, particularly in postmenopausal women [8]. Those 

who are diagnosed with osteoporosis have a 40% lifetime chance of developing a bone fracture. 

The most common areas for bone fractures are in the wrist, spine, and hip. Other areas prone to 
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fracture are the humorous and ribs. Either way, a bone fracture can reduce a person’s quality of 

life and even increase mortality up to 20%.  

 

B. Bone Loss in Space 

On Earth, bones can regenerate because gravity applies mechanical stress to the skeletal 

system [9]. The opposite is true in space, and one of the major obstacles that astronauts face 

during space missions is the risk of severe bone loss.  In space, the human skeleton is not forced 

to regenerate when exposed to a microgravity environment. Therefore, in a weightless 

environment, astronauts may lose 1-2% of their bone density every month.  According to Sirola 

and Iki et Al., bone loss in astronauts is ten times greater in a month than what postmenopausal 

women experience on average in a year on Earth [8], [10].  Luckily, bone loss from shorter 

missions is less severe because the body can reacclimate to a normal baseline. However, long-

term missions may have more severe consequences for the human body. Such consequences are 

osteoporosis and a higher risk for bone fractures, which is why it is imperative that astronauts 

take certain countermeasures during spaceflight.  

 

C. Countermeasures in Space 

There are current countermeasures that astronauts can take to mitigate bone loss. The first 

is exercise. Astronauts are currently required to spend 3 hours a day exercising on  weight 

bearing machines that replicate the resistance of Earth’s gravity [3]. Astronauts can also take 

dietary supplements in addition to exercising since there is limited sun exposure during 

spaceflight. Some supplements that astronauts can take are vitamin D and calcium. Nonetheless, 

these countermeasures may not be adequate for longer space endeavors in the future [3], [11]. As 
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technologies advance, spaceflight will as well, and we must anticipate what the future entails.  

For example, because future space missions will send women to the Moon in 2024, astronauts to 

Mars, or even the public to space through private companies like Blue Origin, the current 

countermeasures are not enough to prevent osteoporosis.    

 

D. NASA GeneLab’s RNA-Seq Consensus Pipeline 

The aim of this project is to utilize the Nextflow RNA-Seq Consensus Pipeline 

(Nextflow-RCP), an implementation of NASA Genelab’s RNA-Seq Consensus Pipeline, to 

analyze the effects of bone loss in mice under the harsh conditions of microgravity [12],[13]. 

Nextflow-RCP is an RNA-sequencing pipeline that was created by a former San José State 

graduate student, Jonathan Oribello. A copy of the Nextflow-RCP pipeline can be found at 

https://github.com/J-81/Nextflow_RCP.  Nextflow-RCP is implemented on Nextflow, which is 

open-source software that allows workflows using software containers [14]. This pipeline takes 

short read RNA-sequencing data to detect differentially expressed genes (DEGs) through quality 

control, trimming, and mapping the reads to a reference genome.  By examining the DEGs, we 

may discover more about bone loss through the upregulated and downregulated genes. 

Ultimately, this research will give NASA insight into the mechanisms involved in bone loss and 

hopefully potential targets for bone loss treatments in astronauts. 

 

E. GLDS-241 Dataset 

The dataset used for this specific study is GLDS-241 version 8, which was originally 

implemented by UCLA in partnership with NASA. This dataset is found on the NASA Genelab 
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repository [15], [13]. The Genelab repository is a database that stores and analyzes omics data 

from spaceflight and other space-related experiments.  

The GLDS-241 dataset involves RNA sequence data of femoral skin samples from a total 

of 19 mice. Of those 19, 10 were ground control mice while the other 9 were mice on the space 

mission. Table I. shows the schematic overview of this experiment. 

TABLE I 
GLDS-241 Treatment Protocol 

Days from Launch 6 14 30 44 

Ground Control 0.3 ml PBS 0.3 ml PBS 
20 mg/kg 
Calcein green in 
0.1 mL PBS 

0.3 ml PBS 
and 0.1 mL of 
Alizarin Red 

0.3 ml PBS and 0.1 
ml Calcein 
green 

Spaceflight Mice 0.3 ml PBS 0.3 ml PBS 
20 mg/kg 
Calcein green in 
0.1 mL PBS 

0.3 ml PB and 0.1 
mL of Alizarin 
Red 

0.3 ml PBS and 0.1 
ml Calcein 
green 

 
A cohort of 40, 30-week-old female mice were flown to the International Space Station 

(ISS) for the Rodent Research-5 project (RR-5). All the mice were kept in the Rodent habitat for 

a total of 30 days. Six days after the launch, 20 mice received intraperitoneal injections of 0.3 ml 

phosphate-buffered saline (PBS) as a control. On day 14, this treatment was repeated. However, 

all the mice were also given intraperitoneal injections of 20 mg/kg Calcein green in 0.1 mL PBS 

as a bone marker.  

After these treatments, 10 control mice were randomly selected for Live Animal Return 

(LAR) and sent back to Earth 30 days after the launch.  After arriving back on Earth, the LAR 

mice spent another 30 days in a standard habitat to reacclimate to Earth’s conditions. Within 

these 30 days, the LAR mice received another two treatments, the first consisting of 0.3 ml PBS 
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and 0.1 mL of Alizarin Red the day of arrival on Earth (or day 30 after launch) and the second 

with 0.3 ml PBS and 0.1 ml Calcein green (day 44 after launch).  

Ground control mice treatments were conducted on a 3-day delay at Kennedy Space 

Center in ISS Environmental Simulators (ISSES) programmed with data from the Dragon 

capsule and the ISS cabin. The ground control animals received the same treatments with the 

same duration as the spaceflight mice. 

After day 60, the mice ground control and spaceflight mice were euthanized with 

ketamine and xylazine.  The femoral skin samples were preserved for RNA preparation, and the  

paired-end RNA was sequenced with Illumina NovaSeq600 [16], [17].  

 

II.  METHODS 

A. High Performance Computing Cluster 

The San Jose State University College of Science High-Performance Computing Cluster 

(SJSU CoS HPC) was used to run Nextflow-RCP since the programs needed to analyze GLDS-

241 are computationally extensive and require a lot of memory [18].  SJSU CoS HPC is a Linux-

based computing system that consists of 36 nodes and 128 to 258 gigabytes (GB) of RAM. To 

submit jobs on SJSU CoS HPC, a SLURM script is required.  
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B. Nextflow-RCP 

 

Figure 2. Nextflow-RCP workflow. The blue represents the processes that occurs in the pipeline. The green indicates differential 

gene expression analysis in R after the Nextflow-RCP.   

Figure 2.  Demonstrates the overall workflow for Nextflow-RCP. The steps to the pipeline 

involve downloading raw reads, quality control with FastQC and MultiQC, trimming raw reads 

with Trim Galore, aligning with STAR, and quantifying gene counts with RSEM. 

1) Obtaining Raw Data 

Nextflow-RCP first downloads the GLDS-241 FastQ files from the Genelab repository 

using a Slurm script containing GLDS-241 as an argument. Unlike the previous implementation 

of the Nextflow-RCP, the new update does not require a configuration file that directs Nextflow-

RCP to download the GLDS-241 raw reads from the online repository. 

2) Quality Control and Trimming 

FastQC, MultiQC, Trim Galore and Cutadapt software were used to perform quality 

control of the FASTQ files [19]–[21]. FastQC is a software program that is used to assess the 
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quality of the individual FASTQ files for each sample. However, it’s time-consuming to view the 

quality of each file. Therefore, MultiQC was used to summarize the quality from FastQC across 

all the raw reads. The FastQC and MultiQC versions used were 0.11.9 and 1.9, respectively.  

The paired-end reads and the adapters were trimmed with Trim Galore and Cutadapt, 

versions 0.6.6 and 3.2, which remove low-quality bases and the adapter from the reads. After the 

raw reads are trimmed, FastQC and MultiQC generate the quality metrics for the trimmed reads. 

3) Aligning and Quantifying Reads 

The trimmed reads were aligned to the Mus musculus reference genome using Spliced 

Transcripts Alignment to a Reference (STAR), version 2.7.7a [22]. STAR is an open-source 

splice-aware alignment software that involves a seed search and a clustering, stitching, and 

scoring step in its algorithm in order to map reads to a reference genome. STAR first creates the 

indexed genome files that help with read mapping using the reference FASTA file and the gene 

transfer format (GTF) annotation file. The M. musculus reference FASTA and GTF annotation 

files in this project are from the Ensembl release version 104 [23]. Then, STAR uses the trimmed 

reads and indexed genome files to map the reads to the reference genome.  

To quantify the mapped reads to each gene and transcript, Nextflow-RCP uses RSEM 

version 1.3.3 [24]. RSEM computes the maximum likelihood estimate to reads across multiple 

genes. Like the first step in STAR, RSEM creates an indexed gene file using the GTF and 

reference genome files. With the indexed gene file and the mapped reads, the genes are assigned 

a count. 

The output files from this step include two files. One file contains the counts assigned to 

each gene and another that contains counts to each isoform. Since this project was only 
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concerned with the differential gene expression between ground control and space mice, only the 

gene counts file was required for the differential gene expression analysis.  

4) Differential Gene Expression Analysis 

After downloading the counts, an R script was created to obtain the DEGs.  The version 

of R that was used was 4.1.1 on macOS 11.6.  The DESeq2 package on R was used for 

differential gene expression [25].  

a. Normalization 

The first step in the R script was to normalize the reads from the downloaded 

unnormalized gene counts file. The data was formatted as a DEG object with the DESeq2 

package on R. The genes were pre-filtered so that genes with a count less than 10 across all 

samples were removed because these would have a low expression in both ground control and 

space flight conditions [26].  In addition, keeping the genes with no or low counts can increase 

the number of final DEGs reported. Therefore, we can ignore these genes to improve the 

reliability between the mean-variance.  

b. DESeq() 

With the DEG object, the DESeq() function in R can perform the size factor estimation, 

estimate the dispersion, and hypothesis testing.  

(a) Size factor Estimation 

The size factor is estimated using the method described by Equation 5 in [27]. This 

method takes the median of ratio of the observed counts where the numerator is the jth sample’s 
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counts and denominator is a pseudo-reference sample created by the geometric mean of all 

samples. By estimating the size factors, we can compare the counts between different samples if 

there are discrepancies between sequencing depth among the samples.  

(b) Estimating dispersions 

The next step to normalization involves estimating the dispersion, or the variance of the 

data. In the DESeq() function, the dispersion is estimated for each gene, using an empirical 

Bayes shrinkage method [25]. Each gene is treated separately, and the gene-wise dispersion is 

estimated. For the estimates, the location parameter of the distribution is determined. The gene-

wise dispersion estimates are shrunken based on the distribution using empirical Bayes. 

(c) Hypothesis testing 

After normalizing the counts data, hypothesis testing was performed to determine which 

genes were differentially expressed between space flight mice and ground control. The Wald 

significance test was used for hypothesis testing. For differential gene expression analysis, 

Wald’s test is the default method for hypothesis testing when two groups are being compared. 

However, by only using the p-values from the Wald’s test to obtain DEGs, this would result in a 

multiple testing problem that increases the number of false positives as more genes are tested.  

To correct the multiple testing problem, the Benjamini-Hochberg (BH) procedure was used [28]. 

The BH procedure controls the false discovery rate (FDR) through a Bonferroni correction for 

multiple hypothesis testing. In the BH method, the genes assigned ranks to its p-value, then the 

BH critical value for each p-value is calculated, and finally, the original p-values are compared 

to the BH critical value.  

Traditionally, genes that have an FDR, or adjusted p-value ≤ 0.05 and a log2 fold change 

(log2FC) of 1, are considered to be differentially expressed. However, since the sample sizes of 
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the space flight and ground control samples are relatively small, using the traditional method for 

filtering DEGs may result in no or very few genes. Therefore, this study considered genes with a 

p-value threshold lower than 0.01 and a log2FC of 1 as differentially expressed.   

 

5) Gene Enrichment Analysis 

A gene enrichment analysis was performed to gain a further understanding of biological 

mechanisms that the DEGs play by looking for the classes of genes that represent functions. The 

software used for gene enrichment analysis were DAVID, gprofiler2, and GSEA [29]–[32]. 

a.  DAVID 

Database for Functional Annotation, Visualization, and Integrated Discovery (DAVID), 

version 6.8, is an open-source web server that provides functional annotation tools for large gene 

lists in genomics studies [29].  DAVID avoids duplicated genes by calculating the Fisher Exact 

test based on the DAVID gene IDs and removing repeated IDs. The functional annotation tool 

accepts a ranked gene list as the input and groups them into annotation groups by measuring the 

degree of association with a Kappa statistic and a fuzzy clustering algorithm. As the gene list, the 

Ensembl IDs for the GC vs. FLT DEGs were uploaded onto DAVID to determine which 

biological processes were enriched. On DAVID, the thresholds can be selected. For this project, 

the default thresholds were used where the Kappa similarity threshold was 0.5 and the maximum 

EASE score/p-value was set at 1.  

b.  gprofiler2 (0.2.1) 

Gprofiler2, version 0.2.1, is a functional enrichment analysis and visualization package 

on R available through CRAN or conda-forge [32]. This R package accompanies g:profiler, the 

web-based server, and facilitates access to g:profiler’s computations and database [33]. 
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Gprofiler2 also provides access to many annotation sources including KEGG, GO, Reactome, 

Wikipathways, miRTarBase, CORUM, Human Protein Atlas, etc. [33]–[40]. One benefit to 

using gprofiler2 is that these annotation sources are readily available without having to download 

the database.  

Gprofiler has four main wrapper functions: gost, gconvert, gorth and gsnpense. This 

study only uses the gost function for gene enrichment. gost accepts either a list of DEG Ensembl 

IDs or separate lists of ordered upregulated or downregulated DEGs. To visualize the difference 

between the upregulated and downregulated genes, separate lists of ordered upregulated or 

downregulated DEGs were used in this study. As for visualization of the enrichment analysis 

results, gprofiler uses ggplot2 and plotly similar to g:profiler [41], [42].  

c. GSEA 

Gene Set Enrichment Analysis (GSEA) is a software package that interprets gene 

expression data by grouping genes based on common biological function, chromosomal location, 

or regulation [30], [31]. Most methods for gene expression data interpretation, like DAVID and 

gprofiler2, accept the gene list of the DEGs. But, by using a list of DEGs, some of the genes with 

biological relevance may be filtered out due to the correction of multiple hypothesis testing, or a 

long list of DEGs may not have a meaningful relationship as a whole. GSEA can overcome these 

challenges and extract more meaning from the data by using the normalized RNA-Seq. count 

data as the input. With the count data, GSEA calculates its own metrics: the estimation of 

significance level (ES) and the normalized enrichment score (NES).  These two metrics take the 

degree of overrepresentation and its statistical significance into account. In addition, the metrics 

solve the problem with multiple hypothesis testing. 



- 20 - 
 

This study uses GSEA version 4.1.0. Per the documentation, there are multiple levels of 

thresholds for the gene set permutation, depending on how conservative or permissive the gene 

set permutation should be. The permissive threshold involves a p-value < 0.05 and an FDR < 

0.25 while a conservative threshold involves a p-value < 0.001 and an FDR < 0.05. For this 

study, the most permissive threshold, p-value >0.05 and FDR < 0.25, was used to prevent from 

filtering out significant results.  

 

III.  RESULTS 

A. Nextflow-RCP 

1) Quality Control and Trimming 

 

(a) 
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Figure 3.(a) FastQC Mean Quality Scores Per Base. A (b) Fast QC Mean Quality Score 

The quality of the raw and trimmed reads from the MultiQC reports is seen in Figure 3. 

Each line, in green, represents the average per base Phred score for each read. A Phred score 

over 30 indicates that the base call has an accuracy of 99.9%, in other words, the probability of 

an incorrect base is 1 out of 1000 bases [43]. Figure 3A. indicates that the overall quality for all 

the raw reads was high since they were around 38. Although, towards 115 base pairs and 

onwards, the average quality per base decreases because of the adapter content placed at the end 

of the reads.  

After trimming the reads with Trim Galore and Cutadapt, the quality of the reads slightly 

improved, demonstrated in Figure 3B. In addition, MultiQC reported that there were no samples 

with an adapter content over 0.1%, indicating that Cutadapt successfully removed the adaptor 

content at the end of each sample. Figure 4 shows the adapter content in each sample before 

trimming the reads.  

(b) 
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Figure 4. FastQC: Adapter Content 
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2) STAR Alignment 

 

Figure 5. STAR Alignment Scores 

The STAR alignment results across all the samples are seen in the MultiQC report in 

Figure 5. The color bands are correlated to the percentage of genes that were or were not mapped 

to a locus or loci. 81-89% were uniquely mapped with GC sample 1 having the highest 

percentage and FLT sample 2 with the lowest.  8-11% were mapped to multiple or too many loci 

in all the samples. As for the unmapped genes about 2-6% were unmapped across all the 

samples.  

 

B. Differential Gene Expression 

1) Normalization 
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The Principal Analysis Component (PCA) plots in Figure 6 use dimensionality reduction 

to visualize the variance among multidimensional samples. There was some variance among the 

GC and FLT mice before normalizing the gene counts with DESeq2 in Figure 6A. Some of the 

GC samples, in pink, are clustered with each other in the lower-left corner while the FLT 

samples, in teal, tend to cluster towards the upper right diagonal of the plot. But some of the GC 

and FLT samples were grouped near each other.  After normalization, in Fig. 6B, one of the GC 

samples clustered closer to the FLT samples. Overall, most of the samples in the GC and FLT 

groups had a consistent expression before and after normalization.  

 

 

(a) 
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Figure 6. (a) top PCA plot (b) bottom PCA plot 

 

2) DEGs  

 
Figure 7. The Number of DEGs found per threshold 

Figure 7 shows the number of DEGs using the different levels of the adjusted p-value and 

p-value for GC vs. FLT samples. For both the adjusted p-value and p-value, the threshold for the 

log2FC was 1. At an adjusted p-value of 0.05 and 0.1, the number of DEGs found were 42 and 
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44, respectively. At a p-value of 0.05, the number of DEGs increases to 124. The number of 

DEGs using the adjusted value of 0.05 and 0.01 are low. This could potentially filter out 

important findings. Therefore, a p-value of 0.01 rather than the adjusted p-value of 0.05 was used 

for the differential expression analysis in this project. 

 

Figure 8. Venn Diagram of the DEGs from Nextflow-RCP and Genelab. 

The results from the Nextflow-RCP and Genelab-RCP were compared by downloading 

the differential gene analysis results from the Genelab repository for the GLDS-241 dataset and 

running a comparison on R. The Genelab-RCP obtained a total of 129 DEGs between the GC vs. 

FLT groups, using a p-value threshold of 0.01 and a log2FC of 1.  The number of DEGs from the 

Genelab-RCP was not far off from the 124 DEGs from the Nextflow-RCP at the same 

thresholds.  Between the two pipelines, there were 93 DEGs in common, seen in the center of the 

Venn-diagram in Figure 8. The left indicates the number of unique DEGS found from the 

Nextflow-RCP while the right is the number of unique DEGs from the Genelab-RCP.  
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Figure 9. GC vs FLT DEG Heatmap. The GC samples are located on the right of the heatmap in teal and the FLT samples are on 

the left in pink. 

A clustered heatmap was created to visualize the difference between the DEGs in the GC 

and FLT samples in Figure 9. The x-axis represents the GC and FLT samples, and the y-axis 

consists of the 124 DEGs. The top of the heatmap shows a dendrogram where the GC and FLT 

samples clustered in their respective groups. The 9 FLT samples are on the left of the heatmap in 

pink, and the 10 GC samples are on the right in teal.  

The colors in the heatmap indicate the levels of expression in the genes. The red denotes 

that the gene is highly expressed, and the blue denotes low expression. The expression levels of 

the genes in the GC samples are all similar as well as in the FLT samples. When comparing the 
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gene expression levels between the GC and FLT groups, the FLT samples overall have a lower 

expression across all genes. 

 

C. Gene Enrichment Analysis 

1) DAVID 

Table II consists of the top 4 annotation clusters from the GC vs. FLT groups ordered by 

the overall enrichment scores. The higher the enrichment score, the more enriched the group is. 

The first cluster has the highest enrichment score of 6.07 and suggests that many protein 

transporters of hydrophobic molecules are impacted in space. The second cluster has an 

enrichment score of 5.06 and shows that urinary proteins are also affected in space. Interestingly, 

the third cluster suggests that there is an impact on insulin secretion and metabolism. As for the 

fourth cluster, immunoglobulins are shown to be impacted. However, the fourth cluster has the 

lowest enrichment score of 0.59 and an FDR of 1. These values suggest that the annotations in 

the cluster may not be strongly enriched as the FDR value ranges from 0 to 1. An FDR value of 0 

suggests perfect enrichment and conversely, an FDR equal to 1 is poorly enriched.  
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Table II 
Top 4 DAVID Annotation Clusters for GC vs. FLT 

Category Term FDR 
Cluster 1, Enrichment Score 6.07 

INTERPRO 
INTERPRO 
INTERPRO 
INTERPRO 
INTERPRO 
INTERPRO 

GOTERM_MF_DIRECT 
GOTERM_MF_DIRECT 
GOTERM_MF_DIRECT 

 
Lipocalin fatty-acid binding protein 

Major Urinary protein 
Calycin 
Calycin 

Lipocalin 
Lipocalin conserved site 
Small molecule binding 

Pheromone binding 
Transporter activity 

 

 
3.42E-06 
3.42E-06 
3.42E-06 
3.42E-06 
4.00E-06 
5.52E-06 
3.53E-05 
2.54E-03 
1.71E-02 

Cluster 2, Enrichment Score 5.56 
UP_SEQ_FEATURE 
UP_SEQ_FEATURE 
UP_SEQ_FEATURE 

 
Major urinary protein 1 
Major urinary protein 2 
Major urinary protein 6 

 
1.17E-04 
1.17E-04 
1.17E-04 

Cluster 3, Enrichment Score 2.98 
GOTERM_MF_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 
GOTERM_BP_DIRECT 

 
Insulin activated receptor activity 

Heat generation 
Positive regulation of lipid metabolism 

Cellular response to lipid 
Negative regulation of lipid biosynthetic process 

Negative regulation of lipid storage 
Positive regulation of glucose metabolic process 

Energy reserve metabolic process 
Negative regulation of insulin secretion 
Negative regulation of gluconeogenesis 

Locomotor rhythm 
Mitochondrion morphogenesis 

Aerobic respiration 
Positive regulation of protein kinase B signaling 

Glucose homeostasis 

 
8.00E-03 
2.21E-02 
2.21E-02 
2.21E-02 
2.21E-02 
2.21E-02 
2.21E-02 
2.21E-02 
2.21E-02 
2.35E-02 
2.48E-02 
3.42E-02 
4.65-E02 

0.25 
0.42 

Cluster 4, Enrichment Score 0.59 
SMART 

UP_KEYWORDS 
INTERPRO 
INTERPRO 
INTERPRO 

 
IG 

Immunoglobulin domain 
Immunoglobulin subtype 

Immunoglobulin-like domain 
Immunoglobulin-like fold 

 
1 
1 
1 
1 
1 
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2) Gprofiler2 

 
Figure 10. Manhattan Plot from gprofiler2. 

 
Table III 

Down and Up-regulation 
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Figure 11. Side-By-Side Vertical Dot plot representation of term sizes between upregulated and downregulated gene sets.  

Figure 11. illustrates the enrichment results visualized on a Manhattan plot using the two 

upregulated and downregulated lists. The top plot shows the enrichment results for 

downregulated genes while the bottom shows the results for the upregulated genes. The x-axis 

indicates the grouped functional terms ordered according to the different data sources and 

positioned according to the source order [32]. The source order is defined in such a way that the 

closer the dots are to each other, the closer they are in the source hierarchy. The y-axis in the 

Manhattan plot shows the adjusted p-values using the -log10 as a scale. The dots represent a 

single term and the size of the dot is correlated to the term size, so the larger the dot, the larger 

the term size.  

Table III shows the corresponding statistics to Figure 8, while figure 11 shows a side-by-

side dot plot of the term sizes between up and downregulated gene sets.  Overall, pheromone 

binding had the lowest adjusted p-value at 2.3E-03 and the largest term size of 107. This 

corresponds to the results seen in DAVID, which also suggests that pheromone binding is a 

significantly enriched biological pathway as seen in Cluster 1 in Table II.  



- 32 - 
 

The other enriched pathways are the three Pcdha7-Pcdhgb* complexes found in the 

enrichment results for the downregulated genes. Pcdha7 is a member of the protocadherin gene 

cluster linked on chromosome 5 [44]. The Pcdha7 gene encodes protein complexes that are 

organized similarly to the structure of B and T cell receptors. 

Another fascinating find is the mmu-miR enrichment groups in the upregulated genes 

from the miRNA database.  Mmu-miR is a mouse miRNA, a single-stranded non-encoding RNA  

that plays a role in gene expression by regulating transcription [45]. 

 

3) GSEA 
Table IV 

GSEA DOWNREGULATED HALLMARK GENES 
Gene Set NES NOM 

p.value 
FDR FWER 

p.value 
HALLMARK_ADIPOGENESIS 
HALLMARK_DNA_REPAIR 
HALLMARK_OXIDATIVE_PHOSPHORYLATION 
HALLMARK_FATTY_ACID_METABOLISM 
HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 
HALLMARK_PEROXISOME 
HALLMARK_PROTEIN_SECRETION 

-1.66 
-1.63 
-1.62 
-1.59 
-1.53 
-1.50 
-1.48 

0.035 
0.034 
0.038 
0.057 
0.043 
0.072 
0.110 

0.254 
0.226 
0.152 
0.173 
0.256 
0.236 
0.243 

0.142 
0.217 
0.218 
0.296 
0.421 
0.486 
0.531 

 
11 out of 50 genes sets were upregulated in the GC phenotype. But none of these genes 

were significantly enriched.  In the FLT phenotype, 39 out of 50 gene sets were found to be 

downregulated. Of the 59, 5 gene sets were significantly enriched with an FDR of less than 25%. 

In addition, 6 gene sets were significantly enriched at a nominal p-value less than 5%. Table IV.  

lists the downregulated gene sets from the Hallmarks database that either met the FDR or 

nominal p-value cutoff  [46].  From Table III, DNA repair and oxidative phosphorylation both 

meet the thresholds that GSEA considers as significant findings. 
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IV.  DISCUSSION  

A.  Genelab-RCP 

The Nextflow-RCP is a good tool to use for differential gene expression analysis. To a 

certain extent, the Nextflow-RCP is a reproducible implementation of the Genelab-RCP. As seen 

in Figure 3, there is a huge number of shared DEGs for GC vs. FLT comparison that was 

reported. A possible reason for the minor discrepancy between the two pipelines could be the 

tool versions used during each step. In this study, Ensembl version 104 was used during the 

alignment step, which is the most updated version released as of May 2021. On the other hand, 

Genelab used version 96, released in April 2019, for the alignment. Therefore, there could have 

been some updates to the M. musculus genome in between the two versions, which could affect 

overall STAR alignment and RSEM counts. Another reason for the discrepancy in the results 

between the two pipelines is the difference in operating systems. Nevertheless, it is important to 

address the differences in these findings so that there is improved reproducibility in the future.  

 

B.  DEG Analysis 

DEGs are commonly filtered by the adjusted p-values and log2FC of 0.05 and 1, 

respectively. Using the typical filter resulted in 42 DEGs as demonstrated in Figure 8, but this 

number of DEGs is extremely low. Increasing the adjusted p-value to 0.1 slightly increased the 

number of DEGs to 44, but this number is still low.  A possible explanation for this finding is 

that the mice were given a month to reacclimate after arriving back on Earth from the ISS. After 

a month or so, the skeletal system may have had time to restore itself [47].  If this study obtained 

the mice samples upon immediate return to Earth, it’s possible that there could be more DEGs.  
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Due to the lack of DEGs found using the adjusted p-value and log2FC of 0.05 and 1, a p-

value of 0.01 and log2FC of 1 were used to filter for the DEGs. A total number of 124 DEGs 

were found and these DEGs were used throughout this study. But by using the p-value rather 

than the adjusted p-value, false positives are a possibility. Nonetheless, the DEGs had differential 

expression levels on the clustered heatmap in Figure 9. In addition, the GC and FLT samples 

clustered within their respective groups, proving that the samples under different conditions 

varied with another. 

 

C. Gene Enrichment Analysis 

1) DAVID 

a. Protein Transport and Binding 

The first cluster in DAVID suggests that there are changes to protein binding and 

transporters. Some protein transporters that are mentioned in the first cluster are calycin and 

lipocalin. Calycin forms a large protein superfamily and can be divided into families including 

lipocalins and fatty-acid binding proteins [48]. Of the calycin superfamily, the lipocalins are the 

most diverse. Lipocalins are extracellular proteins that transport small hydrophobic molecules 

like steroids, for example. Some studies have associated lipocalins with osteoporosis. One mice 

study confirmed the association of lipocalins and bone loss. Lipocalin deficient mice of all ages 

had osteopenia and showed fewer osteoblasts compared to the wild-type mice [49].  The 

lipocalin deficient mice also had an increase in body weight and showed tolerance to glucose and 

insulin.  This is surprising because Cluster 2 from the DAVID results also suggests that 

regulation of blood glucose is affected. As a whole, these findings show that that lipocalin plays 

a role in bone regeneration. Not only that but also the mechanisms involved in bone loss may be 
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more complex. However, the link between lipocalins and how it’s involved in bone regeneration 

remains unclear.  

Another interesting find, within the first DAVID cluster, is pheromone binding. This 

result coincides with the results found from gprofiler2. Figure 10 and Table II from the 

gprofiler2 results denote that the pheromone binding gene set is upregulated and has the highest 

gene ratio. Both findings strongly suggest that pheromone binding is impacted in mice with bone 

loss. A single study by Daev et. Al indicates this as well. In the study, a single-cell gel 

electrophoresis of mice exposed to pheromone 2,5-dimethylpyrazine for 4 to 24 hours has shown 

increases in the DNA damage during interphase in bone marrow cells [50].  This finding from 

[50] also shows that an increase in pheromone binding causes disturbances in mitosis which in 

turn play a role in bone loss.  However, there are not enough studies to prove a relationship 

between pheromones and bone loss. 

 
2) Urinary Proteins 

Urinary proteins were found in the first and second cluster in Table II. This finding is 

noteworthy since urinary proteins have a known association with issues in blood sugar 

metabolism, which also appears in the first cluster of the DAVID results [51]–[54].   Two 

correlation studies among hospitalized patients have shown that the urine protein level and the 

incidence rate of osteoporosis in patients with diabetic nephropathy are significantly higher than 

those in patients only with diabetes. In one of the studies, about 35 % of the patients also had 

osteoporosis [51]. The patients with a higher urine albumin-to-creatinine ratio had a significantly 

higher incidence of osteoporosis compared to those with normal ratios of urine albumin-to-

creatinine. The other reported a correlation between high levels of 24h urine protein (24hndb) 



- 36 - 
 

and inflammatory cytokines, which are proteins associated with diabetes and osteoporosis [52].  

Therefore, these findings suggest that renal function could also affect osteoporosis. 

3) Immunoglobins 

The results from DAVID indicate that the immunoglobins are affected in outer space. But 

DAVID indicates that these gene sets are not significantly enriched because the FDR is 1 as 

indicated in Table II. Although, the previous studies found would suggest otherwise. The skeletal 

and immune systems work as a close unit as B-cells are created in the bone marrow [55]. In 

some cases, immune cells can induce changes in key factors of bone regenerators, thereby 

affecting bone health. However, the interaction between bone and the immune system is not 

straightforward and is largely unexplored.  

D. Gprofiler2 

Two unique findings from gprofiler2 were the upregulation and downregulation of mmu-

miRNA and pchda7, respectively. Neither DAVID nor GSEA have reported these results. 

However, it’s because DAVID and GSEA do not use the CORUM and miRNA databases as a 

source for gene annotations [29], [30]. 

1) Mmu-miRNA 

Mmu-miRNA is a non-encoding mRNA found in M. musculus.  These non-encoding 

mRNAs play a role in many diseases. In Gao et Al’s review, there is a vast amount of studies on 

how different mmu-miRNAs upregulate and downregulated osteoclasts and osteoblasts shown in 

Tables 3, 4, and 5 in [56]. However, none of the tables in [56] mention the roles of mmu-miRNA 

151-3P, 378B, and 463-3P found in grprofiler2. The only miRNA that has a possible connection 

to bone loss is Mmu-miRNA-151-3P. In a comprehensive miRNA sequencing analysis, Mmu-

miRNA-151-3P was differentially expressed in the tibialis muscle between young and old mice 
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[57]. Therefore, it’s possible that there is a connection between bone loss and skeletal muscle, 

but more studies are needed.  

 

2) Pcdha7 

The pdch7 gene encodes the protein Pcdha7, which is a protocadherin in the cadherin 

superfamily [58]. Previously, the function of protocadherins was elusive, but recent studies have 

uncovered their roles.  A study by Kim et Al.  demonstrated the function Pcdha7 in bone 

regulation through the gene deletion of Pcdh7 in mice [44]. The mice had increased bone mass 

and a reduced number of osteoclasts but not of osteoblasts. With in-vitro cell cultures, Kim et Al. 

also showed that the defect could be restored by transducing the Pcdh7 gene. Given Kim et Al’s 

findings, the downregulation of the pcdha7 gene in space mice is plausible. Because the pcdha7 

gene is downregulated in a microgravity environment, the number of osteoclasts, which aids in 

bone removal, increases.   

 

E. GSEA 

The only significant downregulated gene sets were oxidative phosphorylation and DNA 

repair. While DNA repair did not coincide with the other results found from gprofiler2 and 

DAVID, oxidative phosphorylation was related to the results in DAVID.  Oxidative 

phosphorylation is one of the common pathways for ATP generation and plays a role in glucose 

metabolism.  During the Krebs cycle, pyruvate oxidation is coupled with oxidative 

phosphorylation to obtain ATP from glucose [59]. Oxidative phosphorylation also has a role in 

bone development. The generated ATP from oxidative phosphorylation provides the osteoblast 

with energy for bone formation [60]. At the same time, oxidative phosphorylation also stimulates 
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osteoclastogenesis. Osteoclasts differentiate through a macrophage stimulating factor (M-CSF) 

or a receptor activator of nuclear factor kappa-B ligand (RANKL)[61]. In RANKL osteoclast 

differentiation, glycolysis and oxidative phosphorylation increases. Glycolysis is the process 

where glucose is broken down to pyruvate to generate energy for the cell. Osteoclastogenesis is 

optimal at certain glucose levels, but at higher glucose levels osteoclastogenesis is reduced [62]. 

In addition, inhibiting oxidative phosphorylation impedes with osteoclastogenesis, indicating that 

osteoclast differentiation is a coupled process that involves both glycolysis and oxidative 

phosphorylation.  Since oxidative phosphorylation is downregulated under microgravity 

conditions, it’s possible that a metabolic dysregulation impedes the energy expenditure and 

formation of osteoblasts and osteoclasts. Therefore, one promising way to combat bone loss is to 

target the metabolic pathways. But the mechanisms involving the metabolic pathway are 

complex and would require further investigation.  

 
V.  CONCLUSION 

 
This project aimed to examine the factors involved in bone loss with the GLDS-241 

dataset, which contains RNA sequencing data of femoral skin from mice. The dataset was 

analyzed using Nextflow-RCP, which is an implementation of NASA Genelab-RCP.  Overall, 

both pipelines resulted in a similar number of DEGs and many of the DEGs were shared between 

the two pipelines. But, there are some discrepancies between the two pipelines that need to be 

addressed for future reproducibility.  

Even though the skin samples were prepared a month after arrival on Earth from the ISS, 

the samples still showed differential expression in the genes. Nonetheless, the differential 

expression between the GC and FLT groups may show profound insights if the samples were 

immediately prepared.  
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Gene enrichment analysis was performed using three types of tools: DAVID, gprofiler2, 

and GSEA. Overall, the findings from the gene enrichment analysis suggest that there are local 

and systemic-wide factors that play a role in bone loss. Many previous studies examined these 

factors individually. But some studies have shown a correlation between osteoporosis and 

glucose metabolism.  However, there has yet been a study that unifies all these factors to find a 

single mechanism that causes bone loss. Hopefully, the findings from this study shed some light 

to future studies. Most of all, this will hopefully help make space travel safer for everyone. 
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